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Abstract 
 

The two cardinal pathologies of Alzheimer’s disease (AD) develop according to distinct 

anatomical trajectories. Cerebral tau-related pathology first accumulates in the mesial 

temporal region, while amyloid-related pathology first appears in neocortex. The eventual 

distributions of these pathologies reflect their anatomical origins. An implication is that the 

cardinal pathologies might exert preferential effects on the structurofunctional brain 

changes observed in AD. We investigated this hypothesis in 39 patients with dementia of 

the Alzheimer’s type. Interrelationships were analysed between cerebrospinal fluid (CSF) 

biomarkers of the cardinal pathologies, volumetric brain changes using magnetic resonance 

imaging, and brain metabolism using [18F]-FDG-PET. Amyloid-related pathology was 

preferentially associated with structurofunctional changes in the precuneus and lateral 

temporal regions. Tau-related pathology was not associated with changes in these regions. 

These findings support the hypothesis that tau- and amyloid-pathology exert differential 

effects on structurofunctional changes in the AD brain. These findings have implications 

for future therapeutic trials and hint at a more complex relationship between the cardinal 

pathologies and disruption of brain networks.   

 

Keywords: Alzheimer’s, P-tau, beta-amyloid, cerebrospinal fluid, cortical thickness, 

cerebral glucose uptake  
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Introduction 

Alzheimer’s disease (AD) is characterised by two cardinal pathologies, namely the 

intracellular accumulation of tau-related neurofibrillary tangles (NFTs), and the 

accumulation of various soluble and insoluble extracellular amyloid-beta (Aβ) aggregates. 

In typical AD, the genesis of these pathologies follows well-described anatomical 

trajectories. The formation of cerebral tau-related pathology begins in the entorhinal cortex, 

then spreads to nearby limbic regions (including the hippocampus) before infiltrating broad 

regions of isocortex [1]. In contrast, the formation of amyloid-related pathology begins in 

basal isocortex before spreading inwards to mesial temporal structures and finally involving 

more diffuse isocortical regions [2]. Several in vivo imaging studies have revealed greatest 

Aβ binding in anterior neocortex, with relatively little uptake in mesial temporal structures 

[3-5]. 

 

The different anatomical distribution of tau- and amyloid-pathology raise the question of 

whether they preferentially relate to structurofunctional changes in the AD brain. We have 

previously hypothesised that tau-pathology is preferentially associated with changes in the 

mesial temporal regions, while amyloid pathology is preferentially associated with diffuse 

neocortical changes [6, 7]. The aim of this study was to investigate this hypothesis using 

volumetric measurements obtained via structural magnetic resonance imaging and relative 

cerebral metabolism assessed with [18F]-FDG-PET. These modalities have been 

demonstrated to be sensitive to the pathological processes of AD [8]. Cerebrospinal fluid 

(CSF) protein markers of AD pathology were used as measures of the cardinal pathologies, 

as they present the only widely available method of measuring P-tau and Aβ pathological 

load in vivo using a common modality [9, 10]. 
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Here we report an investigation of this preferential association hypothesis in a cohort of 

patients with dementia of the Alzheimer’s type (DAT). We expected to find differential 

relationships between CSF biomarkers and regional structurofunctional changes in AD. 

Specifically, CSF levels of P-tau were expected to be preferentially associated with 

structurofunctional changes in the mesial temporal structures. Levels of Aβ in CSF were 

expected to be preferentially associated with structurofunctional changes in neocortex. 

 

Material and Methods 

Participants 

Participants were 39 patients (22 males, 17 females) with DAT, diagnosed according to 

National Institute on Aging – Alzheimer's Association criteria [11]. All were recruited from 

clinical sources in Melbourne, Australia. Ethics approval was obtained from the 

institutional ethics committee (Melbourne Health, HREC 2012.148) and all patients gave 

written informed consent. We have reported resting-state fMRI findings from this cohort 

elsewhere [7].  

 

CSF Biomarkers 

CSF biomarkers were sampled via lumbar puncture, aliquoted and stored at -80°C pending 

analyses. CSF Aβ1-42 levels were determined using a sandwich ELISA method 

(INNOTEST® ß- AMYLOID(1-42), Innogenetics, Gent, Belgium), as previously described 

[12]. CSF total tau (T-tau) concentrations was determined using a sandwich ELISA 

(Innotest hTAU-Ag, Innogenetics, Gent, Belgium) specifically constructed to measure all 

tau isoforms irrespectively of phosphorylation status [13], while CSF P-tau (phosphorylated 
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at threonine 181) was measured using a sandwich ELISA method (INNOTEST® 

PHOSPHO-TAU(181P), Innogenetics, Ghent, Belgium), as described previously in detail 

[14]. Cut-offs for the analyses were 530 pg/mL for Aβ1-42, 350 pg/mL for T-tau and 60 

pg/mL for P-tau [15]. All CSF measurements were performed in one round of experiments 

using one batch of reagents, by board-certified laboratory technicians, who were blinded to 

clinical data. Internal quality control (QC) samples were run on each plate to assure 

consistency. Intra-assay coefficients of variation were < 11.1% for Aβ1-42, <13.3% for T-

tau and <9.2% for P-tau. 

 

Image Acquisition 

Structural images were acquired on a 3.0T Siemens Tim Trio scanner at the Royal 

Melbourne Hospital, Melbourne, Australia. Structural images comprised a 176-slice sagittal 

3D acquisition (MPRAGE; flip angle = 9°, TR = 1900 ms, TE = 2.13 ms, TI = 900 ms, 

FOV = 176 x 256, matrix = 256 x 256; slice thickness = 1 mm). All image volumes were 

inspected at the time of acquisition, with acquisition repeated were necessary (e.g., due to 

gross movement artefact). 

 

[18F]-FDG-PET images were acquired at the PET Centre at the Peter MacCallum Cancer 

Centre in Melbourne. After a minimum of 6 hours fasting, patients were instructed to lie 

quietly in a darkened room for 15 mins. Patients were then injected with 220 MBq of 

fluorodeoxyglucose ([18F]-FDG-PET) through an intravenous catheter and continued 

resting for at least 45 mins. After resting the patients were scanned on a GE Discovery 690 

(GE Medical Systems Milwaukee, WI). Patients were positioned supine with their heads 

secured in a dedicated head-rest. A low dose CT scan for attenuation correction was 
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acquired with the following exposure parameters, 120kV, Auto mA range 40-80, rotation 

time of 0.5 sec, pitch 0.984, slice thickness 3.75 mm. A 15-minute list-mode PET 

acquisition of the brain was then acquired and re-framed into a dynamic scan of 15 x 1 

minute frames to detect any patient motion. Frames with motion present were excluded 

from processing. All PET scans were processed without time-of-flight using OSEM3D 

iterative reconstruction using 8 iterations, 24 subsets, 5 mm filter, 192 matrix and a 35 cm 

field of view. Images were inspected following acquisition to ensure no gross artifact (i.e., 

movement) rendered them unusable. 

 

Image Processing 

Cortical thickness analysis was using the Freesurfer software package (version: 5.2.0), the 

full technical details of which are described elsewhere [16]. The resulting cortical models 

were visually inspected by an experience operator (CBM) to ensure accuracy. Manual 

corrections to the brain mask were made where non-cortical tissue had been included in the 

cortical model. Six regions of interest were specified in order to extract mean thickness 

estimates from the cortical model. These included (a) pre-frontal cortex, (b) orbitofrontal 

cortex, (c) precuneus, (d) lateral-temporal cortex, (e) anterior-cingulate cortex, and (f) 

entorhinal cortex. These regions have been previously identified as containing high 

amyloid-load using in vivo PET imaging [17]. The anterior cingulate was included 

following previous work from our group implicating this region in amyloid-beta load [7]. 

The specific ROIs (and their FreeSurfer labels) for each region are shown in Figure 1. 

Cortical thickness estimates were averaged across ROIs and also across hemispheres, 

resulting in a single mean thickness estimate for each region. For the hippocampus, the 

estimated volume was extracted from the FreeSurfer sub-cortical pipeline and averaged 
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across hemispheres. 

 

The [18F]-FDG-PET images were aligned to FreeSurfer structural space using a linear 

boundary-based registration approach [18]. Briefly, this involves segmenting the structural 

reference image into tissue classes and coregistering the FDG-PET image by maximizing 

the intensity gradient across tissue boundaries. The transformation matrices were then used 

to inversely register the FreeSurfer ROIs to native [18F]-FDG-PET space. In this way, the 

[18F]-FDG-PET volumes were not subjected to potential degradation associated with 

manipulation or interpolation. Mean [18F]-FDG-PET uptake was extracted from each of the 

six cortical regions and the hippocampus as described above. In addition, the mean uptake 

for the entire cerebellum was extracted. Normalised mean uptake for each ROI was then 

calculated by dividing by the mean uptake for the cerebellum. 

 

Statistical Analysis 

All analyses were performed in SPSS v24.0.0 (IBM Corporation). The relationship between 

CSF biomarkers and imaging metrics was analysed using Pearson’s partial correlation 

coefficients. For [18F]-FDG-PET, mean uptake in each of the seven regions was correlated 

with each of the three biomarkers, adjusted for age. For the structural analyses, mean 

cortical thickness for the six pial regions, and the volume of the hippocampus, were 

correlated with the three biomarkers adjusting for age and intracranial volume (ICV). ICV 

was computed using the default procedure implemented in FreeSurfer. Briefly, this 

procedure estimates ICV by exploiting the known relationship between true intracranial 

volumes and the determinant of transform matrix produced by normalizing the whole-brain 

T1 image to MNI305 space. As described in Buckner and colleagues [19], this approach 
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has been validated against manually segmented intracranial volume and is minimally biased 

in populations with dementia.   

 

This resulted in 42 statistical comparisons. Given the increased risk of type 1 error, the 

Benjamini-Hochberg procedure was used to control the false discovery rate (FDR) at 5% 

[20]. FDR correct p-values below .05 were considered statistically significant. In order to 

show a true statistical dissociation (i.e., an interaction), it is necessary to demonstrate that 

the two correlation coefficients are statistically significantly different from one another, not 

merely that one is statistically significantly different from zero and the other is not [21]. In 

order to achieve this, where a statistically significant region was found the correlation 

between it and Aβ was compared to the correlation with P-tau using an approach described 

elsewhere for dependent correlation coefficients [22]. Statistically significant correlations 

were subjected to sensitivity analysis to determine the effect of Aβ status. Specifically, the 

sample was split into those with ‘normal’ versus ‘abnormal’ CSF Aβ1-42 concentrations 

(defined as Aβ1-42 < 530 pg/mL, as described above). Correlation coefficients were then 

computed for the ‘abnormal’ sub-sample in isolation.  

 

Results 

Descriptive Statistics 

Descriptive data for the study sample are shown in Table 1.  

 

Cortical Thickness 

As shown in Figure 2, mean cortical thickness in the precuneus was positively associated 

with CSF levels of Aβ1-42, r = .49, p = .01. There was no statistically significant 
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relationship with P-tau, r = -.14, p = .91. The difference between these correlation 

coefficients was statistically significant, t(36) = 2.97, p = .005. A similar pattern was 

observed in the lateral temporal region. Mean cortical thickness was positively correlated 

with CSF Aβ1-42 concentration, r = .49, p = .01, but there was no statistically significant 

correlation with P-tau, r = -.11, p = .86. The difference between these correlation 

coefficients was statistical significance, t(36) = 2.82, p = .008. As shown in Figure 4, no 

statistically significant associations emerged for T-tau.  

 

[18F]-FDG-PET  

Only two regions showed statistically significant correlations with the CSF biomarkers. 

These results are shown in Figure 3. Uptake in the precuneus was positively correlated with 

levels of Aβ1-42, r = .44, p = .02. The correlation with P-tau did not reach significance, r = 

-.07, p = .97. The difference between these correlation coefficients was statistically 

significant, t(36) = 2.32, p = .03. The correlation between the Aβ1-42 and FDG uptake in 

the lateral temporal region was also positive and statistically significant, r = .44, p = .02. 

The correlation with P-tau and uptake in this region did not reach significance, r = -.01, p = 

.97. Again, the difference between these coefficients was statistically significant, t(36)= 

2.09, p = .04. As shown in Figure 4, no statistically significant associations emerged for T-

tau (all ps > .05). 

 

Effect of CSF Aβ1-42 status 

Twenty-nine participants (74%) had abnormal CSF Aβ1-42 concentrations. Despite the 

smaller sample size, the correlation between Aβ1-42 and FDG uptake in the precuneus 

remained statistically significant, r = .46, p = .013. The correlation between Aβ1-42 and 
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FDG uptake in the lateral temporal regions, however, was no longer statistical significance, 

r = .14, p = .48. The correlation between CSF Aβ1-42 and cortical thickness in the 

precuneus was slightly reduced in the sub-sample and no longer, r = .33, p = .10. A similar 

pattern was observed for thickness in the lateral temporal regions, r = .21, p = .28. No 

correlations between CSF P-tau and neuroimaging markers in the sub-sample.  

 

Discussion 

The findings of this study partially support a preferential association between AD 

biomarkers and structurofunctional changes in patients with DAT. As expected, levels of 

Aβ-related pathology were associated with [18F]-FDG-PET uptake and cortical thickness in 

the precuneus and lateral temporal regions. While reduced glucose metabolism and cortical 

thickness in these regions was associated with greater levels of Aβ-related pathology, there 

was no detectable relationship with tau-related pathology. These differential relationships 

were statistically supported. As the precuneus and lateral temporal regions are amongst 

those with greatest Aβ accumulation in AD, these preferential associations are consistent 

with the hypothesis discussed here. No other regions showed detectable inter-relationships 

between [18F]-FDG-PET uptake, cortical thickness, and disease biomarkers.  

 

Our findings are partially consistent with previous reports. For example, Vukovich and 

colleagues also reported a positive association between CSF Aβ and glucose metabolism in 

the right temporal region [23]. As with our study, no relationships were found between 

glucose metabolism and CSF T-tau. Statistical relationships were, however, reported 

between CSF Aβ, prefrontal, and anterior cingulate hypometabolism. Chiaravalloti and 

colleagues also investigated the FDG-PET correlates of CSF biomarkers in Alzheimer’s 
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disease [24]. Higher CSF P-tau and T-tau was associated with reduced uptake in frontal and 

limbic regions. CSF Aβ was associated with wide-spread cortical dysfunction. While the 

existence of differential relationships between the biomarkers is broadly consistent with our 

hypothesis, the regions reported are not consistent with the regions revealed by our study.  

 

In terms of structural imaging studies, our findings are again partially consistent with 

previous reports in the literature. For example, Ossenkoppele and colleagues [25] found a 

correlation between CSF Aβ and atrophy in the precuneus. Our lack of statistically 

significant results in the medial temporal regions is not consistent with a body of evidence 

that CSF biomarkers are related to morphometric variability in the limbic regions, including 

the hippocampus [26, 27]. Our general finding of a dissociation between P-tau and other 

CSF biomarkers, however, is consistent with previous research showing preferential 

relationships between P-tau and brain atrophy assessed via MRI [28-30].  

 

The preferential associations between biomarkers and structurofunctional change in the 

precuneus are consistent with the known distribution of AD pathology. The precuneus is 

the region of cortex occupying the medial aspect of the superior parietal lobule and lies 

adjacent to the posterior cingulate cortex [31]. Together, the precuneus and posterior 

cingulate regions are sites of early Aβ accumulation [32]. In contrast, the formation of tau-

related pathology in this region occurs later in the pathogenesis of the disease [1, 33]. A 

number of in vivo imaging studies have confirmed the precuneus and posterior cingulate 

region as having affinity for Aβ ligands in patients with DAT and MCI [34, 35]. Imaging 

investigations in patients with DAT have revealed hypometabolism, hypoperfusion, 

structural atrophy, and abnormal functional connectivity in this combined region [36]. 
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There is evidence to suggest two possible mechanisms of structurofunctional change in the 

precuneus and posterior cingulate region. Specifically, such changes may relate to local Aβ 

accumulation, or they may occur secondarily to disconnection from the mesial temporal 

region. The first mechanism, that changes in the precuneus and posterior cingulate regions 

may be secondary to local Aβ deposition, is consistent with the direct pathway of Aβ 

toxicity implicated in the amyloid cascade hypothesis [37]. A number of studies have 

reported that Aβ oligomers directly disrupt synaptic function, supporting the view that local 

Aβ deposition in cortical regions may result in local synaptic disruption, eventually leading 

to structurofunctional changes [38, 39]. A recent imaging study has confirmed the 

relationship between local Aβ deposition and structural atrophy, but only in regions of 

greatest Aβ deposition, including the precuneus and posterior cingulate [40]. There is also 

evidence that Aβ deposition precedes hypometabolism in the precuneus and posterior 

cingulate region, further supporting a relationship between local Aβ deposition and local 

structurofunctional change [41].    

 

Secondary disconnection from mesial temporal regions is the second possible mechanism 

of structurofunctional change in the precuneus and posterior cingulate region. This 

hypothesis is supported by reports that the relative degree of hypometabolism exceeds the 

degree of structural atrophy in the precuneus and posterior cingulate region [42]. An 

implication of this discrepancy is that local structural atrophy in this region may be 

insufficient to explain the degree of hypometabolism, suggesting an additional contribution. 

A candidate for this additional contribution is that hippocampal atrophy induces a 

progressive breakdown of cingulum fibres, which then leads to precuneus and posterior 
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cingulate hypometabolism [43]. In this sense, Wallerian degeneration might be an 

additional cause of hypometabolism and structural atrophy observed in this region [44].  

 

It is still unclear as to whether the two mechanisms described above are equally 

contributory, or whether one or the other predominates at different stages of the disease. 

While the present finding of a relationship between Aβ-related (but not P-tau related) 

pathology and structurofunctional changes in the precuneus does not conclusively resolve 

this issue, it does strengthen the view that local Aβ deposition plays a significant role.     

 

In terms of cognition, the precuneus is involved in a range of integrative cognitive 

functions in healthy adults, including episodic memory retrieval, self-processing, and 

visuospatial imagery, amongst others [31]. There is a body of evidence suggesting this 

region functions as the main `hub' in the default mode network (DMN), a network of 

intrinsic functional connectivity that becomes prominently synchronised during rest [45-

47]. Intrinsic functional connectivity in the DMN is abnormal in AD [48] and there is 

evidence to suggest this may be related to the degree of Aβ pathology [49]. Despite 

growing interest, the precise relationship between disruption to this region and the 

neurocognitive phenotype of Aβ is yet to emerge [50].      

 

The finding of similar differential associations between Aβ and P-tau in the lateral temporal 

regions is also consistent with the proposed model. Like the precuneus, this region is the 

site of early Aβ deposition, whereas tau-related pathology does not become prominent until 

relatively later in the disease [1, 32]. Aβ deposition in this region has been well 

documented using in vivo) imaging approaches [35], and global Aβ affinity has been 
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associated with structural atrophy in temporal neocortex [51]. In terms of the cognitive 

phenotype of DAT, hypometabolism and structural atrophy in this region has been 

associated with semantico-linguistic deficits [52]. Critically for the present study, local Aβ 

deposition in the superior temporal region has been specifically associated with the early 

disruption of language networks in DAT [21].  

 

It was expected that, while Aβ-related pathology would be most strongly associated with 

markers of pathology in neocortical regions, structuro-functional changes in the mesial 

temporal regions would be most strongly related to levels of P-tau. The selective 

association between Aβ and neocortex was consistent with the first prediction, however the 

mesial temporal hypotheses were not supported. A reason for this might be related to the 

technical challenges of imaging mesial temporal structures. Automated parcellation and 

segmentation offer efficient and reliable means of examining volumes and metabolic 

activity of specific brain structures. There is some evidence that manual segmentation 

might be optimal for delineating mesial temporal structures, especially in the context of 

structural atrophy [53]. Manual segmentation, however, is time-consuming, and there are as 

yet no universally accepted protocols for hippocampal tracing [54].  

 

Given that our sample is relatively young in terms of AD populations, it is possible that the 

development of tau-related pathology was not as advanced as the development of amyloid-

related pathology. This might further explain why relationships were observed for amyloid, 

but not tau. A clear direction for future research is to investigate this hypothesis across a 

range of ages and disease stages. Further, given the sample size we were unable to 

explicitly model the effects of relevant comorbidities (such as vascular burden, cognitive 
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function, and treatment status). Future research should confirm out findings in larger 

cohorts which allow for statistical modelling of these factors. 

 

Only the relationship between amyloid-pathology and hypometabolism in the precuneus 

survived when only participants with ‘abnormal’ CSF Aβ concentrations were included in 

the analysis. The smaller number of participants in this sub-analysis (only 29 of the total 

sample of 39) raises the question of inadequate statistical power. Future, well-powered 

studies are required to fully confirm these findings while taking diagnosis CSF status into 

account. It is important to note, however, that the development of AD biomarkers is an 

insidious process that might begin decades before a clinical diagnosis is warranted [55]. For 

example, Braak and Del Tredici [56] have documented the accumulation of AD pathology 

as early as the first decades of life. In previous work, we have shown differential 

relationships between CSF biomarkers and cognition in patients with mild cognitive 

impairment [7]. As such, it might be more ecologically valid to consider the effects of CSF 

biomarkers across a range of clinical stages.  

 

Hypometabolism in the mesial temporal regions is often difficult to identify [57]. One 

reason for this is the partial volume effect (PVE), which occurs when signal from a small 

structure is underestimated because voxels within it overlap more than one tissue class [58]. 

This effect occurs for structures smaller than two times the full-width half maximum 

(FWHM) of the scanner resolution, and is especially pronounced for GM structures 

adjacent to CSF spaces, such as the hippocampus [59]. While methods for correcting for 

PVE are available, they involve potential degradation of the data and can produce 

physiologically implausible results in the context of progressive atrophy [60].  
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Taken together, these findings support the proposed preferential association between 

pathological processes in AD and their topological distribution in the brain. The finding 

that hypometabolism and structural atrophy in the precuneus and lateral temporal regions 

were associated with Aβ but not P-tau supports the hypothesis that these two pathologies 

exert differential influence on neocortical regions. A limitation of this study was that it did 

not include healthy participants. An important task for future research will be to examine 

the relationships between biomarkers and cortical thickness measurements to ensure they 

are markers of pathological status, and are not otherwise related to brain structure and 

function. Cognitive markers were not evaluated as part of this study, as the primary focus 

was on the relationship between biomarkers and structuro-functional changes. This is an 

important limitation, and future work is necessary to examine the relationship between 

preferential biomarker changes and cognition. Although cognition was not directly 

evaluated in this study, these findings lend support to the hypothesis of dissociation 

between the two pathological processes in AD and their effects on the neurocognitive 

phenotype.  
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Tables 

Table 1. Sample characteristics 

 Mean 95% CI Range 

Demographics    

   Age (Years) 70 68 - 73 57 - 83 

   MMSE (Total) 20 19 - 21 14 - 29 

   ADAS-Cog (Total) 20 17 - 22 7 - 31 

CSF Biomarkers    

   P-tau (pg/ml) 86 75 - 96 27-175 

   T-tau (pg/ml) 940 806 - 1075 192 - 1962 

   Aβ1-42 (pg/ml) 481 413 - 549 224 - 1332 

N = 39 (22 males, 17 females). MMSE = Mini Mental Status Examination, ADAS-Cog = 

Alzheimer’s Disease Assessment Scale – Cognitive 
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Table 2. Descriptive data for the study sample 

 Mean [95% CI] 

 Structural volumetrics FDG-PET uptake 

Prefrontal 2.38 [2.33, 2.42] 1.14 [1.11, 1.17] 

Orbitofrontal 2.36 [ 2.31, 2.42] 1.03 [1.00, 1.05] 

Precuneus 2.03 [1.97, 2.10] 1.12 [1.07, 1.17] 

Lateral Temporal 2.47 [2.41, 2.52] 0.93 [0.90, 0.96] 

Anterior Cingulate 

Cortex 
2.72 [2.65, 2.80] 0.97 [0.95, 0.99] 

Entorhinal Cortex 2.77 [2.63, 2.90] 0.68 [0.65, 0.70] 

Hippocampus 
3063.78 [2866.78, 

3261.37] 
0.81 [0.79, 0.84] 

Note: Structural volumetrics are presented in millimetres (mm) for all measures, 

except for the hippocampus which is presented in millimetres cubed (mm3). 

FDG-PET uptake values are normalised to the cerebellum.  
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Figures 
 

Figure 1.  Specific FreeSurfer regions of interest. The FreeSurfer ROIs are given as the standard 

label names used in the software.  
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Figure 2.  Partial correlation between CSF biomarkers and structural volumetrics in specific 

regions. Only the precuneus (p = .01) and lateral temporal (p = .01) regions were correlated with 

Aβ, while no regions were correlated with P-tau. Asterisk indicate correlations that are statistically 

significant at p < .05 (FDR corrected). 
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Figure 3.  Partial correlation between CSF biomarkers and FDG-PET uptake in specific regions. 

Only the precuneus (p = .02) and lateral temporal regions (p = .02) were correlated with Aβ, while 

no regions were correlated with P-tau. Asterisk indicate correlations that are statistically significant 

at p < .05 (FDR corrected). 

 

 



- 23 - 

Figure 4.  Partial correlation between CSF total tau, FDG-PET uptake, and structural volumetrics 

in specific regions. No relationships were statistically significant at the p < .05 level (FDR 

corrected). 
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