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ABSTRACT
We investigate the propagation of light through a plasma on a background Kerr spacetime via a
Hamiltonian formulation. The behaviour of light when propagating through a vacuum and through a
plasma is not the same; the convolution of gravitational and plasma effects gives rise to a dispersion
in both space and time. The magnitude of the dispersion is a strong function of both the ray
frequency and impact parameter. We discuss implications for the detection of gravitationally bent
pulsar beams near the Galactic centre.
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1 INTRODUCTION

Black holes (BHs) are mathematical solutions to Ein-
stein’s field equations. The most simple solution of an
uncharged, non-spinning BH - the Schwarzschild solution
(Schwarzschild 1916) - was discovered soon after Einstein’s
theory of general relativity (GR) was proposed, whilst the
solution for the spinning BH - the Kerr solution (Kerr 1963)
- was discovered much later. Originally BH’s were conceived
as purely theoretical constructs, rather than astronomical
bodies. However, over time, astronomers began to become
convinced as to the existence of astrophysical BHs: in
X-ray binaries (Bolton 1972; Webster & Murdin 1972;
Generozov et al. 2018; Hailey et al. 2018), at the centre of
globular clusters (Ferrarese & Merritt 2000; Gebhardt et al.
2002; Wrobel et al. 2018), and in the hearts of massive
galaxies as the engines of Active Galactic Nuclei (Salpeter
1964; Zeldovich 1964; Madejski 2002). Indeed, our own
galaxy is thought to host a supermassive black hole (BH)
of mass 4.3 × 106 M� at the Galactic centre (Gillessen et al.
2009). The most recent evidence for BH’s as physical objects
was provided by multiple gravitational wave observations
of merging black holes by the LIGO/VIRGO experiment
(The LIGO Scientific Collaboration & the Virgo Collaboration
2018).

Astrophysical BHs provide superb environments for
tests of fundamental physics and astrophysics. Whilst GR
has been enormously successful historically (see discus-
sion in Will 2014), a range of open questions do per-
sist. Astronomical observations of BHs can be used for
investigating alternative theories of gravity (e.g. scalar-
tensor theories Esposito-Farese 2009; Liu et al. 2014), prob-
ing deviations from the Kerr solution (‘bumpy black holes’
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Yagi & Stein 2016) and even testing quantum gravity the-
ories (Estes et al. 2017). From an astrophysical perspec-
tive, central supermassive BHs appear to play a key role
in galaxy formation and evolution (Cattaneo et al. 2009).
Moreover the observed relation between the nuclear BH
mass and the galactic stellar velocity dispersion (the M − σ
relation, Ferrarese & Merritt 2000) suggests that BHs and
galaxies coevolve (Lamastra et al. 2010; Schawinski 2012;
Heckman & Best 2014), and hints to the existence of in-
termediate mass BHs (Koliopanos 2017; Mezcua 2017).
BHs are also postulated to contribute to the cosmic X-ray
background (Gilli 2013), and power jets in X-ray binaries
(Fender et al. 2004; Fender et al. 2009). The advent of grav-
itational wave and multimessenger astronomy will further
enhance the scientific return from observations of BH sys-
tems.

The BH solutions by Schwarzschild and Kerr represent
vacuum solutions. However, these astrophysical BHs do
not exist in a vacuum but are instead surrounded by a
plasma distribution (Psaltis 2012; Eatough et al. 2013). It is
therefore of astrophysical interest to determine the impact
of this plasma on any astronomical observations. Photons
that are emitted close to the BH and propagate through a
plasma to be received by an observer suffer from significant
transfer effects. Ignoring the polarisation of the light, we
may classify the transfer effects into two general categories:
(i) those of relativistic and/or gravitational nature (see e.g.
Fuerst & Wu 2004; Saxton et al. 2016), and (ii) those due
to the interaction between the emission and the line-of-sight
material (cf. the relativistic fluids near a black holes see e.g.
Fuerst & Wu 2007; Younsi et al. 2012). If only one category
is significant, the transfer effects can be accounted for in a
straightforward manner, at least in principle. For the for-
mer, a covariant ray-tracing formulation will be adequate to
determine the convolution of the effects due to gravitational
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lensing, time dilation, velocity induced intensity boost and
relativistic Doppler frequency shift, provided that the mo-
tion of the emitter is specified. For the latter, the frequency
dependent dispersion of the emission can be calculated, if
the density distribution of the plasma along the line-of-sight
is known. When both of them are present, we cannot simply
“add” their effects together or use a simple convolution
of the effects assuming that the geodesics (along which
the rays are traced) determined in the vacuo condition
are still applicable. The deflection/bending of the ray is
now frequency dependent, a consequence of the interaction
with the plasma as the ray propagates in a curved spacetime.

The influence of plasma on photon rays has been investi-
gated by a number of authors around both spinning (Kerr)
and non-spinning (Schwarzschild) black holes, particularly
with application towards the impact on the black hole
shadow or the photon sphere (Bisnovatyi-Kogan & Tsupko
2010; Atamurotov et al. 2015; Liu et al. 2016, 2017;
Perlick & Tsupko 2017; Benavides-Gallego et al. 2018;
Dokuchaev & Nazarova 2018; Huang et al. 2018). In this
work we demonstrate the phenomenon of spatial dispersion
of the ray that is introduced as a consequence of the
plasma. We show that this dispersion is significant at
typical radio frequencies for rays which pass sufficiently
close to the central BH and consider the impact on the time
delay of the ray due to the convolution between the delay
induced by the plasma and the delay due to the changing
ray path. It is expected that at the Galactic centre there
should exist a large population of pulsars, numbering up
∼ 104 within 1 pc of Sgr A* (Macquart & Kanekar 2015;
Rajwade et al. 2017). The detection of such systems is
highly desirable for the purposes of testing key questions
of GR with high precision in an extreme parameter space
(Liu et al. 2012; Psaltis et al. 2016). However, currently
no pulsars have been detected within 1 pc of Sgr A* (see
e.g. Chennamangalam & Lorimer 2014; Dexter & O’Leary
2014). We discuss potential astrophysical implications of the
dispersion induced by the plasma, particularly with regard
towards the detection and timing of strongly gravitationally
bent rays from Galactic centre pulsars. + more stuff here
on how?

The structure of the paper is as follows. In Section 2 we
outline the equations of motion for a photon propagating
through a plasma in Kerr spacetime and discuss necessary
conditions on the plasma density distribution to ensure their
integrability. In Section 3 we solve these equations for a spe-
cific plasma density distribution and show that the presence
of plasma induces both a spatial and temporal dispersion in
gravitationally bent rays at typical radio frequencies. Dis-
cussion regarding the detection of strongly bent rays from
Galactic centre pulsars is made along with concluding re-
marks in Section 4.

2 PROPAGATION OF LIGHT RAYS IN A
KERR SPACETIME

We adopt the natural units, with c = G = ~ = 1, and a
(−,+,+,+) metric signature. Unless otherwise stated, a c.g.s.
gaussian unit system is used in the expressions for electro-
magnetic properties of matter. The gravitational radius of

the black hole rg = M and the corresponding Schwarzschild
radius rs = 2M, where M is the black-hole mass. We will
adopt a normalization that the black-hole mass is unity. A
comma denotes partial derivative (e.g. x,r ), and a semicolon
denotes covariant derivative (e.g. x;r ).

2.1 Light propagation under gravity

The vacuo spacetime around a rotating astrophysical black
hole - neglecting any contribution from stellar objects or the
surrounding medium - is described by the Kerr metric. In
Boyer-Lindquist coordinates, its spacetime interval is given
by

ds2 = −

(
1 −

2r
Σ

)
dt2 −

4ar sin2 θ

Σ
dt dφ +

Σ

∆
dr2

+ Σ dθ2 +
sin2 θ

Σ

[
(r2 + a2)2 − ∆a2 sin2 θ

]
dφ2 , (1)

where Σ = r2+a2 cos2 θ, ∆ = r2−2r+a2, and a is the black-hole
spin parameter. The Kerr spacetime possesses two Killing
vectors ξ t , ξφ , related to temporal and axial diffeomorphisms
of the vacuum metric gµν . A general Killing vector ξµ sat-
isfies Killing’s equation ξ (µ;ν) = 0. The inner product of a
Killing tensor ξµ with a tangent vector pµ is conserved along
a geodesic, i.e. if K = ξµpµ then K̇ = 0, where “·” denotes
differentiation with respect to an affine parameter. The two
Killing vectors are associated with the conservation of energy
E and angular momentum Lz (specifically the projection of
the particle angular momentum along the black hole spin
axis) as,

E = −ξ t pt , (2)

Lz = ξ
φpφ . (3)

In addition, the Kerr spacetime admits a rank-2 Killing ten-
sor

Kµν = 2Σl (µnν) + r2gµν , (4)

where lµ ,nν are the principal null vectors. This Killing ten-
sor obeys the Killing tensor equation,

∇(γKµν) = 0 . (5)

The Killing tensor is related to a conserved quantity
which is not associated with a spacetime symmetry - the
Carter Constant (Q) - and was originally derived from
the separability of the Hamiltonian in r and θ terms
(Carter 1968). The exact physical meaning of Q is discussed
in De Felice & Preti (1999); Rosquist et al. (2009). The
rest mass of the particle (i.e. H = 0 for photons) is also
conserved. Determining the motion of a photon in Kerr
spacetime therefore reduces to a problem of quadratures
whereby we have four ordinary differential equations
(ODEs) for each of the spacetime coordinate variables
(ṫ, ṙ , θ̇, φ̇), and four associated constants of motion E, Lz , Q,
and H. The system of equations is then integrable.

For photon propagation in vacuo, the Hamiltonian is,

H (xµ ,pν ) =
1
2
gµν pµpν = 0 , (6)

where xµ are the coordinate variables and pν the conjugate
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4-momenta. The corresponding equations of motion, Hamil-
ton’s equations, are then

ẋµ =
∂H
∂pµ

, ṗµ = −
∂H
∂xµ

. (7)

For photon propagation through a cold, non-magnetized
electron-proton plasma, the Hamiltonian has an additional
term proportional to the electron plasma frequency ωp(xµ ):

H (xµ ,pµ ) =
1
2

[
gµν pµpν + ω2

p (xν )
]
= 0 , (8)

in the geometrical optics approximation (Synge 1960). Thus,
in the presence of a plasma the preceding argument regard-
ing integrability needs modification.

2.2 Propagation of light in a cold plasma with
azimuthal symmetry

If the plasma frequency is independent of t and φ, i.e.
ωp = ωp(r, θ), the Hamiltonian is still stationary and axisym-
metric. Although the photon rest mass remains null, the in-
clusion of the plasma-frequency term breaks the separability
of the Hamiltonian, implying that the Carter constant for
deriving the geodesics in a vacuum spacetime is no longer
properly defined. To illustrate, we consider the following:

−
E2

∆

[
(r2 + a2)2 − ∆a2 sin2 θ

]
+

4arELz

∆

+ p2
r∆ + p2

θ +
L2
z

sin2 θ

(
1 −

a2 sin2 θ

∆

)
+ r2ω2

p (r, θ) + a2 cos2 θ ω2
p (r, θ) = 0 , (9)

which adopts the definitions of E and Lz above and the ex-
pression for H. In the absence of a plasma, ωp = 0, and this
expression is separable into r and θ terms, which can then be
used to define the Carter constant. For general plasma den-
sity distributions, where the plasma frequency, ωp(r, θ), has
a spatial dependence, the equation is not separable in terms
of the usual co-ordinate variables. Moreover, the Carter con-
stant as derived in the vacuum situation is no longer a con-
stant along the geodesic (see e.g. Perlick & Tsupko 2017).

The underlying physics can be elucidated by comparing
a plasmic-Hamiltonian,

gµν pµpν + ω2
p = 0 , (10)

with the Hamiltonian for a particle of mass m travelling
through a vacuum,

gµν pµpν + m2 = 0 . (11)

The plasma frequency effectively plays the role of a par-
ticle mass in a vacuum spacetime. For a uniform plasma
distribution, ωp is a constant and hence the Hamiltonian
is separable. Otherwise, the photon essentially acquires an
effective mass which varies during its propagation in the
plasma. Consequently, we have three constants of motion
for four differential equations. The equations of motion can
be integrated only when the remaining constant of motion
(or symmetry) is identified.

The plasma frequency of a cold non-magnetised plasma is

ω2
p = C n , (12)

where C = 4πe2/me with me the electron mass, e the electron
charge, and n is the electron number density. We notice that
for stationary axisymmetric plasma distributions such that

ω2
p = β

f (r) + g(θ)
Σ

, (13)

the Hamiltonian is separable (Perlick & Tsupko 2017). This
distribution corresponds to plasma density distributions
with independent radial and polar dependence through the
additive contribution by the two terms f (r) and g(θ). Al-
though this particular form restricts the description of gen-
eral density distributions, it retains certain desirable proper-
ties from the perspective of astrophysical modelling, as with
an appropriate choices of f (r) and g(θ) we may describe the
key features of an axisymmetric plasma, such as inverse ra-
dial dependence, dominance of radial terms at large radii,
maximal value in equatorial plane, etc. Going forward, we
adopt this particular functional form of ωp in our demon-
strative calculations.

2.3 Frequency dependent ray-tracing

It follows that the complete set of equations of motion is
given, via Hamilton’s equations, as

ṫ = E +
2r (r2 + a2)E − 2arLz

Σ∆
; (14)

ṙ =
pr∆
Σ

; (15)

θ̇ =
pθ
Σ

; (16)

φ̇ =
2arE + (Σ − 2r)Lz csc2 θ

Σ∆
; (17)

ṗθ =
1

2Σ

[
−Cg(θ),θ − 2a2E2 sin θ cos θ + 2L2

z cot θ csc2 θ
]

;

(18)

ṗr =
1
Σ∆

[
− κ(r − 1) + 2r (r2 + a2)E2 − 2aELz (19)

−
C f (r),r∆

2
− C(r − 1) f (r)

]
(20)

−
2p2

r (r − 1)
Σ

; (21)

where κ = p2
θ + E2a2 sin2 θ + L2

z csc2 θ + a2ω2
p cos2 θ. The dif-

ferential equations are integrated ‘backwards-in-time’ from
the observer image plane to the black hole, using a fifth-
order Runge-Kutta-Fehlberg algorithm with adaptive step-
size (Press et al. 1992). The centre of the observer’s image
plane is defined at some location (robs, θobs, φobs) where robs
is the distance from the black hole centre and θobs the angle
from the positive black hole z-axis. Since the Kerr metric
is axisymmetric we can set φobs = 0 (see Fig 3.4 of Younsi
(2013) for an illustration of the coordinate system used).
The observer distance robs is chosen so as to be sufficiently
large such that the observer’s grid can be considered as a
Euclidean grid with zero curvature, and all rays are per-
pendicularly incident on this grid. Throughout this work we
set our observer grid at robs = 104 rg. We can approximate
the deviation from Minkowski spacetime via the Kretschman
scalar, which for a Kerr spacetime is (Henry 2000),

K =
48
Σ6 (r6 − 15a2r4 cos2 θ + 15a4r2 cos4 θ − a6 cos6) . (22)
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In the limit of large r (= robs),

K ∼
48
r6 ∼ 10−24 , (23)

which is much smaller than typical numerical precision and
so we are well-justified as taking the observer plane as Eu-
clidean. The two integration constants, E (energy at infinity)
and Lz (the azimuthal component of the angular momen-
tum), can be determined by the initial conditions using the
following relations:

E2 = (Σ − 2r)


 ṙ2

∆
+ θ̇2 +

ω2
p

Σ


 + ∆φ̇2 sin2 θ ; (24)

Lz =
(Σ∆φ̇ − 2arE) sin2 θ

Σ − 2r
. (25)

An impact parameters quantifies the perpendicular distance
between the centre of the black hole and the asymptote of
the tangent line to the ray that converges at the observer.
We refer to the impact parameters α, β to describe this dis-
tance in the y and z directions respectively. The complete
specification of the initial conditions is described in the Ap-
pendix.

3 DISPERSIONS INDUCED BY PLASMA

In order to solve the equations numerically and assess the
degree of dispersion, it is necessary to choose a model for the
plasma frequency ωp, which is equivalent to choosing an elec-
tron number density distribution for the plasma. We approx-
imate a real astrophysical plasma around a black hole using
the semi-analytical model of Broderick & Loeb (2005) where
the parameters were determined via simultaneous fitting of
spectral and polarization data from Sgr A*. This descrip-
tion is also used for Galactic centre studies in Psaltis (2012).
Within this model the electron density profile is given by,

n = n0r−1.1 . (26)

This is equivalent to setting f (r) = r0.9 and g(θ) = 0, such
that,

ω2
p =

Cr0.9

Σ
. (27)

To ensure integrability it is necessary to contain the θ de-
pendence as implicit in Σ, but we take this form as a de-
cent first-order approximation to the Galactic centre plasma.
In the equatorial and zero spin case, we recover the form
of Eq. 26. The best fit parameters to the model are n0 =

3.5 × 107 cm−3 (Broderick et al. 2011), and similar normal-
izations are commonly used in the literature (e.g. Psaltis
2012; Mościbrodzka et al. 2009). In relativity, to associate
a frequency to a photon requires the specification of the
observer’s 4-velocity uµ . The frequency as measured by an
observer is given by the frame-invariant quantity, ν = pµuµ .
There also exists a frequency associated with the temporal
Killing vector νK = pt ξ t which is the frequency of a sta-
tionary observer at infinity, and is conserved along the ray
path.

3.1 Spatial Dispersion

In a vacuum all photons follow the same spacetime geodesic,
irrespective of their energy, by virtue of the equivalence prin-
ciple. However, the presence of plasma means that the spa-
tial trajectory of the ray is now frequency-dependent. Propa-
gating perpendicular to the observer’s image plane, initially
the rays all take the same spatial path. However, after being
deflected by the black hole, different energy photons follow
different trajectories, with lower energy photons being more
significantly dispersed (compared to the vacuum case) as the
plasma frequency term ωp becomes a greater fraction of the
photon frequency (see e.g. Fig. 1). Correspondingly, with an
increasing photon frequency the significance of the plasma
influence on the photon trajectories is reduced and the ray
path approaches that of the vacuum in the high-frequency
limit. Those trajectories which have smaller impact param-
eters pass closer to the black hole and so traverse a more
strongly curved spacetime and also probe increasingly dense
regions of the plasma; consequently the magnitude of spatial
dispersion is greater.
More quantitatively, the degree of spatial dispersion can be
described by calculating the spatial difference between the
location of the vacuum ray (xivac) and the location of a ray
of particular frequency travelling through a plasma (xip(ν)),
as evaluated in the outgoing region after being deflected by
the black hole, at r = 1000 rg, i.e.

dxi = xip(ν) − xivac , (28)

and we approximate the spacetime on these small scales as
being flat such that the metric is Minkowskian, ηµν . The
magnitude quantifying the degree of dispersion, i.e. the de-
viation from the vacuum path is then the usual expression,

ds2 = ηi jdxidx j . (29)

There is considerable uncertainty in the spin parameter of
the Galactic centre black hole depending upon the observa-
tional approach used to estimate the spin. Observations of
quasi-periodic oscillations in the radio emission of Sgr A∗

suggest a ∼ 0.44 − 0.65 (Kato et al. 2010; Dokuchaev 2014),
whilst a ∼ 0.996 based on X-ray lightcurves (Aschenbach
2010). Going forward we take a = 0.6 as our fiducial value.
Clearly, the severity of dispersion is going to be a function of
the ray frequency, with the ray path approaching the path
in vacuum in the high frequency limit. We examine typical
radio frequencies in the GHz regime and inspect the impact
parameter space |α, β | ≤ 20 rg. The dispersion ds relative to
the vacuum is shown in Fig. 2 for a ray with frequency 8.2
GHz. We can observe a clear trend on the severity of dis-
persion with impact parameter; rays which pass closer to
the black hole suffer greater dispersion since they traverse
a more strongly curved spacetime and increasingly dense
plasma regions. For a ray at 8.2 GHz, the maximum ds
is ∼ 0.11 rg and the minimum at the edge of the parame-
ter space is ∼ 0.0012 rg. The maximum and minimum ds at
frequencies from 1 to 10 GHz is shown in Fig. 3. The de-
pendence of the dispersion on the frequency is visible, with
higher frequency rays subject to less dispersion than lower
frequency rays. However, even at 10 GHz, the minimum dis-
persion ds for rays within the impact parameter space is
0.0008 rg.
In addition to the dispersion relative to the vacuum path, it
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(a) α = −9 (b) α = −8 (c) α = −7

(d) α = +5 (e) α = +4 (f) α = +3

Figure 1. Spatial dispersion induced in the rays propagating through a plasma on a Kerr background geometry. The ray bundle is

composed of rays with frequencies linearly spaced between 0.18 and 8 GHz. The BH spin parameter is a maximal a = 0.998 and

n0 = 3.5 × 107 cm−3. We set impact parameter β = 0 such that the rays propagate in the equatorial plane.

is also of interest to quantify the degree of dispersion within
a particular observational radio frequency band. We consider
both the C-band (4−8 GHz) and the X-band (8−12 GHz) and
determine the degree of dispersion between the upper and
lower elements of the band. For the C-band the minimum
and maximum dispersion within the prescribed (α, β) pa-
rameter space is (dsmin,dsmax) = (0.0038,0.33)rg respectively,
whilst at the higher frequencies of the X-band the intra-band
dispersion is reduced: (dsmin,dsmax) = (0.0007,0.06)rg. The
trend with impact parameter is naturally the same as that
displayed in Fig. 2. Whilst the extent of spatial dispersion
does reduce at higher frequencies, we can see that even at
the higher frequencies of the X-band, the spatial dispersion
persists. We are working in a lengthscale of rg. Converting
to S.I. units, for a BH of Sgr A∗ mass, dsmin in the X-band
corresponds to ∼ 4.4 × 106 meters.

3.2 Temporal Dispersion

In addition to a spatial dispersion, the plasma also induces
a dispersion in time. This time delay has two contributing

factors. First is the time dispersion of rays of different
frequencies which travel along the same path. In a plasma,
higher frequency photons will cover the same path in a
shorter time than lower frequency photons. Additionally,
spatial dispersion means that in fact rays do not follow the
same trajectory, but instead follow different spatial paths.
Consequently, photons of different frequency have different
path lengths, traverse disparate spacetime curvatures and
encounter separate regions of the plasma; all of these factors
influence the degree of temporal dispersion.

We can quantify the extent of temporal dispersion across a
frequency band by determining the time delay between the
coordinate time of the ray (x0) relative to the ray at the
upper frequency of the band (xup), i.e.

dt = x0 − x0
up . (30)

Similar to the preceding analysis regarding spatial disper-
sion, we evaluate dt in the outgoing region at r = 1000
and consider the parameter space |α, β | ≤ 20 rg. For the C-
band the minimum and maximum temporal dispersion is
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6 T. Kimpson et al.

Figure 2. Spatial dispersion ds of a 8.2 GHz ray relative to the

vacuum case as evaluated at r = 1000 in the outgoing region. The
intensity of dispersion increases as rays pass closer to the central

BH and probe increasingly dense plasma regions. The white re-

gion at the centre denotes impact parameters for which the ray
falls below the BH event horizon.

Figure 3. Maximum (blue) and minimum (orange) spatial dis-
persion ds relative to the vacuum ray at frequencies from 1 to 10

GHz. Spatial dispersion persists even at high radio frequencies,
the minimum ds at ν = 10 GHz is ∼ 10−3 rg within the considered

parameter space.

Figure 4. Temporal dispersion dt in milliseconds across the C-

band radio frequency - i.e. dispersion of an 4 GHz ray relative to
a 8 GHz ray - as evaluated at r = 1000 in the outgoing region. The

dependence on the impact parameter is much less strong than in

the case of spatial dispersion, with typical temporal dispersions of
the order 5× 10−3 s. The spin parameter a = 0.6 and n0 = 3.5× 107

cm−3.

(dtmin,dtmax) = (0.30,24) ms respectively. The intra-band
dispersion is reduced for the higher frequencies of the X-
band: (dtmin,dtmax) = (0.055,4.4) ms. Similar to the spatial
dispersive case, the magnitude of temporal dispersion re-
duces at higher frequencies and paths further from the cen-
tral BH. However, the severity of the temporal dispersion is
not such a strong function of the impact parameter (Fig. 4);
within the considered parameter space the typical dt ∼ 5 ms.
Again, the dispersion persists even at the higher frequencies
of the X-band.

4 DISCUSSION

The detection of a radio pulsar in a compact orbit around
a massive black hole has been dubbed the ‘holy grail
of astrophysics’ (Faucher-Giguère & Loeb 2011) for the
potential to probe GR in the non-linear, strong-field regime
(see e.g. Kramer et al. 2004; Liu et al. 2012; Psaltis et al.
2016). In addition to detecting such a pulsar-BH system,
numerous authors (Wang et al. 2009a,b; Stovall et al. 2012;
Nampalliwar et al. 2013; Estes et al. 2017) emphasize
the potential of detecting a pulsar signal for which the
path has been strongly bent due to the curvature of the
spacetime. Such a beam would propagate directly through
the gravitational strong-field regime and so offer a direct
probe of this parameter space. Furthermore, the presence of
a distribution of masses (e.g. stars) introduces a Newtonian
perturbation to the pulsar orbit which may hamper any
attempts to use pulsars as a GR apparatus (Merritt et al.
2010). Consequently, it is desirable to time and detect a
pulsar as close as possible to the BH, where these external
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perturbation are negligible, i.e. either at periapsis of
some eccentric orbit, or timing some very compact orbit
(Liu et al. 2012; Psaltis et al. 2016). If a pulsar is observed
in these strong-field regions, it is naturally more likely that
the pulsar beam may suffer strong bending. For a pulsar
in a Keplerian orbit around the BH at the Galactic centre
with orbital period P = 0.1 years (the typical orbital period
below which external perturbations are negligible, Liu et al.
2012) and eccentricity e = 0.9, then at periapsis the pulsar
is only ∼ 80 rg from the BH event horizon. It therefore
seems reasonable that for particular orbital parameters the
observed pulsar beam could be strongly bent, although this
would naturally only occur for the pulsar on the ‘far-side’
of the black hole and for certain orbital configurations
(c.f. inclination of orbit, orientation of the spin and ra-
diation axes etc. See Stovall et al. 2012, for a full discussion).

Typical pulsar detection works by attempting to de-disperse
the signal due to temporal dispersion induced by the inter-
stellar medium, and then searching for periodicities via a
Fourier transform (see Lorimer & Kramer 2004, for details
of pulsar astronomy). The degree of temporal dispersion is
quantified by the dispersion measure - the integrated elec-
tron number density along the ray path. The signal is then
folded on the timescale of the periodicity to create a single
pulse profile that shows above the noise. If a pulsar ray is
deflected in the presence of plasma, this work shows that
the ray will exhibit a spatial dispersion. This spatial dis-
persion is naturally coupled with a temporal dispersion and
so has a series of implications for the observability of such
deflected beams. Firstly, we have presented this work using
a ‘backwards-in-time’ approach where the ray is integrated
from the observer to the pulsar. If we instead shift to a
‘forwards-in-time’ interpretation then evidently if the spa-
tial dispersion is sufficiently large it could cause the pulsar
signal to not be visible in certain frequency bins since the
ray path is curved such that it never reaches the observer.
Furthermore, those rays which do reach the observer have
each traversed a different spatial path and so are subject to
different time delay due to differences in the ray path and
also different dispersion measures along said path. Returning
to the ‘backwards-in-time’ outlook, to successfully perform
a search in Fourier space requires that the received pulse
period is constant. However, due to spatial dispersion the
total received signal across the observation frequency band
is the convolution of different energy rays emitted at differed
orbital phases, subject to gravitational, relativistic and line
of sight effects which may introduce additional difficulties in
detecting deflected beams from compact pulsar systems (see
Fig. 5). Traditionally, systems for which the observed pulse
period is changing over the observation time (i.e. highly ac-
celerated systems, c.f. binary pulsars) are detected via so
called ‘acceleration searches’ (see e.g. Dimoudi & Armour
2015). However, such an approach would not work for the
detection of bent pulsar rays subject to spatial dispersion
and an alternative methods may be necessary.

The strongly deflected beams typically belong to the
class of ‘secondary rays’ that pass close to the black hole.
There also exists a ‘primary ray’ which is subject to less
or negligible gravitational bending. However, for certain or-
bital configurations, both the secondary and primary rays
can exhibit gravitational bending. This is shown in Fig 5a

for emission from a pulsar on the far-side of the BH, close
to periapsis. Consequently both the primary and secondary
rays can be subject to the resulting spatial and temporal dis-
persions induced by the plasma. We consider an orbit with
Keplerian period P = 0.1 years, eccentricity e = 0.8, and in-
clination with respect to the black hole spin axis Θ = 15◦. In
the vacuum case we can see there exist two rays received by
the observer from the pulsar at this location (Figs 5a, 5b).
Each of these rays follows a different trajectory before being
detected by the observer, and the secondary ray suffers much
greater gravitational bending than the primary ray. The sec-
ondary ray is retarded in time with respect to the primary
ray due to the increased spacetime path. Each of these vac-
uum rays has a particular set of impact parameters (α, β).
We integrate a ray bundle in the C-band through a plasma
in a Kerr spacetime with the same impact parameters of
the primary/secondary rays in the vacuum case (Fig 5c).
A clear spatial dispersion is displayed in both the primary
and secondary rays at the considered section of the pulsar
orbit. The spatial dispersion is more severe in the primary
ray than in the secondary ray, but is evident in both on the
scale of ∼ milli-rg. Consequently, the received deflected sig-
nal from a pulsar in these regions is the sum of emission at
different orbital phases, subject to disparate relativistic and
gravitational shifts, temporal dispersions and path lengths.
Therefore, for the purposes of detecting deflected beams in
this region, spatial dispersion introduces additional compli-
cations that may need to be accounted for if such a search is
to be successful. Figure 6 illustrates the difference between
the time-frequency profile in vacuum and when subject to
plasma effects.

To summarise, evidently spatial dispersion only plays a
role if the pulsar is on the far side of the BH and the ray
passes sufficiently close to the event horizon. It will therefore
not be important for wide orbits, emission on the near side
of the BH or emission far from periapsis and is highly depen-
dent on the pulsar orbital configuration. However, any dis-
cussion regarding the detection of gravitationally deflected
pulsar beams (e.g. Wang et al. 2009a,b; Stovall et al. 2012;
Nampalliwar et al. 2013; Estes et al. 2017) must take into
account spatial dispersion since it introduces additional com-
plexities in the detection of such bent rays from pulsars.
The spatial dispersion can occur for both primary and sec-
ondary rays - subject to caveats regarding the orbital con-
figuration. The magnitude of dispersion is reduced as ωp be-
comes negligible. Consequently observations at higher fre-
quencies are desirable and would complement the existing
approach to mitigate the known problems of scattering (see
e.g. Macquart et al. 2010; Spitler et al. 2014; Bower et al.
2015; Rajwade et al. 2017). However, even in the X-band fre-
quencies the dispersion persists non-negligibly and pulsars
typically have steep radio spectra which makes detection at
higher frequencies more problematic. Consequently, observa-
tions with the increased sensitivities of the next generation
of radio telescopes (e.g. FAST, SKA) may be required. At
lower frequencies, scattering will dominate over the disper-
sive plasma effects for ’near-side’ rays. Conversely, for ’far-
side’ gravitationally bents rays the dispersive effects would
likely outweigh scattering effects, which typically have mag-
nitudes on the order of µs (see e.g. Palliyaguru et al. 2015).
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(a) (b)

(c)

Figure 5. (a) and (b) show the primary and secondary deflected rays in vacuum from a pulsar in a e = 0.8, P = 0.1 year orbit, emitted on

the far side of the BH. (c) illustrates the spatial dispersion if we integrate a ray bundle in the C-band with the same impact parameters
as in the vacuum case. The spatial dispersion of these rays in conjunction with the temporal dispersion and the pulsar travel time may
further complicate the detection of highly deflected pulsar beams.
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Spatial dispersion of light rays 9

Figure 6. Time-frequency profile in vacuum (orange) and sub-

ject to plasma effects (blue). The profile that suffers from plasma
effects is retarded with respect to the vacuum case. Moreover, the

combination of spatial and temporal dispersion means that low

frequency photons are delayed with respect to higher frequency
ones, a phenomenon not observed in the vacuum case. We use the

electron density profile n = n0r
−1.1, with n0 = 3.5 × 107 cm−3.

The BH mass is 4.3 × 106M�and spin parameter a = 0.6.
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APPENDIX A: INITIAL CONDITIONS

To determine the initial conditions of rays starting on the observer’s grid, we follow the methods described in Younsi (2013);
Pu et al. (2016) by transforming from the observer coordinate system x′ to the BH coordinate system x, as,

(i) Rotate clockwise by (π − θobs) about the x′-axis (Rx′)
(ii) Rotate clockwise by (2π − φobs) about the z′-axis (Rz′).
(iii) Reflect in the plane y′ = x′ (Ay′=x′).
(iv) Translate x̄′ so that the origins of both coordinate systems coincide (Tx′→x)

The net transformation is then

x = Ay′=x′Rz′Rx′x′ + Tx′→x (A1)

=



D (y′, z′) cos φobs − x′ sin φobs
D (y′, z′) sin φobs + x′ cos φobs

(robs − z′) cos θobs + y′ sin θobs


 , (A2)

where D = (
√

r2
obs + a2 − z′) sin θobs − y′ cos θobs. Then transform from Cartesian to Boyer-Lindquist coordinates,

r =

√
w +

√
w2 + 4a2z2

2
; (A3)

θ = arccos
( z

r

)
; (A4)

φ = arctan 2(y, x) , (A5)

where w = x2 + y2 + z2 − a2. This defines the initial (r, θ, φ) for a photon on the observer grid.
We then determine the initial velocities of the ray. Since each ray arrives perpendicular to the image plane, ( ẋ′, ẏ′, ż′) = (0,0,1).
Consequently, the velocity components in the black hole frame are given by

ẋ =



− sin θobs cos φobs
− sin θobs sin φobs
− cos θobs


 . (A6)

Converting to Boyer-Lindquist coordinates gives expressions for (ṙ , θ̇, φ̇) in the black hole frame:

ṙ = −
−rR sin θ sin θobs cosΦ + R2 cos θ cos θobs

Σ
(A7)

θ̇ =
r sin θ cos θobs − R cos θ sin θobs cosΦ

Σ
(A8)

φ̇ =
sin θobs sinΦ
R sin θ

(A9)

where R =
√

r2 + a2 and Φ = φ − φobs. This completely defines our initial conditions.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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