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Abstract

Cnidarians are probably the oldest grofimmumals to be venomous, yet our
current picture of cnidarian venom evolution ishhjgimbalanced due to limited taxon
sampling.High-throughput tandem mass spectrometry was usetketermine venom
composition of the scyphozoafhrysaora lactea and two cubozoansTamoya
haplonema and Chiropsalmus quadrumanus. Protein recruitment patterns were then
compared against 5 other cnidarian venom protedakes from the literatureA total
of 28 putative toxin protein families were idergdi, many for the first time in Cnidaria.
Character mapping analysis revealed that 17 torotem families with predominantly
cytolytic biological activities were likely recreaitl into the cnidarian venom proteome
before the lineage split between Anthozoa and Mezhs Thereafter, venoms of
Medusozoa and Anthozoa differed during subsequimergkence of cnidarian classes.
Recruitment and loss of toxin protein families dmbt correlate with accepted
phylogenetic patterns of Cnidaria. Selective presssuhat drive toxin diversification
independent of taxonomic positioning have yet toidentified in Cnidaria and now

warrant experimental consideration.

Keywords. evolution; venom; Cnidaria; nematocysts; proteomics
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Introduction

Cnidaria is believed to be the most basal of tiarexXVietazoa to be venomous,
having evolved since Neoproterozoic times, ~650ionilyears ago, long before the
Cambrian radiation (Van lIteat al., 2014). Cnidaria is a diverse phylum comprising
over 13,500 free living or parasitic marine, freslev and terrestrial species (Daly
al., 2007 plus myxozoans by Okamwtaal., 2015a). Cnidaria has two major subphyla:
Anthozoa and Medusozoa. Anthozoa include sea anesnand both hard and soft
corals (Bridgeet al., 1992; Marques & Collins, 2004). Medusozoa cosgthe classes
Staurozoa (e.g. stalked jellyfish), Cubozoa (eax [ellyfish), Scyphozoa (e.g. ‘true’
jellyfish) and Hydrozoa (e.gdydra and relatives including several species of smaller
jellyfish) (Marques & Collins, 2004; Collingt al., 2006; Van Iteret al., 2014). Recent
molecular phylogenetic analyses have corrobordtedchidarian nature of Myxozoa,

with strong support as a sister-group to Medus@moaewed in Okamurat al. 2015b).

The most evident synapomorphy of Cnidaria is thesg@nce of cnidae,
organelles produced by the Golgi apparatus of apised cells called cnidoblasts
(Marques & Collins, 2004; Fautin, 2009; Beckmani®&bek, 2012). Cnidae are found
in various parts of the body of a cnidarian and dassified into three morphological
types: nematocysts, spirocysts and ptychocystsr{@st2000; Ozbett al., 2009). The
nematocysts discharge venom and are found in ahdans, but are morphologically
and functionally heterogeneous (Dawdal., 2008; Fautin, 2009). In addition to prey
capture and defence against predation, the venomewfatocysts may also mediate
spatial intraspecific and interspecific competitigBigger, 1980; Kass-Simon &

Scappaticci, 2002).

There has been resurgence in interest surrountimgature and evolutionary

origins of cnidarian venom toxins, since the fapplication of high throughput tandem
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mass spectrometry realised high sequence homoktgyekbn cnidarian toxins and those
of other venomous animals (Westenal., 2012, 2013). Many studies using genomic,
transcriptomic or proteomic approaches have alalisezl these astonishing similarities
(Balasubramaniaet al., 2012; Brinkmaret al., 2012, 2015; Let al., 2012, 2014, 2016;
Gaceseet al., 2015; Jouiaeet al., 2015a; Macrandest al., 2015, 2016; Lewist al.,
2016; Ponceet al., 2016, Huanget al., 2016), leading to the recognition that
understanding the mechanisms underpinning toxirerdification in Cnidaria could
provide a platform from which the evolution of thigit in higher animals might be
more fully explored (Starcevic & Long, 2013; Stasiceet al., 2015; Jouiaeet al.,
2015b). For this to be achieved, a comprehensiventory of toxins must first be
undertaken and then mapped against different tarandevels from established
cnidarian phylogeny. To date, studies attemptinghter evolutionary aspects of toxin
recruitment in Cnidaria have suffered limited taxsampling, but when taken together
these studies have demonstrated a degree of foattrecruitment of certain toxin
protein families at different taxonomic levels (Ramimet al., 2014; Brinkmaret al.,
2015; Jouiaest al., 2015b). Here, the number of venom proteomexmmded and
used with data from the literature for characteppiag analysis, to establish a more

complete venom assembly hypothesis between ther taajonomic classes of Cnidaria.
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Material & Methods

Nematocyst proteomics. The scyphozoanChrysaora lactea and two cubozoans
Tamoya haplonema and Chiropsalmus quadrumanus (Figure 1) were collected with
permission (SISBIO license 15031-2) on May 7th 2B¢Dottom shrimp trawls (2 cm
mesh size) dragged at 10 m depth along Enseada lf@aaruja County, Sdo Paulo
State, ca. 233'20”S 4323'40W). Animals were identified based on morphatat
characters (Morandiret al., 2005; Morandini & Marques, 2010; Collims al., 2011)
and intact nematocysts were isolated from excisadatles as previously described
(Westonet al., 2013). To extract solubilised proteins, 1 mLpodtein extraction buffer
(50 mM TEAB, 0.04 % (w/v) SDS, Roche protease andsphatase inhibitor cocktail)
was added to freeze dried nematocysts. The retatestimaterial was disrupted in a
sonic bath (VWR, Lutterworth, UK) for 15 mins. Thaebris was removed by
centrifugation (10,000 x g for 10 mins at 4 °C).eT$upernatant was decanted and the
soluble protein concentration determined by Bratifagsay. A volume equivalent to 15
png of protein was made up to 15 pL in extractioffdsuand added to 15 pL 2 x
Laemmli sample buffer, heated for 10 mins at°@5and loaded onto a 4-12 % (w/v)
NuPAGE gel (Life Technologies) and separated bySIT5-PAGE. Electrophoresis was
performed in MES buffer (Life technologies) at N@or approximately 100 mins. The
entire gel lane was then divided into 15 equalisest excised and cut into 2 mm
pieces. In-gel reduction, alkylation, and proteclytligestion with trypsin were
performed as follows: Cysteine residues were redlweigh 10 mM dithiothreitol and
alkylated with 55 mM iodoacetamide in 100 mM amnuomibicarbonate to form stable
carbamidomethyl derivatives. Trypsin digestion wagied out overnight at 37 °C in 50
mM ammonium bicarbonate buffer and the supernatad retained. Peptides were

extracted from the gel pieces by two washes withmB® ammonium bicarbonate and
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acetonitrile. Each wash involved shaking the getes for 10 mins. The extracts were
pooled with the initial digestion supernatant ahdnt lyophilised. Lyophilised extract

was reconstituted in 30 uL of 50 mM ammonium bicadie buffer for LC-MS/MS.

Data analysis. Data analysis was performed as previously descr{iéestonet al.,
2013; Gaceset al., 2015) but with minor modifications. Briefly, a® search matching
strategy of rawfile MS/MS data against the Tox-RuotiProtKB/Swiss-Prot database
(Jungoet al., 2012) using the MASCOT search engine was fxstaeted (Perkinst al.,
1999). Methionine oxidation, phosphorylation on /§/Tdeamidation on N/D and
carbamidomethyl cysteine were selected as fixediflmations. Digestion with trypsin
allowed up to three missed cleavages. The data weaeched with a parent ion
tolerance of 5 ppm and a fragment ion toleranc6.5fDa. The MASCOT result files
were next uploaded into Scaffold v4.3.4 (Proteorofiviare, Portland, Oregon, USA)
(Searle, 2010) and spectra corresponding to likehyom toxin peptides were manually
validated for unbroken series of overlapping b-tyged y-type sequence specific
fragments ions, where losses consistent with tlggiesece were acceptable. Validated
spectra (Figures S1-S3) corresponding to peptidispredicted venom toxin functions
were next distinguished from peptides with likelgher non-toxic physiological
functions using ‘ToxClassifier’ (Gaceshal., 2016). This is a suite of machine learning
based classifiers that provide consistent discitmm of toxins from non-toxin peptide
sequences with > 99 % accuracy by performing BLAS@T HMM comparisons against
the Tox-Prot UniProtKB/Swiss-Prot (Jungbal., 2012), UniProt Trembl (The UniProt

consortium, 2017) and NR (NCBI Resource Coordirsatdd16) databases.

Character mapping analysis: In addition to the data acquired in this study,apive

toxins from other cnidarians described in the ditere were also included to enhance
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the dataset. These putative toxins were from ththoaovans Anemonia viridis
(Rachamimet al., 2014) andAcropora digitifera (Gaceseaet al., 2015), the hydrozoans
Olindias sambaquiensis (Westonet al., 2013) andHydra magnipapillata (Rachamimet
al., 2014) and, the scyphozo#&arelia aurita (Rachamimet al., 2014). The putative
toxins from the combined data set were assignagnom toxin protein families using
established KEGG ontology. Data were coded in airas presence (1) or absence (0)
of each toxin protein family in each species. Rstmction of ancestral states at
different nodes on an accepted taxonomic tree adaia (Marques & Collins, 2004;
Collins et al., 2006) was performed using Mesquite version 3(Baddison &
Maddison, 2015) with the parsimony criterion foe tmodel unordered. In addition, the
matrix of presences and absences of toxin protamilies was used to infer a

phylogenetic pattern based on the parsimony aoiteri

Results

Comparative proteomics of toxin protein families: The putative toxin proteomes of
nematocysts for the 3 species experimentally aeduir this study are given in Table 1.
The toxin protein families from 5 species takemrfrthe literature are given in Table S1.
A total of 28 toxin protein families were identifidrom the nematocyst proteomes of
the 8 species studied and are shown in Figure 2e K33 %) out of the 28 toxin
protein families were shared by all the four classé cnidarians. These 9 protein
families were conotoxins O, CRISP, latrotoxin, #pa metalloproteinase,
phospholipases APLA;), phospholipases D, Gf potassium channel blocker, and CS
af sodium channel inhibitoNineteen protein toxin families were not distribdigecross
all classes (Figure 2). These included three fasidif pore forming toxins, which were

the jellyfish toxin family-like proteins (JFTs) fad to be restricted to the sister classes
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Cubozoa and Scyphozoa; the actinoporins foundherckasses Anthozoa, Hydrozoa and
Cubozoa, and latarcins found in the classes Anth@ral Scyphozoa. The ficolins and
snaclec belong to the lectin families of toxins amdre limited to the Scyphozoa
Anthozoa, and Hydrozoa. Peptides with similarityhcee families of neurotoxins were
also taxonomically restricted (Figure 2), theseaemtre kunitz type family detected in
Anthozoa and Scyphozoa, the calcium channel blodksventoxin-1 reported here for
the first time but solely in medusozoans, and srthkee finger found in all classes
except Cubozoa. Likewise, peptidase S1, flavin aroxidase and glycosyl hydrolase
56 families were identified in all classes excepb@zoa. Complement C3 family-like
proteins were identified in the Hydrozoa and Scygao MAC-PF family-like proteins
were identified in the Hydrozoa and Cubozoa. Thes@nce of translationally controlled
tumour like proteins (TCTP) was identified in thenem proteome from both Anthozoa

and Hydrozoa.
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Evolution of the cnidarian venom arsenal: Recruitment patterns of putative toxin
protein families (Figure 3 and Table S3) were irddrusing a presence and absence
matrix (Table S2). This recruitment pattern indechthat venom of Medusozoa and
Anthozoa ancestors might have been composed @&aat keventeen types of protein
toxin families (Figure 3 and Figure S4i). After seqtion of the ancestral lineage into
Anthozoa and Medusozoa, some putative toxins wase (br not expressed) in some
clades. For example, the TCTP family was not presethe Cubozoa and Scyphozoa.
Similarly, the actinoporin toxin protein family wdsst from Scyphozoa. Unlike the
other classes, the species of Cubozoa examinedrddrated large losses. Nine toxin
protein families might have been recruited by aylgirclade after the split Anthozoa-
Medusozoa (Figure 3 and Figure S4ii). Three famildé cytolytic toxins (MAC-PF,
ficolin lectin and JFTs) appear to have been réeduinto Medusozoa after the basal
diversification event into the venom of Hydrozoay@hozoa, and Cubozoa (Figure 3).
Equally, two families of neurotoxins ShK-like potasn channel and sea anemone
sodium channel modulator appear to have been tedrumto Anthozoa only. The
latarcin and kunitz-type toxin protein families,ght have been recruited independently
(i.e., by convergence) into the venom of Anthozogfhozoa (Figure 3 and Figure
S4iii). Phylogenetic analysis of the presence adbskeace matrix gave a topology of
(Cubozoa(Anthozoa(Hydrozoa,Scyphozoa))), whichgisad with the more accepted

phylogeny of Cnidaria (Anthozoa(Hydrozoa(Cubozogpbozoa))).

Discussion

The putative toxin component of nematocyst proteofoe3 out of the 8 species
examined Chrysaora lactea, Tamoya haplonema, andChiropsalmus quadrumanus) are

described in this study for the first time (Table Yenom data from 3 other species
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(Anemonia viridis, Hydra magnipapillata, andAurelia aurita) were published elsewhere
(Rachamimet al., 2014) and reassessed in this study. These dataaeenbined with
our own previously published putative nematocystintoproteomes fromAcropora
digitifera (Gacesaet al., 2015) andOlindias sambaquiensis (Westonet al., 2013).
Altogether, the data from this study has suppopiedious research that Anthozoa and
Medusozoa have complex venom composition comprismdtiple protein families
(Rachamimet al., 2014; Jouiaegt al., 2015c) (Figures 2 and 3). We highlight that,
although transcriptomes and proteomes from othecisp of cnidarians have also been
published (Moraret al., 2013; Jouiaeet al., 2015a, Poncet al., 2016, Macrandegt

al., 2016), our analysis focused on those speciesvfich we had access to raw
proteomics MS/MS data which could be analysed usdhntical bioinformatics
methods, ensuring results were fully comparabler €udy was conservative, being
restricted to putative toxin annotation in the egsed proteome and did not include a
study of transcriptomes. This was because nothallttanscripts that contributed to
transcriptome diversity would equally be likely be translated (if at all) and have
contributed to protein diversity. Hence, correlatibetween sequences annotated as
putative toxins in the transcriptome and proteonoeild not have been straightforward
given the difficulty in differentiating sequencestiwtoxic and other physiological
functions. Future work to overcome this impedimenit require the acquisition of

genome sequence onto which other sequence dateecaapped (Gacesghal., 2015).

Compar ative venom proteomic analysis from different Cnidaria classes

Our comparative proteomics data of putative venoxins indicated that nearly
half of the protein toxin families were distributedross all of the cnidarian classes

studied (Figure 2). The biological activities ofe® of these toxin families are of note,
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for example, PLAtoxins have thus far only been identified with mmadytic activity in
cnidarians (Hessinger & Lenhoff, 1976; Grotendd@&sHessinger, 2000; Anderluh &
Macek, 2002; Talvinen & Nevalainen, 2002; Nevalaireml., 2004; Razpotnilet al.,
2010), although neurotoxic and myotoxic activiteeswell as non-toxic physiological
functions have also been widely reported in oth@romous animals (Frst al., 2009;
Six & Dennis, 2000). Likewise, phospholipase D figmproteins isolated from
cnidarian venoms have been reported to exhibitatiecactivity (Burke, 2002; Uret

al., 2005), with homologs also recently identifiedve giant jellyfishCyanea capillata
(Liu et al., 2015). Most of the metalloproteinases identifiethis study belonged to the
zinc metalloproteinase family. This family of togirs an important component found in
the venoms of many terrestrial animals such aspaes, snakes and ticks (Fatyal.,
2009; Undheimet al., 2014), with diverse biological activities culmting in
haemorrhage and tissue necrosis in the target fotwing envenomation (Fox &
Serrano, 2005; da Silveirgt al., 2007). Transcriptomic and proteomic studies have
identified zinc metalloprotease in venoms of thgpbozoansomolophus meleagris,
Cyanea capillata, and Cyanea nozakii (Li et al., 2014, 2016; Liuet al., 2015), the
cubozoanChironex fleckeri (Brinkman et al., 2015; Jouiaert al., 2015a) and the
anthozoan Anthopleura elegantissma (Macrander et al., 2015). A study of
metalloproteases from the scyphozadsemopilema nomurai, Rhopilema esculenta,
Cyanea nozakii, and Aurelia aurita confirmed the necrotic toxicity of these enzymes
(Leeet al., 2011). Both sodium and potassium ion channabitdrs were identified in
representatives of all of the classes examineds&@ heo types of neurotoxins have been
widely studied in Anthozoa, especially sea anemamescomprise the largest number
of toxins so far recorded in public databases foid@ria (Moranet al., 2009; Suput,

2009; Turk & Kem, 2009; Frazas al., 2012; Jouiaegt al., 2015c; Macrandest al.,
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2015; Mariottiniet al., 2015). Neurotoxic effects have been identifiedscyphozoans
such axCyanea nozakii (Fenget al., 2010),Cyanea capillata (Helmholzet al., 2012),
andPelagia noctiluca (Panget al., 1993; Morabitcet al., 2012) and, in cubozoans such
asCarukia barnesi (Winkel et al., 2005) andValo kingi (Gershwin, 2007). In this study,
we identified two putative types of sodium and getam ion channel inhibitors
(Figure 2, Table S2). ShK-like potassium channel aea anemone sodium channel
modulator were only found in a single Anthozoancsgse Anemonia viridis (a sea
anemone). It should be noted that this was the spécies of sea anemone analysed in
this study. Both sodium and potassium putativedoannel inhibitors have been found
exclusively in sea anemones (Moriral., 2009; Diochot and Lazdunski, 2009). @5
potassium channel blocker and @®sodium channel inhibitor were found in all of the
species of cnidarians analysed including anothéncaoan,Acropora digitifera and
have sequence homology to sodium and potassiummehblockers of scorpions. This
observation might highlight a rare example of mecsiac convergence whereby
sodium and potassium ion channel inhibitors apgkaretwo separate occasions within
the cnidarians. Convergent evolution of these t®xmnscorpions and sea anemones has
been previously reported and although these toxotem families are structurally
different, functional mapping studies have showmilsirities in the binding cores
(Gasparingt al., 2004). Further species sampling is required wbsstute these
observations which are based here on a single M348t in the anthozo&cropora
digitifera, the hydrozoaHydra magnipapillata, the scyphozoaAurelia aurita and the
cubozoan<Chiropsalmus quadrumanus and Tamoya haplonema. It should also be noted
that the names given to each putative ion chamigbitors were used to distinguish
between the two different possible origins of thgafive sodium and potassium ion

channel inhibitors identified in this study. Anothfamily of neurotoxins were the
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CRISP type toxins, which again were found in adissles of cnidarians studied herein.
This toxin protein family has widely been reporiadcnidarian venoms (Brinkmagt
al., 2015; Ponceet al., 2016; Lewiset al., 2016) and attributed many biological

functions.

Just over half of the toxins protein families idgetl in this study were
restricted to certain cnidarian classes only (Fegely. Hyaluronidase-like proteins were
found in all classes of cnidarians except Cubobothese proteins are common and
have non-toxic physiological function in many nagnemous animals. It is feasible that
such proteins are likely recruited into venoms amtoxins, but as adjuvants to increase
tissue permeability (Kemparaju & Girish, 2006; Ftyal., 2009). Non-toxic peptides
and proteins present in nematocysts that may foamcin toxin maturation, toxin
trafficking and delivery, or as self-defence mecéb@ars against the biological activities
of the venom have received little study and perlvegusant closer inspection. Likewise,
the peptidase S1 family was also detected in alflacian classes studied except
Cubozoa. This family is part of the group of serpretease inhibitors that is widely
distributed in other marine venomous animals incigdmarine cone snails and
cephalopods (Mourdo & Schwartz, 2013), as well easestrial reptiles (Fryteal.,
2009). Recently, serine protease homologs werdiftehin the transcriptome of the
sea anemonéinthopleura elegantissima (Macranderet al., 2015). However, the
biological activity of the S1 peptidase family aixins has yet to be confirmed in
cnidarians. It is uncleawhy proteins commonly associated with innate immune
responses are also apparently widely distributednidarian venoms. For example,
MAC-PF-like toxins have also been identified in se@emones (Nagadt al., 2002b;
Oshiroet al., 2004) and were recently annotated in the trgoisenes and proteomes of

Hydrozoa and Scyphozoa (Rachanenal., 2014). Likewise, the actinoporins are pore-
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forming toxins were found in the proteomes of Atb@ and Cubozoa classes. These
cytolysins have also been identified in transcnmosequences and biological activity
recorded in nematocyst venom extracts of varldydra species (Hydrozoa) (Hwareg

al., 2007; Glassest al., 2014).

Assembly of the cnidarian venom proteome

To date, only one previous study has been publistied used similar
approaches to those described here to investigapdut®nary aspects of toxin
recruitment in Cnidaria (Rachamienhal., 2014). In this previous study, the kunitz type
family of toxins was only found in Anthozoa. In teeudy present here, this family of
toxins was found in Anthozoa, but was also ideadifin Scyphozoa. In the study of
Rachamimet al., (2014), the PLA2amily of toxin proteins were only found in species
of Scyphozoa and Hydrozoa. In our analyses, PLARweesent in all the Cnidaria
classes studied and hence, most likely arose asraitment event at the base ancestor
of the Cnidaria. It should be noted that PLA2 Ijx®teins have also been identified in
recent studies of Anthozoan venoms (Macraretiet., 2015, 2016). Differences in the
recruitment patterns between studies might be egidabecause of the low number of
species sampled. The extent of comparison grouppsCfadaria) in light of the
sparseness of data at terminals in the analysss dencern, for example, no data is
currently available on the toxin compliment of ver®from the Staurozoa or Myxozoa
(Marques & Collins, 2004; Okamurh al., 2015a). Based on the data presented, many
of the neurotoxic and cytotoxic protein toxin faes might have been recruited into the
venom proteome early in cnidarian evolution, befthre first major radiation in this

phylum around 800 million years ago (Patlal., 2012; Van Iteret al., 2017).
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The approaches used in this study were very coateey with analyses based
exclusively on putative toxin protein families faum each proteomic profile and not
specific toxin peptides or proteins. These proteormrofiles can be considered
phenotypes, or a "morphological representatiorthefvenom, allowing variation in the
toxin complement to be evaluated. For examplehis $tudy JFTs were found only in
the venoms of Scyphozoa and Cubozoa. However, que\studies have demonstrated
JFTs encoded in the genome and expressed in theopre of Hydrozoa, and in the
transcriptome of the anthozo&nemonia viridis (Rachamimet al., 2014). Few reports
in the literature have documented variation innasomposition of venom at taxonomic
level in the phylum Cnidaria (Oret al., 2013; Rachaminet al., 2014), and certainly
there have been no studies that have attemptedttmgo context what the biological
consequences of venom variation might be (Gaeeah, 2015; Knittellet al., 2016).
The difference between the two phylogenetic pastéaccepted vs inferred using the
presence and absence matrix) found in this studydce due to various ecological
factors that need to be investigated in future isgidBut increased sampling and
analysis at different taxonomic levels is a prioiit order to identify the influence of

history and ecology in the origin of these contragpatterns.

Conclusions

Venom composition of Medusozoa and Anthozoa arter@ifit, with cytolytic
toxin protein families slightly more abundant in ddsozoa. When only toxin protein
family composition was used for phylogenetic infere, the resulting topology
(Cubozoa(Anthozoa(Hydrozoa,Scyphozoa))) did not chmathe classic published
phylogeny (Anthozoa(Hydrozoa(Cubozoa,Scyphozod)iderstanding the functional

context (environment versus morphological form) thay drive expression of toxins in
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Cnidaria requires future experimentally considerati including wider taxonomic

sampling.
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Figurelegends

Figure 1. A) Chrysaora lactea, B) Tamoya haplonema and C) Chiropsalmus

quadrumanus. Medusa adult stages of Cnidaria from which theowe proteomes of
isolated nematocysts were acquired for this styfotos courtesy of Dr Alvaro
Migotto, Centro de Biologia Marinha, Universidade e d Sdo Paulo

Séao Sebastido, Brasil).

Figure 2. Comparison of Cnidarian venom composition. Venn diagram showing the
number of putative toxin protein families shared oag the soluble nematocyst
proteomes of the four classes of cnidarians stu@date that the protein families

marked with an asterisk are described here fofitsietime).

Figure 3. Recruitment patterns of putative toxin protein families into Cnidaria
venom, based on a established cnidarian phylogenies (Marques & Collins, 2004;
Collins et al., 2006). Solid black rectangles represent recrritmevents. Dotted
rectangles represent absence of toxin families.t&Vhectangles represent multiple
recruitments of toxin families. The numbers abovetha lines represents the toxin
families: 1. actinoporins; 2. complement C3; 3. @orins O; 4. Conotoxins T; 5.
CRISP; 6. ficolin lectin; 7. flavin monoamine oxgig 8. Jellyfish toxin; 9. kunitz-type;
10. latrotoxin; 11. MAC-PF; 12. metalloproteina%8; natriuretic peptide; 14. peptidase
S1; 15. phospholipase A2; 16. phospholipase B;phospholipase D; 18. ShK-like
potassium channel; 19. snaclec; 20. snake thregerfin2l. Sea anemone sodium
channel modulator; 22.TCTP; 23. glycosyl hydrold&&#; 24. huwentoxin-1*; 25.
latarcin*; 26. lipase*; 27. C&p potassium channel blocker*; 28. G sodium channel
inhibitor*. The proteins families marked with assér (*) have never previously been

recorded in Cnidaria
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Table 1: Predicted venom proteomes of potential toxinsisolated from nematocysts. A) Chiropsalmus quadrumanus, B) Tamoya haplonema

and C) Chrysaora lactea. Peptide fragments used for putative toxin annotation are given with validated spectrain Figures S1-S3.

Toxin with closest homology  Predicted toxin Uniprot Example of animal species with closest homology
protein family accession
number

A) Chiropsalmus quadrumanus
Alpha-latroinsectotoxin-Ltla Latrotoxin Q02989 Latrodectus tredecimguttatus (European black widow spider)
Conotoxin Bu2 Conotoxin O1 POCY61  Conus bullatus (Bubble cone snail)
Echotoxin-2 Actinoporin Q76CA2  Monoplex parthenopeus (Giant triton sea snail)
Hainantoxin-XV1I11-5 Putative ion D2Y2N9  Haplopelma hainanum (Chinese bird spider)

channel inhibitor
Neurotoxin LmNaTx1 CSaf sodium D9U297  Lychas mucronatus (Chinese swimming scorpion)

channel inhibitor
Toxin CfTX-2 Jellyfish toxin A7L036  Chironex fleckeri (Seawasp)
B) Tamoya haplonema
Alpha-latroinsectotoxin-Ltla Latrotoxin Q02989  Latrodectus tredecimguttatus (European black widow spider)
Conotoxin Lt5.9 Conotoxin T Q1A3Q7 Conuslitteratus (Lettered cone snail)
DELTA-alicitoxin-Pse2b MACPF P58912 Phyllodiscus semoni (Wasp sea anemone)
Disintegrin acostatin-alpha Disintegrin Q805F7  Agkistrodon contortrix contortrix (northern copperhead pit viper)
Echotoxin-2 Actinoporin Q76CA2 Monoplex parthenopeus (Giant triton sea snail)
Equinatoxin-3 Actinoporin POC1H2 Actinia equina (Beadlet sea anemone)



Im-conomarphin
Maximins 3/H2
Phospholipase A2 3
Phospholipase D LISicTox-
alphalll2

Potassium channel toxin alpha

KTx Tx773

Potassium channdl toxin TdiKIK

Snake venom metall oproteinase

aculysin-1

U5-ctenitoxin-Cola

Venom allergen 5

Venom carboxylesterase-6
Venom nerve growth factor 1

C) Chrysaora lactea

CfTX-2

Cathelicidin-related peptide
Na CRAMP

Conotoxin Bu2
Cysteine-rich venom protein
LIO1

L-amino-acid oxidase

M-zodatoxin-Lt4a
Snake venom serine protease
KN2

Conotoxin A
Bombinin

Phospholipase A2

Arthropod

phospholipase D
CS af} potassium

channel blocker
Long chain
scorpion toxin
Venom

metall oproteinase

(M12B)

Spider toxin Tx2

CRISP
Lipase
NGF-beta

Jellyfish toxin
Cathdlicidin

Conotoxin O1
CRISP

Flavin
monoamine
oxidase
Latarcin
Peptidase S1

POCH39
P83082
P21792
Q1KY 79

B8XH45
QOGY43
QIW7S2
P85276

A9QQ26

B2D0J5
Q2XXL6

A7L0O36
B6S2X0

POCY 61
Q2XXQ0

PODI84

Q1ELUS
Q71QJ0

Conusimperialis (Imperia cone snail)

Bombina maxima (Yunnan firebelly toad)

Micrurus nigrocinctus (Central American coral snake)
Loxosceles laeta (Chilean recluse spider)

Buthus occitanus israelis (Common yellow scorpion)
Tityus discrepans (Venezuelan scorpion)
Deinagkistrodon acutus (Sharp-nosed pit viper)
Ctenus ornatus (Brazilian spider)

Lycosa singoriensis (Chinese wolf spider)

Apis mellifera (European honey bee)
Azemiops feae (Black-headed Burmese viper)

Chironex fleckeri (Seawasp)
Naja atra (Chinese cobra)

Conus bullatus (Bubble cone snail)
Erythrolamprus poecilogyrus (Water snake)

Vipera ammodytes (Sand viper)

Lachesana tarabaevi (Ant spider)
Trimeresurus stejnegeri (Chinese green tree viper)



U16-lycotoxin-Lsla U16-lycotoxin B6DD52  Lycosa singoriensis (Chinese wolf spider)
Venom peptide Ocy2 Not assigned P86107 Opisthacanthus cayapor um (South American scorpion)
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Early diverging metazoans offer a phylogenetic anchor to study evolution of the

venom trait.

Venom proteomes of the scyphozoan Chrysaora lactea and two cubozoans Tamoya

haplonema andChiropsal mus quadrumanus are presented.

Toxin recruitment and retention patterns do not always correlate with accepted
phylogeny.
Factors that drive toxin diversification independent of phylogeny merit closer

scrutiny.



