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Abstract  

Modeling of window behavior is a key component for building performance 

simulation, due to the significant impact of opening/closing windows on indoor 

environment and energy consumption. The predictions of existing models cannot well 

reflect actual window behavior, the prediction accuracy still needs to be improved. 

The Gauss distribution model is a new machine-learning technique which has 

achieved successful applications in many fields because of its special advantages (i.e. 

simple structure, strong operability and flexible nonparametric inference ability) 

compared to existing models. This paper presents results from a study using the Gauss 

distribution model to predict window behavior in office building. The data used in this 

study were from a real building located in Beijing, China, and covered two 

transitional seasons (from  October 1 to November 15, 2014 and from March 15 to 

May 16, 2015), when natural ventilation was fully applied. When modeling, three 

types of input variables, i.e., indoor temperature, outdoor temperature and their 

combination were used. This work validates the importance of selecting suitable input 

variables when developing Gauss distribution model. This study also compared the 

prediction performance between the Gauss distribution modeling approach and the 

Logistic regression modeling approach, which is the most popular method used to 

model occupant window behavior in buildings. The results showed that Gauss 

distribution models could provide higher prediction accuracy, with 9.5% higher than 

Logistic regression model when using suitable inputs. This paper provided a novel 

modeling method that can be used to predict window states more accurately in office 

buildings. 
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Window behavior, Gauss distribution, Logistic regression, Modeling, Office building. 
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1 Introduction 

1.1 State of the art 

The rapid development of computer technologies has enabled the usage of building 

performance simulation for building design and operation. The energy consumption of 

buildings is mainly affected by six factors: meteorological conditions, building 

envelope, building equipment, indoor environmental parameters, operation 

management and occupant behavior. In the past decade, significant progresses and 

advanced technologies have been achieved in terms of above aspects, expect occupant 

behavior [1-2]. Some methods, such as the survey-based approach [3-9], Data-driven 

approaches [10-11], and building performance simulation (BPS) [12] have been used 

to evaluate the impact of occupant behavior on buildings performance. 

Numerous studies [4-9,12-28] have confirmed that occupant’s interaction with 

building systems would attributes to sizeable variation in building energy 

consumption. For example, Takasu et al. [9] conducted questionnaire based field 

surveys to record thermal comfort responses of occupants and found that find 

behavioral adaptation related to window-opening leading to variation in the comfort 

temperature across different seasons. However, in conventional simulation packages, 

occupant behavior is described in the form of either fixed schedules or rule-based 

methods, which fail to capture the stochastic nature of occupant behavior. This 

simplification of occupant behavior will significantly reduce the reliability and 

accuracy of results from building performance simulation [24-28]. On the other hand, 

many simulated measurements or retrofits [29-35] with significantly energy-saving 

potential often fail to reach expected performance in real situations. Sometimes the 

situation would be even worse that energy consumption of real buildings is increased 

after simulated energy-efficient measurements are adopted [36-40], one of the 
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important reasons for this phenomenon is the huge deviation between the behavioral 

modeling in simulation and actual occupants behavior. Therefore, designers should 

consider the complexity and variation of occupant behavior when designing buildings. 

Undoubtedly, inaccurate descriptions concerning occupant behavior would inevitably 

result in great deviation between building design and operation, and this deviation is 

often referred as “performance gap” [41-42]. Therefore, better understanding and 

more accurate modeling of occupant behavior in buildings is vital to bridge the gap 

between simulation result and actual building performance, especially for those 

buildings that largely depend on passive design features and occupancy controlled 

technologies [43-44]. 

As one important type of occupant behavior, window behavior has been proven to 

have significant impact on building performance [45-46]. Operable windows provide 

opportunities for occupants to improve the indoor air quality and thermal comfort by 

nature ventilation. To better describe and predict window behavior, stochastic 

modeling approaches have been adopted because they can capture the random 

characteristics of window behavior and provide probabilistic distributions based on 

performance indicators [47]. Many efforts have been carried out to develop stochastic 

models based on large amount of measured data to better predict window behavior in 

buildings [48-51].  

In early 1990, Fritsch et al. [52] first attempted to mathematically model window 

states in buildings, using a stochastic model based on the Markov chains process. The 

time series model of window angle was generated based on half-hourly measured data 

from four windows in a real building. Rijal et al. [53-54] have proposed a behavioral 

model based on multiple logit distributions to predict the probability that a window is 

open. In this model, both indoor and outdoor temperatures were considered as 
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independent variables. Based on almost seven years of continuous measurement from 

14 south-facing cellular offices, Haldi and Robinson [55] used three different 

modeling methods to model occupant window behavior, including a Bernoulli process 

based on a logit probability distribution, a discrete-time Markov process with sub-

models for different occupancy states and a continuous-time random process. Then, 

they ranked these methods according to their prediction performance. 

Since 1990, many studies on window behavior in office buildings have been carried 

out and Logistic regression has been popularly adopted as the modelling approach. 

Zhang and Barret [56] carried out a field study of occupant window behavior in a 

naturally ventilated office building in the UK, lasting for 16 months. A probabilistic 

model for predicting window opening and closing actions was developed considering 

outdoor temperature as the only independent variable. Moreover, in the UK, Wei et al. 

[57] monitored occupant decisions on the end-of-day window positions in an office 

building and analyzed potential factors that may drive their decision-making, using 

Logistic regression analysis. Based on a more comprehensive set of indoor and 

outdoor environmental variables, Andersen et al. [58] used multivariate Logistic 

regression to describe the probability of window state change (closed to open and 

open to closed). Their study was carried out in 15 dwellings located in Denmark. 

Additionally, four models were developed in their study according to the ownership 

and ventilation type of the building. Li et al. [59] have used Logistic regression 

analysis to propose a probability model of occupant window operation in China. The 

measured data were selected from a two-month field observation in a natural-

ventilation office building during transitional seasons in Chongqing, China. Simona et 

al. [49] developed a framework combining statistical analysis with two data-mining 

techniques, cluster analysis and association rules mining, to identify valid window 
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operational patterns in the measured data. They analyzed a dataset with measured 

indoor and outdoor physical parameters and human interaction with operable 

windows in 16 offices. Logistic regression has been used to identify factors 

influencing window-opening and window-closing behavior in their study. Moghadam 

et al. [60] attempted to simulate the impact of individual behavior on the window 

state, by implementing Logistic regression models to describe three distinct types of 

window behavior from active, passive and generalized window users. In 2018, Pan et 

al. [61] analyzed the effects of both environmental and non-environmental factors on 

window opening/closing behaviors and developed window models using Logistic 

regression. The study was based on a 9.5-month field measurement for a total of 5 

windows in 5 offices on the second floor in Beijing, China. Naspi et al. [62] 

conducted a survey to determine the presence of people and their interactions with 

windows in three offices. In this study, trigger parameters of window opening and 

closing actions were investigated, and Logistic regression models were proposed to 

predict openings at arrival and openings/closings during intermediate periods.  

Besides, there was a lot of studies on window behavior in residential buildings and 

Logistic regression was used as the main modelling approach. Calì et al. [63] 

analyzed window behavior in residential buildings, and investigated drivers who lead 

occupants to interact with windows, while focusing on how these actions can be 

modeled. A method to analyze the probability of a state change of the windows, based 

on Logistic regression, was used on the data from a four-year measurement in two 

refurbished demonstration buildings. Jones et al. [64] conducted a field study in ten 

UK dwellings over the period of a year, and used multivariate Logistic regression to 

investigate the probability of window opening and closing of a main bedroom, based 

on indoor and outdoor environment factors, considering the time of the day and 
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season as well. Meanwhile, Yao and Zhao [65] conducted an investigation on the 

factors influencing occupant window behavior in 19 residences in Beijing, based on 

the monitored state of windows and eight environmental parameters. In their study, 

multivariate linear Logistic regression was also used to establish predictive models for 

occupant window behavior, and the results indicated that outdoor temperature was the 

most influential factor. Stazi et al. [66] investigated the relationship between window 

use and environmental stimuli in an Italian classroom, and developed a window 

behavior model using Logistic regression. In their study, it was found that indoor 

temperature was the best predictor for both opening and closing windows. In this 

study, outdoor temperature also had a significant impact on the window states but not 

as strong as indoor temperature. In the same year, Kim et al. [8] conducted 

longitudinal field observations and used the logistic function based on a second-order 

polynomial regression to create fit curves of window behavior.  

The summaries of potential factors that influence window-opening behavior and 

existing modeling approaches of occupants’ window behavior are shown in Table 1 

and Table 2, respectively. 

Table 1. The influencing factors of occupants’ window behavior. 

Environmental 

factors 

Outdoor temperature; outdoor relative humidity; indoor temperature; 

indoor relative humidity; indoor CO2 concentration. 

Non-environmental 

factors 

Occupants’ age, gender; time of day; season; previous status of the 

window; heating modes; house property ownership; window type and 

orientation; building and room types; floor level; smoking; occupancy 

pattern; personal preference; rule, special events. 
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Table 2. Existing modeling approaches of occupants’ window behavior. 

Modeling approaches Used as/by (examples) 

 Deterministic model Simplified model 

 Threshold model Simplified model 

 Markov chain with Logistic 

regression and survival analysis 

model 

Haldi and Robinson (2009)  

 Markov with Logistic 

regression model 

Fritsch et al. (1990)/ Andersen et al. (2013) 

Calì et al. (2016)/ Federica et al.(2018) 

 Logistic regression model Rijal et al.(2007)/ Zhang et al. (2012) 

Wei et al. (2012)/ Nan Li et al. (2014) 

Simona et al.(2014)/ Maghadam et al.(2015) 

Jones et al. (2017)/ Stazi et al. (2017) 

Naspi et al. (2017)/ Yao et al.(2017) 

Kim et al. (2017)/ Pan et al. (2018) 

 

1.2 Statements of objectives 

Most recent studies conducted to model occupants’ window behavior were developed 

based on mathematical approaches, i.e. Markov chains process, Bernoulli process, and 

Logistic regression. However, it is difficult to develop an elaborated mathematical 

model to describe the stochastic occupancy behavior, which is influencing by multiple 

factors simultaneously. Hence, the prediction accuracy of these proposed models is 

not always satisfying. In order to further improve the model performance, the Gauss 

distribution approach, a new machine-learning technique, has been tested and used to 

model window opening behavior.  
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2 Research Methodology 

2.1 Basic principle of the Gauss Distribution model 

Window behavior is a very complex phenomenon with a high degree of nonlinearity 

and randomness and may be driven by many factors. In existing studies, 

environmental factors, such as indoor temperature and outdoor temperature, have 

been identified as main driving factors and were usually used as inputs of predicting 

models for window behavior. Hence, multivariate Gauss distribution model has been 

adopted in this study because more than one environmental factor were considered, 

expressed as a vector superposition of Gaussian distribution. The specific calculation 

of window opening probability is shown in Formula (1): 

𝑃(𝑋) =∑𝑚𝑖𝐹

𝑡

𝑖=1

( 𝑥𝑖 ∣∣ 𝜇𝑖 , 𝜎𝑖
2 ) (1) 

where 𝑃(𝑋) represents probability of window opening; 𝑋 is a vector representing 𝑡 

kinds of environmental factors (𝑥𝑖，𝑖 = 1,… , 𝑡); 𝑚𝑖 represents the weight coefficient 

of the ith influential factor; 𝐹( 𝑥𝑖 ∣∣ 𝜇𝑖, 𝜎𝑖
2 )  represents the cumulative distribution 

function of the Gaussian distribution of the ith influential factor; 𝑥𝑖  represents the 

specific value of the ith influential factor, and 𝜇𝑖 and 𝜎𝑖
2 represent the corresponding 

mean value and variance, respectively. 

As seen from Formula (1), to calculate the probability of window opening, 𝑃(𝑋), the 

cumulative distribution function of Gaussian distribution 𝐹( 𝑥 ∣∣ 𝜇, 𝜎2 ) and the weight 

coefficients for all input variables need to be determined, following the specific steps 

described below: 
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1. Calculating the cumulative distribution function of Gaussian distribution 

𝐹( 𝑥 ∣∣ 𝜇, 𝜎2 ) 

The cumulative distribution function of the Gaussian distribution 𝐹( 𝑥 ∣∣ 𝜇, 𝜎2 ) refers 

to the probability that random variable X is less than or equal to X, expressed as a 

density function and shown in Formula (2): 

 𝐹( 𝑥 ∣∣ 𝜇, 𝜎2 ) =
1

𝜎√2𝜋
∫ 𝑒𝑥𝑝⁡(−

(𝑥 − 𝜇)2

2𝜎2
)

𝑥

−∞

 (2) 

Before calculating 𝐹( 𝑥 ∣∣ 𝜇, 𝜎2 ) for each input variable, corresponding values of 𝜇 

and 𝜎2  need to be determined. In this model, the least-square method has been 

adopted to find the corresponding 𝜇  and 𝜎2  for the training dataset, following the 

steps below: 

a. For each environmental parameter that has a significant impact on window 

behavior, the corresponding probability of window opening needs to be 

determined. Since all environmental parameters are time-continuous, a 

suitable interval length should be selected; 

b. There is a set of datasets of environmental parameters for each interval 

selected in step a, the probability of window opening based on each dataset is 

calculated and the median is adopted to present the probability of window 

opening at that interval; 

c. The least-squares method is used to fit these datasets and determine the mean 

and variance of each environment variable. 

 

2. Calculating weight coefficient 𝑚 

In reality, there is more than one environmental factor that has a significant influence 

on occupant window behavior. Therefore, to predict window behavior more 
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accurately, it is necessary to describe the influence degree, named weight, for each 

factor, as shown in Formula (1). Then, in view of the normalization requirement, the 

influential factors selected as model inputs are considered to impact window behavior, 

leading to Formula (3): 

 ∑𝑚𝑖 = 1

𝑡

𝑖=1

 (3) 

In this study, the following assumptions have been used: the window was “closed” 

when the window opening probability 𝑃(𝑋) < 0.5 , and it was “open” when the 

window opening probability 𝑃(𝑋) ≥ 0.5, as shown in Formula (4): 

{
∑ 𝑚𝑖
𝑡
𝑖=1 ∑ 𝐹𝑘

𝑙=1 ( 𝑥𝑖𝑙 ∣∣ 𝜇𝑖𝑙, 𝜎𝑖𝑙
2 ) < 0.5, 𝑤𝑖𝑛𝑑𝑜𝑤⁡𝑖𝑠⁡𝑐𝑙𝑜𝑠𝑒𝑑

∑ 𝑚𝑖
𝑡
𝑖=1 ∑ 𝐹𝑝

𝑙=𝑘+1 ( 𝑥𝑖𝑙 ∣∣ 𝜇𝑖𝑙, 𝜎𝑖𝑙
2 ) ≥ 0.5, 𝑤𝑖𝑛𝑑𝑜𝑤⁡𝑖𝑠⁡𝑜𝑝𝑒𝑛

              (4) 

where 𝑘 is the number of closed window states, and 𝑝 is the total number of window 

states for the training dataset. 

As mentioned above, the cumulative distribution function of the Gaussian distribution 

𝐹( 𝑥 ∣∣ 𝜇, 𝜎2 )  could be determined in accordance with Steps a–c. Afterwards, the 

weight coefficient 𝑚 could be determined by Formulas (3) and (4). In addition, the 

Monte Carlo method is used to determine the final window state (opened or closed) in 

this model. A random number in the range of 0 to 1 is generated and compared with 

calculated probability of window behavior. If the random number is less than the 

calculated probability of window behavior, the output is “opened”, otherwise it is 

“closed”.  

 

The frame structure of the Gauss distribution model is shown in Fig. 1. 
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 Fig. 1 The frame structure of the Gauss distribution model 

 

2.2 Data collection 

To verify the applicability of using the Gaussian distribution to model window states 

in buildings, both environmental data and window state data were measured and 

collected from a typical free-running office building located in a university campus of 

Beijing, China. The impact of outside noise on occupants’ window behavior could be 

negligible in this study because the onsite questionnaires show that the surrounding is 

usually quiet. In addition, there were no other tall buildings or trees blocking solar 

gains. The building had two floors, with some laboratories in the ground floor and 

nine 10m2 offices in the second floor, as shown in Fig. 2. There was one south-facing 

push-pull window which is controlled by the occupant, as shown in Fig. 3. 

Measurements were carried out in the five offices in the second floor.  Each office 

was single occupied by the same occupant throughout the entire measurement period. 

In addition, the occupants in the five offices were all non-smoking teachers, two of 

them are males and remains are females. They had lived in Beijing for many years 

and got used to Beijing climate already. In winter, radiator heating was used to heat 

the building, and in summer, split-type air conditioners were adopted. During 

transitional seasons, typically between October 1 and November 15, and between 

March 15 and May 16, natural ventilation was used as the main cooling strategy. The 
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data used in this study were collected from the two transitional seasons.  

  

Fig. 2 The case study building Fig.3 A typical office 

Occupant window operation is highly correlated to the change of indoor and outdoor 

environments, which has been widely justified in existing studies [56-60,63-66]. For 

this reason, important environmental data were collected during the study. 

Environmental sensors were installed inside each room where the sensor is rarely 

impacted by outdoor disturbances and indoor heating resources. Outdoor parameters 

included air temperature, air humidity, PM2.5 concentration, solar radiation, sunshine 

hours, wind speed and direction were measured by the sensors installed on the roof of 

the case study building. In addition to these, pyroelectric infrared (PIR) sensors were 

used to record the occupancy of the monitored offices, and window displacement 

testers were installed to detect and record the state of windows. The main features of 

the monitoring equipment are shown in Table 3. 
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Table 3 Measurement range and accuracy of monitoring equipment 

Monitoring 

instruments/parameters 

Recording 

interval 

Sensitivity Accuracy 

Infrared instrument 1 min 5 m  

Window displacement tester 10 min 3 cm  

Indoor temperature sensor 10 min  ±0.5°C 

outdoor temperature  1min  ±1.0°C 

outdoor humidity  1min  ±5% 

solar radiation  1min  ±10W/m3  

sunshine hours  1min  ±0.5h 

wind speed  1min  ±1m/s 

wind direction 1min  ±10° 

PM2.5 concentration 1h  ±10μg/m3 

 

2.3 Selection of input parameters 

Basic information about Gauss distribution models has been presented in Section 2.1. 

When modeling occupant window behavior, another issue to consider is the selection 

of input parameters, as inter-correlated input parameters both decrease the modeling 

accuracy and increase the computational time. To handle this issue and remove 

insignificant variables, the stepwise regression method was adopted to determine 

input parameters for the Gauss distribution model.  

The stepwise regression method has been used in many fields [67-70], and it 

introduce variables one by one and test the imported variables simultaneously. If the 

introduction of a new variable makes any existing variables less significant, that 

existing variable(s) is eliminated to ensure that only significant variables are included 

in the regression model. This process is repeated until no more input variables are to 



 

15 
 

be added or eliminated from the regression model. In this study, SPSS22, a 

professional statistical package, was used to for the model development. 

2.4 Evaluate criteria 

Validation is crucial for model development to test the accuracy and usability of the 

developed models. It is commonly performed by comparing the predicted values 

against field measurements, which should be different from the training data. In this 

study, the validation dataset mentioned in Section 2.2 was prepared and used for this 

purpose. In this study, 2000 datasets were collected from the five offices. The datasets 

were equally and randomly split into two groups, one for training the model and the 

other for validating the model.  

The distribution of the datasets is shown in Fig. 4 and Fig. 5. It can be seen that the 

datasets from two transitional seasons cover a similar indoor/outdoor temperature 

range. In addition, p-p diagram generated by SPSS22 was used to validate that the 

datasets obey normal distribution if majority of them are approximately located near 

the diagonal line. The results from Fig. 6 show that the both indoor and outdoor 

temperature datasets approximately follow a normal distribution. On the other hand, it 

also reflects rationality of data which was selected in random. 

  

Fig. 4 Distribution of indoor temperature for 

two datasets 

Fig. 5 Distribution of outdoor temperature 

for two datasets 
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(a) (b) 

  

(c) (d) 

Fig. 6 normal distribution test of datasets for indoor temperature (a/b) and outdoor 

temperature (c/d) 

 

Haldi and Robison [71] and Schweiker et al. [72] assessed performance of prediction 

models by comparing the observed window states and the predicted window states. 

Two states of windows were considered in their study, as positive was defined for 
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open windows and negative was defined for closed windows, resulting in definitions 

of predicted outcomes as true (truly positive, i.e. both predicted and measured 

window states were open, or truly negative, i.e. both were closed) or false (falsely 

positive, i.e. the predicted window state was open but the measured state was closed, 

or falsely negative, i.e. the predicted window state was closed but the measured state 

was open). Based on these classifications, Schweiker et al. [72] used the true positive 

rate (TPR) as the proportion of actual open windows that was correctly predicted as 

open, and true negative rate (TNR) as the proportion of actual closed windows that 

were correctly predicted as closed. Finally, the accuracy of the model (ACC) was 

defined as the proportion of correct predictions weighting the proportion of true 

outcomes (positive or negative) on the total amount of window states measured. In 

this paper, TPR, TNR and ACC were also adopted as testing criteria to assess the 

performance of the model, shown as formulas (5)-(7): 

 𝑇𝑃𝑅 = 𝑐/𝑚 (5) 

 𝑇𝑁𝑅 = 𝑑/𝑛 (6) 

 𝐴𝐶𝐶 = (𝑐 + 𝑑)/(𝑚 + 𝑛) (7) 

where c is the number of correctly predicted open states; 𝑑 is the number of correctly 

predicted closed states; 𝑚 is the total number of open states; and 𝑛 is the total number 

of closed states. 

 

2.5 Model Comparison 

In existing studies, in terms of modeling occupant window behavior, Logistic 

regression has been widely chosen as the modeling method. In this study, to justify 

the performance of Gauss distribution models, predictions from Logistic regression 
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models were obtained and compared. 

Logistic regression analysis is a statistical method with outputs as binary variables. 

Due to its flexibilities regarding to input parameters, which can be both categorical 

and continues, it has been extensively used for modeling occupant window behavior 

in buildings. In Logistic regression analysis, the relationship between the probability 

of a binary response and individual explanatory variables could be expressed by 

Formula (8), 

 
𝑙𝑜𝑔𝑖𝑡𝑃 = 𝑙𝑛 (

𝑃

1 − 𝑃
) = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 +⋯+ 𝑎𝑛𝑥𝑛 + 𝑏 

 

(8) 

where 𝑃  is the probability of opening or closing a window; 𝑎1, 𝑎2, … , 𝑎𝑛  are 

coefficients for explanatory variables, such as indoor temperature and outdoor 

temperature, and 𝑏 is a constant.  

 

3 Results 

3.1 A Gauss distribution Model for Window State Prediction 

The training dataset introduced in Section 2.2 was used to develop the Gauss 

distribution model. The approach introduced in Section 2.3 was used to select input 

parameters for the model using SPSS22, with results shown in Table 4. 
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Table 4 Results of stepwise regression 

Variables Beta T Sig. 

Partial 

correlation 

Tolerance 

indoor temperature(℃) 0.006 0.105 0.916 0.005 0.881 

outdoor air humidity(%) -0.046 -0.937 0.349 -0.048 0.996 

outdoor PM2.5 

concentration(μg/m3) 

-0.155 -2.833 0.105 

-0.143 

0.800 

solar radiation(W/m3) 0.034 0.680 0.497 0.035 0.984 

sunshine hours(h) 0.302 6.167 0.015 0.299 0.927 

wind speed(m/s) -0.027 -0.553 0.580 -0.028 1.000 

wind direction(°) -0.058 -1.158 0.248 -0.059 0.968 

 B T Sig. S.E  

Outdoor temperature 0.023 4.738 
<0.001 

0.005  

where B was regression coefficient; Beta referred to standardized regression coefficient and 

the magnitude of its absolute value directly reflected the influence of independent variable on 

dependent variable; t was the result of hypothesis testing on B/Beta; the Sig. value was the 

probability value corresponding to t and when the Sig. value was less than 0.05, independent 

variable was considered as significant; The partial correlation referred to the correlation 

between one variable that excludes the influence of other independent variables and Y that 

excludes the part that other independent variables can explain; Tolerance was used to test 

multicollinearity between variables, and when it was less than 0.1, there was multicollinearity 

between variables; S.E represented standard error and reflected the degree of dispersion 

between sample means. 
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It can be seen from Table 4 that except for outdoor temperature, the Sig. values of all 

other variables were greater than 0.05, meaning that the paramount environmental 

factor influencing occupant window behavior was outdoor temperature for the 

selected dataset. This could be explained by the use of natural ventilation, which is 

highly dependent on the outdoor conditions. However, in many existing studies, 

indoor temperature has been identified as another factor influencing occupant window 

behavior in buildings [52-55,57-58,60-65]. Therefore, indoor temperature has been 

used to train the model as well. When using different independent variables, the main 

parameters of the trained Gauss distribution models are listed in Table 5. And the test 

results from using different independent variables as input parameters for Gauss 

distribution models to predict window state are as shown in Table 6. 

Table 5. Corresponding mean value and variance of Gauss distribution models. 

Model μ σ2 

Gauss dist. (with 𝜃𝑖𝑛) 28 8 

Gauss dist. (with 𝜃𝑜𝑢𝑡) 32 10 

Gauss dist. (with 𝜃𝑖𝑛 and 𝜃𝑜𝑢𝑡) 28/32 8/10 

 

Table 6. Predicting results of Gauss distribution model based on validation datasets. 

Model TPR(%) TNR(%) ACC(%) 

Exact 100.0 100.0 100.0 

Gauss dist.(with 𝜃𝑖𝑛) 32.1 66.6 58.3 

Gauss dist.(with 𝜃𝑜𝑢𝑡) 14.2 93.0 74.1 

Gauss dist.(with 𝜃𝑖𝑛 and 𝜃𝑜𝑢𝑡) 15.8 87.8 70.5 
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where 𝜃𝑖𝑛 refers to indoor temperature and 𝜃𝑜𝑢𝑡 refers to outdoor temperature.  

 

3.2 Model Validation 

The validation of the models is based on the validation datasets. Table 6 shows the 

prediction performance of the Gauss distribution models discussed above when using 

different input parameters. Outdoor temperature is still shown to be the most 

significant input parameter, giving the highest prediction accuracy, i.e. ACC equals to 

74.1%, comparing to 58.3% when using indoor temperature only and 70.5% when 

using both indoor and outdoor temperatures. 

 

Fig. 7 Results of Gauss distribution model using 𝜃𝑖𝑛 as input 

   

 Fig. 8 Results of Gauss distribution model using 𝜃𝑜𝑢𝑡 as input 
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(a) 

       

(b) 

Fig. 9 Results of Gauss distribution model using both 𝜃𝑖𝑛 (a) and 𝜃𝑜𝑢𝑡 (b) as inputs 

Fig. 7 and Fig. 8 show the results of Gauss distribution models whose input variables 

are indoor temperature and outdoor temperature, respectively. When the inputs are 

two variables, the probability of window opening for each variable is calculated and 

exhibited in Fig. 9 (a) and (b). It can be clearly seen that aiming at this measurement 

of window behavior during transitional seasons, the predicted probability of window 

opening shows a similarly increasing tendency as the outdoor or indoor temperature, 

which is similar with measured probability. Compared with the results of Fig. 8 and 

Fig. 9, the results of Fig. 7seem to show better fitting. One possible reason for this is 

that Gauss distribution model whose input variable is indoor temperature has a 



 

23 
 

highest true positive rate than the other two models. In addition, Fig. 9(a) and Fig. 

9(b) show that though there is the same tendency of probability of window opening, 

increasing with outdoor/indoor temperature, the predicted probability are generally 

lower than measured values. One possible reason is that the model predicting window 

state based on two variables (indoor and outdoor temperatures), hence the statistical 

relationship between predicting result and each single variable is weak. However, we 

can conclude that the predicted probability of window opening can track the measured 

data fairly well. Gauss distribution model has been validated as a qualified model for 

window state prediction. 

 

3.3 Comparison with Logistic regression 

For comparison, the same input parameters have been applied to the training dataset 

and corresponding Logistic regression models were developed, with key values listed 

in Table 7. 

Table 7. Coefficients of Logistic regression models. 

Model 𝑎1 for 𝜃𝑖𝑛 𝑎2 for 𝜃𝑜𝑢𝑡 b 

Logit dist. (with 𝜃𝑖𝑛) 0.037 0 -1.913 

Logit dist. (with 𝜃𝑜𝑢𝑡) 0 0.0317 -1.688 

Logit dist. (with 𝜃𝑖𝑛 and 𝜃𝑜𝑢𝑡) -0.009 0.33 -1.535 

where 𝑎1 and 𝑎2 refer to the coefficients for indoor temperature and outdoor temperature, 

respectively, and b is a constant.  
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Table 8. Predicting results of logistic regression model based on validation datasets. 

Model TPR(%) TNR(%) ACC(%) 

Exact 100.0 100.0 100.0 

Logit dist. (with 𝜃𝑖𝑛) 21.7 73.8 61.3 

Logit dist. (with 𝜃𝑜𝑢𝑡) 28.3 76.4 64.6 

Logit dist. (with 𝜃𝑖𝑛 and 𝜃𝑜𝑢𝑡) 27.1 75.4 64.1 

 

  
Fig. 10 Comparison of results between Gauss Distribution models and Logistic 

regression models when using different input parameters  

  

Fig. 11 Results of Logistic regression model using 𝜃𝑜𝑢𝑡 as input 
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Table 8 shows the prediction results when using the Logistic regression models 

developed for comparison. Same as Gauss distribution model, the ACC is highest for 

Logistic regression models when using only one input parameter (outdoor 

temperature), which can be easily seen in Fig. 10. Fig. 11 shows the results of 

Logistic regression model using optimum input (outdoor temperature). It can be seen 

from Fig. 11 that the performance of Logistic regression models is satisfying when 

outdoor temperature is low. However, the predicted accuracy is decreased with the 

increase of outdoor temperature. In addition, when comparing the ACC listed in Table 

6 and Table 8, it could be seen that when the influential factor was appropriately 

selected, the Gauss distribution model gave a more accurate prediction (74.1% of 

ACC) for window states, 9.5% higher than Logistic regression model (64.6% of ACC) 

when using outdoor temperature as input. However, Gauss distribution models seem 

to be more sensitive to input variables than Logistic regression models because the 

predicted accuracy of Gauss distribution models is varied from 58.3% to 74.1% while 

Logistic regression models give smaller variance of predicted accuracy of 61.3% to 

64.6%. Therefore, the selection of input variables is significant to Gauss distribution 

models. It is observed that when suitable input parameters are selected, Gauss 

distribution models provide more accurate prediction of occupants’ window behavior 

than Logistic regression models. 

 

4 Conclusions and discussion 

Window behavior has significant influences on indoor air quality, energy 

consumption, and thermal comfort, especially for naturally ventilation buildings. This 

study provided an exploration of using Gauss distribution for modeling occupant 

window behavior and compared it with the more conventional method, i.e. Logistic 
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regression analysis. The actual behavioral data for two transitional seasons collected 

from a field measurement were used to model validation and comparison. The main 

conclusions of this paper are summarized as follows:  

1. Three sets of input parameters, indoor temperature only, outdoor temperature 

only and a combination of indoor and outdoor temperatures, have been used as input 

parameters to model window behavior. According to the results, the Gauss 

distribution models with outdoor temperature only give best prediction accuracy.  

2. Gauss distribution model shows a better prediction performance than Logistic 

regression model when input parameters are selected carefully. For this study, when 

outdoor temperature is selected as input, the Gauss distribution model has 9.5% 

higher prediction. However, Gauss distribution models seem to be more sensitive to 

input variables than Logistic regression models, the selection of input variables is 

significant to Gauss distribution models. It is observed that when suitable input 

parameters are selected, Gauss distribution models provide more accurate prediction 

of occupants’ window behavior than Logistic regression models. 

Although the Gauss distribution model is validated as a qualified method to predict 

the occupants’ window behavior, it should be pointed out that the field measurement 

is not comprehensive. For example, the indoor CO2 concentration which is identified 

as the key parameter in existing studies has not been included in this study. A similar 

study conducted with comprehensive sensor network is necessary in the future work. 

In addition, we only analyze the window opening state in this study, the window 

control actions (opening and closing) merits further investigation in following study. 

What’s more, occupants potentially exhibit a tendency to adjust the window 

depending on the thermal condition. Hence, the deviation from thermal comfortable 

temperature remains to be analyzed for window behavior modeling based on Gauss 
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distribution. Also, comparison of the model performance between Gauss distribution 

model and other existing models would be conducted in the future work. 
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