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18.1 Introduction 
 
In recent decades network analyses have become ubiquitous in ecology, facilitating our 

understanding of linkages between paired entities, whether it be genes, proteins, individuals, 

species or habitats (Proulx et al. 2005; Krause et al. 2007; Blüthgen et al. 2008; Croft et al. 

2008; Wey et al. 2008). Network theory (also known as ‘graph theory’) originates from the 

mathematical and social sciences but has developed concurrently across many disciplines, 

including computational science, physics, management, genetics and epidemiology (Newman 

2010), to name but a few. Widespread uptake of these developments in behavioral ecology 

have ensured that network analyses, and in particular social network analyses (SNA) are now 

one of the go-to tool kits for researchers wishing to measure animal association and 

aggregation, species interactions or animal-mediated habitat connectivity (James et al. 2009; 

Krause et al. 2009a; Fletcher et al. 2011; Jacoby et al. 2012a; Farine and Whitehead 2015). 

Given the challenges that face researchers studying sharks (slow growth, low fecundity, 

wide-ranging and cryptic) and indeed behavior in any subsurface marine organism, it is 

perhaps not surprising that this exciting branch of ecology has only really found a home in 

shark biology in the last 10 years (Krause et al. 2015); before this, records of shark social 

behavior were rare and often anecdotal (Jacoby et al. 2012b). 

Guided by the pioneering work on teleost fishes such as the three-spined stickleback 

Gasterosteus aculeatus and the guppy Poecilia reticulata, and also by the work on marine 

mammal societies (predominantly cetaceans), network methods now offer a robust 

framework to quantify and analyze components of shark behavior that until recently have 

proven extremely difficult (Krause and Ruxton 2002; Ward et al. 2002; Croft et al. 2008; 

Whitehead 2008). Do individual sharks have preferential social partners? Are shark groups 

assorted by phenotypic traits and if so, over what spatial and temporal scales? Are sharks 

capable of learning from social partners? Observational experiments on small groups of 
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captive or semi-wild individuals have driven our initial understanding of social networks in 

sharks (Guttridge et al. 2009; Jacoby et al. 2010), but see Krause et al. (2009b) and Mourier 

et al. (2012) for some of the first wild examples. Technological advances are now driving the 

progress of new analytical techniques that can handle very large data sets, such as those 

obtained from biotelemetry. Thus technology in combination with network approaches have 

recently helped to facilitate the scaling of some of these questions to wild sharks at the 

population level (Krause et al. 2013; Jacoby et al. 2016; Jacoby and Freeman 2016). 

Although widely used and often easily implemented in bespoke programs or R 

packages, network analyses are highly nuanced, and need to be tailored specifically to a 

species or study system. In this chapter, we explore the two core principles of network 

application in shark ecology; 1) shark social networks, that is the how, why and with whom 

sharks associate and 2) shark spatial networks, understanding how the movements of 

individuals can link discrete locations as a movement network. These components are far 

from mutually exclusive, reflecting the fact that social processes are inextricably linked to the 

distribution of sharks in space.  Network analyses offer a unique set of statistical tools that 

help us to understand how individual behavioral patterns can influence group and population-

level processes, how overall network structure can select for behavior at the individual level 

and also how both direct and indirect connections within a population can matter greatly 

(Krause et al. 2009a; Croft et al. 2016). 

 

18.1.1 What is a network? Basics of network theory 
 
A network (or graph) consists of a set of nodes and edges. As a visual illustration the simple 

network depicted in Fig. 18.1 has 6 nodes (i.e. six individual sharks for social networks and 

six locations for spatial networks) and 10 edges (i.e. 10 associating pairs for social networks 

and 10 movement paths between locations for spatial networks), with the interactions 
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between all possible pairs represented with an accompanying adjacency matrix, A [a 

quantitative version of the network]. These interactions can be represented in various ways 

depending on which components of the shark’s behavior is being measured. For example, in 

Fig. 18.1A a binary directed network is presented in which an edge represents directed 

interactions such as ‘1 is dominant over 2’ (social) or a movement from location 1 to location 

2 (spatial). Fig. 18.1B shows a binary undirected network with a 1 or a 0 to indicate presence 

or absence of an interaction within the adjacency matrix. Fig. 18.1C shows the same network 

but with weighted edges proportional to the frequency or strength of association generally 

between 0 (no association) and 1 (constant association)]. Note that each edge appears twice in 

the adjacency matrix of an undirected network (i.e. symmetric) while upper and lower 

triangles of the matrix are different in directed networks. 

 

 



 

6 
 

6

Figure 18.1: Examples of social (left) and spatial (right) networks. Different representations 

are displayed: (A) directed binary networks with an associated non-symmetrical adjacency 

matrix, (B) undirected binary networks with symmetrical adjacency matrix, and (C) weighted 

undirected networks with symmetrical adjacency matrix. 

 

Network analyses offer a set of quantitative metrics or test statistics that allow us to 

characterize and analyze its structure (Table 18.1). These are used to measure structural 

properties at the node, group or network level. For example, one can assess the centrality of 

individual sharks to differentiate the social importance or influence of members of the 

population. For example, node degree or the strength also known as weighted degree can help 

identify the most gregarious individuals in the population and the potential influence they 

have over other members of the population (Croft et al. 2008). For binary directed networks 

(e.g. Fig. 18.1A), out-degree and in-degree, the number of edges leaving and arriving at a 

node, respectively, can be used to better determine the centrality of nodes (e.g. identify hubs 

in the network) and identify the directionality of interactions or movements. Such node-based 

metrics are useful for understanding the position and relative importance of sharks in their 

network (Jacoby et al. 2010; Mourier et al. 2017b). Such centrality metrics are also useful for 

movement networks to better identify the central locations most pertinent to conservation and 

management (Jacoby et al. 2012a; Jacoby and Freeman 2016). Beyond the individual-level 

metrics, many networks contain groups of nodes which are better connected among 

themselves than they are to the rest of the network and these clusters of well-connected nodes 

are usually referred as ‘communities’. Community detection analyses, for example, were 

used to demonstrate that blacktip reef sharks Carcharhinus melanopterus in French Polynesia 

could form well-defined, mixed-sex communities within a small portion of the reef (Mourier 

et al. 2012).  
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It is important to note that social and spatial networks are often correlated as social 

networks are usually derived from spatial proximity (co-occurrences) and therefore are 

dependent on the movement of sharks between locations (Fig. 18.2; Jacoby and Freeman 

2016; Jacoby et al. 2016). Although social networks are to an extent somewhat dependent on 

the spatial proximity of their members, non-random, preferential associations can emerge 

beyond those predicted through overlap of spatial ranges (Mourier et al. 2012). This interplay 

can be captured by bimodal networks that consist of links between two sets of nodes 

belonging to different classes such as individuals linked to locations (Fig. 19.2). As before, 

these bimodal networks can also be (1) unweighted or binary, only showing the presence or 

absence of the interactions, or (2) weighted if cells in a matrix represent, for instance, the 

number of visits by animal species to a monitoring receiver. Bimodal networks, made of 

similar set of nodes, are often analyzed after projecting them into unimodal ones. In unimodal 

social networks, for example, individuals are linked if they share locations.  

 

 

Figure 18.2: The emergence of social and spatial networks from shark movements. Sharks 

moving between reefs from time t1 to time t3 create a directed and aggregated movement 
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network made up of the frequency of movements of all individuals accumulated between reefs 

and through time. As sharks move in the seascape, their co-occurrences can be used to create 

a social network defined by the frequencies of associations between individuals in space and 

time. 

 
 

Networks can have very different properties but can sometimes be defined by characteristic 

structural properties (Fig. 18.3). In regular networks, all nodes have the same degree. For 

example, a circular network is a type of regular network with all the nodes in the network 

with a degree of 2. It also displays additional characteristics such as no clustering coefficient 

and long average path length (Table 18.1) that indicates that most nodes must pass through 

many other nodes to reach anything other than their immediate network neighbors (Csárdi 

and Nepusz 2006). Random networks are characterized by a normal node degree distribution 

(Erdös and Rényi 1959) whereas small-world networks are characterized by a small diameter 

(longest path between any pair of nodes; Table 18.1) relative to the number of nodes, as well 

as a higher clustering coefficient and a smaller average path length compared with random 

network (Watts and Strogatz 1998). Other networks can have scale-free properties 

characterized by a power law node degree distribution (or right skewed distribution) where 

just a few nodes have a disproportionately high degree (many connections) but the majority 

have a low degree (few connections) (Barabási and Albert 1999). 
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Figure 18.3: Examples of theoretical networks using a circle layout. Modified from (Lédée et 

al. in review). 

 
 

18.1.2 Sampling a network: data collection methods 
 
Building networks is not an easy process and requires collecting a large amount of relational 

data (interactions or movements) under a robust sampling design. Many methods and 

approaches are available to collect data to construct a network, all of which hinge on the 

ability to individually identify sharks. 

 

Figure 18.4: Example of methods to identify individual sharks and track them in space and 

time to build networks. (A) Coloration patterns or notches on a blacktip reef shark’s body 
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used for photo identification (see Chapter X); (B) fluorescent elastomer tag inserted under the 

skin of a catshark to follow individuals in a captive environment; (C) a small spaghetti tag 

inserted externally on the dorsal fin of a juvenile lemon shark with a unique code; and (D) a 

proximity logger attached to the dorsal fin of a juvenile lemon shark to construct a social 

network. 

 

First, SNA requires that individuals are identified to track their associations, group 

membership and movements. Sharks can be identified using body coloration, patterns or fin 

notches which are specific to each individual. This technique of photo-identification is non-

invasive and has been used for many elasmobranch species (Marshall and Pierce 2012) and to 

track shark and ray associations and movements, including blacktip reef sharks (Mourier et 

al. 2012), spotted eagle rays Aetobatus narinari (Krause et al. 2009c) and even the sicklefin 

lemon shark Negaprion acutidens which has a rather homogenous body coloration (Buray et 

al. 2009) (Fig. 18.4A). However, other studies on species in which individuals are hard to 

identify used externally attached visual color-coded tags (Fig. 18.4C; Jacoby et al. 2010; 

Guttridge et al. 2011) or fluorescent visible implant elastomer tags inserted subcutaneously 

on the dorsal surface (Fig. 18.4B; Jacoby et al. 2012c, 2014). Each species comes with its 

own challenges. Nevertheless, the difficulty in tracking elusive sharks in the wild and the 

necessity to record repeated interactions has pushed the development of autonomous tracking 

devices for inferring contact rates between individuals. For instance, the use of proximity 

loggers has been employed in several studies (Guttridge et al. 2010; Haulsee et al. 2016; 

Mourier et al. 2017a). Here, a shark-borne logger which records every tagged shark it 

encounters within a certain proximity (Fig. 18.4D). However, the difficulty is that the shark 

needs to be recaptured to retrieve the tag and data so this method is often confined to semi-

captive or more resident shark species. Acoustic telemetry has been proposed to track 
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movements of tagged sharks and build a social network from their co-occurrence within an 

array of acoustic receivers (Jacoby et al. 2016; Jacoby and Freeman 2016), but this method 

requires careful interpretations of the data and robust analyses to tease apart preferred 

associations from random encounters under quite wide and often variable detection ranges 

(Mourier et al. 2017a). Acoustic telemetry has mainly been employed to build movement 

networks in sharks and analyze the properties of the movement patterns in a population 

(Jacoby et al. 2012a; Lédée et al. 2015; Papastamatiou et al. 2015; Stehfest et al. 2015; 

Espinoza et al. 2015; Jacoby and Freeman 2016; Lea et al. 2016). In this case, nodes of the 

networks are represented by receivers and edges are the frequency of movement between 

pairs of receivers. 

There are both direct and indirect methods of sampling and constructing a social 

network. Observers can identify and follow a focal individual within the population and 

record its interactions with others forming an ego-centric social network. Separate ego-

centric networks can also be combined into a global network to explore population structure. 

This approach was taken by Wilson et al. (2015) with juvenile lemon sharks Negaprion 

brevirostris in a mesocosm in the Bahamas. For each network session, an individual shark 

was randomly chosen as a focal individual and tracked continuously for a predefined amount 

of time, 100 sec and its associations with the nearest group member (if present) were 

recorded every 10 sec. Sharks were considered to be associating if they were within one body 

length of each other during the sampling interval. After an observation period was finished, 

another shark was chosen as the next focal individual until all individuals had been recorded 

so that they were all recorded for every session. 

Alternatively, a social network can build on repeated samples of associations (co-

occurrences) or interactions of dyads and can follow the “gambit of the group” approach 

where groups are defined as co-occurrences of individuals within a defined distance and 
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sampling period. Such approaches have been used to construct social networks in blacktip 

reef sharks, where individual sharks were considered as part of the same group if observed 

together during a dive (Mourier et al. 2012) or for constructing a network of white sharks 

Carcharodon carcharias aggregating around a chumming boat (Findlay et al. 2016). How 

associations are defined, the frequency, duration and interval between sampling periods and 

the spatial area over which sampling takes place will be highly dependent on the 

characteristics of species and systems and requires considerable thought, because all these 

factors will directly influence the eventual structure of our network. For visual observations, 

there are different association indices designed to account for different sampling 

methodologies (i.e. the probability of encountering one individual might differ from another 

at specific locations). As an example, the simple ratio index is used when observations are 

rarely missed and the half-weight index when individuals are frequently missed in samples. 

More details on how to choose an appropriate association index can be found in Farine and 

Whitehead (2015).  

An intermediate approach can also be adapted using automated recording of individual 

movements which offers a means to reconstruct social structure in intractable species from 

the frequency of paired spatial associations between tracked individuals. Using Bayesian 

inference, specifically Gaussian mixture modelling (GMM) approaches, an automated 

approach explores the inherent structure present in the visitation profile of tagged animals. 

This machine learning approach is used to detect the most likely ‘clustering events’ in the 

time-series of tag detections (at an acoustic receiver for example) and then uses these clusters 

as a basis for constructing a social network. Crucially, these clusters can vary in size 

temporally, reflecting the variation expected in dynamic animal societies with code offering 

built-in permutation tests to remove random co-occurrences. Jacoby et al. (2016) explored 

the utility of GMMs for retrieving inference on social network structure from telemetry data 
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of spatiotemporal co-occurrences of tagged grey reef sharks Carcharhinus amblyrhynchos, 

modifying the available methodologies to extract additional behavioral information on the 

timing and directionality of dyadic interactions. 

Another important factor to consider alongside measures of association is information 

on the attributes of individuals, such as phenotypic traits (e.g. sex, size or age) or details 

about individual state (e.g. personality, dominance rank or maturity). These attributes can be 

used to determine how sociality and network structure is mediated by individual traits. For 

example, Mourier et al. (2012) showed that blacktip reef sharks tended to group with 

individuals of a similar size and sex (homophily). 

Another important parameter to consider is independence of data since the persistence 

of associations and autocorrelation of interactions usually preclude this. For example, data 

collected by following a focal individual shark for a certain period will be pseudo-replicated. 

Therefore, using sampling periods where data is aggregated to generate independent samples 

can reduce the effects of temporal partitioning. 

 

18.1.3 Assumptions and randomization analysis 
 
Once relational data have been gathered using the most appropriate sampling method for the 

question and species of interest it is extremely useful to visualize the data to help guide 

further, more quantitative analyses. Network visualization is particularly compelling and 

intuitive, and in some instances can generate informative patterns. It is important to 

remember that these observed networks typically represent a subset of the true underlying 

relationships between individuals because network sampling rarely captures all the nuances 

that dictate how individuals are likely to interact (Farine and Whitehead 2015). In highly 

connected systems, there might be the temptation to threshold the data above a specific edge 

weighting in order to help reveal underlying structural characteristics that might be masked 
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by a ‘birds nest’ of connected nodes. It is crucial, however, to only use thresholding for visual 

exploration, in order to avoid misleading and inaccurate metrics or measures of community 

structuring (Farine and Whitehead 2015). 

Because network data are inherently non-independent (i.e. the link between any two 

nodes is directly influenced by other links in the network) it is important to consider how to 

approach null hypothesis significance testing (Croft et al. 2011). To determine whether the 

patterns observed in visualizations are significant, it is important to compare the observed 

result (e.g. one or several metrics calculated from our observed data) to a distribution of that 

same metric from a large number of network permutations (Farine 2017). Only the realized 

movements of pig-eye Carcharhinus amboinensis and spot-tail sharks Carcharhinus sorrah 

between acoustic receivers in Cleveland Bay, Eastern Australia for example, were 

randomized to generate a null spatial network against which the coefficient of variation in the 

observed movement network was compared (Lédée et al. 2015). In spatial networks these 

methods are designed to control for the bias introduced by the physical layout of the receivers 

from which data are generated. The subtleties of deciphering the most appropriate null model 

to use and deciding at which stage to permute the data (matrix permutation vs data stream 

permutation), in addition to how to statistically deal with overlapping spatial and social 

processes, are beyond the scope of this chapter. For more information on these issues we 

direct the interested reader to a number of excellent papers that discuss the pros and cons of 

different statistical approaches (James et al. 2009; Croft et al. 2011; Farine 2015; Farine and 

Whitehead 2015; Furmston et al. 2015; Spiegel et al. 2016a; Farine 2017). Given that 

network structure can inform the emergence of crucial ecological and evolutionary processes, 

such as sexual segregation or cooperative hunting, developing rigorous null models and 

factoring in the violation of statistical assumptions in network data analysis, is of upmost 

importance; as is the interpretation of the network.  
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18.1.4 Interpretation and output of network analysis 
 
The interpretation of any network should be approached with caution. First, is the sample size 

of the network sufficient to make population-level inferences? This is particularly important 

for SNA because networks with low numbers of individuals can be unreliable (Silk et al. 

2015). Ideally, social analyses should incorporate as many members of a population as 

possible to capture the variability within social dynamics; indeed missing individuals can 

have important consequences for the description of the structure of the population. Given that 

spatial network analyses are often driven by very different questions, robust results can 

sometimes be obtained from a smaller representative sample of the population.  It is 

increasingly being found, however, that individuals within populations of sharks can exhibit 

substantial differences in movements and feeding behavior (REFS) as well as personality 

traits (REFS), which may necessitate larger sample sizes.  

Second, before interpreting the outputs of a network analysis, it is important to return to 

the original research question of the study and interpret the results in the context of this. For 

example, a network is simply a graphical representation of links between individuals or 

locations and it can be built from any kind of random data. Therefore, before drawing 

conclusions about the social structure of a shark population it is crucial to verify if the 

network is based on non-random associations between some individuals because random 

associations would be meaningless in the context of testing the social structure of a 

population. Every interpretation should therefore be made in the light of initial ecological 

question/hypothesis tested.  

For spatial networks, the resulting structure of aggregated networks, or the average of 

all individual movement networks, can be highly dependent on the number of individuals 

included in the study. Indeed, the density of the network (i.e. the number of edges in the 
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network divided by the total possible edges) is dependent on the diversity of individual 

movement, as the centrality of a node (i.e. location) can be, because increasing the number of 

individuals in the analysis will consequently increase the number of different edges 

constituting the network (Mourier et al. in review). This translates into considering mono- or 

multilayer networks and is an area of future development in the field of networks in ecology. 

 

Insert Table 18.1 

18.2 Network applications in shark biology 
 

18.2.1 Shark social networks 
 
Over the past decade our understanding of the mechanisms and functions that shape shark 

social lives has progressed rapidly (see Jacoby et al. 2012b; Wilson et al. 2014). This is in 

part due to advances in remote monitoring devices, such as biotelemetry (acoustic telemetry) 

and biologging (archival loggers) (Hussey et al. 2015), but also our ability to collect, handle 

and analyze ever larger datasets. The use of SNA has made important contributions to this 

improved understanding by providing a framework to quantify associations. To date, 16 

studies have used SNA with questions typically focused on whether sharks have non-random 

associations (Table 18.2). And if so, what attributes (i.e. sex, size) influence group joining 

decisions? And whether these associations persist temporally and or spatially? Just ten 

species have been used in these studies, however focal species have varied considerably in 

body size (12cm small-spotted catsharks Scyliorhinus canicula to 400cm great white sharks), 

life stage (neonates to adults), reproductive mode (oviparous to viviparous), and habitat types 

(benthic to reef-associated or pelagic). Importantly, the versatility of the SNA approach has 

prompted the use of diverse data collection methods; from direct observations of social 

behaviors [e.g. nose to tail following (Guttridge et al. 2011) or tactile resting (Jacoby et al. 
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2010)], to co-occurrences at provisioning / dive sites (Mourier et al. 2012; Findlay et al. 

2016) and more recently triangulation of acoustic detections (Armansin et al. 2016), use of 

shark-borne proximity receivers (Mourier et al. 2017a) and machine learning algorithms to 

infer social associations from time-series data (Jacoby et al. 2016). Further, the temporal and 

spatial scales used to examine shark social networks have varied considerably. For example, 

the focal follows conducted by Wilson et al. (2015) on ten juvenile lemon sharks in a 

mesocosm, recorded their nearest neighbor every 10s for a 100s sampling period – 

completing their study in 8-days. By contrast, Mourier et al. (2012) completed 190 dives over 

2-years, recording co-occurrences of 133 blacktip reef sharks across seven locations spanning 

10km. To further explore the outcomes and SNA tool kits used by researchers working with 

sharks, the following section considers lab-based and semi-captive studies separately to those 

conducted on free-ranging species.  

 

18.2.1.1 Lab and semi-captive studies  

To date two shark species, the lemon and small-spotted catshark have been used in lab or 

semi-captive experiments. Both species form groups, are abundant and can be easily 

maintained in captivity (Sims 2003; Guttridge et al. 2009). Jacoby et al. (2010, 2012c, 2014) 

conducted a series of experiments, using juvenile and adult small-spotted catsharks. In the 

first study social network structure, temporal stability, and activity profiles were analyzed to 

examine the impact of introduced males on social structure of four captive groups of mature 

female catsharks. Social networks were constructed from symmetric tactile association 

behaviors (i.e. sharks resting in contact with each other) and through examining network 

measures (eigenvector centrality, weighted degree, and average path length; Table 18.1) 

before and during male introduction, results showed that shark groups differed in their 

tendency to aggregate in a unisex environment and in social responses to male presence. In 
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their next experiments, juvenile catsharks hatched in captivity provided greater numbers (N = 

300) and the rare opportunity to manipulate the social environment and habitat of treatment 

tanks to examine preferred associations, repeatability in social behavior, and the role of 

familiarity and habitat type in aggregation formation. Randomizations revealed non-random 

associations, with familiar sharks forming more groups of greater size. Finally, network 

measures (e.g. clustering coefficient and reach) were employed to characterize individual 

repeatability of social traits across habitats to explore social personality types. Keller et al. 

(2017) also investigated the potential role of familiarity in group formation and social 

behavior of juvenile lemon sharks using a remote camera and an automated tracking system 

which allowed the inference of interactions between individual juvenile sharks moving 

around a holding pen. These experiments showed that juvenile lemon sharks preferred social 

interactions with familiar individuals. 

Building on this idea of behavioral phenotypes in shark social behavior, Wilson and 

colleagues used a novel fission-fusion model based on Markov chains to explain juvenile 

lemon shark social dynamics (see Wilson et al. 2015 for details). Individual-level differences 

in sociality (leadership and network measures – e.g. node strength, weighted node 

betweenness and weighted clustering coefficient) were determined for 10 sharks across 8-

days of observations (Wilson et al. 2015). In addition, sharks were fitted with tri-axial 

accelerometers to provide locomotor profiles (e.g. duration spent fast / steady swimming) in a 

rare example of multiple independent approaches to quantifying social behavior. 

Interestingly, lemon sharks did not show consistency in their social network positions but 

preferred to associate with other individuals of similar locomotor profiles. Although a small 

sample size and short study duration likely limited the conclusions that could be drawn from 

these results, the integration of SNA tools with accelerometers holds considerable promise 

for exploring the energetic benefits or costs to grouping.     



 

19 
 

19

 

18.2.1.2 Free-ranging studies 

Patterns of association for wild sharks are difficult to quantify due to the concealing nature of 

their environment (Jacoby et al. 2012b). Taking advantage of shallow water and sheltered 

mangrove inlets, Guttridge et al. (2011) explored the social structure of a population of 

juvenile lemon sharks in Bimini, Bahamas. Across 2-years, the social behavior (e.g. nose-to-

tail following, circling) of 38 sharks was observed from wooden platforms and recorded at 2-

min intervals. Networks were constructed at 10 and 60 min sampling periods (to avoid issues 

with independence) revealing that juvenile lemon sharks showed repeated social interactions, 

with group structure mostly explained by body length, and possibly by preference for 

relatives but not sex. In addition, they also documented differences in leadership tendencies 

of sharks, with lead individuals usually significantly larger than other group members 

(Guttridge et al. 2011).  

Mourier and colleagues (2012, 2017b) conducted an extensive study examining social 

structure of a population of free-ranging blacktip reef sharks. Unique fin markings were used 

to identify individuals and dive surveys were completed at provisioned and non-provisioned 

sites. Their incorporated community analyses (e.g. modularity matrix clustering technique; 

Whitehead 2008) and further use of lagged association rates and egocentric network 

measures (e.g. strength, eigenvector centrality, reach, clustering coefficient and affinity). 

Findings revealed the first evidence for communities in sharks, which were characterized by 

non-random associations, with size and sex driving preferences in some locations. 

Interestingly, when spatial overlap was included in the analysis this explained much of the 

community separation, however this was not exclusive suggesting active social preferences 

probably influenced associative patterns within communities (Mourier et al. 2012). More 

recent exploration of the data quantified impacts of node removal on the network properties 
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and robustness to catch and release fishing. These simulations revealed that the global 

network was resilient and did not fragment, even when 25% of the individuals were removed. 

Catch and release fishing conducted for 30 min after dives provided an interesting 

experimental component to this study, showing that sharks learned to avoid capture with 

decreases in capture probability with increased sighting rates (Mourier et al. 2017b).    

Direct observations were also used by Findlay et al. (2016) to monitor co-occurrences 

of 323 great white sharks in six locations, across six years (2008-2013). This was the first 

attempt to examine the social preferences of a highly migratory pelagic species. Despite 

finding random associations in white shark social networks it highlighted further the 

applicability of SNA to co-occurrence data and the opportunities for generating this type of 

data during ecotourism operations (Gallagher et al. 2015). A similar approach was also used 

to define communities of sicklefin lemon sharks visiting a provisioning site in French 

Polynesia showing that visitation patterns were structured into shark communities based on 

co-occurrences (Clua et al. 2010). 

Similar to the semi-captive experiments by Keller et al. (2017), remote cameras have 

been recently employed to track interactions between free ranging individual adult sicklefin 

lemon sharks under an artificial food stimulus (Brena et al. in review). This technique not 

only allowed recording associations between individuals around a food source but also the 

construction of a social hierarchy of the members of the network without human interference. 

In this case, individual sharks were free to come and interact with the food and other 

individuals. 

More recently a handful of studies have explored the use of SNA to provide insights 

into shark social structure by examining data collected from acoustic tracking. Armansin et 

al. (2016) used spatial data obtained from fine-scale passive acoustic telemetry (VPS) to infer 

association preferences of 15 tagged wobbegong sharks Orectolobus maculatus over a 15-
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month period. Despite being presumed to be solitary, this species showed non-random casual 

and long-term associations. Home-range overlap did not correlate with associations, but 

changes in social cohesion were documented before and during the breeding season. 

Similarly, Haulsee et al. (2016) found that male sandtiger shark Carcharias taurus 

interactions varied seasonally. Using implanted acoustic transceivers they generated 

egocentric networks of con and heterospecific interactions across a year. Networks were only 

visually depicted, however, and neither randomization tests nor exploration of the network 

properties was conducted. 

 Another exciting approach used GMMs (Gaussian mixture models); see section 

18.1.2 for description (Jacoby et al. 2016). Using the number of times individuals co-

occurred and the duration of these co-occurrences at different locations, it was possible to 

make inferences about the leadership patterns within populations of wild grey reef sharks. 

SNA was used to analyze co-occurrence count and duration data, with leadership scores 

based on the proportion of an individual’s degree that was represented by in degree (see 

Jacoby et al. 2016 for details). This novel method for extracting social structure from 

acoustic tracking data would benefit from validation with direct observations. Given the vast 

passive acoustic receiver arrays that are maintained globally and the great diversity of species 

that can be equipped with tracking devices (Hussey et al. 2015) this method holds 

tremendous promise.  

Finally, Mourier et al. (2017a) explored the efficacy of three types of receivers 

(Vemco, VR2W; MiniSUR & Proximity receivers; Sonotronics) differing in detection range 

to generate co-occurrence networks for a benthic shark species. By using SNA, it was 

possible to compare networks across receivers effectively by examining the correlation 

between association indices and whether centrality rank was consistent across methods. 

Results revealed that VR2W receivers were not able to capture co-occurrences at an 
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appropriate spatial scale to infer social associations for a relatively immobile species, the Port 

Jackson shark Heterodontus portusjacksoni. Further, the consistency of individuals’ ranks 

was not significant when comparing the network produced by the receivers with small ranges 

(10 – 60m), with those constructed with the larger range (400m). This study highlights the 

importance of considering the ecology of the study species and defining the scale of 

biologically meaningful interactions between individuals.  

 

18.2.2 Shark movement networks 

Recently, the use of network analysis to study animal spatial ecology has gained momentum 

(Jacoby and Freeman 2016). In this section, we review research that has examined shark 

space use, movement, habitat use and drivers of shark movement using various network 

analysis techniques. It is worth noting that, to date, most studies have used network analysis 

in combination with passive acoustic telemetry to understanding shark movement networks. 

Network analysis enables the exploration of shark movement and space use particularly as 

the visualization tools associated with network packages are so intuitive and versatile. For 

example, Jacoby et al. (2012a) and Lédée et al. (2015) used spring embedding algorithms, 

which sort randomly placed nodes into a desirable layout that satisfies the aesthetics for 

visual presentation (i.e. symmetry, non-overlapping nodes, etc.), to visually compare changes 

in Caribbean reef Carcharhinus perezii and pig-eye sharks space use, respectively. Ontogeny 

was identified as a possible explanation for the observed changes in Caribbean reef shark 

space use, while responses to acute changes such as freshwater incursions were a prominent 

feature of pig-eye space use. Using centrality metrics, researchers can further capture distinct 

aspects of a location’s importance in network space and distinct patch use (Jacoby and 

Freeman 2016; Nicol et al. 2016). Single or multiple metrics might be used to determine the 

most important patches and the differential use of patches in the network depending on the 



 

23 
 

23

research question. Three studies have used descriptive network statistics to examine space 

use of sharks (Jacoby et al. 2012a; Lédée et al. 2015; Stehfest et al. 2015). Degree (Jacoby et 

al. 2012a), eigenvector (Stehfest et al. 2015) and a combination of centrality metrics (i.e. 

node strength, closeness and eigenvector; Table 19.1 Lédée et al. 2015) are among the tools 

used to determine the most important patches and examine their use within networks. Using 

degree, Jacoby et al. (2012a) demonstrated segregation in core patches and movements 

between male and female small-spotted catsharks. Stehfest et al. (2015) used the eigenvector 

to examine the movement network of broadnose sevengill sharks Notorynchus cepedianus 

and found male and female spatial segregation; with each sex using a different core area. 

Finally, by combining node strength, closeness and eigenvector, Lédée et al. (2015) defined 

the core and general use areas of two nearshore shark species and identified the importance of 

movement corridors within core areas for both species.  

Observed individual spatial networks can also be compared with simulated networks 

that have known structural properties (e.g. circular, small-world and scale-free networks – 

Fig. 18.3) to examine individual movement patterns within the landscape. To date, only a 

small number of studies had used this technique (Heupel et al. in prep; Jacoby et al. 

Submitted; Lédée et al. in review). Heupel et al. (in prep) and Lédée et al. (in review) found 

that the movement of silvertip Carcharhinus albimarginatus, grey reef, blacktip reef, 

whitetip Triaenodon obesus, tiger Galeocerdo cuvier and Australian weasel Hemigaleus 

australiensis sharks within the Great Barrier Reef exhibited small-world and scale-free 

properties. These characteristics facilitate dispersal through alternative pathways (small-

world) and enhance resilience to random disturbances (scale-free) (Fortuna et al. 2006; Minor 

and Urban 2008).  

In the context of habitat use, two types of habitat network can be created; unimodal and 

bimodal which we have been touched on briefly in previous sections. Unimodal habitat 
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networks represent the movement of individuals, a population or species between habitat 

types and may be used to examine habitat use. While bimodal habitat networks represent how 

frequently habitat types (i.e. first set of nodes) are used during a specified period (i.e. second 

set of nodes, e.g., monthly, seasonally etc.; Fig 18.2; Borgatti 2012; Opsahl 2013) allowing 

the examination of habitat use. To date, three studies have used network analysis to examine 

habitat use of shark species (Heupel et al. in prep; Papastamatiou et al. 2015; Lea et al. 

2016). Papastamatiou et al. (2015) quantified habitat use of Galapagos sharks Carcharhinus 

galapagensis at an Hawaiian atoll by measuring the degree and betweenness centrality 

metrics in unimodal habitat networks. Deep habitats within the atoll were found to be more 

important for Galapagos sharks than the shallow habitat surrounding the atoll. Lea et al. 

(2016) measured node strength and betweenness, and edge density from unimodal habitat 

networks to examine the habitat use of silvertip, grey reef, blacktip reef, tawny nurse Nebrius 

ferrugineus and sicklefin lemon sharks in the Seychelles. Habitat use varied among species, 

with blacktip reef and lemon sharks using mostly lagoon areas, and grey reef and silvertip 

sharks using mainly coastal reefs and drop-offs. Tawny nurse sharks showed habitat 

segregation by size within the atoll, with small individuals found inside the lagoon and large 

individuals outside (Lea et al. 2016). Finally, Heupel et al. (in prep) used a canonical 

correspondence analysis on monthly bimodal habitat networks (Fig. 18.5) to examine habitat 

partitioning of six inshore shark species, the pig-eye, creek whaler Carcharhinus fitzroyensis, 

blacktip reef, Australian blacktip C. tilstoni, spot-tail and Australian sharpnose 

Rhizoprionodon taylori sharks. Results showed that blacktip reef shark used more complex 

reef habitat while the other species followed a vertical distribution within the bay, with spot-

tail shark using deeper areas, pig-eye and Australian sharpnose sharks using seagrass areas 

and Australian blacktip and creek whaler using shallower habitat. These examples showed 
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that network analysis visualization and analysis techniques can easily be applied to examine 

habitat use. 

 

 

Figure 18.5: Examples of monthly bimodal habitat networks for six inshore species of sharks, 

pig-eye Carcharhinus amboinensis, creek whaler C. fitzroyensis, blacktip reef C. 

melanopterus, Australian blacktip C. tilstoni, spot-tail C. sorrah and Australian sharpnose 

Rhizoprionodon taylori sharks within the Great Barrier Reef, Australia. Modified from 

(Heupel et al. in prep). 

 

Approaches such as Multiple Regression Quadratic Assignment Procedures (MRQAP; 

a variant of the Mantel test with multiple factors) and mixed effect models can help to 

evaluate the influence of biological and environmental factors on movement and habitat 

networks structures by incorporating node attributes (Dekker et al. 2007; Pinter-Wollman et 
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al. 2014) and network metrics into the models, respectively. One study has used MRQAP 

(with the double-Dekker semi-partialing method) to examine factors influencing shark 

movement. Jacoby et al. (2012a) used MRQAP to study the influence of inshore versus 

offshore locations, mean depth and habitat complexity on the movement of female and male 

small-spotted catsharks. Another study combined network analysis with mixed effects models 

to determine the biological factors affecting shark movement between habitat types. Heupel 

et al. (in prep) used mixed effect models on pathway/edge number and frequency to reveal 

that species movements within the same habitat were more prevalent than between habitats 

and species shared the same pathways with high frequency. Sex and body length had no 

effect on their movement.  

 

Insert Table 18.2 

 

18.2.3 Limitations of network analyses 
 
Despite the successful contribution of network analysis to understanding shark ecology, it is 

important to acknowledge the current limitations. For example, as automated and indirect 

methods are being used increasingly to infer sociality rather than measuring it with direct 

observations it is critical to understand and test the assumptions underlying indirect measures. 

Importantly network-based tools are being used in studies of movement ecology (see section 

18.2.2) and statistical methods are already emerging (Jacoby et al. 2016; Spiegel et al. 

2016b). Wilson et al. (2015) used accelerometers to generate locomotor profiles for juvenile 

lemon sharks simultaneously to collecting social data. This is a powerful approach as sharks 

could assort by energetic profiles or energy budgets and it is now possible to use acoustic 

tracking devices that have inbuilt accelerometers and pressure sensors (Shipley et al. 2017). 
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Thus, in theory it would be possible to add some context to social interactions, e.g. during 

resting, fast swimming or steady swimming.  

As alluded to earlier, care must be taken when interpreting results especially when 

small numbers of animals are used in studies. For example, Wilson et al. (2015) found 

evidence for sex segregation in juvenile lemon sharks, however the literature for movement 

ecology, diet and social structure in other locations did not support this finding (e.g. 

Guttridge et al. 2011).  

Experimental studies that validate the indirect methods for assessing social 

interactions and elucidate the mechanisms underpinning associations are particularly 

important. Species like juvenile lemon, Port-Jackson and blacktip reef sharks are accessible 

for direct observation as well as acoustic tracking methods allowing dedicated validation 

studies. As discussed in Mourier et al. (2017a) sharks can socialize in different ways and so 

testing methods on species that exhibit variation in how they socialize (i.e. resting or 

schooling) will ensure inference methods are applicable to a broader number of species.  

Most spatial network studies reviewed here, used passive acoustic monitoring to 

examine shark movement which is well suited to network analysis due to the use of discrete 

moored acoustic receivers as nodes, but that limits interpretations to specific/local areas. For 

large migratory species of sharks, acoustic monitoring studies only provide a local snapshot 

of their movements, and must be combined with other tracking technologies, such as satellite 

tags to provide a more accurate interpretation of their movement. For more localized species 

or those that show considerable site fidelity, careful consideration should be taken when 

choosing what a node represents to allow comparison between individuals or between 

species. 

Network analysis provides a simple way to display complex processes that instantly 

reveals information on spatial and temporal changes in animal space use (Jacoby et al. 2012, 
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Lédée et al. 2015). However, compared to traditional analyses, network analysis does not 

estimate activity space or provide an exact match of individual core use areas measured using 

kernel utilization distribution or Brownian bridge, as shown in Lédée et al. (2015). Therefore, 

while network analysis alone is useful in providing information on animal pattern, combining 

traditional and network analyses might provide a more realistic picture of animal movement 

(Bascompte 2007). Furthermore, caution should be used in selecting metrics to answer 

specific questions and in interpreting results from networks with low numbers of nodes and 

connections; for example, the precision of betweenness and clustering coefficient declines as 

the number of nodes decrease (Silk et al. 2015). Also, missing data (e.g. low acoustic 

receiver coverage in acoustic monitoring studies or unknown habitat use in mark-recapture 

studies) may influence measures of movement between locations or habitat types (Silk et al., 

2015). Thus with limited or missing data the use of network analysis may not adequately 

represent animal movement and traditional analyses may be more suited (Whitehead 2008). 

Networks are a static representation of movement or habitat use ignoring the temporal 

dynamics of movement (Cumming et al. 2010; Stehfest et al. 2015). Temporal dynamics 

need to be taken into consideration when examining the movement of animals, and 

comparison with other methods may be crucial to validating each approach. Two approaches 

might be used to compensate for this aggregation of samples through time (e.g. data gathered 

over months/years represented as a single network); intervals more relevant to the biology 

and ecology of the species studied, or time-ordered networks can be used (see Snijders et al. 

2010; Blonder et al. 2012 for details). For example, networks can be created at different 

temporal scales to incorporate some temporal dynamic of the movement. However, pathways 

(i.e. edge) between acoustic receivers (i.e. nodes) are created regardless of the time taken to 

travel from one receiver to the next, which is misleading if data are missing for long periods 

(e.g., outside of receiver range). Information on maximum speed of a species could be used to 
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create the network. Observed speed can be calculated for each edge and added to attributes. 

Then, using an edge threshold analysis any edge with a value greater than the maximum 

speed of a species could be removed to obtain a more realistic network. 

Approaches such as Multiple Regression Quadratic Assignment Procedures (MRQAP) 

requires detailed information at the node level. Telemetry data often lack information on 

environmental factors where and when the individual was detected. Including environmental 

sensors with tags or receivers could not only record individual ID and time and date of 

detection but also the environmental conditions at the time of detection. There are a number 

of commercially available (acoustic) tags that enable this already (e.g. Vemco’s V16TP). 

Furthermore, a habitat and/or video survey or remotely sensed environmental data at node 

locations could be gathered to obtain more information about an individual’s habitat which 

could then be included in the analyses. Therefore, providing more accurate information about 

movement and environmental factors at the time the individual was present in the area could 

be used to refine conservation and management measures (Hastings et al. 2011). 

Movements in the marine environment are multi-dimensional (i.e. include depth), and 

constrained by spatial features, therefore rarely follow a straight path. Movement between 

two locations or habitat types within a network are shown as a straight path (Tremblay et al. 

2006; Stehfest et al. 2015) and so are unrealistic in most situations. Standardizing path length 

with actual distance between node, constrained by spatial features (e.g. land, coral reefs) or 

use of multilayer networks to incorporate depth information from tags (Mourier et al. in 

review) might provide a better representation of pathes used by individuals. 

 

18.3 Future developments and research directions 
 

18.3.1 Technological challenges and developments 
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This field of network analysis is progressing rapidly with improvements in technology and 

analytical methods. For example, much more detailed inferences about the social networks of 

sharks and rays would be obtained using a combination of mobile receivers (e.g. Vemco 

Mobile Transceiver VMT) recording the tagged individuals encountered within a reduced 

range (Mourier et al. 2017a) and efficient data transfer to fixed listening stations (Holland et 

al. 2009). Alternatively, proximity receivers could communicate with other animal-borne 

device providing the location of the animal as well as remotely transferring the data from the 

proximity logger. This idea is currently under development with Vemco Mobile Transceiver 

(VMT) communicating with Service Argos via Bluetooth to remotely transmit data (Lidgard 

et al. 2014) and offers an exciting opportunity for future research on shark sociality. 

Proximity loggers are likely the most accurate method to infer small scale interactions in 

marine animals but technological drawbacks still weaken their effectiveness.  

 

The use of multi-sensor tagging will provide complementary information that can be 

integrated into more detailed network analyses. Promising technological developments such 

as Encounternet’s adaptation to the marine environment (Tentelier et al. 2016) will benefit 

social interaction studies of sharks. This will requires to develop (1) a set of small tags 

emitting individually coded high frequency signals, receives signals from other tags and its 

proximity, and logs perceived encounters in an on-board memory, (2) a set of base stations, 

fixed at known positions and recording encounters with tags, uploading the logs stored in the 

tags’ memory and transmitting information between tags and the third component of the 

system, and (3) an interface between the user and the system (i.e. a transmitter/receiver node 

mounted on a laptop) collect the data from the base stations (Fig. 18.6A). 

New technology can also help in developing remote monitoring of interactions between 

sharks. Automated underwater vehicles AUVs such as gliders or drifting robots (Fig. 
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18.6B,C) can record interactions at sea if they are fitted with acoustic receivers (Blonder et 

al. 2012; Haulsee et al. 2015, 2016). The recent development of unmanned aerial vehicle 

UAVs (Kiszka et al. 2016; Chapter 5) can provide a means to track shark movements and 

interactions (Fig. 18.6D), although battery life issues limit the time scales for sampling. The 

use of underwater animal-borne cameras (see Chapter 6) can provide data on interactions 

with other individuals, as well as the environmental context of interactions using on-board 

sensors.  This technology will be especially useful in species where individuals can be 

distinguished by photo-identification (e.g. blacktip reef sharks, Fig. 18.6E; Chapter 13) 

providing a novel method for obtaining an egocentric network. Finally, citizen science 

programs at dive tourism sites can help in collecting data on interactions within shark 

aggregations especially for species prone to photo-identification. 

 

Figure 18.6: Emerging technologies for shark interaction monitoring. (A) Encounternet-like 

system can be developed to track shark encounters automatically; (B) Glider Automated 

underwater vehicle AUV able to record tagged sharks at sea and, (C) a surfing robot having 

similar purposes; (D) unmanned automated vehicle UAV able to track shark interactions 
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during stationary fly; and (E) animal-borne cameras attached to a dorsal fin potentially able 

to capture interactions with other known sharks using photo-identification. 

 

18.3.2 Analytical challenges and developments 
 
Network approaches are still relatively new in shark ecology and the field remains 

predominantly focused on determining appropriate sampling methodologies with a view to 

describing movement or social patterns. Many challenges remain. Analytical developments 

will be critical, allowing researchers to make more of the data (and technologies) that are 

currently available. This is in part because some of the logistic limitations - such as the speed 

of remote download from animal to receiver of logged environmental or social data – that 

likely will remain for some time to come.  

To our knowledge, there is no research that considers the depths at which we sample 

or measure the network? Acoustic tags are capable of recording and transmitting pressure 

(and thus depth) readings to local receivers, and so it seems prudent that we begin to explore 

inferred social interactions at different depth ranges, enabling us to better piece together the 

mechanistic drivers of social behaviors in sharks (Jacoby et al. 2012b). Multilayer networks 

will likely play a role in providing new network metrics for networks that operate at multiple 

levels. For example, shark movements can be highly variable within a population (e.g. 

REFERENCES) but movements are often aggregated across the full or subsets of the 

population (e.g. sexes). By considering each shark as a separate layer in a multilayer network 

we can explore the role of individual movements on habitat connectivity and flow using a 

more suitable framework (Mourier et al. in review). Indeed, these approaches should have 

considerable impact on the burgeoning research on individual specialization, personality 

traits and cognitive variation in sharks (Guttridge and Brown 2014; Jacoby et al. 2014; Finger 

et al. 2017) in addition to defining new research directions. One promising avenue might 
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consider the role of social behavior in the development of cooperation and social hunting 

strategies amongst pelagic sharks relying on diffuse prey fields (Lang and Farine 2017). 

 

18.3.3 New ideas and future research questions 
 

18.3.3.1 Social networks 
 
The use of SNA has revealed complexities in the social lives of sharks. However, we have 

only just scratched the surface of what is possible given integration of SNA with other tools. 

For example, in addition to the biotelemetry and biologging techniques discussed above, 

stable isotope analyses (SIA) could be incorporated to add isotopic niche as a node attribute 

within a social network, helping unlock the role of foraging on social behavior of sharks. 

Tissues (e.g. whole blood, plasma, muscle or skin) have different turnover rates and can 

inform variation in resource or habitat use across short and long-time scales (Hussey et al. 

2012). Where and what an animal eats can have important implications for social 

interactions, especially when considered in parallel with body condition or nutrition (Senior 

et al. 2016).  

Further, with improved husbandry and careful selection of the study species it is 

possible to have enough subjects to manipulate and replicate networks. Only through 

controlled experiments will social networks be able to provide definitive causative evidence 

for socially mediated mechanisms underpinning evolutionary processes (Farine and 

Whitehead 2015). There are numerous small-bodied, abundant species that could provide 

tractable models of behavior [e.g. Port Jackson sharks (Mourier et al. 2017a) and gummy 

shark (Frick et al. 2010)]. Juvenile scalloped hammerheads Sphyrna lewini were used 

effectively in a series of electroreception studies in semi-captive arenas (Kajiura and Holland 

2002). This species is probably the most recognized for its social tendencies, forming huge 

schools at seamounts. However, despite ground-breaking studies in the 1980s (Klimley 1987) 
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documenting size and sex segregation within schools and evidence for intraspecific 

communication (e.g. head shakes, corkscrew) no further advances have been made. Whale, 

Rhincodon typus and basking sharks, Cetorhinus maximus both form aggregations (Sims et 

al. 2000; de la Parra Venegas et al. 2011) and can be identified individually via spots or fin 

notches. These species are threatened (IUCN Redlist), and thus studies enhancing our 

understanding of the mechanisms that underpin group formation will help to improve how we 

conserve and manage these species.  

 

18.3.3.2 Spatial networks 
 
Recent advances in telemetry have allowed researchers to monitor long-term social behavior 

and movement patterns of multiple species over vast areas (Espinoza et al. 2015). Animal 

movement, and space and habitat use are often explained only using biological and 

environmental factors, rarely including individual variation (Nathan et al. 2008). Behavior, 

fitness and social position within the population can influence individual movement, and 

generate a more comprehensive picture on how populations may respond to changes to their 

environment and what this means for their conservation (Spiegel et al. 2017; Snijders et al. 

2017). Therefore, combining social and spatial network analysis using movement multilayer 

networks (Mourier et al. in review) for example, can provide a better understanding of spatial 

patterns in shark ecology. 

Lastly, many studies often focus on a single species of shark and/or areas without 

considering interactions between species or the threat status of the species. The affordability 

of the tracking technologies and easier online access to the data greatly facilitate the 

establishment of collaborative effort over larger area (Hussey et al. 2015). The challenge here 

is how best to standardize the design of the movement networks across the different study 

areas (i.e. node arrangement might be different between areas) for useful comparisons. One 
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possible solution is to create a grid that covers all the areas of interest (Dilts et al. 2016) with 

each grid representing a node within the movement network. Another possible solution, 

would be to create networks for each area of interest separately and compare standardized 

network properties (e.g. degree correlations…etc.). 

 

18.3.4 Applications for management and conservation 
 
Network analysis provides a toolbox of methods that can be used to assess and model risks- 

such as habitat loss and fragmentation, climate change and fisheries exposure - and help 

design and evaluate the effectiveness of management, thus guiding conservation practices 

(Cumming et al. 2010; Galpern et al. 2011; Borrett et al. 2014).  

Using centrality metrics, the importance of each patch (node) or corridor (edge) in 

maintaining or contributing to landscape connectivity can be determined to help prioritize 

areas for management and conservation (Rayfield et al. 2016; Nicol et al. 2016). For 

example, species habitat fragmentation can be identified by looking at communities using 

metrics such as component and cluster (Table 18.1). Knowing how habitats are connected or 

fragmented can help inform management plans to protect clusters of habitat, stepping stones 

and corridors (Bodin et al. 2006; Thomas et al. 2014). Degree and cut-node removal analyses 

can be used to examine population source and sink to restore populations by identifying 

potential corridors (Treml et al. 2008). Finally, seascape connectivity can be measured by 

determining habitat availability and dispersal probabilities between habitat patches to help 

design or evaluate effectiveness of marine protected area networks (Espinoza et al. 2015; 

Engelhard et al. 2017). Using patch and edge removal and/or edge thresholding analyses, the 

role these patches and corridors have in maintaining connectivity in the landscape can be 

examined under different patch- and edge-loss scenarios. The advantage of these methods is 

that researchers can simulate the destruction of patches or corridors and rank them by their 
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contributions to landscape/seascape connectivity, thereby allowing managers to make 

decisions based on which patches and corridors are most critical to connectivity (Kurvers et 

al. 2014), not just for one species but multiple species within the same landscape. 

Alternatively, network analysis techniques can be used to assess management and 

conservation plans. For example, network analysis can inform managers about fishing 

activity pattern. Martin et al. (2017) used reservoir (i.e. node) removal analysis to examine 

the differences in participation among anglers within a regional fishery and assess resilience 

of the regional fishery to disturbance (e.g. disease, invasive species etc.). Network analysis 

can also evaluate the efficacy of species protection effort across borders. Treml et al. (2015) 

compared species dispersal network with institutional networks across multiple countries 

within the Coral Triangle to determine if both fit in an effort to assist management efforts in 

prioritizing and strengthening species protection. Finally, network theory can be applied to 

social science to better understand the spread of information among fishermen and better 

manage resources. Using these approaches, Barnes et al. (2016) found that enhanced 

communication channels across segregated fisher groups could have prevented the incidental 

catch of over 46,000 sharks between 2008 and 2012 in a single commercial fishery. 

Therefore, network analysis is advantageous for developing, guiding and assessing 

management measures; it allows for assessment of species movement and behavior, for 

prediction about consequences of anthropogenic and natural disturbances by testing and 

experimenting on a variety of species at different scales and under multiple scenarios; and it 

allows for assessment of management and conservation plans across borders. 

18.4 Conclusion 
 

Network analyses are becoming increasingly used in shark behavioral ecology. Here we 

present a broad overview of the utility and challenges of applying network analyses and 

describe the early progress this field has had in informing shark behavior. Developments in 
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SNA across other taxonomic groups (particularly in terrestrial systems) continue to help 

guide and inform the tools available for underwater social networks in conjunction with 

advances in tracking technologies. At present, the number of studies and shark species 

adopting these approaches remains relatively small, however we hope that this chapter will 

help stimulate ideas and research directions that continue to push for developments in shark 

network ecology. Importantly, new social or spatial network studies on different species 

and/or systems will certainly contribute to improving our understanding of the main drivers 

affecting the evolution of social behavior in sharks and rays as well as their spatial ecology. 

This in turn will provide us with much-needed information to take a more informed and 

location-specific approach to their conservation. We are excited by the burgeoning 

developments in this area, by how these developments might guide the design of new 

technologies and ultimately by the impact this holistic approach might eventually have on 

shark conservation. 
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