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Probing deformed commutators with micro- and nano-oscillators
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A minimal observable length is a common feature of theories that aim to merge quan-
tum physics and gravity. Quantum mechanically, this concept is associated to a minimal
uncertainty in position measurements, which is encoded in deformed commutation rela-
tions. Once applied in the Heisenberg dynamics, they give effects potentially detectable
in low energy experiments. For instance, an isolated harmonic oscillator becomes in-

trinsically nonlinear and its dynamics shows a dependence of the oscillation frequency
on the amplitude, as well as the appearance of higher harmonics. Here we analyze the
free decay of micro and nano-oscillators, spanning a wide range of masses, and we place
upper limits to the parameters quantifying the commutator deformation.
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1. Introduction and model

General relativity and quantum physics are expected to merge at the Planck scale,

defined by distances of the order of LP = 1.6 × 10−35m and/or extremely high

energies of the order of EP = 1.2× 1019GeV. Since the study of particles collisions

around the Planck energy is well beyond the possibilities of current and foreseeable

accelerators, high-energy astronomical events (e.g. γ-ray bursts) have been consid-

ered as the privileged natural system to unveil quantum gravitational effects. This

common view has been enriched in the last years thanks to a number of studies

proposing that signatures of the Planck-scale physics could manifest also at low

energies1−5. It is indeed widely accepted that a re-formulation of quantum the-

ory should be required to incorporate gravitational effects at the Planck scale. In

particular, gravity induces an additional quantum uncertainty, which is typically
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encoded into deformed commutation relations between position q and momentum

p6− 8:

[q, p] = i�

(
1 + β0

(
LP p

�

)2
)

. (1)

In this framework, the dynamics of a harmonic oscillator becomes intrinsically

nonlinear and shows an unusual dependence of the oscillation frequency on the

amplitude. Here we describe an experiment conceived to test this hypothesis, and

set limits to the deformation parameter β0
9. Our work is based on two assumptions.

First, we suppose that Eq. (1) holds for the operator q describing a measured

position in a macroscopic harmonic oscillator, and its conjugate momentum p. In

terms of the usually normalized operators, Q = q/
√
�/(mω0) and P = p/

√
�mω0,

defined for for an oscillator with mass m and resonance angular frequency ω0, the

commutation relations are therefore

[Q,P ] = i
(
1 + βP 2

)
, (2)

where β = β0
(
�mω0/m

2
Pc

2
)
(mP = EP/c

2 is the Planck mass) is a further dimen-

sionless parameter that we assume to be small (β � 1). Such assumption will be

shown to be consistent with the experimental results. The second hypothesis is the

validity of the Heisenberg equations for the temporal evolution of an operator Ô,

i.e. dÔ/dt = [Ô,H ]/i�, where H is the Hamiltonian H = �ω0

2

(
Q2 + P 2

)
.

In particular, the standard Heisenberg evolution equations are applied to the

operators P and Q. The solution is

Q = Q0

[
sin(ω̃t) +

β

8
Q2

0 sin(3 ω̃t)

]
, (3)

where

ω̃ =

(
1 +

β

2
Q2

0

)
ω0 . (4)

It is valid at the first order in βQ2
0, and implies two relevant effects with respect to

the harmonic oscillator: a) the appearance of the third harmonic and, less obvious,

b) a quadratic dependence of the frequency shift on the oscillation amplitude. In

case of small damping with relaxation time τ , the dynamics is described by a mod-

ified version of Eq. (3) with the replacements ω̃t→ Φ(t), implying ω̃(t) = dΦ/dt,

and Q0 → Q0 exp(−t/τ).

2. Experiment

We have exploited three kinds of oscillators, spanning a wide range of masses around

the Planck massmP = 22μg. The measurements are performed by exciting an oscil-

lation mode and monitoring a possible dependence of the oscillation frequency and

of the third harmonic distortion on the oscillation amplitude, during the free decay.

The first device is a “double paddle oscillator” (DPO)10 made from a 300μm thick
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silicon plate. Thanks to its shape, for two particular balanced oscillation modes,

the oscillator is supported by the outer frame with negligible energy dissipation

and it can therefore be considered as isolated from the background11. The sam-

ple is kept in a temperature stabilized vacuum chamber and vibrations are excited

and detected capacitively. We have monitored the mode oscillating at frequency

of 5636Hz with a mechanical quality factor of 1.18× 105 (at room temperature)

and mass m = 0.033 g. For the measurements at intermediate mass we have used

Fig. 1. a) Example of the decaying oscillation of the wheel oscillator, down shifted to ∼200 Hz
by a lock-in amplifier, fitted with the theoretical model including the possibility of a parabolic
dependence of the oscillation frequency on the amplitude. b) Simultaneous detection of the first
and third harmonic in the decay of the DPO oscillator.

a silicon wheel oscillator, made on the 70μm thick device layer of a SOI wafer

and composed of a central disk kept by structured beams12. The disk motion is

balanced by four counterweights on the beams joints that so become nodal points

(Fig. 1b)13. On the surface of the central disk, a multilayer SiO2/Ta2O5 dielectric

coating forms an high reflectivity mirror. The design strategy allows to obtain a

balanced oscillating mode (its resonance frequency is 141 797Hz), with a planar

motion of the central mass (significantly reducing the contribution of the optical

coating to the structural dissipation) and a strong isolation from the frame. The

oscillator is mechanically excited using a piezoelectric ceramic glued on the sample

mount. The surface of the core of the device works as end mirror in one arm of a

stabilized Michelson interferometer, that allows to measure its displacement. The

measurements are performed at the temperature of 4.3K, where the mechanical

quality factor surpasses 106 and thermal noise is strongly reduced. The meaning-

ful mass is m = 20μg. Finally, the lighter oscillators is a L = 0.5mm side, 30 nm

thick, square membrane of stoichiometric silicon nitride, grown on a 5mm× 5mm,

200μm thick silicon substrate14. The physical mass of the membrane is 20 ng. We

have performed the measurements in a cryostat at the temperature of 65K and

pressure of 10−4Pa, where the oscillation frequency is 747 kHz and the quality fac-

tor is 8.6× 105. Excitation and readout are performed as in the experiment with

the wheel oscillators.
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The frequency shift of the oscillation as function of the amplitude is obtained

both by directly fitting the exponentially decaying oscillation with the expected

expression, in some cases after a preliminary frequency down-conversion performed

with a lock-in amplifier (see Fig. 1a for an example), and by completely frequency

down-converting the oscillating signal (down to dc) with hardware and software

lock-in amplifiers, then calculating the frequency as first derivative of the residual

phase. Similarly, the third harmonic content is deduced both from the fit of time

series, and by simultaneous recording of first an third harmonic of the signal with

two separated lock-in amplifiers (Fig. 1b). For both indicators, the two methods

give comparable results.

Table 1. Maximum relative frequency shifts measured for different os-
cillators, and corresponding oscillation amplitudes.

Mass Frequency Max. ampl. 1/Q Max. Δω/ω0

(kg) (Hz) (nm)

3.3× 10−5 5.64× 103 600 8× 10−6 4× 10−7

2× 10−8 1.42× 105 55 1× 10−6 6× 10−8

2× 10−11 7.47× 105 47 1.2× 10−6 3× 10−6

We remark that the frequency spread of the oscillating signal is typically lower

than the linewidth, as shown in Table 1. We note that Δω/ω0 � 1 is required in

order for the model to be valid (indeed, it implies βQ2
0 � 1).

In all cases, for large enough excitation, the frequency shows indeed a parabolic

dependence on the oscillation amplitude. This feature can be attributed to struc-

tural nonlinearity which is intrinsic in all the oscillators. The interesting upper

limits are obtained by summing the measured parabolic coefficient and its 95% un-

certainty, extracting the corresponding β from Eq. (4), and finally calculating β0.

A similar procedure is used for the third harmonic contents. A detailed modelling

of the structural nonlinearity could allow to subtract its effects from the data, and

thus place even stronger limits to the residual nonlinearity and actually to β0. How-

ever, a quantitative prediction of such effects is extremely challenging, as it strongly

depends also on the geometry of specific oscillator. Therefore, the above results can

be considered as the state of the art measurements in such systems.

3. Results and discussion

Our results are summarized in Fig. 2, where we also report some previously existing

limits to the deformation parameter β0. We have achieved a significant improve-

ment, by many orders of magnitude, working on different oscillators and analyzing

different physical observables. In our experiments we have considered a wide range

of masses around the Planck mass. We believe our analysis to be particularly mean-

ingful in this regime, as strong deviations from classical Newtonian mechanics arise

as soon as the momentum is of the order of mP c. This is not only true for plane-

tary motion, but even for Kg-scale mechanical oscillators. In these cases, the lack

 T
he

 F
ou

rt
ee

nt
h 

M
ar

ce
l G

ro
ss

m
an

n 
M

ee
tin

g 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 C

O
L

L
E

G
E

 L
O

N
D

O
N

 (
U

C
L

) 
on

 0
1/

04
/1

9.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



September 4, 2017 11:19 ws-procs961x669 MG-14 – Proceedings (Part D) D464 page 3580

3580

Fig. 2. The parameter β0 quantifies the deformation to the standard commutator between po-
sition and momentum, or the scale

√
β0LP below which new physics could come into play. Full

symbols report its upper limits obtained in this work, as a function of the mass. Blue dots: from
the amplitude-dependence of the oscillation frequency; red stars: from the third harmonic distor-
tion. Dotted lines are guides for the eyes. Dashed lines reports some previously estimated upper
limits, obtained in mass ranges outside this graph. At lower mass, in green: from high resolution
spectroscopy on the hydrogen atom, considering the ground state Lamb shift (upper line)2 and the
1S-2S level difference (lower line)1. At higher mass, in magenta: from the AURIGA detector4,5,
in yellow: from the lack of violation of the equivalence principle15.

of observable deviations would imply the need to revise the rules connecting quan-

tum to classical dynamics, or it could indicate a possible mass dependence of the

deformation parameter. In this context, our experimental measurements should not

be simply intended as a check of possible deformations of quantum mechanics, but

as a test of a “composite” hypothesis, involving also the form of the classical limit

corresponding to the modified quantum rules. We remark indeed that the present

approach involves just the expectation values of position and momentum operators.

Any theory predicting the modifications of such quantities would unavoidably imply

also deviations from the classical dynamics. A more subtle route to the search of

quantum gravitational effects could instead focus on specific quantum features of a

system. For instance, quantum fluctuations of the spacetime metric and/or space-

time discreteness are expected to significantly affect the evolution of higher order

momenta. On the other hand, it cannot be excluded that more refined models could

include some protection against trivial (and potentially catastrophic) modifications

of classical dynamics even for the simple expectation values. For instance, such

modifications could be destroyed by the interaction with the thermal bath, i.e., by
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the decoherence of the wavefunction. This motivates future experiments, based on

quantum macroscopic oscillators, i.e., by oscillators previously cooled down to an

average thermal occupation number below unity.
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