
Using Hadoop MapReduce for Parallel Genetic
Algorithms: A Comparison of the Global,

Grid and Island Models

Filomena Ferrucci fferrucci@unisa.it
Department of Computer Science, University of Salerno, Italy

Pasquale Salza psalza@unisa.it
Department of Computer Science, University of Salerno, Italy

Federica Sarro f.sarro@ucl.ac.uk
Department of Computer Science, University College London,
United Kingdom

doi:10.1162/EVCO_a_00213

Abstract
The need to improve the scalability of Genetic Algorithms (GAs) has motivated the
research on Parallel Genetic Algorithms (PGAs), and different technologies and ap-
proaches have been used. Hadoop MapReduce represents one of the most mature
technologies to develop parallel algorithms. Based on the fact that parallel algorithms
introduce communication overhead, the aim of the present work is to understand if,
and possibly when, the parallel GAs solutions using Hadoop MapReduce show better
performance than sequential versions in terms of execution time. Moreover, we are in-
terested in understanding which PGA model can be most effective among the global,
grid, and island models. We empirically assessed the performance of these three paral-
lel models with respect to a sequential GA on a software engineering problem, evalu-
ating the execution time and the achieved speedup. We also analysed the behaviour of
the parallel models in relation to the overhead produced by the use of Hadoop MapRe-
duce and the GAs’ computational effort, which gives a more machine-independent
measure of these algorithms. We exploited three problem instances to differentiate the
computation load and three cluster configurations based on 2, 4, and 8 parallel nodes.
Moreover, we estimated the costs of the execution of the experimentation on a poten-
tial cloud infrastructure, based on the pricing of the major commercial cloud providers.
The empirical study revealed that the use of PGA based on the island model outper-
forms the other parallel models and the sequential GA for all the considered instances
and clusters. Using 2, 4, and 8 nodes, the island model achieves an average speedup
over the three datasets of 1.8, 3.4, and 7.0 times, respectively. Hadoop MapReduce has
a set of different constraints that need to be considered during the design and the im-
plementation of parallel algorithms. The overhead of data store (i.e., HDFS) accesses,
communication, and latency requires solutions that reduce data store operations. For
this reason, the island model is more suitable for PGAs than the global and grid model,
also in terms of costs when executed on a commercial cloud provider.

Keywords
Genetic algorithms, parallel genetic algorithms, Hadoop MapReduce, global model,
grid model, island model, fault prediction.

Manuscript received: 7 November 2016; revised: 1 May 2017; accepted: 23 May 2017.
© Massachusetts Institute of Technology Evolutionary Computation xx(x): 1–33

evco_a_00213https: doi.org/
2017 by

mailto:fferrucci@unisa.it
mailto:psalza@unisa.it
mailto:f.sarro@ucl.ac.uk

F. Ferrucci, P. Salza, and F. Sarro

1 Introduction

Genetic Algorithms (GAs) and other search-based metaheuristics have been proven to
be effective in addressing several problems in many fields. Nevertheless, it has been
highlighted that attractive solutions in the laboratory may not find a valid application
in practice due to scalability issues. The aim of providing highly scalable GA-based so-
lutions together with the reduced costs of parallel architectures motivate the research
on Parallel Genetic Algorithms (PGAs) (Luque and Alba, 2011; Yoo et al., 2011). Dif-
ferent approaches and technologies have been investigated and employed, ranging
from multi-core systems on CPUs to many-core systems on GPUs and cloud technolo-
gies (Zheng et al., 2011; Yoo et al., 2011; Sherry et al., 2012; Salza et al., 2016a).

Hadoop MapReduce represents one of the most mature technologies to develop par-
allel algorithms since it provides a ready-to-use distributed infrastructure that is scal-
able, reliable, and fault-tolerant (Hashem et al., 2016). It is capable of rapidly processing
vast amounts of data in parallel on large clusters of computing nodes. All these factors
have made Hadoop very popular both in industry and academia. From an industry
perspective, Hadoop has been widely adopted as an instrument for big data process-
ing, such as data mining, data analytics, and search engine (Polato et al., 2014). Further-
more, Hadoop has been positively adopted from the research community (Polato et al.,
2014; Hashem et al., 2016). Motivated by the success of Hadoop MapReduce in many
fields, several researchers have experimented in the last years its use to parallelise GAs.
Nevertheless, it is well known that parallel solutions introduce communication over-
head that could make Hadoop be worthless in scaling GAs. One might wonder if, and
possibly when, Hadoop shows better performance than sequential versions in terms of
execution time.

Moreover, a GA developer is interested in understanding which GA parallel model
can be more effective. Indeed, GAs can be parallelised in different ways (Luque and
Alba, 2011). For instance, their population-based characteristics allow evaluating in a
parallel way the fitness value of each individual, giving rise to a PGA called “global
parallelisation model” or “master-slave model.” Parallelism can also be exploited to
perform genetic operators and thus to generate the next set of solutions. This model
is named “island model,” also called “distributed model” or “coarse-grained parallel
model.” Furthermore, these two strategies can be combined, giving rise to a third form
of parallelisation called “grid model,” also known as “cellular model” or “fine-grained
parallel model.” To the best of our knowledge, in the literature there does not exist
a study providing an analysis and a comparison of the three models using Hadoop
MapReduce. The main aim of this work is to fill this gap.

To this end, we carried out an empirical study by applying the three parallel models
to a challenging software engineering problem that has been already addressed with a
sequential GA, that is, Sequential Genetic Algorithm (SGA). In particular, we used GAs
to search for a suitable configuration of Support Vector Machines (SVMs) to be used for
inter-release fault prediction. Indeed, it has been shown that the performance of SVMs,
and more generally of machine learning approaches, heavily depends on the selection
of a suitable configuration for different software engineering prediction tasks (Corazza
et al., 2010, 2013; Sarro et al., 2012; Song et al., 2013; Tantithamthavorn et al., 2016; Fu
et al., 2016). Since a complete search of all possible combinations of parameters values
may not be feasible due to the large search space, the use of GAs has been successfully
exploited to automatically configure SVMs for software fault prediction (Di Martino
et al., 2011; Sarro et al., 2012; Harman et al., 2014); however, the combined use of these
techniques may affect the scalability of the approach when dealing with large software

2 Evolutionary Computation Volume xx, Number x

evco_a_00213https: doi.org/
2017 by

Using Hadoop MapReduce for PGAs

projects. This motivated us to investigate the use of parallel GAss to configure SVM for
software fault prediction. The choice of the fault prediction problem as a benchmark
problem was also motivated by the fact that real-world problem instances of various
sizes are publicly available (Menzies et al., 2016), thus allowing us to experiment PGAs
with different computational loads.

We compared the three PGA solutions and the sequential version (i.e., the SGA) to
understand their effectiveness in terms of execution time and speedup, and we stud-
ied the behaviour of the three parallel models in relation to the overhead produced
using Hadoop MapReduce. To give a more machine-independent measure of the algo-
rithms, we also counted the absolute number of fitness evaluations as a measure of the
computational effort. The empirical study was carried out executing the experiments
simultaneously on a cluster of 150 Hadoop nodes. The experiments were conducted by
varying the size of the problems, which consisted of exploiting three datasets with dif-
ferent sizes and by varying the cluster sizes. We executed a total of 30 runs for every
single experiment of 300 generations each, with a total running time of about 120 days.
Finally, we provide the estimation of costs for the major commercial cloud provider
when executing the same GAs of our experiments. The study allowed us to identify the
best model and highlighted some critical aspects.

The rest of the article is organised as follows. In Section 2, we first describe Hadoop
MapReduce platform and the three models of GAs parallelisation. Section 3 presents
the approach we employed to parallelise GAs by exploiting the Hadoop MapReduce
platform. Sections 4 and 5 report, respectively, the design and the results of the empirical
study we carried out to assess the effectiveness of the PGAs. Section 6 describes related
work, while Section 7 contains some final remarks and future work.

2 Background

In this section, we give some background about Hadoop MapReduce and the strategies
proposed in the literature to parallelise GAs.

2.1 Hadoop MapReduce

MapReduce is a programming paradigm whose origins lie in old functional program-
ming. It was adapted by Google (Dean and Ghemawat, 2008) as a system for building
search indexes, distributed computing, and large-scale databases. It was originally writ-
ten in C++ language and was made as a framework, in order to simplify the develop-
ment of its applications. It is expressed in terms of two distinct functions, namely “map”
and “reduce,” which are combined in a divide-and-conquer way where the map func-
tion is responsible for handling the parallelisation, while the reduce collects and merges
the results. In particular, a master node splits the initial input into several pieces, each
one identified by a unique key and distributes them via the map function to several
slave nodes (i.e., mappers), which work in parallel and independently from each other
performing the same task on a different piece of input. As soon as each mapper finishes
its job, the output is identified and collected via the reducer function. Each mapper
produces a set of intermediate key/value pairs, which are exploited by one or more re-
ducers to group together all the intermediate values associated with the same key and
to compute the list of output results.

Hadoop is one of the most famous products of the Apache Software Foundation
family. It was created by Doug Cutting and has its origins in Apache Nuts, an open
source web search engine. In January 2008, Hadoop was made a top-level project at
Apache Software Foundation, attracting to itself a large active community, including

Evolutionary Computation Volume xx, Number x 3

evco_a_00213https: doi.org/
2017 by

F. Ferrucci, P. Salza, and F. Sarro

Yahoo!, Facebook, and The New York Times. At present, Hadoop is a solid and valid
presence in the world of cloud computing. Hadoop includes an implementation of
the MapReduce paradigm and the Hadoop Distributed File System (HDFS), which
can be run on large clusters of machines. Currently, Apache introduced a new version
of MapReduce (MapReduce 2.0), moving the Hadoop platform on a bigger one also
known as Yet Another Resource Negotiator (YARN). Not only is it possible to execute
distributed MapReduce applications, but YARN is also comprehensive of a large fam-
ily of other Apache distributed products. Hadoop provides some interesting features:
scalability, reliability, and fault-tolerance of computation processes and storage. These
characteristics are indispensable when the aim is to deploy an application to a cloud
environment. Moreover, Hadoop MapReduce is well supported to work not only on
private clusters but also on a cloud platform (e.g., Amazon Elastic Compute Cloud)
and thus is an ideal candidate for high scalable PGAs.

Hadoop MapReduce exploits a distributed file system (an open source implemen-
tation of the Google File System), that is, HDFS, to store data as well as intermediate
results for MapReduce jobs. The Hadoop MapReduce interpretation of the Distributed
File System was conceived to increase large-data availability and fault-tolerance by
spreading copies of the data throughout the cluster nodes, to achieve both lower costs
(for hardware and RAID disks) and lower data transfer latency between the nodes
themselves.

A Hadoop cluster is allowed to accept MapReduce executions, that is, “jobs,” in
a batch fashion. Usually, a job is demanded from a master node, which provides both
the data and configuration for the execution on the cluster. A job is intended to process
input data and produce output data exploiting HDFS and is composed of the following
main phases, which a developer is expected to define as an extension for specific Java
classes:

Split: the input data is usually in the form of one or more files stored in the HDFS. The
splits of key/value pairs called “records” are distributed to the mappers available on
the cluster. The function, where k1 and v1 indicate data types, is described as:

input → list (k1, v1)S

Map: this phase is distributed on different nodes. For each input split, it produces a list
of records:

(k1, v1)S → list (k2, v2)M
Partition: it is in charge of establishing to which reduce node sending the map output
records:

k2 → reduceri

Reduce: it processes the input for each group of records with the same key and stores
the output into the HDFS:

(k2, list (v2))M → list (k3, v3)R

2.2 Three Parallel Models for Genetic Algorithms

The following models have been proposed in the literature (Luque and Alba, 2011) to
parallelise the execution of GAs:

• “global model,” also called “master-slave model”;

• “grid model,” also called “cellular model” or “fine-grained parallel model”;

4 Evolutionary Computation Volume xx, Number x

evco_a_00213https: doi.org/
2017 by

Using Hadoop MapReduce for PGAs

• “island model” also called “distributed model” or “coarse-grained parallel
model.”

In the global model, there are two primary roles: a master and some slaves. The
former is responsible for managing the population (i.e., applying genetic operators) and
assigning the individuals to the slaves. The slaves are in charge of evaluating the fitness
of each individual. This model does not require any changes to the SGA since the fitness
computation for each individual is independent and thus can be achieved in parallel.

The grid model applies the genetic operators only to portions of the global popu-
lation (i.e., “neighbourhoods”), obtained by assigning each individual to a single node
and by performing evolutionary operations also involving some neighbours of a solu-
tion. The effect is an improvement of the diversity during the evolutions, further reduc-
ing the probability to converge into a local optimum. The drawback is requiring higher
network traffic, due to the frequent communications among the nodes.

In the island model, the initial population is split into several groups and on each
of them, typically referred to as “islands,” the GA proceeds independently and period-
ically exchanges information between islands by “migrating” some individuals from
one island to another. The main advantages of this model are that different subpopula-
tions can explore different parts of the search space and migrating individuals among
islands enhances the diversity of the chromosomes, thus reducing the probability to
converge into a local optimum.

These models show that the parallelisation of GAs is straightforward from a con-
ceptual point of view. However, setting up an actual implementation may be not so
trivial due to some common development difficulties that a programmer must tackle
in a distributed environment. Probably these limitations have slowed down the use of
PGAs for software related tasks.

3 The Parallel GAs Based on MapReduce

To realise the PGAs explained in Section 2, we exploited the elephant56 framework (Fer-
rucci et al., 2015; Salza et al., 2016b), which is an open source project supporting the
development and execution of PGAs.1

Hadoop distributes software applications (“jobs”) on a cluster of nodes by using
the Java Virtual Machine (JVM) containers for the computation and the HDFS for the
passage of data. A Hadoop cluster is usually composed of one master node (Resource-
Manager for the Hadoop terminology), which manages the work of the other computa-
tion slave nodes (NodeManagers). Hadoop MapReduce is strictly related to the HDFS,
which provides scalable and reliable data storage, by replication of data blocks all over
the machines involved in the cluster. The file system is managed by the NameNode
component controlling the slave DataNodes.

In the following, we first explain how we implemented the sequential version (i.e.,
SGA) and then how we mapped the MapReduce elements to the PGA models. The main
challenge during the design phase was to limit the communication and synchronisation
overhead of parallel tasks. We had to choose where to put the synchronisation barriers,
namely the points in which the algorithm needs to wait for the completion of all parallel
tasks before continuing with the computation. Generally speaking, “Amdhal’s Law”
states that the speedup of a parallel program is limited by the sequential portion of the
program, which means it is important to reduce as well as possible the overhead to gain

1elephant56 is freely available at https://github.com/pasqualesalza/elephant56

Evolutionary Computation Volume xx, Number x 5

evco_a_00213https: doi.org/
2017 by

F. Ferrucci, P. Salza, and F. Sarro

execution time by parallelising. The positions of the synchronisation barriers are deeply
bonded to the implemented models and thus we had to take them into consideration
case-by-case to realise each of the following three parallel model adaptations. Moreover,
we supply further details of implementation that we consider essential to understand
the rest of the work.

3.1 Sequential Genetic Algorithm (SGA)

There are several possible versions of GAs execution flows. The parallel adaptations
are built on the base of the following SGA implementation, which is composed of
a sequence of genetic operators repeated generation by generation, as described in
Algorithm 1.

The execution flow starts with an initial population initialised with the Initializa-
tion function (1), which can be either a random function or a specifically defined one
based on other criteria. Then, at the first generation, the genetic operator applied is the
FitnessEvaluation (3–5), which evaluates and assigns a fitness value to each individ-
ual, letting them be comparable. The Elitism operator (5–6) allows to add some indi-
viduals directly to the next generation (17). The ParentsSelection operator (8) selects
the couples of parents for the Crossover phase based on their the fitness values. The
mixing of parent couples produces the offspring population (9–11), which is submitted
to the Mutation phase (12–13) in which the genes may be altered. The SurvivalSe-
lection applies a selection between parents and offspring individuals (16) to select the
individuals that will take part of the next generations.

It is worth noting that in each generation a second FitnessEvaluation is performed
for the offspring individuals (14–15) in order to allow the SurvivalSelection opera-
tion. From the second generation on, the individuals in the population will be already
evaluated during the previous generations, thus requiring only the FitnessEvaluation
of the offspring (14–15).

The PGAs described in the following differ from SGA in the way they parallelise the
above operators and by adding another new genetic operator in the case of the island
model (i.e., the “migration”).

6 Evolutionary Computation Volume xx, Number x

evco_a_00213https: doi.org/
2017 by

Using Hadoop MapReduce for PGAs

Figure 1: The flow of Hadoop MapReduce implementation for PGAglobal.

3.2 PGA Based on the Global Model

The PGA we implemented for the global model on MapReduce (i.e., PGAglobal) has the
same behaviour as the sequential version, but it resorts to parallelisation for the fitness
evaluation. Figure 1 shows the flow of the model. The master node, also referred to
as Driver, initialises a random population and writes it into the HDFS. During each
generation, it spreads the individuals to the slave nodes in the cluster when:

1. the initial population is evaluated for the first time;

2. the generated offspring needs to be evaluated in order to apply the SurvivalS-
election to both parents and children.

Following the definition of Algorithm 1, during the first generation two jobs are
required for the parents and offspring populations evaluation. From the second gener-
ation on, a job is required for the offspring population only (see Section 3.1 for more
details). Thus, the total number of jobs required is equal to the number of generations
plus one. The Driver also executes sequentially the other genetic operators on the entire
population that has been evaluated.

In more detail, the slave nodes in the cluster perform only the fitness evaluation
operator. For all three models, the mappers receive the records in the form: (individual,
destination). The “destination” field is used only by the other models and it will be
mentioned later. We deliberately disabled the reduce phase because there is no need
to move individuals between nodes. After the map phase, the master reads back the
individual and continues with the other remaining genetic operators, considering the
whole current population.

3.3 PGA Based on the Grid Model

The PGA we implemented for the grid model on MapReduce (i.e., PGAgrid) computes
the genetic operators only to portions of the population called “neighbourhoods.” In the
grid model, these portions are chosen randomly during the initialisation (see Figure 2)
and the number of jobs is the same as the number of generations. It is worth noting that
the neighbourhoods never share any information with each other. Therefore, the off-
spring produced during the previous generation will stay in the same neighbourhood
also in the next generation.

The Driver has the task of randomly generating a sequence of neighbourhood des-
tinations for the individuals in the current population. These destinations are stored

Evolutionary Computation Volume xx, Number x 7

evco_a_00213https: doi.org/
2017 by

F. Ferrucci, P. Salza, and F. Sarro

Figure 2: The flow of Hadoop MapReduce implementation for PGAgrid.

Figure 3: The flow of Hadoop MapReduce implementation for PGAisland.

into the record as the value fields so the destinations are known a priori. We exploited
the parallelisation in two phases:

1. the mappers initialise a random population during the first generation and com-
pute the fitness evaluation;

2. the partitioner sends the individuals to the correspondent neighbourhood (i.e.,
the reducer). The reducers compute the other genetic operators and write the
individuals in the HDFS.

In this case, we decided to fix the number of neighbourhoods to the number of
mappers, and so the number of reducers, to study the behaviour of the model regarding
the parallelisation through our empirical study.

3.4 PGA Based on the Island Model

The PGA we implemented for the island model on MapReduce (i.e., PGAisland) acts sim-
ilarly to the one for grid model because it operates on portions of the global population
called “islands.” Each island executes whole periods of generations on its assigned por-
tions, independently from the other islands until a migration occurs (see Figure 3). It
means there is an established migration period, which can be defined as the number of
consecutive generations before migration. Since it is possible to run groups of subse-
quent generations (i.e., “periods”) independently, we exploited a job for each period.

In Hadoop, the numbers of mappers and reducers are not strictly correlated, but we
coupled them to represent them as islands. We used the mappers to execute the genera-
tion periods and at the end of the map phase a function applies the migration criterion

8 Evolutionary Computation Volume xx, Number x

evco_a_00213https: doi.org/
2017 by

Using Hadoop MapReduce for PGAs

with which every individual will have a specific destination island. That is the time in
which the second part of the output records is employed. Then the partitioner can es-
tablish where to send individuals and the reducer is used only to write into the HDFS
the individuals received for its correspondent island. Due to the generations groups, the
synchronisation barrier is put after every migration and a job is needed for each period.

3.5 Implementation Details

Hadoop is able to move data between nodes through sequences of write and read oper-
ations onto HDFS. The raw default serialisation of objects, in our case the individuals,
is inefficient if compared to Avro,2 a modern data serialisation system from the same
creator of Hadoop, Doug Cutting. In addition to having a flexible data representation, it
is optimised to minimise the disk space and communication through compression. For
this reason, we tuned the performance of our implementations by using Avro.

In order to analyse the behaviour of the implemented models during our experi-
ments, we added a reporter component that gave us the details of executions. We were
interested in both the genetic trend of population and the execution time described in
detail in a fine-grained manner. Our reporter component stores data into the HDFS with
a noninvasive and asynchronous working so that the execution time of experiments is
never influenced by extra operations.

4 Empirical Study Design

Our aim was to understand if PGAs based on Hadoop MapReduce can be an effective
solution to improve the scalability of GAs. Therefore, we had to verify if, and possibly
when, PGAs allow us to get a better execution time compared to the sequential version
(i.e., SGA). Moreover, we were interested in understanding which PGA model is most
effective among the global, grid, and island models. Thus, we sought to answer the
following research question:

RQ Is the use of PGAs based on Hadoop MapReduce worth using against SGA and which
PGA model performs best?

To address the RQ we considered as a benchmark the software engineering problem
of configuring the SVMs by using GAs for inter-release fault prediction. The problem
takes as input a dataset composed of software project components data, including the
information about being faulty or not. The output is a configuration for SVMs optimised
for the dataset at hand. The choice of this problem was motivated by the fact that it al-
lowed us to assess the PGAs scalability on different real-world problem instances of
various sizes. Furthermore, the problem was already addressed in previous work (Di
Martino et al., 2011; Sarro et al., 2012) by using a sequential approach. To verify the ef-
fectiveness of PGAs against SGA, we exploited the sequential approach proposed by
Di Martino et al. (2011). Even if our main aim was to exploit GAs for SVMs configu-
ration as a benchmark problem in terms of execution time, we also assessed whether
the predictive performance of SVMs was affected by executing the GAs in parallel (see
Section 4.4.5). Moreover, we estimated the costs of the execution of the experimentation
on a potential cloud infrastructure, based on the pricing of the major commercial cloud
providers.

Details about the problem and GAs configuration are provided in Section 4.1. The
datasets employed for the empirical study are described in Section 4.2. To understand

2https://avro.apache.org

Evolutionary Computation Volume xx, Number x 9

evco_a_00213https: doi.org/
2017 by

https://avro.apache.org

F. Ferrucci, P. Salza, and F. Sarro

the effectiveness of PGAs and compare the three parallel models, we applied the ex-
perimental method described in Section 4.3 and employed several evaluation criteria,
namely the execution time, speedup, overhead, computational effort, predictive perfor-
mance, and cloud costs (see Section 4.4). The hardware employed to run the experiments
is reported in Section 4.5. Finally, Section 4.6 analyses some threats to validity that may
have affected our experimentation.

4.1 Using GAs to Configure SVMs for Software Fault Prediction

The use of machine-learning-techniques to predict software faults has received increas-
ing attention in recent years (Hall et al., 2012; Malhotra, 2015). The research is motivated
by the need to improve the efficiency of software testing, allowing project managers to
better decide how to allocate resources to test the system, thus concentrating their ef-
forts on fault-prone components. A predictive model for software fault usually classi-
fies a target software module as faulty or non-faulty based on the information available
from previously released software components. In the software fault prediction context,
the dependent variable is represented by the faults contained in a software component
while the independent variables may vary from project to project and can be related
to different aspects of the software project such as code size and complexity metrics,
software process metrics, software testing metrics (Fenton and Neil, 1999; D’Ambros
et al., 2012; Bowes et al., 2016). In order to build fault prediction models several ma-
chine learners, such as Decision Trees, Support Vector Machines, and Naive Bayes, have
been widely used. Nevertheless, it has been shown that the predictive performance of
machine-learning techniques for fault prediction strongly depends on the selection of a
suitable configuration (Di Martino et al., 2011; Sarro et al., 2012; Hall and Bowes, 2012;
Tantithamthavorn et al., 2016; Fu et al., 2016).

GAs have been proposed to configure Support Vector Machines (SVMs) for software
fault prediction (Di Martino et al., 2011; Harman et al., 2014; Sarro et al., 2012; Gondra,
2008). The idea is based on the observation that such a problem can be formulated as
an optimisation problem: between the possible configurations, we have to identify the
one which leads to the optimal SVMs performance. However, the combination of the
two techniques (i.e., GAs and SVMs) may affect the scalability of the proposed approach
when dealing with large software projects. This motivated our choice of using this prob-
lem as a benchmark for PGAs.

In our experiments, we employed the technique proposed by Di Martino et al.
(2011), which has been also adopted in other work (Sarro et al., 2012; Harman et al.,
2014). The technique works as follows: a solution to the problem is an SVMs configura-
tion consisting of n parameters (with n determined by the kernel function). As for the
kernel function, we employed the widely used Radial Basis Functions (RBF), which has
two parameters: C (the soft margin parameter) and γ (the radius of the RBF kernel).
The GA chromosome is thus composed by two genes, for C and γ , whose values vary
in the ranges 0.000001 to 0.01 and 8 to 32000, respectively. Because the possible values
for C and γ are both doubles, the solutions space of the possible SVMs configurations
is enlarged remarkably.

To compute the fitness value of a chromosome representing an SVMs configuration,
we executed SVMs with such a configuration thus obtaining the fault predictions. Such
predictions are then evaluated using F-measure (Witten and Frank, 2005) as a perfor-
mance criterion. The F-measure is defined as:

F − measure = 2
precision ∗ recall
precision + recall

(1)

10 Evolutionary Computation Volume xx, Number x

evco_a_00213https: doi.org/
2017 by

Using Hadoop MapReduce for PGAs

The fitness function operates by applying a 5-fold cross-validation on a common
training set and taking the average F-measure value as the final fitness value for each
individual. We employed the same setting used in previous work (Di Martino et al.,
2011; Sarro et al., 2012; Harman et al., 2014) both for the SGA and PGAs:

1. 200 individuals for the starting population;

2. 300 generations;

3. FitnessEvaluation consisting of a 5-fold cross-validation on a common training
set and taking the average F-measure value;

4. Elitism of 1 individual;

5. ParentsSelection, using Roulette Wheel algorithm;

6. single point Crossover, with probability of 0.5;

7. Mutation, with probability of 0.2;

8. SurvivalSelection, using the Roulette Wheel algorithm.

In the case of the grid model, we used a number of neighbourhoods equal to the cluster
size. As for the island model, we also needed to identify the migration period and the
number and selection policy of migrants. We set the migration period to 30 applying a
ring topology exchange, whereas the number of migrants to 5% of the best individuals
per island.

4.2 Datasets

We exploited data from the PROMISE repository (Menzies et al., 2016), which contains
several datasets for fault prediction and we chose the software projects with more than
two releases. Thus, we retained three datasets for a total of 10 releases: Log4j (vv. 1.0,
1.1, and 1.2), Lucene (vv. 2.0, 2.2, and 2.4), and POI (vv. 1.5, 2.0, 2.5, and 3.0). Each re-
lease contains a set of components (i.e., Java classes) described in terms of Chidamber
and Kemerer (CK) metrics (Chidamber and Kemerer, 1994), Number of Public Methods
(NPM), and Lines of Code (LOC). More details about those software projects and their
fault data collection can be found in the work by Jureczko and Madeyski (2010).

We chose these three datasets because they represent three different degrees of
computational load for the fitness evaluation when the SVMs are built and validated
through cross-validation. Indeed, a preliminary benchmark of the execution time of the
fitness evaluation on the average of 30 runs and 300 generations, showed that Lucene
and POI datasets are 2.7 times and 9.5 times slower than Log4j, respectively. Therefore,
this allowed us to study the behaviour of PGAs on three problem instances of various
size that we identified as “small” for Log4j, “medium” for Lucene, and “large” for POI.

4.3 Experimental Method

We addressed the RQ by comparing the performance of the PGAs based on each of the
three parallel models explained in Section 3 and SGA.

To observe the effectiveness of the considered techniques for inter-release fault pre-
diction, we used the typical setting where data from the former releases are exploited
to build the model to predict faults for a new release (Ostrand and Weyuker, 2007). In
particular, given a software project having n releases, we used the data collected in the
first n − 1 releases of the project as the training set and the data collected for the last re-
lease as the test set. This allowed us to simulate the situation that typically arises in real

Evolutionary Computation Volume xx, Number x 11

evco_a_00213https: doi.org/
2017 by

F. Ferrucci, P. Salza, and F. Sarro

Table 1: Faulty components in the training and test sets, where each component is a
Java class and a fault corresponds to the presence of at least one reported bug.

Training set classes Test set classes

Dataset Faulty Non faulty Faulty Non faulty

Log4j 71 (29%) 173 (71%) 189 (92%) 16 (8%)
Lucene 235 (53%) 207 (47%) 203 (60%) 137 (40%)
POI 426 (46%) 510 (54%) 281 (64%) 161 (36%)

software development contexts, where a project manager can learn some phenomena
and/or patterns from previous releases and exploit this knowledge for a more conscious
management of the development of a subsequent version. The fault data for the training
and test sets we employed is reported in Table 1 together with the percentage of faulty
and non faulty components.

We executed all the parallel models on three different cluster configurations (i.e.,
C2, C4, and C8) characterised by a different number of nodes (see details in Section 4.5).
For each combination of model, dataset, and cluster configuration, we executed 30 runs.
Thus, we executed a total of 900 runs consisting of 3 · 3 · 3 · 30 = 810 runs for PGAs and
3 · 30 = 90 runs for SGA.

4.4 Evaluation Criteria

To compare the performance of the employed algorithms, we mostly followed the best
practices in reporting the results with PGAs, identified by Luque and Alba (2011). We
evaluated them both in terms of execution time, speedup, overhead, and computational
effort, as detailed in the following. We also evaluated the predictive performance in
terms of precision, recall, accuracy, and F-measure to verify that it was not negatively af-
fected by the possible improvement of the execution time. Furthermore, we estimated
the costs of the same executions on commercial cloud providers infrastructures. To cope
with the stochastic nature of GAs and hardware executions, we performed multiple ex-
ecutions and assessed the results by using the statistical tests described in Section 4.4.7.

4.4.1 Execution Time
The execution time was measured in milliseconds (ms) using the system clock. As a per-
formance indicator of the whole execution, we compared the execution time achieved
by executing all the generations of SGA and PGAs. The partial times were distinguished
into computation and overhead times only in a second step, when we wanted to quan-
tify the time spent for parallel communication.

4.4.2 Speedup
The speedup is defined as the ratio of the sequential execution time to the parallel execu-
tion time. There are two types of speedup, that is, the “strong” and the “weak” (Luque
and Alba, 2011). The strong speedup compares the parallel run time against the best-
so-far sequential algorithm. We could not apply it since our intention was to compare
the models on the Hadoop MapReduce platform, rather than comparing against differ-
ent technologies. Moreover, we could not find any implementation providing the same
algorithms as we do.

Instead, the weak speedup compares the parallel algorithm developed by the re-
searchers against their own sequential version. We calculated it by dividing the total

12 Evolutionary Computation Volume xx, Number x

evco_a_00213https: doi.org/
2017 by

Using Hadoop MapReduce for PGAs

Figure 4: The time measurement method for multiple nodes.

amount of time that SGA required by the amount of time required by the PGA. We com-
pared the achieved speedup with respect to the ideal speedup. It is worth noting that the
ideal speedup is equal to the number of employed parallel nodes and corresponds to the
situation when the sequential execution time is perfectly split among multiple nodes.
The ideal speedup is rarely achieved in practice due to the presence of overhead, but
it is usually taken into consideration as an upper limit to compare the performance of
parallel algorithms.

According to the best practice by Luque and Alba (2011), when using the weak
speedup it is important that the evaluated parallel algorithms should compute solu-
tions having “similar” accuracy as the sequential ones. For this reason, in addition to
providing the weak speedup, we computed and reported the predictive performance
of the solutions at the end of the executions.

4.4.3 Overhead
To understand the reasons that prevent the PGAs to have a speedup near the ideal one
on the Hadoop MapReduce platform, we quantified the overhead for each execution.
We distinguished between overhead and computation times. In the following, we de-
scribe the method we adopted to determine these times.

The method allowed us to generalise the times of different multiple nodes but re-
lated to the same phase (e.g., “map computation”), with a proper start and finish time.
The aim was to assign to each MapReduce job an initialisation, computation, and final-
isation time for both map and reduce phases.

Figure 4 shows one possible situation of a MapReduce job, including a reduce
phase. It is the case of the grid and island model, but not of the global model that has
only a map phase. In those cases, the “map finalisation” time is measured in the same
way as for the “reducer finalisation” time. As can be seen from Figure 4, we consider
the “map initialisation” time as the required time to let the first mapper begin its com-
putation. The “map computation” time is the time between the first mapper start and
the last mapper finish time. The time between the last mapper and the first reducer is
referred both as “map finalisation” and “reduce initialisation” time. Furthermore, the
time after the last ending reducer is referred as the “reduce finalisation” time.

4.4.4 Computational Effort
While the execution time can be exploited to evaluate the actual speed of the compu-
tation on a specific infrastructure, the computational effort can give a more machine-
independent measure of the algorithms (Luque and Alba, 2011). In the field of
metaheuristics, the computational effort is generally measured by the number of

Evolutionary Computation Volume xx, Number x 13

evco_a_00213https: doi.org/
2017 by

F. Ferrucci, P. Salza, and F. Sarro

Table 2: Commercial cloud configurations and pricing used for the costs estimation.

Provider Instance CPUs RAM (GB) Storage (GB) Price (USD/h)

Amazon EC2 t2.medium 2 4 20 0.11
DigitalOcean 2GB 2 2 40 0.03
Microsoft Azure A2 2 3.5 60 0.07
Google Cloud Platform n1-standard-2 2 7.5 40 0.10

evaluations corresponding to the number of visited points of the solution space. We
counted the absolute number of computed fitness evaluations, reporting them on av-
erage of the total number of runs. Because we fixed the number of generations, this
measure depends only on the characteristics of the used model and cluster size.

Moreover, we calculated also the eval/s measure for each of the models. Even
though this measure is strictly dependent on the specific infrastructure and dataset in-
volved, it offers a better view of how a certain PGA can act when solving a problem
with a certain computational load, that is, whose fitness evaluation function requires a
certain execution time, and the same degree of parallelisation.

4.4.5 Predictive Performance
To evaluate the predictive performance, we employed four widely used measures (i.e.,
precision, recall, accuracy, and F-measure (Witten and Frank, 2005)). The precision is the
ratio between the number of components classified as TP and the number of those clas-
sified as TP or FP:

precision = TP
TP + FP

(2)

The recall is the ratio between the number of components classified as TP and the num-
ber of those classified as TP or FN:

recall = TP
TP + FN

(3)

The accuracy is the ratio between the number of components correctly predicted (i.e.,
classified as TP and TN) and the total number of components (i.e., the sum of TP, TN,
FP, and FN):

accuracy = TP + TN
TP + TN + FP + FN

(4)

The F-measure is a measure that provides an indication of a balance between correctness
and completeness expressed as the harmonic mean of precision and recall, as described
in Equation (1).

4.4.6 Cloud Costs Estimation
Even though we executed the experimentation on a private infrastructure, as described
in Section 4.5, it is also possible to run a Hadoop cluster on any commercial cloud infras-
tructure. We estimated a likely cost for the same execution that we actually performed,
based on the pricing tables of the most used cloud providers. The estimation was based
on the selection of cloud instances, that is, the virtual machines, with a hardware con-
figuration at least equal to the one we employed in our experiments. Table 2 reports the
configurations and pricing of the instances we selected for the estimation.

14 Evolutionary Computation Volume xx, Number x

evco_a_00213https: doi.org/
2017 by

Using Hadoop MapReduce for PGAs

Table 3: Virtual machine configurations.

Hardware Software

Feature Value Feature Value

Architecture 64 bit Operating System CentOS 6.6
CPUs 2 Hadoop Hortonworks 2.2
RAM 2 GB Weka 3.7.11
Storage 20 GB LibSVM 1.0.6

Table 4: Cluster configurations exploited by PGAs, where the master node drives the
GA execution and the slave nodes compute the genetic operators in parallel.

Name Master nodes Slave nodes Total nodes

C2 1 2 3
C4 1 4 5
C8 1 8 9

4.4.7 Statistical Tests
We executed 30 runs in order to cope with the inherent randomness of dynamic execu-
tion time and the GAs and reported the average results. Then, we used the nonparamet-
ric inferential statistical test, that is, the Wilcoxon Test (Conover, 1999), as recommended
in the literature (Arcuri and Briand, 2011). The Wilcoxon signed rank test verifies, as the
null hypothesis, if two populations have identical distributions. It is particularly use-
ful when no assumptions about the normality of the distributions are possible, as for
our case. For all the statistical tests, we accepted a probability of 5% of committing a
Type-I-Error. Furthermore, we used the Vargha-Delaney Â12 effect size to estimate the
probability that two algorithms have against each other in obtaining better results re-
garding the execution time and predictive performance measures (Arcuri and Briand,
2011). When two algorithms are compared and their results are equivalent, Â12 = 0.5.
Â12 > 0.5 means that, on the average over the 30 runs, the first algorithm obtains better
results than the second one with which is compared.

4.5 Hardware

To execute the experiment, we employed a private OpenStack cloud platform where
we virtualised the machines to compose the Hadoop clusters. To run a fair experiment,
we used the same configuration for each virtual machine (see Table 3). It is worth not-
ing that we did not simulate any hardware component, thus exploiting the virtuali-
sation of OpenStack only as a way to equally divide the hardware infrastucture. We
completely dedicated the partial atomic resource (e.g., CPU cores, RAM GB) to the
running instances so that they could have fully used them without overlapping with
others.

In our empirical study, we used three different types of Hadoop clusters, sum-
marised in Table 4. SGA was executed on a single node, while for PGAs we exploited the
clusters C2, C4, and C8. The clusters are organised in one master node and a number of
slaves equal to the parallelisation degree. We needed to separate the master node from

Evolutionary Computation Volume xx, Number x 15

evco_a_00213https: doi.org/
2017 by

F. Ferrucci, P. Salza, and F. Sarro

the slaves because our implementations have a sequential part and we decided to dedi-
cate slave nodes only to parallel purposes. Moreover, the underneath Hadoop platform
requires the execution of many daemons and the resources of just the slaves would not
have been enough. We installed Hadoop through the Hortonworks distribution, which
eased the orchestration and monitoring of the clusters.

We ran multiple experiments simultaneously on a total of 150 OpenStack virtual
machines. The empirical study took about 120 days for a total of 900 runs when execut-
ing 30 runs for each single experiment of 300 generations each.

4.6 Threats to Validity

Threats to construct validity concern the relationship between the theory behind the ex-
periments and the observations. In order to alleviate possible threats related to mea-
surement, the GAs execution time was quantified using the system clock, because it
represents the speed of a technique to the end user. In addition, we also provided the
computational effort as machine-independent measure of the algorithms.

Threats to internal validity concern any confounding factors that could influence our
results. A possible threat is related to the randomness due to the use of GAs and variable
network/computational load on the nodes at the time of the experiment. Indeed, GAs
are intrinsically random and we mitigated such a threat by executing all the experiments
30 times and presenting the average results (Arcuri and Briand, 2011). Moreover, both
the network and computational nodes may have been biased by the randomness of
events and the multiple runs were intended to alleviate these issues.

Threats to external validity concern the generalisability of our findings outside the
scope of our study. An external threat is due to the fact that we benchmarked the three
PGAs for a specific software engineering task, that is, configuring SVMs using GA for
fault prediction. Besides being an example of a real-world application of GAs, this pre-
diction task was chosen because it exhibits scalability issues when dealing with large
training datasets, thus constituting a suitable benchmark for the three different parallel
architectures. To this end, we investigated three datasets with different sizes and char-
acteristics. It is worth noting that the configuration we chose for the GAs is not exclusive
and we could have used other possible parameters sets aiming at improving the predic-
tive performance of models. However, since we were interested mostly in the compari-
son of the execution time performance, we selected the most trivial configuration for all
the PGAs. Moreover, for the grid model we chose to use a number of neighbourhoods
equal to the cluster size. On the one hand, if we had used a minor number, we could
not have exploited the full computational capacity of the parallel nodes. On the other
hand, using a major number of neighbourhoods, the population would have always
split among the same number of mappers for the fitness evaluation. Then, the parallel
reducers would have received more than one neighbourhood each and processed them
sequentially but with fewer individuals than the other case.

5 Results

In this section, we present the results of our study. Let us recall that for each consid-
ered dataset (i.e., Log4j, Lucene, and POI), we executed 30 times the SGA and PGAs. The
comparison between SGA and PGAs with respect to the execution time is in Section 5.1.
The analyses of the speedup and overhead are in Sections 5.2 and 5.3, respectively. Sec-
tion 5.4 reports the computational effort and the predictive performance is analysed in
Section 5.5. Section 5.6 concludes with the estimation of cloud costs. Some of the results
are reported in the online appendix (Ferrucci et al., 2016).

16 Evolutionary Computation Volume xx, Number x

evco_a_00213https: doi.org/
2017 by

Using Hadoop MapReduce for PGAs

Table 5: Execution time achieved by executing 30 times SGA and PGAs on the datasets.

Execution time (hh:mm)

Log4j Lucene POI

Model Mean SD Median Mean SD Median Mean SD Median

SGA 01:00 00:31 00:47 02:42 00:08 02:40 09:33 00:24 09:23

PGAC2
global 02:42 00:20 02:45 03:32 00:02 03:31 07:22 00:27 07:20

PGAC4
global 02:17 00:09 02:15 02:43 00:05 02:43 04:56 00:18 04:47

PGAC8
global 02:02 00:07 02:01 02:34 00:10 02:31 03:35 00:12 03:32

PGAC2
grid 03:29 00:22 03:36 04:27 00:12 04:27 08:22 00:45 08:24

PGAC4
grid 03:08 00:15 03:04 03:32 00:08 03:31 05:46 00:23 05:42

PGAC8
grid 02:46 00:05 02:46 02:57 00:08 02:59 03:22 00:03 03:22

PGAC2
island 00:34 00:04 00:34 01:38 00:07 01:42 05:09 00:20 05:02

PGAC4
island 00:18 00:00 00:18 00:48 00:01 00:48 02:37 00:04 02:36

PGAC8
island 00:09 00:00 00:09 00:23 00:00 00:23 01:13 00:02 01:13

5.1 Execution Time

Table 5 and Figure 5 show the achieved execution times obtained over 30 runs. We can
observe that the execution for each of the considered clusters of PGAisland is always
faster than each SGA execution for all the considered datasets. Every PGA performs
better than SGA for the POI dataset, while for the other two datasets PGAglobal and
PGAgrid are slower than SGA, regardless of the number of parallel nodes used.

The Wilcoxon test results (see Table 6) confirm the above observations. The execu-
tion time of PGAisland, using C2, C4, and C8 clusters, is significantly lower (i.e., p-value
< 0.05) than the one of SGA on all the considered datasets, while the execution time
of PGAglobal and PGAgrid is significantly lower than SGA only on the biggest dataset
(i.e., POI) and higher on the other two. The Vargha-Delaney test results (see Table 6)
confirm (i.e., Â12 = 0) that PGAisland achieves better results in terms of execution time
than SGA for all the 30 runs, three cluster configurations, and datasets. Furthermore,
for the POI dataset, all the three PGAs perform better than SGA. It can be explained by
the fact that, for small instances of the problem, the overhead due to data accesses and
communication between the nodes is higher than the time for the fitness function.

As for the comparison between PGAs, the boxplots of Figure 5 and the complete
Wilcoxon and Vargha-Delaney tests results (Ferrucci et al., 2016), show that the PGAgrid
model is the slowest model and significantly different from the other two models.

5.2 Speedup

Once we established execution times of the SGA and PGAs, we calculated the speedup
values. Figure 6 shows that the use of parallelisation is worth while mainly for the is-
land model, which allowed us to speed up the execution time with respect to SGA of an
average over the three datasets of 7.0 times by exploiting PGAC8

island, 3.4 times by exploit-
ing PGAC4

island and 1.8 times by exploiting PGAC2
island times. It is clear from Figure 6 that

Evolutionary Computation Volume xx, Number x 17

evco_a_00213https: doi.org/
2017 by

F. Ferrucci, P. Salza, and F. Sarro

Figure 5: Execution times achieved by SGA and PGAs on the three clusters for the three
databases.

18 Evolutionary Computation Volume xx, Number x

evco_a_00213https: doi.org/
2017 by

Using Hadoop MapReduce for PGAs

Table 6: Wilcoxon test (p-values) and Vargha-Delaney (Â12) results for the comparison
of the execution time between PGAs and SGA over 30 runs on the datasets.

Log4j Lucene POI

Model = p-value Â12 p-value Â12 p-value Â12

PGAC2
global SGA <0.001 0.961 <0.001 1.000 <0.001 0.000

PGAC4
global SGA <0.001 0.939 0.465 0.556 <0.001 0.000

PGAC8
global SGA <0.001 0.921 0.008 0.218 <0.001 0.000

PGAC2
grid SGA <0.001 0.992 <0.001 1.000 <0.001 0.083

PGAC4
grid SGA <0.001 0.998 <0.001 1.000 <0.001 0.000

PGAC8
grid SGA <0.001 0.969 <0.001 0.884 <0.001 0.000

PGAC2
island SGA <0.001 0.000 <0.001 0.000 <0.001 0.000

PGAC4
island SGA <0.001 0.000 <0.001 0.000 <0.001 0.000

PGAC8
island SGA <0.001 0.000 <0.001 0.000 <0.001 0.000

Figure 6: Speedup trend per dataset.

PGAisland tends to the ideal speedup value. On the other hand, PGAglobal and PGAgrid
improved their speedup only slightly, because of the overhead discussed in Section 5.3.
The complete speedup values are reported in the online appendix (Ferrucci et al., 2016).

5.3 Overhead

To further investigate the behaviour of the parallel implementations on the Hadoop
MapReduce platform, we analysed the execution time of PGAs with a more fine-grained
scale. Figure 7 shows the computation and overhead times for each PGA and dataset
combination, where the overhead is intended as the additional time other than the com-
putation, generally due to communication and Hadoop environment tasks. The stacked
bars represent the mean over 30 runs. It is worth noting that overhead time in Hadoop
MapReduce corresponds to the sum of the overhead times of multiple jobs. As we can
see from Figure 7, for the Log4j and Lucene datasets on global and grid models the over-
head time surpasses the computation time. As we mentioned above, in the presence of

Evolutionary Computation Volume xx, Number x 19

evco_a_00213https: doi.org/
2017 by

F. Ferrucci, P. Salza, and F. Sarro

Figure 7: The computation and overhead times for each PGA model.

20 Evolutionary Computation Volume xx, Number x

evco_a_00213https: doi.org/
2017 by

Using Hadoop MapReduce for PGAs

Figure 8: The MapReduce mean overhead times per job for each PGA model and cluster
configuration on the Lucene dataset over 30 runs.

heavy computational work (i.e., POI the dataset) the global and grid models are worth
using. The island model is always light in terms of overhead time due to the lower num-
ber of jobs involved: where the global and grid models have one job for each generation,
the island model executes groups of generations (i.e., periods) in single jobs.

We also analysed the overhead time per job. As an example, we report in Figure 8
the mean execution time for each job over 30 runs and all the cluster configurations for
the Lucene dataset. However, similar observations can be done for the other datasets
and configurations and are shown in the online appendix (Ferrucci et al., 2016). We can
observe that the partial overhead times are almost constant (i.e., the standard deviation
is very small) over the different jobs. What makes the island model win against other
models is basically that it has fewer jobs than others. Moreover, it is worth noting that
not all the parallel model implementations have both map and reduce phases and not all
of them behave in the same way (see Section 3). The map initialisation phase is common
to the three parallel models and it takes a similar amount of time: every time a new job is
requested, Hadoop spends some time to orchestrate the cluster. However, the resulting
execution time in the case of the reducer communication phases, which is present only
in the grid and island models, is much less than those for the map phase. Because of the
Hadoop architecture, the nodes are already prepared to host the reduce phase when
the mappers are finishing. Nevertheless, there are some differences in times between
the grid and island models: they are comprehensive of the partitioner component work,
which is the Hadoop phase responsible for moving individuals to a new neighbourhood
and a new island in the grid and island model, respectively. In the grid model, all the

Evolutionary Computation Volume xx, Number x 21

evco_a_00213https: doi.org/
2017 by

F. Ferrucci, P. Salza, and F. Sarro

Table 7: Average evaluation number and evaluation per second values achieved by ex-
ecuting 30 times SGA and PGAs on the three datasets and three clusters.

Log4j Lucene POI

Model eval eval/s eval eval/s eval eval/s

SGA 30 214 8.32 30 214 3.10 30 214 0.88

PGAC2
global 30 214 3.09 30 214 2.37 30 214 1.14

PGAC4
global 30 214 3.66 30 214 3.08 30 214 1.70

PGAC8
global 30 214 4.10 30 214 3.26 30 214 2.34

PGAC2
grid 30 500 2.43 30 500 1.90 30 500 1.01

PGAC4
grid 28 840 2.55 28 840 2.26 28 840 1.39

PGAC8
grid 26 260 2.62 26 260 2.47 26 260 2.16

PGAC2
island 30 180 14.74 30 180 5.12 30 180 1.63

PGAC4
island 30 478 27.88 30 478 10.53 30 478 3.23

PGAC8
island 30 083 51.87 30 083 21.60 30 083 6.80

individuals can be assigned to a different destination whereas in the island model this is
true only for 5% of the number of individuals per island. Moreover, for the grid model
there is the need of reading the individuals of the current neighbourhood and deserialise
them because the other genetic operators must be executed. The last communication
phase of the three PGAs is the same in terms of the execution time and behaviour. Even
if PGAglobal lacks the reduce phase, the last phase of all the three models is responsible
of the same task, that is, writing back the processed individuals to the HDFS.

We tested the correlation between overhead times using the ANOVA test but we
found none. We impute the reason to the nondeterminism of several layers of abstrac-
tion: Hadoop MapReduce is executed on JVMs as a shared process on cloud virtual
machine instances in a shared OpenStack environment. Although there is not strong
statistical evidence, we observed that, on average, the overhead times seem to be inde-
pendent of the dataset and cluster size.

5.4 Computational Effort

Table 7 reports the number of fitness evaluations achieved on the average of 30 runs of
each algorithm and dataset. The number of evaluations between the same algorithm for
different datasets are equivalent since the stochastic nature of GA is controlled by using
the same random seeds for each dataset. The number of evaluations for PGAglobal does
not differ from SGA since they perform exactly in the same way, regardless of the cluster
size. PGAgrid is subject to a deterioration of the number of evaluations as the cluster
size increases whereas PGAisland is balanced. In general, we can affirm that, except for
PGAgrid, all the models show a number of evaluations similar to the one of SGA. The
Wilcoxon and Vargha-Delaney tests results, reported in the online appendix (Ferrucci
et al., 2016), confirmed it. Moreover, Table 7 shows the number evaluations per second.
It may be used as a predictor for the final execution time of PGAs for problems with

22 Evolutionary Computation Volume xx, Number x

evco_a_00213https: doi.org/
2017 by

Using Hadoop MapReduce for PGAs

the same computational load of the one required for the three datasets, on the same
hardware.

5.5 Predictive Performance

As we can observe from Table 8 reporting the median values of the four evaluation
criteria we employed, the predictive performance of the parallel models is negatively
affected only in the case of the Log4j dataset using the PGAgrid models. Moreover, the
results of the Wilcoxon and Vargha-Delaney tests we performed confirm the above con-
siderations. In Table 9 we report the statistical tests results about the F-measure.

5.6 Cloud Costs Estimation

Figure 9 shows the estimation of costs for the Amazon cloud provider for executing
the same GAs of our experiments, in relation to the required execution time. The com-
plete report of cloud costs estimation for all the selected cloud providers is presented
in the online appendix (Ferrucci et al., 2016). We also include the estimation of SGA
on a machine purchased on the same cloud provider, having the same configuration
as the ones used for the Hadoop clusters. As can be seen from Figure 9, in the case of
PGAglobal and PGAgrid, they save time against SGA in the case of the POI dataset but
impose a greater cost because of the multiple machines. Instead, PGAisland requires al-
most the same cost of a single machine, since it is able to conclude its execution before
SGA even with a greater number of machines. The distance in time is more remarkable
for the POI dataset, thus making the use of the cloud worthwhile in the case of large
computational load.

6 Related Work

In this section, we report the most relevant work that inspired and guided our study,
highlighting similarities and differences of them. We were mainly interested in the so-
lutions involving the MapReduce paradigm but we are also reporting some important
work employing different technologies to run PGAs.

6.1 PGAs Based on MapReduce

Table 10 is a summary of the work related to the use of MapReduce for PGAs.
Jin et al. (2008) were the first to use MapReduce to parallelise GAs. They imple-

mented their specific version of MapReduce on the .Net platform and realised a parallel
model, which can be considered as a sort of the grid model described in Section 2.2. The
mapper nodes compute the fitness function and the selection operator chooses the best
individuals on the same machine. A single reducer applies the selection on all the best
local individuals received from the parallel nodes. The computation continues on the
master node where crossover and mutation operators are applied to the global popula-
tion. The authors highlighted the worrying presence of overhead and the best efficacy
in case of heavy computational fitness work.

The first work exploiting Hadoop as a specific implementation of MapReduce is
by Verma et al. (2009). The implemented model is the grid model where the mappers
execute the fitness evaluation and the unpaired reducers the other genetic operators for
the individuals they receive as input randomly. They studied the scalability factor on
a large cluster of Hadoop nodes and they found a clear decrease in performance only
when the number of requested nodes surpassed the number of physical CPUs available
on the cluster. They confirmed that GAs can scale on multiple nodes, especially with
large population size.

Evolutionary Computation Volume xx, Number x 23

evco_a_00213https: doi.org/
2017 by

F. Ferrucci, P. Salza, and F. Sarro

Table 8: Predictive performance median values achieved by executing 30 times SGA
and PGAs on the three dataset.

(a) Log4j

Model Precision Recall Accuracy F-measure

SGA 0.938 0.259 0.698 0.407

PGAC2
global 0.938 0.259 0.698 0.407

PGAC4
global 0.938 0.259 0.698 0.407

PGAC8
global 0.938 0.259 0.698 0.407

PGAC2
grid 0.889 0.106 0.834 0.190

PGAC4
grid 0.885 0.106 0.834 0.190

PGAC8
grid 0.889 0.106 0.834 0.190

PGAC2
island 0.933 0.251 0.705 0.396

PGAC4
island 0.937 0.291 0.673 0.444

PGAC8
island 0.933 0.259 0.700 0.406

(b) Lucene

Model Precision Recall Accuracy F-measure

SGA 0.617 0.901 0.393 0.733

PGAC2
global 0.617 0.901 0.393 0.733

PGAC4
global 0.617 0.901 0.393 0.733

PGAC8
global 0.617 0.901 0.393 0.733

PGAC2
grid 0.616 0.901 0.394 0.732

PGAC4
grid 0.616 0.901 0.394 0.732

PGAC8
grid 0.616 0.901 0.394 0.732

PGAC2
island 0.616 0.901 0.394 0.732

PGAC4
island 0.616 0.901 0.394 0.732

PGAC8
island 0.616 0.901 0.394 0.732

(c) POI

Model Precision Recall Accuracy F-measure

SGA 0.689 0.861 0.335 0.766

PGAC2
global 0.689 0.861 0.335 0.766

PGAC4
global 0.689 0.861 0.335 0.766

PGAC8
global 0.689 0.861 0.335 0.766

PGAC2
grid 0.689 0.861 0.335 0.766

PGAC4
grid 0.689 0.861 0.335 0.766

PGAC8
grid 0.689 0.861 0.335 0.766

PGAC2
island 0.689 0.861 0.335 0.766

PGAC4
island 0.689 0.861 0.335 0.766

PGAC8
island 0.689 0.861 0.335 0.766

24 Evolutionary Computation Volume xx, Number x

evco_a_00213https: doi.org/
2017 by

Using Hadoop MapReduce for PGAs

Table 9: Wilcoxon test (p-values) and Vargha-Delaney (Â12) results for the comparison
of the F-measure values between PGAs and SGA over 30 runs on the datasets.

Log4j Lucene POI

Model = p-value Â12 p-value Â12 p-value Â12

PGAC2
global SGA − 0.500 − 0.500 − 0.500

PGAC4
global SGA − 0.500 − 0.500 − 0.500

PGAC8
global SGA − 0.500 − 0.500 − 0.500

PGAC2
grid SGA <0.001 0.022 0.782 0.466 0.423 0.518

PGAC4
grid SGA <0.001 0.022 0.751 0.479 0.423 0.518

PGAC8
grid SGA <0.001 0.022 0.599 0.482 0.584 0.518

PGAC2
island SGA 0.221 0.448 0.476 0.488 0.361 0.519

PGAC4
island SGA 0.746 0.559 0.574 0.501 0.361 0.519

PGAC8
island SGA 0.459 0.484 0.844 0.488 0.584 0.518

Figure 9: The Amazon cloud provider execution time and cost values for the execution
of SGA and PGAs on the datasets and cluster sizes.

Huang and Lin (2010) exploited Hadoop MapReduce to implement the global
model of GAs to solve the Job Shop Scheduling problem on a large private grid of slow
machines in order to measure the performance in terms of quality at varying the num-
ber of nodes. They also exploited an Amazon EC2 cluster of faster machines to analyse
the performance in terms of execution time. They found very imposing the presence
of overhead, especially during the Hadoop job orchestration, and suggested the use of
Hadoop MapReduce in GAs parallelisation in the presence of large populations and
intensive computation work for the fitness evaluation.

As for an example of application of these methodologies to real-world problems, Di
Geronimo et al. (2012) were the first to propose a parallel GA for JUnit test suite genera-
tion based on the global parallelisation model. Apreliminary evaluation of the proposed
algorithm was carried out aiming at evaluating the speedup with respect to a sequential
GA. The obtained results highlighted that using the parallel genetic algorithm allowed

Evolutionary Computation Volume xx, Number x 25

evco_a_00213https: doi.org/
2017 by

F. Ferrucci, P. Salza, and F. Sarro

Ta
bl

e
10

:R
el

ev
an

tr
el

at
ed

w
or

k
ab

ou
ts

ca
lin

g
G

A
s

us
in

g
M

ap
R

ed
uc

e.

PG
A

M
od

el
E

xp
er

im
en

ta
ti

on

Ti
tl

e
Ye

ar
G

lo
ba

l
G

ri
d

Is
la

nd
H

ar
d

w
ar

e
Pr

ob
le

m
s

R
es

ul
ts

M
R

PG
A

:A
n

E
xt

en
si

on
of

M
ap

R
ed

uc
e

fo
r

Pa
ra

lle
liz

in
g

G
en

et
ic

A
lg

or
it

hm
s

(J
in

et
al

.,
20

08
)

20
08

�
Pr

iv
at

e
cl

us
te

r
D

LT
Z

4,
D

LT
Z

5
an

d
th

e
A

er
od

yn
am

ic
A

ir
fo

il
D

es
ig

n
Si

m
ul

at
io

n

M
ap

R
ed

uc
e

su
it

s
th

e
G

A
s

pa
ra

lle
lis

at
io

n,
d

em
on

st
ra

te
d

by
ex

pe
ri

m
en

ti
ng

w
it

h
th

e
gr

id
m

od
el

,b
ut

th
e

pa
ra

d
ig

m
ne

ed
s

to
be

ad
ap

te
d

to
PG

A
m

od
el

s
Sc

al
in

g
G

en
et

ic
A

lg
or

it
hm

s
U

si
ng

M
ap

R
ed

uc
e

(V
er

m
a

et
al

.,
20

09
)

20
09

�
Pr

iv
at

e
cl

us
te

r
O

ne
M

ax
H

ad
oo

p
M

ap
R

ed
uc

e
is

ab
le

to
re

d
uc

e
th

e
ex

ec
ut

io
n

ti
m

e
of

G
A

s
by

us
in

g
a

PG
A

ba
se

d
on

th
e

gl
ob

al
m

od
el

on
m

ul
ti

pl
e

no
d

es
fo

r
la

rg
e

po
pu

la
ti

on
s

Sc
al

in
g

Po
pu

la
ti

on
s

of
a

G
en

et
ic

A
lg

or
it

hm
fo

r
Jo

b
Sh

op
Sc

he
d

ul
in

g
Pr

ob
le

m
s

U
si

ng
M

ap
R

ed
uc

e
(H

ua
ng

an
d

L
in

,
20

10
)

20
10

�
A

ca
d

em
ic

cl
ou

d
an

d
A

m
az

on
E

C
2

Jo
b

Sh
op

Sc
he

d
ul

in
g

H
ad

oo
p

is
ef

fe
ct

iv
e

w
he

n
ap

pl
ie

d
to

pr
ob

le
m

s
w

it
h

in
te

ns
iv

e
co

m
pu

ta
ti

on
w

or
k

or
w

it
h

la
rg

e
po

pu
la

ti
on

s
us

in
g

th
e

PG
A

s
ba

se
d

on
th

e
gl

ob
al

m
od

el
,d

ue
to

a
ve

ry
im

po
si

ng
pr

es
en

ce
of

ov
er

he
ad

A
L

ib
ra

ry
to

R
un

E
vo

lu
ti

on
ar

y
A

lg
or

it
hm

s
in

th
e

C
lo

ud
U

si
ng

M
ap

R
ed

uc
e

(F
az

en
d

a
et

al
.,

20
12

)

20
12

�
A

m
az

on
E

C
2

G
en

et
ic

Pr
og

ra
m

m
in

g
R

eg
re

ss
io

n
pr

ob
le

m
of

d
im

en
si

on
al

it
y

tw
o

T
he

ef
fo

rt
of

d
ev

el
op

in
g

pa
ra

lle
l

E
A

s
is

si
m

pl
ifi

ed
w

it
h

th
e

us
e

of
lib

ra
ri

es
/

fr
am

ew
or

ks

A
Pa

ra
lle

lG
en

et
ic

A
lg

or
it

hm
B

as
ed

on
H

ad
oo

p
M

ap
R

ed
uc

e
fo

r
th

e
A

ut
om

at
ic

G
en

er
at

io
n

of
JU

ni
tT

es
tS

ui
te

s
(D

i
G

er
on

im
o

et
al

.,
20

12
)

20
12

�
Pr

iv
at

e
cl

us
te

r
A

ut
om

at
ic

JU
ni

tT
es

t
Su

it
es

G
en

er
at

io
n

A
ha

rd
re

al
-w

or
ld

pr
ob

le
m

ca
n

be
so

lv
ed

by
PG

A
s

ba
se

d
on

th
e

gl
ob

al
m

od
el

an
d

H
D

FS
is

pr
ob

ab
ly

th
e

m
ai

n
cu

lp
ri

to
f

th
e

ov
er

he
ad

26 Evolutionary Computation Volume xx, Number x

evco_a_00213https: doi.org/
2017 by

Using Hadoop MapReduce for PGAs

Ta
bl

e
10

:C
on

ti
nu

ed
.

PG
A

M
od

el
E

xp
er

im
en

ta
ti

on

Ti
tl

e
Ye

ar
G

lo
ba

l
G

ri
d

Is
la

nd
H

ar
d

w
ar

e
Pr

ob
le

m
s

R
es

ul
ts

To
w

ar
d

s
M

ig
ra

ti
ng

G
en

et
ic

A
lg

or
it

hm
s

fo
r

Te
st

D
at

a
G

en
er

at
io

n
to

th
e

C
lo

ud
(D

i
M

ar
ti

no
et

al
.,

20
13

)

20
13

�
G

oo
gl

e
A

pp
E

ng
in

e
M

ap
R

ed
uc

e

A
ut

om
at

ic
Te

st
D

at
a

G
en

er
at

io
n

T
he

us
e

of
th

e
cl

ou
d

ca
n

he
av

ily
ou

tp
er

fo
rm

th
e

pe
rf

or
m

an
ce

s
of

a
lo

ca
ls

er
ve

r
w

he
n

us
in

g
a

PG
A

ba
se

d
on

th
e

gl
ob

al
m

od
el

ag
ai

ns
ta

se
qu

en
ti

al
G

A
A

d
ap

ti
ng

M
ap

R
ed

uc
e

Fr
am

ew
or

k
fo

r
G

en
et

ic
A

lg
or

it
hm

w
it

h
L

ar
ge

Po
pu

la
ti

on
(K

ha
lid

et
al

.,
20

13
)

20
13

�
Pr

iv
at

e
cl

us
te

r
Tr

av
el

in
g

Sa
le

sm
an

Pr
ob

le
m

H
D

FS
an

d
H

ad
oo

p
or

ch
es

tr
at

io
n

op
er

at
io

ns
ar

e
th

e
m

ai
n

re
as

on
s

fo
r

ov
er

he
ad

w
he

n
ex

ec
ut

in
g

a
PG

A
ba

se
d

on
th

e
gl

ob
al

m
od

el
A

Pa
ra

lle
lG

en
et

ic
A

lg
or

it
hm

s
Fr

am
ew

or
k

B
as

ed
on

H
ad

oo
p

M
ap

R
ed

uc
e

(F
er

ru
cc

ie
ta

l.,
20

15
)

20
15

�
A

m
az

on
E

C
2

Fe
at

ur
e

Su
bs

et
Se

le
ct

io
n

(F
SS

)
T

he
FS

S
pr

ob
le

m
ca

n
be

ef
fe

ct
iv

el
y

so
lv

ed
by

us
in

g
a

fr
am

ew
or

k
to

d
efi

ne
an

d
ex

ec
ut

e
PG

A
s

ba
se

d
on

th
e

is
la

nd
m

od
el

on
H

ad
oo

p
M

ap
R

ed
uc

e

Evolutionary Computation Volume xx, Number x 27

evco_a_00213https: doi.org/
2017 by

F. Ferrucci, P. Salza, and F. Sarro

for saving over the 50% of the time. The algorithm was developed exploiting Hadoop
MapReduce and its performance were assessed on a standard cluster. In analysing the
overhead time, they considered the Hadoop distributed filesystem (i.e., HDFS) as the
main cause.

Di Martino et al. (2013) also investigated how to migrate GAs to the cloud in order
to speed up the automatic generation of test data for software projects. They were the
first to design the adaptation of three parallelisation models to MapReduce paradigm
for automatic test data generation. However, they experimented only with the solution
based on global model taking advantages of the Google App Engine framework. Pre-
liminary results showed that, unless for toy examples, the cloud can heavily outperform
the performances of a local server.

Khalid et al. (2013) used the island model to solve the Travelling Salesman Problem on
the Hadoop MapReduce platform. They focused their attention on the scalability factor
of the population size. They noticed that the population in a large solutions space, as
the one in their problem, can be scaled to multiple nodes and different sizes. Using a
single job for each GA generation and measuring performances, they reckoned the time
to orchestrate Hadoop MapReduce jobs and HDFS operations as the main reasons for
overhead.

Fazenda et al. (2012) were the first to consider the parallelisation of Evolutionary
Algorithm (EAs) on Hadoop MapReduce platform in the general purpose form of a
library, in order to simplify the developing effort for parallel EAs implementations. The
work has been further enhanced by Sherry et al. to produce FlexGP (Sherry et al., 2012;
Veeramachaneni et al., 2015). It is probably the first large scale Genetic Programming
(GP) system that runs on the cloud implemented over Amazon EC2 with a socket-based
client/server architecture.

To the same aim, Ferrucci et al. (Ferrucci et al., 2013, 2015; Salza et al., 2016b) imple-
mented a framework for PGAs development, deployment, and execution on Hadoop
MapReduce platform, based on the island model. They described the design of the
framework and how a developer could interact in defining his/her genetic operators
or using some provided samples included with the framework. They also assessed the
framework with a preliminary experiment on the problem of Feature Subset Selection.

As can be seen from Table 10, no previous work has compared all three models
using Hadoop MapReduce.

6.2 Parallel Genetic Algorithms

In the literature we can find many proposals of both parallel GAs and EAs using dif-
ferent approaches, methods, and technologies (Knysh and Kureichik, 2010; Luque and
Alba, 2011; Johar et al., 2013; Sudholt et al., 2015). In this section, we focus on those
studies that describe approaches and results that influenced our work even if they are
not always strictly related to the parallel models compared in our study. Zheng et al.
(2011) addressed a research question similar to ours by comparing the global and the
island models, using a multi-core (i.e., CPUs) and a many-core (i.e., GPUs) systems. The
main difference with respect to our work is that their parallel algorithm did not use the
MapReduce paradigm. However, also in this case, the island model provided better re-
sults with respect to the global in terms of quality and execution time. Even though they
found the system based on GPUs is faster than the one based on CPUs, they observed
that an architecture with a fixed number of parallel participants and a strict paralleli-
sation schema, such as GPU cores, might perform worse in terms of quality of solu-
tions than another with more parallel nodes and the possibility of communicating (e.g.,

28 Evolutionary Computation Volume xx, Number x

evco_a_00213https: doi.org/
2017 by

Using Hadoop MapReduce for PGAs

multithreading). They stated that a distributed architecture is worthwhile for GAs par-
allelisation. As a first attempt of employing cloud technologies, Merelo Guervós et al.
(2012) devised SofEA, a model for Pool-based EAs in the cloud, an EA mapped to a
central CouchDB object store. SofEA provides an asynchronous and distributed system
for individuals evaluations and genetic operators application. Later, they defined and
implemented the EvoSpace Model (García-Valdez et al., 2015), consisting of two main
components: a repository storing the evolving population and some remote workers,
which execute the actual evolutionary process. The study shows how EAs can scale
on the cloud and how the cloud can make EAs effective in a real-world environment,
speeding up the runtime and lowering the costs.

7 Conclusions and Future Work

In this article, we faced the parallelisation of Genetic Algorithms (GAs) on the Hadoop
MapReduce platform, based on three models, that is, the global, grid, and island mod-
els. As a benchmark problem, we considered the use of three different Parallel Genetic
Algorithms (PGAs) to solve a software engineering problem of configuring the Sup-
port Vector Machines (SVMs) for inter-release fault prediction. We empirically assessed
the effectiveness of these models in terms of execution time, speedup, overhead, and
computational effort by using three publicly available datasets of real software faults,
widely used in fault prediction studies. The three datasets were chosen considering their
different sizes in order to vary the execution time of the GAs.

We found that the use of PGA based on the island model outperforms the use of
Sequential Genetic Algorithm (SGA) and the PGAs based on the global and grid models,
for all the considered datasets and cluster configurations. The overhead of data store
(i.e., Hadoop Distributed File Systems (HDFSs)) accesses, communication, and latency
may impair parallel solutions based on the global and grid models when executed on
small problem instances. This is not the case for the island model since it is able to reduce
the number of operations performed on the data store, determining a faster execution
of tasks and an optimised usage of resources. We also observed that the use of more
nodes allowed us to further reduce the execution time. The use of the island model
enabled us to speed up the average execution time over the three datasets with respect
to SGA of 7.0, 3.4, and 1.8 times by exploiting 8, 4, and 2 nodes, respectively. Moreover,
the results of the estimation of the commercial cloud providers costs revealed that the
island model is worth using also in term of costs against the execution with a single
machine.

In general, a critical aspect in the use of Hadoop MapReduce is the presence of over-
head due to the communication with the data store (i.e., HDFS). The distributed nature
of the data store introduces an intrinsic communication latency that may drastically
worsen the performance if multiple and useless operations are executed. To speed up
the execution of tasks, it is useful to reduce data store operations, as it happens with
the island model where data store access is limited to the migration phase only. One av-
enue for future work is to evaluate the improvements in performance when tuning the
island model specific configuration parameters, such as the migration intervals (Mam-
brini and Sudholt, 2015), using Hadoop MapReduce. We also aim to compare our results
with the theoretical models for GAs parallelisation proposed in the literature (Cantú-
Paz and Goldberg, 1999; Lässig and Sudholt, 2014), adapting them to consider the effects
of Hadoop MapReduce.

Regarding the global model, a way to improve the execution time could be the
reduction of the data transmitted during the distribution of computational load. For

Evolutionary Computation Volume xx, Number x 29

evco_a_00213https: doi.org/
2017 by

F. Ferrucci, P. Salza, and F. Sarro

instance, by providing the driver of an individual’s registration capability, once the
fitness evaluation had completed, the output could be reduced to the fitness values only
instead of transferring the complete chromosomes. Unfortunately, the serial nature of
Hadoop MapReduce requires the use of syncronisation barrier, that is, waiting for other
parallel work completion, thus not allowing the global model to take full advantage of
Hadoop MapReduce except for the case of intensive fitness evaluation work. As for the
grid model, we placed a syncronisation barrier in the driver, as suggested by Di Mar-
tino et al. (2013). A substantial simplification of the communication could be applied
by making the execution of neighbourhoods evolution entirely independent through-
out all the generations. We did not exploit this option because we were interested in
providing a flexible solution, allowing us to define and use different strategies for the
resolution of GAs in the form of a framework. It is on our future agenda to implement
and study these improvements also for the global and grid models.

References

Arcuri, A., and Briand, L. (2011). A practical guide for using statistical tests to assess random-
ized algorithms in software engineering. In ACM/IEEE International Conference on Software
Engineering, pp. 1–10.

Bowes, D., Hall, T., Harman, M., Jia, Y., Sarro, F., and Wu, F. (2016). Mutation-aware fault pre-
diction. In ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 330–
341.

Cantú-Paz, E., and Goldberg, D. E. (1999). On the scalability of parallel genetic algorithms. Evo-
lutionary Computation, 7(4):429–449.

Chidamber, S. R., and Kemerer, C. F. (1994). A metrics suite for object oriented design. IEEE Trans-
actions on Software Engineering, 20(6):476–493.

Conover, W. J. (1999). Practical nonparametric statistics. 3rd ed. New York: John Wiley & Sons.

Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Sarro, F., and Mendes, E. (2010). How effec-
tive is Tabu search to configure support vector regression for effort estimation? In Interna-
tional Conference on Predictive Models in Software Engineering, Article No. 4.

Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Sarro, F., and Mendes, E. (2013). Using Tabu
search to configure support vector regression for effort estimation. Empirical Software Engi-
neering, 18(3):506–546.

D’Ambros, M., Lanza, M., and Robbes, R. (2012). Evaluating defect prediction approaches:
A benchmark and an extensive comparison. Empirical Software Engineering, 17(4):531–
577.

Dean, J., and Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Com-
munications of the ACM, 51(1):107–113.

Di Geronimo, L., Ferrucci, F., Murolo, A., and Sarro, F. (2012). A parallel genetic algorithm based
on Hadoop MapReduce for the automatic generation of JUnit test suites. In IEEE International
Conference on Software Testing, Verification and Validation, pp. 785–793.

Di Martino, S., Ferrucci, F., Gravino, C., and Sarro, F. (2011). A genetic algorithm to configure
support vector machines for predicting fault-prone components. In International Conference
on Product-Focused Software Process Improvement, pp. 247–261.

Di Martino, S., Ferrucci, F., Maggio, V., and Sarro, F. (2013). Towards migrating genetic algorithms
for test data generation to the cloud. In Software Testing in the Cloud: Perspectives on an Emerg-
ing Discipline, pp. 113–135.

30 Evolutionary Computation Volume xx, Number x

evco_a_00213https: doi.org/
2017 by

Using Hadoop MapReduce for PGAs

Fazenda, P., McDermott, J., and O’Reilly, U.-M. (2012). A library to run evolutionary algorithms
in the cloud using MapReduce. In European Conference on Applications of Evolutionary Compu-
tation, pp. 416–425.

Fenton, N. E., and Neil, M. (1999). A critique of software defect prediction models. IEEE Transac-
tions on Software Engineering, 25(5):675–689.

Ferrucci, F., Kechadi, M.-T., Salza, P., and Sarro, F. (2013). A framework for genetic algorithms
based on Hadoop. Computing Research Repository. abs/1312.0086.

Ferrucci, F., Salza, P., Kechadi, M.-T., and Sarro, F. (2015). A parallel genetic algorithms framework
based on Hadoop MapReduce. In ACM/SIGAPP Symposium on Applied Computing, pp. 1664–
1667.

Ferrucci, F., Salza, P., and Sarro, F. (2016). Using Hadoop MapReduce for parallel genetic algo-
rithms: A comparison of the global, grid and island models—Appendix. Retrieved from
https://doi.org/10.6084/m9.figshare.5091898

Fu, W., Menzies, T., and Shen, X. (2016). Tuning for software analytics: Is it really necessary?
Information and Software Technology, 76:135–146.

García-Valdez, M., Trujillo, L., Merelo Guervós, J. J., Fernandez de Vega, F., and Olague, G. (2015).
The EvoSpace model for pool-based evolutionary algorithms. Journal of Grid Computing,
13(3):329–349.

Gondra, I. (2008). Applying machine learning to software fault-proneness prediction. Journal of
Systems and Software, 81(2):186–195.

Hall, T., Beecham, S., Bowes, D., Gray, D., and Counsell, S. (2012). A systematic literature review
on fault prediction performance in software engineering. IEEE Transactions on Software En-
gineering, 38(6):1276–1304.

Hall, T., and Bowes, D. (2012). The state of machine learning methodology in software fault
prediction. In IEEE International Conference on Machine Learning and Applications, pp. 308–
313.

Harman, M., Islam, S., Jia, Y., Minku, L., Sarro, F., and Srivisut, K. (2014). Less is more: Temporal
fault predictive performance over multiple Hadoop releases. In International Symposium on
Search Based Software Engineering, pp. 240–246.

Hashem, I. A. T., Anuar, N. B., Gani, A., Yaqoob, I., Xia, F., and Khan, S. U. (2016). MapReduce:
Review and open challenges. Scientometrics, 109(1):389–422.

Huang, D.-W., and Lin, J. (2010). Scaling populations of a genetic algorithm for job shop schedul-
ing problems using MapReduce. In IEEE International Conference on Cloud Computing Tech-
nology and Science, pp. 780–785.

Jin, C., Vecchiola, C., and Buyya, R. (2008). MRPGA: An extension of MapReduce for parallelizing
genetic algorithms. In IEEE International Conference on E-Science, pp. 214–221.

Johar, F. M., Azmin, F. A., Suaidi, M. K., Shibghatullah, A. S., Ahmad, B. H., Salleh, S. N., Aziz,
M. Z. A. A., and Shukor, M. M. (2013). A review of genetic algorithms and parallel genetic
algorithms on graphics processing unit (GPU). In IEEE International Conference on Control
System, Computing and Engineering, pp. 264–269.

Jureczko, M., and Madeyski, L. (2010). Towards identifying software project clusters with regard
to defect prediction. In International Conference on Predictive Models in Software Engineering,
pp. 1–10.

Khalid, N. E. A., Fadzil, A. F. A., and Manaf, M. (2013). Adapting MapReduce framework for
genetic algorithm with large population. In IEEE Conference on Systems, Process & Control,
pp. 36–41.

Evolutionary Computation Volume xx, Number x 31

evco_a_00213https: doi.org/
2017 by

F. Ferrucci, P. Salza, and F. Sarro

Knysh, D. S., and Kureichik, V. M. (2010). Parallel genetic algorithms: A survey and problem state
of the art. Journal of Computer and Systems Sciences International, 49(4):579–589.

Lässig, J., and Sudholt, D. (2014). General upper bounds on the runtime of parallel evolutionary
algorithms. Evolutionary Computation, 22(3):405–437.

Luque, G., and Alba, E. (2011). Parallel genetic algorithms: Theory and real world applications. Studies
in Computational Intelligence, vol. 367.

Malhotra, R. (2015). A systematic review of machine learning techniques for software fault pre-
diction. Applied Soft Computing, 27:504–518.

Mambrini, A., and Sudholt, D. (2015). Design and analysis of schemes for adapting migration
intervals in parallel evolutionary algorithms. Evolutionary Computation, 23(4):559–582.

Menzies, T., Krishna, R., and Pryor, D. (2016). The Promise Repository of Empirical Software
Engineering Data. Retrieved from http://openscience.us/repo

Merelo Guervós, J. J., Mora García, A. M., Fernandes, C. M., and Esparcia-Alcázar, A. I. (2012).
SofEA, a pool-based framework for evolutionary algorithms using CouchDB. In Genetic and
Evolutionary Computation Conference (GECCO), pp. 109–116.

Ostrand, T. J., and Weyuker, E. J. (2007). How to measure success of fault prediction models. In
International Workshop on Software Quality Assurance, pp. 25–30.

Polato, I., Ré, R., Goldman, A., and Kon, F. (2014). A comprehensive view of Hadoop research: A
systematic literature review. Journal of Network and Computer Applications, 46:1–25.

Salza, P., Ferrucci, F., and Sarro, F. (2016a). Develop, deploy and execute parallel genetic algo-
rithms in the cloud. In Genetic and Evolutionary Computation Conference (GECCO), pp. 121–
122.

Salza, P., Ferrucci, F., and Sarro, F. (2016b). Elephant56: Design and implementation of a parallel
genetic algorithms framework on Hadoop MapReduce. In Genetic and Evolutionary Compu-
tation Conference (GECCO), pp. 1315–1322.

Sarro, F., Di Martino, S., Ferrucci, F., and Gravino, C. (2012). A further analysis on the use of
genetic algorithm to configure support vector machines for inter-release fault prediction. In
ACM/SIGAPP Symposium on Applied Computing, pp. 1215–1220.

Sherry, D., Veeramachaneni, K., McDermott, J., and O’Reilly, U.-M. (2012). Flex-GP: Genetic pro-
gramming on the cloud. In European Conference on Applications of Evolutionary Computation,
pp. 477–486.

Song, L., Minku, L. L., and Yao, X. (2013). The impact of parameter tuning on software effort es-
timation using learning machines. In International Conference on Predictive Models in Software
Engineering, p. 9.

Sudholt, D., Kacprzyk, J., and Pedrycz, W. (2015). Parallel evolutionary algorithms. In Springer
handbook of computational intelligence, pp. 929–959. New York: Springer.

Tantithamthavorn, C., McIntosh, S., Hassan, A. E., and Matsumoto, K. (2016). Automated pa-
rameter optimization of classification techniques for defect prediction models. ACM/IEEE
International Conference on Software Engineering, pp. 321–332.

Veeramachaneni, K., Arnaldo, I., Derby, O., and O’Reilly, U.-M. (2015). FlexGP: Cloud-based en-
semble learning with genetic programming for large regression problems. Journal of Grid
Computing, 13(3):391–407.

Verma, A., Llorà, X., Goldberg, D. E., and Campbell, R. H. (2009). Scaling genetic algorithms using
MapReduce. In International Conference on Intelligent Systems Design and Applications, pp. 13–
18.

32 Evolutionary Computation Volume xx, Number x

evco_a_00213https: doi.org/
2017 by

Using Hadoop MapReduce for PGAs

Witten, I. H., and Frank, E. (2005). Data mining: Practical machine learning tools and techniques.
Burlington, MA: Morgan Kaufmann.

Yoo, S., Harman, M., and Ur, S. (2011). Highly scalable multi objective test suite minimisation
using graphics card. In International Symposium on Search Based Software Engineering, pp. 219–
236.

Zheng, L., Lu, Y., Ding, M., Shen, Y., Guoz, M., and Guo, S. (2011). Architecture-based performance
evaluation of genetic algorithms on multi/many-core systems. IEEE International Conference
on Computational Science and Engineering, 321–334.

Evolutionary Computation Volume xx, Number x 33

evco_a_00213https: doi.org/
2017 by

