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Summary 

Polygenic risk scores obtained as a weighted sum of associated variants can be used to 

explore association in additional data sets and to assign risk scores to individuals. The 

methods used to derive polygenic risk scores from common SNPs are not suitable for 

variants detected in whole exome sequencing studies. Rare variants which may have major 

effects are seen too infrequently to judge whether they are associated and may not be 

shared between training and test subjects. A method is proposed whereby variants are 

weighted according to their frequency, their annotations and the genes they affect. A 

weighted sum across all variants provides an individual risk score. Scores constructed in this 

way are used in a weighted burden test and are shown to be significantly different between 

schizophrenia cases and controls using a five-way cross validation procedure. This 

approach represents a first attempt to summarise exome sequence variation into a summary 

risk score, which could be combined with risk scores from common variants and from 

environmental factors. It is hoped that the method could be developed further. 
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Introduction 

Polygenic scores have found widespread application since they were used in a GWAS of 

schizophrenia (Purcell et al., 2009). In this study, very large numbers of variants showing 

weak association signals in a training set of cases with schizophrenia and controls were 

used to produce a score which was higher in a test set of cases with schizophrenia than 

controls and was also increased in subjects with bipolar disorder. As noted previously, the 

two main functions of the polygenic score are to demonstrate that variants selected from the 

training set are associated with the trait in the test set and to provide an overall assessment 

of an individual’s genetic risk (Dudbridge, 2013). The score consists of a weighted sum of 

the scores of the variant alleles possessed by the test subject. Different methods can be 

used to select the variants to be included and to assign their weights (Euesden et al., 2015). 

A key feature is that a large number variants is used and it is understood that many will not 

in fact be truly associated with the trait. As the sample size for the training set increases, so 

does the power to distinguish the truly associated variants and hence the polygenic score 

can become a more accurate determinant of genetic risk. 

Recently, association studies have been carried out involving whole exome sequencing of 

thousands of subjects. For non‑Mendelian diseases it is expected that there will be 

contributions to genetic risk from a number of different loci but it is not straightforward to 



obtain polygenic scores using a process similar to that which is appropriate for GWAS SNPs. 

There are several of reasons for this. One is that exome sequencing detects a very large 

number of variants and that rare variants tend to have weaker LD relationships than 

common SNPs, meaning that the number of independent signals is greater. However the 

main problem is that very rare variants may have major effects on risk but that they are so 

infrequent that there is very little information as to which variants are individually associated. 

A recent exome‑sequencing study of schizophrenia concluded that singleton variants, 

observed only in one study subject and never in ExAC, did have major effects (Genovese et 

al., 2016). One could never hope to derive a polygenic score using such variants because 

one could never know if a specific singleton variant had an effect or not and even if it did one 

would not expect to see it in a test subject. Another difference between GWAS SNPs and 

exome sequence variants is that the latter have a higher intrinsic information content. Some 

GWAS SNPs may be identified as being associated with gene expression but for many 

SNPs one can make only weak inferences about likely effect and one may not even know 

which gene is functionally relevant. However, an exome variant can be annotated and one 

can make reasonable predictions about which gene is likely to be affected and the nature of 

the effect. It would be desirable to incorporate such information into a score designed to 

reflect genetic risk. 

Overall, it seems that a polygenic risk score derived from exome sequence variants should 

be able to utilise variants which have not been seen in the training set but which are, in 

some defined way, similar to them. It will be expected that the risk score will make use of 

information about the likely effect of the variant and about the gene or type of gene which it 

affects. Such a scheme was devised and applied to the schizophrenia case‑control dataset. 

Methods 

Exome sequence data 

The data analysed consisted of whole exome sequence variants downloaded from dbGaP 

from a Swedish schizophrenia association study containing 4968 cases and 6245  controls 

(Genovese et al., 2016). The original analysis demonstrated that there was an excess of 

damaging ultra‑rare variants among cases, concentrated in particular gene sets. This 

sample included the 2545 cases and 2545 controls used for previously reported exome 

sequence association studies (Curtis, 2016, 2013; Purcell et al., 2014). The dataset was 

managed and annotated using the GENEVARASSOC program which accompanies 

SCOREASSOC (https://github.com/davenomiddlenamecurtis/geneVarAssoc). Version hg19 

of the reference human genome sequence and RefSeq genes were used to select variants 

on a gene‑wise basis.  

A number of QC processes were applied. Variants were excluded if they did not have a 

PASS in the information field and individual genotype calls were excluded if they had a 

quality score less than 30. Variants were also excluded if there were more than 10% of 

genotypes missing or of low quality in either cases or controls or if the heterozygote count 

was smaller than both homozygote counts in both cohorts. A preliminary weighted burden 

test analysis using variants with MAF<0.01 was carried out using SCOREASSOC (Curtis, 

2012). This identified several genes which had a significant excess of rare, functional 

variants in cases but on closer examination it emerged that these results were driven by 

variants which were reported in ExAC to have a markedly different allele frequency in 

https://github.com/davenomiddlenamecurtis/geneVarAssoc


Finnish as opposed to non‑Finnish Europeans (Lek et al., 2016). In order to address this 

issue we set out to identify those subjects who appeared to have a substantial Finnish 

component to their ancestry. To do this, for each subject the genotype of the variant with the 

highest MAF in each of 18349 genes was used to calculate an odds ratio based on the 

Finnish versus non‑Finnish European allele frequencies presented in ExAC r.03. The logs of 

these odds ratios were then summed to produce a measure denoted as the F score. The 

distributions of the F scores in cases and controls were plotted and each distribution was 

mostly normally distributed but had an extended right tail, indicating that a proportion of both 

cases and controls were likely to have substantial Finnish ancestry. The right tail was larger 

in the cases and overall the cases had significantly higher F scores than controls (t=16.4, 

df=11212, p=2.2e‑16). Overall the mean F score was ‑13.0 with SD 24.3. A cut‑off value of 

10 was chosen to exclude the right tails, and subjects with a higher score were removed, 

comprising 743 cases and 411 controls. When the gene‑wise weighted burden tests were 

repeated on the reduced sample of 4225 cases and 5834 controls the previous anomalous 

results did not recur and the tests generally conformed with the expected null hypothesis 

distribution. It thus appeared that this process had produced a more homogeneous dataset 

which was used in the subsequent analyses. 

Risk score overview 

In order to construct an exome‑wide risk score the aim was to follow the approach 

implemented in SCOREASSOC and provide a weight for each variant based on its 

frequency and predicted function (Curtis, 2012). Thus, subjects with more rare, functional 

variants would receive higher scores. A gene‑wise risk score is derived as the sum of the 

variant‑wise weights, each multiplied by the number of alleles of the variant which a given 

subject possesses. If a single set of weights is used then this approach produces a test for 

association in which the asymptotic p values conform closely with those obtained from 

permutation testing (Curtis, 2016). An exome‑wide risk score can be derived as the weighted 

sum of gene‑wise scores, with some genes being weighted more highly than others. 

Potentially such a model has a large number of parameters because a different weight can 

be assigned to each variant and to each gene. 

Variant weighting 

Each variant was annotated using VEP, PolyPhen and SIFT (McLaren et al., 

2016)(Adzhubei et al., 2013; Kumar et al., 2009). VEP produces annotations for 36 different 

possible types of variant. In order to reduce the parameter space, each variant type was 

characterised according to whether each of seven attributes was applicable to it, these 

attributes being: possibly having a non‑coding effect through being in a regulatory region or 

intronic; in UTR; in coding region; nonsynonymous; loss of function; possibly or probably 

damaging according to PolyPhen; deleterious according to SIFT. Table 1 shows the list of 

VEP annotation types along with which attributes would be applicable to each. Each attribute 

would be assigned a weight and then the weight for a particular variant would consist of the 

sum of weights of its applicable attributes. A background weight for the attribute "any variant" 

would also be assigned, meaning that in all a total of eight attribute weights could be used to 

generate functional weights for all variants. So, for example, the weight for a variant 

annotated as 5' UTR would be the sum of three weights for any variant, possible non‑coding 

effect and UTR. 



For a general application, the weight for each variant would also be multiplied by a factor 

based on its frequency, with rarer variants being given higher weight. However previous 

research has made it clear that there are no common variants with a substantial effect on 

risk of schizophrenia and hence it was decided to restrict attention to variants with MAF of 

0.01 or less in either cases or controls. In these circumstances the weighting scheme based 

on frequency as implemented in SCOREASSOC would have had a negligible effect in terms 

of distinguishing between rare and extremely rare variants and so no frequency‑based 

weighting was applied. Applying the above QC processes and allele frequency restriction 

yielded genotypes for 1,177,741 variants in 19,627 genes. 

Gene weighting 

In principle, with improved knowledge about the genetic contribution to schizophrenia risk it 

would be possible to assign weights to individual genes. At present it is not clear which 

individual genes are involved or the magnitude of their associated risks. However previous 

work has proposed sets of genes which may be enriched for rare, functional variants in 

schizophrenia cases (Curtis, 2016; Genovese et al., 2016; Purcell et al., 2014). The lists of 

genes for the gene sets tested for enrichment in the original analysis of this dataset are 

shown in Table 2. In addition to these, a set was created of which all genes were a member. 

Rather than assign a weight to each gene separately, a weight could be assigned to each 

gene set and then the weight for a gene could be defined as the sum of the weights of all the 

gene sets of which it was a member.  

Matrix notation 

With this approach in mind, an overall risk score can be calculated as the product of a 

number of matrices, as follows: 

A is a matrix which defines which attributes are possessed by each variant. It has columns 

equal to NVar, the number of variants, and rows equal to NAttrib, the number of attributes, here 

8. Aij is 1 or 0, depending on whether the jth variant has the ith attribute. 

F is diagonal matrix with NVar rows and columns. The diagonal elements consist of weights 

derived from the allele frequency so that variants with high MAF have a weight close to 1 

and rare variants have a weight close to an arbitrarily chosen weighting factor, as 

implemented in SCOREASSOC and as described previously (Curtis, 2012). As stated 

above, this weighting was not applied for the current analyses, equivalent to setting all 

diagonal elements to 1. 

I is the indicator matrix which codes the subject genotype at each variant. It is a diagonal 

matrix with NVar rows and columns and the diagonal elements consist of 0, 1 or 2 depending 

on how many copies of the minor allele of the variant the subject possesses. If a subject had 

an unknown genotype they would be assigned a value of 2xMAF. 

G is a matrix with NVar rows and number of columns equal to NGene, the number of genes 

tested. Gij is 1 if the ith variant is in the jth gene, with the other elements of the row being 0. 

Variants were extracted and dealt with one gene at a time and each variant was assigned to 

the gene for which it was extracted. Since for each gene all variants were extracted between 

the transcription start and end sites, a small number of variants in overlapping genes would 



have been extracted twice and would be dealt with as two different variants, each assigned 

to a different gene.  

S is a matrix with NGene rows and number of columns equal to NSet, the number of gene sets 

used. Sij is 1 if the ith gene is a member of the jth gene set and 0 otherwise. Since a gene 

can be a member of more than 1 set, there could be several 1 values in each row.  

WAtt is a row vector with NAtt elements providing the weights for each attribute. 

WSet is column vector with NSet elements providing the weights for each gene set. 

Using this notation, the overall risk score R for a subject is given by: 

R = WAtt x A x F x I x G x S x WSet 

Only the values for elements of I differ between subjects. 

In order to allow rapid recalculation of the risk score for different values of the weights for the 

gene sets and variant attributes, it is helpful to calculate for each subject an intermediate 

matrix D with NSet columns and NAtt rows which contains a summary of aggregate scores by 

gene set and attribute so that we have: 

D = A x F x I x G x S 

R = WAtt x D x WSet 

Practical implementation 

In order to implement this system in practice the following procedure was applied. VEP, SIFT 

and PolyPhen annotations were obtained for all the variants in the case‑control VCF file. 

GENEVARASSOC was used to extract the genotypes for variants one gene at a time and 

used the annotations to provide a code for each variant consisting of a binary number 

denoting the attributes which were applicable to that variant. That is, attributes were 

numbered consecutively from 1 and if attribute i was applicable to the variant then one would 

add 2i to the code. Using this scheme, a variant with the second and third attributes would 

have a weight of 110 in binary notation, i.e. 6. Next, a custom‑written program was used to 

produce aggregate attribute scores from the variant scores by decoding the weight to 

determine which attributes were applicable to each variant. At this stage, weighting for 

frequency could also have been applied. Using the above notation, this was equivalent to 

obtaining A x F x I for each subject and each gene. Finally, these attribute scores for each 

gene were combined into attribute scores for each gene set based on which genes were 

members of each set This resulted in a condensed dataset consisting of, for each subject, 

the aggregate scores for each attribute and gene set, denoted D above.  

As described previously, a weighted burden test can be carried out by performing a two 

sample t test to compare the risk score, R, between cases and controls (Curtis, 2012). In 

order to find a set of weights which best distinguishes cases from controls we can simply 

seek to maximise this t statistic. A program was written which would:  

(1) Read in the subject‑wise scores aggregated by attribute and gene set along with a 

set of weights for attributes and gene sets;  

(2) calculate the t statistic;  



(3) maximise the t statistic over different values for the weights using Powell's conjugate 

direction method, which does not require that a function be differentiable (Powell, 

1964).  

Powell's method was implemented using the dlib library (King, 2009). 

Model-fitting and cross-validation 

Initially, maximisation of the t statistic was carried out for the whole dataset for all 8 attribute 

weights and 36 gene set weights in order to find the best‑fitting values. For each weight a "1 

t confidence interval" was then defined as the range of values which could be assigned to 

that weight, keeping all other weights fixed, which would yield a t statistic no less than the 

maximum t statistic minus 1.  

To find a good‑fitting minimal set of weights a step‑wise procedure was followed. The weight 

for each attribute or gene set in turn was set to 0 and the t statistic was recalculated. If any 

produced a reduction in the t statistic to less than 1 below the original maximum the weight 

producing the smallest reduction was fixed at 0 and then the maximisation was repeated 

again over all the surviving weights. 

In order to assess the statistical significance of the fitted risk scores, a five‑way 

leave‑one‑out cross‑validation procedure was used. Maximisation to find the best‑fitting 

weights was carried out in a training four‑fifths of the dataset and then risk scores were 

calculated using these weights in the remaining test fifth. In addition, the t statistic which 

would have been obtained in the entire sample using these weights was calculated. This 

was repeated five times. The risk scores from each test fifth were then standardised by 

subtracting the mean and dividing by the standard deviation and then all five were combined 

and a t test was performed on the standardised risk scores for the whole sample.  

In order to assess the statistical significance of fitted risk scores derived from a minimal set 

of weights the step‑wise process described above was carried for each four‑fifths and then 

the weight obtained were used to calculate risk scores in the remaining fifth. Again, the 

combined, standardised risk scores obtained from the test subjects were then compared 

using a t test.  

The ability of the standardised risk scores in the test subjects to distinguish cases from 

controls was by calculating the receiver operating characteristic curve using the pROC 

package (Robin et al., 2011). 

The results are affected by the relative rather than absolute values of the weights, so in 

order to aid comparison of the results in the tables all the fitted weights were scaled so that 

the average magnitude for gene set weights and for the attribute weights would be 10. 

Results 

An unweighted analysis was performed by providing a weight of 1 for any gene and any 

variant with all other weights set to 0 and this produced a t statistic of 3.1. Fitting all gene set 

and attribute weights produced a maximised t statistic of 9.5 with the fitted values shown in 

Table 3. As can be seen, many weights had a wide confidence interval which included 0 and 

hence could be taken not to materially contribute to the fit. Applying the stepwise procedure 

to retain only important weights resulted in the minimal set also shown in Table 3. This 



includes weights for 8 out of the 32 gene sets and 3 of the attributes and with this reduced 

parameter set it was possible to produce a maximised t statistic of 8.6. The attributes with 

positive weights in this model were any variant, PolyPhen damaging and SIFT deleterious. 

The weights for both nonsynonymous and LOF could be set to 0, presumably because 

variants with this consequence could be adequately weighted using the SIFT and PolyPhen 

attributes. 

The weights fitted for each of the five training sets are shown in Table 4. Each set consists of 

a different four fifths of the dataset and hence they overlap with each other and the fitted 

weights they yield are similar though not identical. When the fitted weights were used to 

calculate a t statistic in the whole sample, the different training sets produced values ranging 

from 8.4 to 9.2, showing that each set of weights represented a solution reasonably close to 

the best attainable. The scores for the test samples in each fifth not used for training were 

standardised and combined and then a t test was performed comparing scores in cases and 

controls. This produced a t statistic of 3.3 with a p value of 0.001, demonstrating that the risk 

scores which are produced are indeed associated with risk of schizophrenia and are not 

simply an artefact of the fitting process. 

The fitted weights produced by applying the step‑wise procedure to each training set are 

shown in Table 5. It can be seen that there is considerable variation in the parameters 

retained. However the t statistics obtained for the whole sample using these weights varied 

between 7.4 and 8.3, showing that the different combinations of parameters selected were 

all able to produce risk scores which differed between cases and controls. When the 

standardised scores from the cases and controls not used for training were compared, the 

results were significant with a t statistic of 3.4 and a p value of 0.0006. Using either the full 

set of parameters or the minimal set, the ability of the risk score to distinguish cases from 

controls was extremely modest, with an area under the curve of only 0.52 in both situations. 

Thus, the minimal parameter sets found by the stepwise procedure result in risk scores 

which differ between cases from controls to a similar extent to the full set. The SIFT 

deleterious attribute is given a strong positive weight by all five training sets while PolyPhen 

damaging is used in two and LOF in one. The attribute for non‑coding effect has a small 

positive weight in three of the training sets. With respect to gene sets, in all training sets 

x.excape is given a large positive weight and pLI09 a small positive weight. These are the 

sets of genes which escape X inactivation and genes which are LOF intolerant. In four out of 

five training sets genes which are close to GWAS hits are given a strongly positive weight. 

Some gene sets are given negative weights. In four of the training sets dd, genes associated 

with developmental disability, is given a strongly negative weight and in two training sets the 

combined X‑linked disability is given a positive weight but subsets of X‑linked disability 

genes are weighted negatively. One way to interpret such findings is to view negative 

weights as encoding a "but not if " relationship. For example, "escapes X inactivation but not 

if associated with developmental disability". Of note is that there was no consistent retention 

of any of the gene sets which might be viewed as more specifically implicated in 

schizophrenia, such a de novo variants, or related to biology, such as neuronal, 

post‑synaptic density or NMDA receptor genes.   

Discussion 



The method presented here represents a first attempt to combine information from 

exome‑wide variants into a single risk score. The association of the score with the trait in test 

subjects is statistically significant although with minimal effect size. One possible explanation 

for this is that the gene sets used provide a poor categorisation of which genes do and do 

not influence risk of schizophrenia. If this is the case then one would hope that performance 

of the method would improve as more knowledge is accumulated to lead to better definition 

of risk genes. However an alternative explanation would be that some of the gene sets do 

indeed consist mostly of genes influencing risk but that the variation within these genes is so 

widespread that only a small minority of variants have an effect and that the scheme used 

here to categorise variant effects is unable to distinguish them. Again, as additional 

knowledge emerges it might be possible to devise improved classification schemes which 

would feed into an improved weighting system. 

The approach presented does provide a framework to systematically explore different kinds 

of contribution to risk. Given the complexity of the genetic architecture of schizophrenia, the 

sample sizes used here are too small for definite conclusions to be drawn but the results do 

illustrate the kind of inferences that could be made. For example, the results suggest that the 

SIFT prediction makes an important contribution to risk score but that other classifications do 

not provide much additional information. Likewise, the results suggest that genes which are 

loss of function intolerant, escape X inactivation or are implicated by a GWAS may be 

relevant to risk. However once these factors are taken into account the classifications which 

were chosen to reflect biological function do not appear to improve performance. The fact 

that some intellectual disability gene sets were given positive weights while others, including 

the genes for developmental disorder, were given negative weights hints at the notion that a 

subset of these genes influence schizophrenia risk and it is possible that one could use the 

risk score to explore this further. In general, the weighting of gene sets and variant attributes 

allows for a formal method to produce a summary risk score from all exome variants and to 

systematically explore the performance of different weighting schemes. 

The fact that all variant attributes and gene sets are considered jointly may provide this 

approach with some advantage of methods which dichotomise variants in different ways. 

There will be considerable sharing of attributes across variants and of genes across gene 

sets and the fitting method may allow better discrimination of the relevant influences on risk. 

For example, if two gene sets overlap then in a dichotomised analyses variants in both sets 

may show enrichment in cases. However if one set only shows enrichment by virtue of the 

fact that it contains many genes from the other set but provides no independent effect of its 

own then the fitted weight will tend to be zero. On the other hand, if both gene sets make an 

independent contribution then they may each receive a positive weight. 

A risk score from exome variants could be combined with a polygenic risk score from 

common SNPs. It could also be combined with risk scores derived from identified rare 

variants which have been shown to have a major effect on risk, such as specific copy 

number variants and gene mutations (Raychaudhuri et al., 2010; Singh et al., 2016). A 

recent study of autism has demonstrated that in subjects who possess rare variants having 

major effects on risk for autism, common variants can increase this risk further (Weiner et 

al., 2017). Likewise, environmental factors could be incorporated to provide an overall 

assessment of disease risk. 



The method as presented assumes that the cases and controls are drawn from the same 

population and does not include population principal components as covariates. Because it 

does not study individual variants but types of variant it may be relatively robust to 

differences in allele frequencies between sub‑populations. On the other hand, if there were 

among cases an over‑representation of a sub‑population in which there was a higher 

frequency in general of rare variants then this would produce false positive results. Hence it 

seemed important to exclude all subjects which appeared to have a substantial contribution 

of Finnish ancestry since otherwise the excess of Finnish alleles among cases would have 

been problematic. Given that the contribution to risk score seemed to be confined to 

particular gene sets and variant types, it seems that this procedure did result in an 

acceptably homogeneous dataset. 

The measure chosen to distinguish cases from controls was a weighted sum which could be 

used to obtain a t statistic. Other measures might be used, for example a log odds ratio 

which would fit into a logistic regression framework. The t statistic is very quick to calculate, 

which makes it attractive to use in the context of a maximisation process, and the risk score 

is simply a measure which increases with higher risk but which is not intended to provide a 

direct estimate of the actual quantitative risk of developing disease. The parameterisation of 

the model assumes that each type of variant affects each type of gene set equally. However 

more complex models could be developed, for example that loss of function variants in one 

set of genes increased risk but that for a different set of genes regulatory variants tended to 

be more important. Such models could be explored through machine learning techniques. 

Once a model had been developed using the general gene sets and variant types described 

above, it would be possible to try adding in additional genes or more specific gene sets in a 

systematic way in an effort to discover if any produced a significant improvement in the 

ability of the score to distinguish cases from controls. Such investigations will be the subject 

of subsequent work. 

The scheme proposed here represents a starting point for a method to summarise the 

genetic risk contribution of variation at the level of the whole exome. As it stands, it is able to 

produce risk scores which are significantly different between schizophrenia cases and 

controls and hopefully its performance could be improved with information from additional 

datasets, refinement of gene sets and with further modifications to the procedure. In principle 

it could be applied to any phenotype so that sets of relevant genes and the variants within 

them would be assigned weights designed to produce a score which correlated as closely as 

possible with the phenotype in question. 

 

Software availability 

Source code of programs to calculate and optimise risk scores is available from 

https://github.com/davenomiddlenamecurtis/scoreassoc. 
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Table 1. Attributes ascribed to VEP annotation types. Each 1 indicates that the relevant 

attribute was assigned to the annotation. Three additional attributes were used. All variants 

were considered to have the "Any variant" attribute. Independent of their VEP annotation, 

variants could be classified as "Deleterious" by SIFT and variants could be classified as 

"Possibly or probably damaging" by PolyPhen. Thus each variant could be assigned up to 

eight annotations. 

VEP 

Possible 
non‑coding 
effect UTR Coding Non‑synonymous LOF 

NULL_CONSEQUENCE 
     intergenic_variant 
     feature_truncation 1 

    regulatory_region_variant 1 
    feature_elongation 1 
    regulatory_region_amplification 1 
    regulatory_region_ablation 1 
    TF_binding_site_variant 1 
    TFBS_amplification 1 
    TFBS_ablation 1 
    downstream_gene_variant 1 
    upstream_gene_variant 1 
    non_coding_transcript_variant 1 
    NMD_transcript_variant 1 
    intron_variant 1 
    non_coding_transcript_exon_variant 1 
    3_prime_UTR_variant 1 1 

   5_prime_UTR_variant 1 1 
   mature_miRNA_variant 1 

    coding_sequence_variant 
  

1 

  synonymous_variant 
  

1 
  stop_retained_variant 

  

1 
  incomplete_terminal_codon_variant 

  

1 
  splice_region_variant 

  

1 
  protein_altering_variant 

  

1 1 
 missense_variant 

  

1 1 
 inframe_deletion 

  

1 1 
 inframe_insertion 

  

1 1 
 transcript_amplification 

  

1 1 
 start_lost 

  

1 1 
 stop_lost 

  

1 1 
 frameshift_variant 

  

1 1 1 

stop_gained 
  

1 1 1 

splice_donor_variant 
  

1 1 1 

splice_acceptor_variant 
  

1 1 1 

transcript_ablation 
  

1 1 1 

  



Table 2. Gene sets used in in the original analysis of this dataset which provides a full 

description of their derivation is in the online methods section (Genovese et al., 2016).  The 

lists were obtained directly from the first author. The symbol used is the same as that used 

for the name of the file containing the list. 

Gene set Symbol 

OMIM intellectual disability (Hamosh et al., 2005) alid 

Expression specific  to brain (Fagerberg et al., 2014) brain 

Bound by CELF4 (Wagnon et al., 2012) celf4 

Missense‑constrained (Samocha et al., 2014) constrained 

Involved in developmental disorder (Deciphering Developmental 
Disorders Study, 2017) 

dd 

De novo variants in autism (Fromer et al., 2014) denovo.aut 

De novo variants in coronary heart disease (Fromer et al., 2014) denovo.chd 

De novo variants in epilepsy (Fromer et al., 2014) denovo.epi 

De novo duplications in ASD (Kirov et al., 2012) denovo.gain.asd 

De novo duplications in bipolar disorder (Kirov et al., 2012) denovo.gain.bd 

De novo duplications in schizophrenia (Kirov et al., 2012) denovo.gain.scz 

De novo variants in intellectual disability (Fromer et al., 2014) denovo.id 

De novo deletions in ASD (Kirov et al., 2012) denovo.loss.asd 

De novo deletions in bipolar disorder (Kirov et al., 2012) denovo.loss.bd 

De novo deletions in schizophrenia (Kirov et al., 2012) denovo.loss.scz 

De novo variants in schizophrenia  (Fromer et al., 2014) denovo.scz 

Bound by FMRP (Darnell et al., 2011) fmrp 

Implicated by GWAS (Schizophrenia Working Group of the 
Psychiatric Genomics Consortium, 2014) 

gwas 

Targets of microRNA‑137 (Robinson et al., 2015) mir137 

Expression specific to neurons (Cahoy et al., 2008) neurons 

NMDAR and ARC complexes (Kirov et al., 2012) nmdarc 

Loss‑of‑function intolerant (Lek et al., 2016) pLI09 

PSD‑95 (Bayés et al., 2011) psd95 

Bound by RBFOX 1 or 3 (Weyn-Vanhentenryck et al., 2014) rbfox13 

Bound by RBFOX 2 (Weyn-Vanhentenryck et al., 2014) rbfox2 

Synaptic (Pirooznia et al., 2012) synaptome 

Escape X‑inactivation (Cotton et al., 2013) x.escape 

X‑linked intellectual disability, Genetic Services Laboratories of the 
University of Chicago (Gécz et al., 2009; Moeschler, 2008; 
Moeschler et al., 2006; Rauch et al., 2006) 

xlid.chicago 

X‑linked intellectual disability, Greenwood Genetic Centre 
(Moeschler et al., 2006) 

xlid.gcc 

X‑linked intellectual disability, OMIM (Hamosh et al., 2005) xlid.omim 

X‑linked intellectual disability (combined) xlid 

 

  



Table 3. Fitted weights chosen to maximise the t statistic for the risk score to distinguish 

cases from controls using all weights and using a minimal set of weights. The range 

indicates the values that the weight can take without reducing the t statistic to less than the 

maximum achieved minus 1. The minimal set of weights consists of those which are needed 

to produce a t statistic not less than the maximum minus 1. 

 Fitted weights  
(range) 

Minimal fitted 
weights  
(range) 

Gene sets   

alid 10.8  

(‑44.1,71.1) 

0 

brain ‑1.7  

(‑6.6,3.8) 

0 

celf4 ‑4.4  

(‑13.3,5.7) 

0 

constrained 2.4  

(‑12.1,21.5) 

0 

dd ‑44.1  

(‑111.2,9.4) 

‑15.3  

(‑24.8,‑7.6) 

denovo.aut ‑0.1  
(‑4.2,5.2) 

0 

denovo.chd 6.2  
(‑10.3,28.9) 

2.7  
(0.4,5.4) 

denovo.epi 1.2  
(‑14.1,19.3) 

0 

denovo.gain.asd ‑0.0  
(‑10.7,12.3) 

0 

denovo.gain.bd 7.3  
(‑26.8,48.0) 

0 

denovo.gain.scz ‑5.0  
(‑34.9,24.1) 

0 

denovo.id 1.1  
(‑6.2,9.4) 

0 

denovo.loss.asd 2.3  
(‑6.4,13.8) 

0 

denovo.loss.bd ‑7.5  

(‑55.8,52.0) 

0 

denovo.loss.scz 11.5  

(‑16.2,47.6) 

5.2  
(1.1,9.9) 

denovo.scz 0.1  

(‑6.0,6.8) 

0 

fmrp 0.5  

(‑6.2,9.2) 

0 

gwas 26.5  

(‑13.6,84.4) 

13.5  
(7.2,21.4) 

mir137 1.5  

(‑5.0,11.2) 

0 

neurons 2.8  

(‑4.3,13.1) 

0 

nmdarc 9.8  

(‑40.7,74.1) 

0 



pLI09 3.6  

(‑3.3,15.3) 

2.2  
(1.1,3.7) 

psd95 ‑3.6  

(‑55.7,61.5) 

0 

rbfox13 ‑1.6  

(‑8.7,7.3) 

0 

rbfox2 0.6  

(‑6.7,10.1) 

0 

synaptome 3.9  

(‑5.0,17.8) 

1.7  
(0.2,3.4) 

x.escape 40.4  
(5.5,111.5) 

18.5  
(12.6,26.8) 

xlid.chicago ‑70.1  

(‑185.8,42.8) 

‑20.9  

(‑34.8,‑1.4) 

xlid.gcc 1.4  
(‑65.7,74.9) 

0 

xlid.omim ‑17.9  
(‑110.6,77.0) 

0 

xlid 30.1  
(‑23.6,95.6) 

0 

any gene 0.4  
(‑1.1,2.9) 

0 

Variant attributes   

any variant 1.3  
(‑1.8,9.8) 

2.2  
(1.3,3.5) 

non‑coding effect 4.5  
(‑1.1,16.2) 

0 

UTR ‑7.3  

(‑33.4,20.8) 

0 

coding 0.5  

(‑4.0,10.0) 

0 

nonsynonymous ‑0.8  

(‑9.2,18.4) 

0 

LOF 17.9  

(‑52.2,99.2) 

0 

PolyPhen damaging 15.5  

(‑9.2,87.6) 

7.5  
(1.0,16.6) 

SIFT deleterious 32.1  
(2.2,193.2) 

20.3  
(11.2,35.4) 

   

t statistic achieved 9.5 8.6 

 

  



Table 4. Fitted weights chosen to maximise the t statistic in five training sets, each consisting 

of four fifths of the total sample. Also shown is the t statistic which is produced in the whole 

sample using that set of weights.  

 Fitted weights 
1 (range) 

Fitted weights 
2 (range) 

Fitted weights 
3 (range) 

Fitted weights 
4 (range) 

Fitted weights 
5 (range) 

Gene sets      

alid 15.9  

(‑24.2,61.8) 
‑2.3  

(‑114.2,113.8) 

2.5  

(‑48.2,53.8) 
‑4.8  

(‑75.2,64.3) 

23.5  

(‑27.0,82.8) 

brain ‑1.0  

(‑4.9,3.3) 

‑3.9  

(‑10.2,2.2) 

‑0.8  

(‑5.1,4.1) 

‑1.8  

(‑6.1,2.5) 

‑1.4  

(‑6.7,4.9) 

celf4 ‑3.2 
(‑10.1,4.5) 

0.5 
(‑14.4,23.0) 

‑4.6 
(‑12.5,3.9) 

‑1.4 
(‑10.9,10.5) 

‑6.8 
(‑16.5,2.5) 

constrained ‑0.7 
(‑11.6,11.8) 

6.6 
(‑20.5,46.7) 

0.8 
(‑12.8,17.4) 

0.8 
(‑16.3,21.7) 

3.6 
(‑10.7,21.7) 

dd ‑28.8 
(‑76.5,10.3) 

‑42.8 
(‑154.7,63.7) 

‑36.7 
(‑97.8,11.8) 

‑48.3 
(‑128.4,15.6) 

‑48.1 
(‑116.4,7.6) 

denovo.aut ‑1.3  
(‑4.6,2.4) 

1.4  
(‑4.1,8.1) 

‑0.1  
(‑3.8,4.6) 

3.2  
(‑0.5,7.9) 

‑0.4  
(‑4.9,5.3) 

denovo.chd 4.6  
(‑8.1,20.7) 

9.2 
(‑13.3,39.7) 

5.7  
(‑9.2,26.2) 

7.5  
(‑9.0,30.2) 

1.2 
(‑16.5,22.1) 

denovo.epi ‑2.9 
(‑15.2,9.4) 

4.3 
(‑15.2,30.6) 

1.5 
(‑12.6,17.8) 

0.8 
(‑15.3,19.5) 

4.2 
(‑11.7,24.1) 

denovo.gain.asd 1.1  
(‑7.0,10.8) 

‑1.0 

(‑20.5,21.5) 

0.5  
(‑8.6,11.4) 

‑1.0 

(‑13.1,12.9) 

‑1.2 

(‑12.9,11.3) 

denovo.gain.bd 8.1 

(‑18.2,40.2) 

9.9 

(‑44.8,74.0) 

5.9 

(‑25.2,42.2) 

14.2 

(‑15.3,54.1) 
‑13.9 

(‑56.4,23.8) 

denovo.gain.scz ‑7.8 

(‑31.9,13.6) 

‑13.4 

(‑69.3,40.5) 

‑1.0 

(‑26.4,24.2) 

3.3 

(‑24.2,34.6) 
‑1.1 

(‑32.8,29.8) 

denovo.id 0.8  

(‑5.1,7.3) 
‑3.5  

(‑11.6,4.6) 

1.2  

(‑5.7,8.9) 

0.5  

(‑5.6,6.8) 

4.6  

(‑3.7,14.7) 

denovo.loss.asd 1.7  

(‑5.2,10.4) 

2.1 

(‑12.4,21.4) 

1.5  

(‑6.0,11.0) 

1.5  

(‑7.4,13.0) 

1.6  

(‑8.5,13.9) 

denovo.loss.bd ‑1.9 

(‑41.4,44.4) 

0.5 

(‑92.0,117.0) 
‑3.8 

(‑44.0,48.0) 

8.7 

(‑43.8,84.6) 
‑14.8 

(‑63.9,38.9) 

denovo.loss.scz 5.3 
(‑17.6,33.0) 

12.0 
(‑36.1,70.9) 

13.6 
(‑9.3,47.9) 

13.8 
(‑16.9,56.3) 

8.0 
(‑20.3,41.5) 

denovo.scz 0.5  
(‑4.2,5.4) 

‑0.5  
(‑7.8,6.6) 

0.2  
(‑5.5,6.3) 

‑2.8  
(‑8.1,2.1) 

0.2  
(‑6.7,8.1) 

fmrp ‑0.1  
(‑5.4,6.6) 

5.7  
(‑2.8,16.0) 

‑0.1  
(‑6.4,7.8) 

0.0  
(‑6.3,7.3) 

‑2.9 
(‑10.2,6.0) 

gwas 20.1 
(‑11.2,64.4) 

51.8 
(‑13.9,158.5) 

18.9 
(‑15.4,66.4) 

9.4 
(‑30.5,55.7) 

27.0 
(‑15.5,86.9) 

mir137 0.7  
(‑4.6,7.6) 

1.9  
(‑9.2,20.2) 

1.7  
(‑4.0,10.0) 

1.8  
(‑5.3,12.1) 

0.7  
(‑6.2,9.8) 

neurons 4.4  
(‑1.1,12.7) 

‑0.2 
(‑12.9,17.1) 

2.2  
(‑3.9,10.9) 

0.4  
(‑7.5,10.3) 

2.9  
(‑4.4,12.6) 

nmdarc 9.0 
(‑29.9,58.3) 

32.3 
(‑69.4,181.6) 

2.9 
(‑39.8,56.0) 

27.8 
(‑27.9,107.7) 

0.6 
(‑50.5,59.5) 

pLI09 2.5  
(‑2.6,10.2) 

8.6  
(‑3.9,36.5) 

3.5  
(‑2.6,14.0) 

5.1  
(‑2.8,18.6) 

2.8  
(‑4.0,12.8) 

psd95 6.4 

(‑35.9,61.5) 

11.9 

(‑92.2,155.1) 
‑3.0 

(‑45.9,51.3) 

‑2.3 

(‑63.4,75.0) 

‑10.8 

(‑64.3,46.3) 



rbfox13 ‑0.8  

(‑6.3,5.7) 

‑3.2 

(‑15.3,15.3) 

1.2  

(‑5.1,9.1) 
‑1.9  

(‑9.8,8.0) 

‑2.4  

(‑9.9,5.9) 

rbfox2 ‑1.0  

(‑6.7,5.7) 

6.6  

(‑5.7,27.5) 
‑2.4  

(‑8.9,5.5) 

2.3  

(‑5.6,13.0) 

1.0  

(‑6.6,9.9) 

synaptome 2.7  

(‑4.0,12.6) 

0.9 

(‑15.4,25.4) 

4.8  

(‑2.9,17.9) 

1.0  

(‑8.9,14.3) 

3.7  

(‑5.2,16.6) 

x.escape 30.6 
(1.5,88.5) 

57.8 

(‑3.9,175.9) 

28.5 

(‑0.2,80.2) 

36.5 
(2.4,106.4) 

37.2 
(4.7,97.5) 

xlid.chicago ‑74.0 

(‑166.3,13.1) 

‑15.0 

(‑251.7,223.7) 

‑43.6 

(‑139.9,55.3) 

‑71.5 

(‑212.7,57.0) 

‑52.9 

(‑175.4,48.0) 

xlid.gcc ‑10.9 
(‑66.2,48.2) 

4.7 
(‑133.6,168.6) 

‑23.5 
(‑76.6,42.2) 

10.7 
(‑73.8,100.8) 

‑2.0 
(‑69.3,67.5) 

xlid.omim ‑23.5 
(‑100.8,58.0) 

4.4 
(‑139.1,168.7) 

‑44.4 
(‑120.7,38.3) 

‑20.8 
(‑129.2,86.0) 

‑11.9 
(‑109.2,85.8) 

xlid 47.4 
(2.5,101.9) 

‑0.6 
(‑103.8,123.8) 

58.9 
(15.2,116.8) 

14.2 
(‑53.5,88.1) 

25.1 
(‑29.0,89.6) 

any gene 0.4  
(‑0.7,2.1) 

‑0.5  
(‑2.8,2.8) 

0.2  
(‑1.1,2.3) 

‑0.2  
(‑1.7,1.9) 

1.3  
(‑0.4,4.2) 

Variant attributes      

any variant 1.8  

(‑1.3,11.1) 

1.1  

(‑2.2,17.0) 

0.6  

(‑2.5,7.3) 
‑0.0  

(‑2.1,5.8) 

1.8  

(‑0.9,8.1) 

non‑coding effect 4.8  

(‑0.9,16.7) 

1.3  

(‑4.4,11.6) 

4.7  

(‑1.0,15.4) 

2.0  

(‑1.9,8.5) 

5.1  

(‑0.4,17.8) 

UTR ‑13.3 

(‑38.2,11.2) 

‑5.4 

(‑36.7,29.7) 

‑4.9 

(‑32.6,26.2) 

1.5 

(‑15.4,22.4) 
‑5.3 

(‑29.4,21.6) 

coding 0.1  

(‑4.4,9.8) 

3.5  

(‑1.8,42.5) 

0.1  

(‑4.4,8.2) 

2.4  

(‑0.7,11.1) 
‑1.8  

(‑5.7,4.7) 

nonsynonymous 0.0  

(‑8.5,18.3) 

3.7  

(‑6.8,74.6) 
‑0.8 

(‑9.2,16.1) 

‑0.5 

(‑6.6,14.8) 

‑0.3 

(‑7.8,13.0) 

LOF 22.7 
(‑42.0,104.8) 

32.5 
(‑44.8,138.6) 

14.3 
(‑65.0,103.6) 

47.0 
(‑3.1,135.9) 

‑21.3 
(‑92.8,40.6) 

PolyPhen 
damaging 

0.9 
(‑20.8,43.4) 

10.8 
(‑15.9,74.9) 

16.2 
(‑9.9,113.1) 

11.3 
(‑5.6,55.4) 

26.4 
(1.4,131.7) 

SIFT deleterious 36.4 
(9.9,160.3) 

21.7 
(‑9.2,101.2) 

38.4 
(5.3,576.3) 

15.1 
(‑4.2,69.0) 

18.1 
(‑7.8,101.8) 

      

t statistic in 
whole dataset 

8.8 8.4 9.2 8.8 8.7 

 

  



Table 5. Minimal set of weights for each training set. The weights are chosen to produce a t 

statistic not less than the maximum produced in the training set minus 1. Also shown is the t 

statistic produced in the whole dataset using the minimal set of weights. 

 Minimal 
weights 1  
(range) 

Minimal 
weights 2  
(range) 

Minimal 
weights 3  
(range) 

Minimal 
weights 4  
(range) 

Minimal 
weights 5  
(range) 

Gene sets      

alid 4.3  
(1.4,7.4) 

0 0 0 10.8  
(3.9,18.7) 

brain 0 ‑1.6  
(‑2.7,‑0.5) 

0 0 0 

celf4 ‑1.1  
(‑1.6,‑0.6) 

0 0 0 ‑3.2  
(‑4.5,‑1.9) 

constrained 0 0 0 0 0 

dd ‑8.2  

(‑11.3,‑5.3) 

0 ‑11.1  

(‑14.6,‑7.8) 

‑19.0  

(‑29.9,‑8.9) 

‑26.1  

(‑35.4,‑18.8) 

denovo.aut 0 0 0 1.5  
(1.0,2.0) 

0 

denovo.chd 0 0 0 0 0 

denovo.epi 0 3.7  
(0.4,7.8) 

0 0 0 

denovo.gain.asd 0 0 0 0 0 

denovo.gain.bd 0 0 0 8.6  
(3.9,13.9) 

0 

denovo.gain.scz 0 0 0 0 0 

denovo.id 0 ‑1.6  
(‑3.1,‑0.1) 

0 0 0 

denovo.loss.asd 0 0 0 0 0 

denovo.loss.bd 0 0 0 0 0 

denovo.loss.scz 0 0 4.6  
(2.9,6.3) 

10.1  
(4.8,16.0) 

0 

denovo.scz 0 0 0 ‑2.0  
(‑2.7,‑1.5) 

0 

fmrp 0 3.7  
(2.0,5.6) 

0 0 0 

gwas 7.3  
(4.6,10.4) 

25.8  
(11.3,44.3) 

7.1  
(4.6,9.8) 

0 14.5  
(8.0,21.6) 

mir137 0 0 0 0 0 

neurons 1.2  
(0.7,1.7) 

0 0 0 0 

nmdarc 0 0 0 18.6  
(9.1,29.5) 

0 

pLI09 0.9  
(0.4,1.4) 

4.0  
(1.5,7.7) 

1.1  
(0.6,1.6) 

3.2  
(1.7,4.9) 

1.6  
(0.6,2.8) 

psd95 0 0 0 0 0 

rbfox13 0 0 0 0 0 

rbfox2 0 0 0 0 0 

synaptome 0 0 1.6  
(1.1,2.3) 

0 2.0  
(0.7,3.5) 

x.escape 10.2  
(7.5,13.5) 

29.5  
(15.6,49.6) 

8.0  
(5.8,10.4) 

17.0  
(11.1,24.5) 

21.0  
(14.7,27.7) 



xlid.chicago ‑17.4  

(‑23.3,‑11.7) 

0 0 0 0 

xlid.gcc ‑14.2  

(‑18.2,‑10.1) 

0 ‑14.6  

(‑18.1,‑10.9) 

0 0 

xlid.omim ‑18.2  

(‑23.7,‑12.1) 

0 ‑19.9  

(‑24.6,‑15.2) 

0 0 

xlid 27.0  
(23.5,30.7) 

0 22.0  
(19.1,25.1) 

0 0 

any gene 0 0 0 0 0.7  
(0.4,1.0) 

Variant attributes      

any variant 1.7  
(0.8,3.0) 

3.2  
(1.3,7.7) 

0 0 0 

non‑coding effect 3.6  
(2.1,5.5) 

0 2.6  
(1.9,3.5) 

0 4.0  
(3.0,5.5) 

UTR 0 0 0 0 0 

coding 0 0 0 1.1  
(0.6,1.8) 

0 

nonsynonymous 0 6.7  
(0.8,21.0) 

0 0 0 

LOF 0 0 0 21.9  
(14.8,31.0) 

0 

PolyPhen damaging 0 0 9.8  
(5.8,15.2) 

0 12.8  
(7.9,20.1) 

SIFT deleterious 24.7  
(18.0,33.8) 

20.2  
(5.5,41.7) 

17.6  
(12.3,25.5) 

7.0  
(4.5,10.5) 

13.2  
(7.3,20.7) 

      

t statistic in whole 
dataset 

8.2 7.4 8.2 8 8.3 

 


