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Abstract

To meet the requirements of future wireless mobile communication which aims to

increase the data rates, coverage and reliability while reducing energy consump-

tion and latency, and also deal with the explosive mobile traffic growth which im-

poses high demands on backhaul for massive content delivery, developing green

communication and reducing the backhaul requirements have become two signif-

icant trends. One of the promising techniques to provide green communication is

wireless power transfer (WPT) which facilitates energy-efficient architectures, e.g.

simultaneous wireless information and power transfer (SWIPT). Edge caching, on

the other side, brings content closer to the users by storing popular content in caches

installed at the network edge to reduce peak-time traffic, backhaul cost and latency.

In this thesis, we focus on the resource allocation technology for emerging network

architectures, i.e. the SWIPT-enabled multiple-antenna systems and cache-enabled

cellular systems, to tackle the challenges of limited resources such as insufficient

energy supply and backhaul capacity. We start with the joint design of beamforming

and power transfer ratios for SWIPT in MISO broadcast channels and MIMO relay

systems, respectively, aiming for maximizing the energy efficiency subject to both

the Quality of Service (QoS) constraints and energy harvesting constraints. Then

move to the content placement optimization for cache-enabled heterogeneous small

cell networks so as to minimize the backhaul requirements. In particular, we enable

multicast content delivery and cooperative content sharing utilizing maximum dis-

tance separable (MDS) codes to provide further caching gains. Both analysis and

simulation results are provided throughout the thesis to demonstrate the benefits of

the proposed algorithms over the state-of-the-art methods.
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This thesis mainly contributes in developing resource allocation technology for

wireless mobile networks under the challenges of limited resources such as insuffi-

cient energy supply and backhaul capacity. In particular, we have studied the joint

design of beamforming and power transfer ratios for SWIPT in MISO broadcast

channels and MIMO relay systems, and optimized the content placement for cache-

enabled heterogeneous small cell networks taking the advantages of coded caching,

multicast content delivery and cooperative content sharing.

The significance of the proposed resource allocation techniques in academia

mainly comes from the following aspects: (i) responding to the requirements of

future wireless mobile communication for increasing the data rates, coverage and

reliability while reducing energy consumption and latency; (ii) developing green

communication and improving energy efficiency; (iii) dealing with the high de-

mands on backhaul for massive content delivery imposed by the explosive mobile

traffic growth. SWIPT has been recognized as an important mechanism for battery-

limited mobile communications. The trade-off between information decoding and

energy harvesting, the combination with multi-antenna technologies, and the im-

perfect CSI scenario, which we have discussed, are all essential issues to guarantee

the performance of the SWIPT systems. As one of the key techniques enabling fog

radio access network (F-RAN), Internet of Things (IoT), edge caching provides an

effective means to facilitate caching, computing and communication (3C) services

to provide more flexible and intelligent connection. Our research provides some

prior results for edge caching in cellular networks, and also opens up a series of new

directions for further research: mobility-aware caching, content popularity predic-
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tion and evolution, privacy preservation, joint caching and transmission design and

the combination of emerging networks and technologies.

From the perspective of industry, resource allocation technology for wireless

mobile networks also plays an important role. Although the SWIPT technology has

not been widely applied to industry due to some technical reasons, e.g. the limited

energy harvesting rate, the continuous efforts and attempt offer potentials for the

application of SWIPT technology in industry. Edge caching, on the other hand,

has attracted lots of attention in information technology companies. For instance,

Google has launched the Google Global Cache (GCC) system which aims to serve

locally requests for YouTube content while reducing backhaul costs. Netflix has

focused on studying spatio-temporal demands, popularity prediction, and caching

mechanisms. Hierarchical caching mechanism has been utilized by Facebook for

delivering pictures to users. Thanks to the efforts of many companies, 3GPP Stan-

dards have mentioned implementing edge caching in wireless networks. And we

believe that the standardization efforts will in turn motivate further research in edge

caching in wireless networks in both academic and industry.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Simultaneous Wireless Information and Power Transfer

The target of the fifth generation (5G) wireless communication is to enhance wire-

less connectivity by increasing the data rates, coverage, bandwidth and reliability

while reducing energy consumption and latency [1]. In response to two of the major

requirements of 5G systems, developing green communication and improving en-

ergy efficiency have become the trends. One of the promising techniques to provide

green communication while maintaining the required Quality of Service (QoS) is

energy harvesting (EH), which works by converting ambient energy source such as

sound, heat and radio frequency (RF) signals into electricity. These energy sources

can provide more flexible, portable power supply compared to batteries. Initially,

natural energy sources were considered for EH in wireless networks [2,3]. However,

the energy efficiency was not satisfactory because the natural sources in ambient

environments are always irregular and unpredictable. Moreover, the performance

depends heavily on the environments [4]. Wireless power transfer (WPT) avoids

these problems by enabling the nodes to utilize electromagnetic radiation to get

charged [5]. In this case, both the ambient signals and the specified power sources,

e.g. base stations (BSs), can be used to provide energy. Recently, WPT has been

more frequently considered for near-field than far-field, with the existence of several

challenges for implementing short distance WPT such as distance limitations, main-
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tenance of field strengths, high cost, and resonant inductive tuning [6]. Moreover,

the essential demand of enhancing communication distance motivates the research

on far-field WPT techniques. Another significant trend for WPT is to merge WPT

into wireless communication networks for better resource utilization. Therefore,

simultaneous wireless information and power transfer (SWIPT), a technology that

can transfer information and power simultaneously to the users, was first introduced

in [5] from the perspective of information theory.

Recently, SWIPT has been recognized as one of the key technologies to

achieve green communication and attracted tremendous attentions. As mentioned,

SWIPT can achieve joint energy and information transmission in the era of 5G

communication, and also be integrated with many modern communications net-

works and technologies, such as multi-carrier systems [7], cognitive radio (CR)

[8], full-duplex communications [9], multiple-input multiple-output (MIMO) [10],

device-to-device communication (D2D) [11], symbol level precoding [12], cooper-

ative relaying [13], non-orthogonal multiple access (NOMA) [14], millimeter wave

(mmWave) communications [15], heterogeneous networks (HetNets) [16], coordi-

nated multipoint (CoMP) systems [17], smart grid [18] and sensor networks [19].

Despite the variations in different application scenarios, in general, SWIPT can pro-

vide notable gains in numerous perspectives, such as spectral efficiency, power con-

sumption, interference management and latency by enabling simultaneous power

and information transmission [4, 5, 20]. Nevertheless, challenges appear in order

to balance between the performances of information transmission and power trans-

fer as the power transfer process destroys information transmission. For example,

more sufficient power from the energy harvesting can be ensured by increasing the

transmit power. However, that increases interference as well as the susceptibility

to eavesdropping which destroys the effective and secure information transmission,

and hence gives rise to the research on secure SWIPT transmission aiming at en-

hancing the throughput and security of the SWIPT systems [21]. Long-distance

information and power transfer is another significant issue for SWIPT systems con-

sidering the multi-path fading effects due to wireless propagation. To this end,
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multiple antenna technology and cooperative communication technology have been

merged into SWIPT systems where joint optimization of the transmit beamforming

and power transfer ratios is required. However, the joint information and energy

scheduling problems are always noncovex and difficult to handle. Since it is un-

likely to have perfect channel state information (CSI) at the transmitters in reality,

additional challenges arise when imperfect CSI is assumed, which leaves lots of

space for further research in this field. Besides the conventional issues for imple-

menting SWIPT in wireless networks which requires careful investigation, there are

a series of directions possible for future research such as resource scheduling aspect,

CSI feedback strategies, information theoretic framework, hardware impairments,

channel coding techniques, internet of things (IoT), machine type communications

(MTC), and satellite communication [22].

1.1.2 Edge Caching

The second part of the thesis is focused on the resource allocation technology aimed

at reducing backhaul traffic, in particular, which is driven by the explosion of traffic

stemming from healthcare, machine-to-machine communication, connected vehi-

cles, social media, smart metering, IoTs and other new applications. By the end

of 2016, mobile data traffic has reached 7.2 exabytes per month, and is expected

to continue growing exponentially to reach 49 exabytes per month by the end of

2021 (seeing Fig 1.1) [23]. There will be changes in users’ consuming habits as

well due to the big boost of data rate. In particular, video will make up 82% of the

total traffic by 2021. These high traffic requirements motivate the era of 5G net-

works to provide high spectral efficiency, dense deployment, new spectrum, green

networking by facilitating a number of promising techniques, such as ultra-wide-

band communication, massive MIMO communication, mmWave communication,

and HetNets [24, 25]. However, all these techniques rely on expensive backhaul

links between the core network and BSs (or among BSs) [26–29], which justifies a

need for reducing backhaul traffic. Moreover, the sheer volume and dimensionality

of large-scale data sets in mobile traffic streaming brings a fundamental challenge

of big data analytics and decision making, and thereby requires more decentralized
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Figure 1.1: Global mobile data traffic growth by 2021 forecast by Cisco

and flexible network architectures with predictive resource management leveraging

recent advances in context-awareness, storage and fog computing.

Besides the exposure of mobile data traffic, the backhaul traffic itself has some

notable features which bring potential bottlenecks in terms of successful content

delivery, energy efficiency, and latency.

Firstly, when a user makes a request, the serving base station needs to fetch

the corresponding content from the core network via backhaul links, in a typical

cellular network. As a result, there exists a huge amount of data traffic at the core

network in peak time, which causes long delay and impose high requirement. In

this case, if we equip the BSs with cache memories, the BSs can save popular

content in their local storage. In so doing, they can serve the users directly using

the cached content rather than fetching the content via backhaul repeatedly. Ideally,

if the BSs can predict the user requests and update the cached data in advance [30,

31], the users can be served by the BSs directly without using the backhaul links,

which guarantees timely data transmission in peak hours. Secondly, duplicate data

transmission actually makes up a large portion of the total backhaul traffic due to the

users’ eagerness for current popular content (including the hottest audios, videos,

and webpages). As a result, the same content needs to be repeatedly sent though the

backhaul links to a number of users over and over again. If this type of duplicate
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data transmission can be avoided, the backhaul traffic can be significantly reduced.

And edge caching actually solves this issue effectively.

In addition, installing storage costs less than improving the backhaul capacity.

For instance, a piece of memory storage of 2-3 TB only costs about 100 US dol-

lars [32] while equipping backhaul links in network is usually quite expensive with

a capital expenditure (CAPEX) including equipment and infrastructure expenses

and operational expenditure (OPEX) breakdown [33]. Due to the advantages men-

tioned above, edge caching has played a crucial role in 5G networks as an effective

approach to reducing backhaul traffic by storing popular content in caches equipped

at the network edge. In doing so, the cached content can be delivered to users from

local caches rapidly instead of being downloaded from the core network via back-

haul, which helps reduce the peak-time traffic and latency in communicating with

the core network when users make requests.

Currently, caching has been considered in BS or/and user terminals (UTs) to

release the backhaul requirements while enhancing the overall performance of the

networks from different perspectives [34–36,50–52]. However, there are still many

crucial issues that require to be better looked into despite of the progresses that have

been made in the existing attempts. The first issue is about cache content place-

ment, i.e. where and what to cache. Though early studies have shown that caching

the most popular items at each of the small cells without coverage overlapping pro-

vides the highest local caching gains, for more complicated but efficient topologies,

e.g. the small cell networks facilitated with multicast content delivery or/and con-

tent sharing, the content placement requires to be redesigned based on the coordi-

nation and cooperation among different cells instead of being optimized in terms of

each cell separately. Moreover, the performance comparison between base station

caching and D2D caching, as well as the combination of the two caching mech-

anisms, has not been well studied. Third, the impacts of the heterogeneity of the

networks and content characteristics on the caching decision need further clarifica-

tion. Third, how the transmission characteristics of the wireless networks (e.g. the

broadcast nature of the wireless medium) affect the design of caching approaches,
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i.e. the joint design of caching and transmission policies is another hot issue which

opens up many potential research directions such as (i) multicast-aware caching for

serving multiple concurrent requests, (ii) cooperative caching for content sharing

among the caches and the associated interference management, and routing issues

due to simultaneous transmission, (iii) mobility-aware caching considering the fact

that the users may move from one cell to another during data transferring, and (iv)

content popularity prediction and evolution, privacy preservation, and the combina-

tion of emerging networks and technologies.

In the following section, we present the outline and contributions of our work

towards tackling the challenges mentioned above.

1.2 Outline of the Thesis

This thesis consists of two main parts dealing with SWIPT and edge caching, re-

spectively. We first study the joint optimization of beamforming and power transfer

ratios for SWIPT enabled systems in Chapter 3 and Chapter 4. Then we move

to cache enabled small cell networks, where the cache content placement is care-

fully designed in Chapter 5 and Chapter 6. In particular, the results in Chapter 6

are derived for cache enabled small cells with heterogeneous settings and take the

advantages of multicast content delivery and content sharing. Below, we briefly

discuss the contribution of our work in each chapter.

Chapter 2: Background. This chapter provides a more profound introduction

on SWIPT technology and edge caching technology. The main design aspects in

the two fields and the essential issues are discussed followed by a more detailed

investigation on the beamforming design for SWIPT enable systems and content

placement and delivery strategies for cache enable networks, respectively.

Chapter 3: Robust Beamforming for SWIPT Broadcast Channels. In this

chapter, we study MISO broadcast system for SWIPT using receiver power splitting

and aim to optimize jointly the beamforming vectors and the power splitting ratios

for minimizing the transmit power subject to the individual signal-to-interference-

plus-noise ratio (SINR) and the energy-harvesting constraints assuming imper-
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fect CSI. We propose a reverse convex non-smooth optimization algorithm, which

provides the near-optimal rank-one solution, compared to semi-definite relaxation

(SDR) guided iterations in literature.

Chapter 4: Beamforming for SWIPT MIMO Relaying. In this chapter, we

consider SWIPT for a two-hop MIMO relay system where the relay is powered by

harvesting energy from the source via time switching (TS) to finish information for-

warding. We aim to maximize the rate of the system subject to the power constraints

at both the source and relay nodes. In the first scenario where the source covariance

matrix is an identity matrix, we present the joint-optimal solution for relaying ma-

trix and the TS ratio in closed form. An iterative scheme is then proposed for jointly

optimizing the source and relaying matrices and the TS ratio.

Chapter 5: Optimizing Cache Placement for Heterogeneous Small Cell

Networks. In this chapter, we optimize the cache content placement for a typical

cache-enabled small cell network with heterogeneous file and cache sizes. In par-

ticular, multicast content delivery is adopted to reduce the backhaul rate exploiting

the independence among maximum distance separable (MDS) coded packets. We

estimate the possible joint user requests using the file popularity information and

aim at minimizing the long-term average backhaul load subject to the cache capac-

ity constraints. The problem is reformulated into a mixed integer nonlinear program

(MINLP) and solved with existing solvers after linearization.

Chapter 6: Coding, Multicast and Cooperation for Cache-Enabled Het-

erogeneous Small Cell Networks. This chapter considered the design of content

caching and sharing for cache-enabled heterogeneous small cell networks using

MDS codes under heterogeneous file and network settings. We first presented the

multicast-aware caching and the cooperative caching schemes, for minimizing the

long-term average backhaul load or the user attrition (UA) cost subject to the over-

all cache capacity constraint, and obtained the optimal content placement in both

cases via convexification. A compound caching scheme, referred to as multicast-

aware cooperative caching, was then proposed exploiting the independence of MDS

coded packets to further reduce the backhaul requirements. In this case, a greedy
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algorithm can be used for small scale networks while for large scale networks a

multicast-aware in-cluster cooperative caching algorithm was developed. The ad-

vantages of storing coded packets over the uncoded fragments in all the scenarios as

well as the benefits of utilizing multicast-aware caching and/or cooperative caching

over common caching schemes have been analyzed.

Chapter 7: Conclusion and Future work. This chapter summarizes the main

contributions of this thesis and introduces several potential research directions for

future work.
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The results, the ideas and figures are included in the following publications:
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Chapter 2

Background

This chapter aims to provide the reader with the information and reference neces-

sary to better understand the study in the following several chapters of this disser-

tation. General information about wireless background, and receiver architectures

and beamforming for SWIPT will be presented firstly, and then the focus will shift

onto the profound introduction about edge caching from various perspectives, such

as the development, taxonomy, and caching strategy of cache-enabled wireless net-

works.

2.1 Wireless Fading Channels
Channel is the physical medium over which signal is transmitted from the sender

to the receiver. One of the distinct features of wireless channels is fading, which

refers to the random attenuation in the signal strength and the random phase shift

of the received signal, as a result of the radio wave propagation in the environment.

In general, two types of fading effects characterize wireless fading channel, namely

large scale fading and small scale fading. The former refers to path loss character-

ized by distance and shadowing caused by prominent terrain contours such as hills,

forests, and tall buildings [37]. Small-scale fading occurs as a result of multipath

propagation, which mainly results from a combination of effects such as diffraction,

reflection and refraction. Frequency selectivity is another important characteristic

of wireless fading channels [38]. When all frequency components of the transmit-

ted signal experience the same fading magnitude, the fading is said to be frequency
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flat. This occurs when the coherence bandwidth of the channel Bc is larger than the

signal bandwidth Bs, i.e. Bs < Bc. On the contrary, if the frequency components

are affected by different amplitude gains and phase shifts, it is called frequency

selective, which occurs when Bs > Bc.

Recently, there have been a range of statistical models which characterize wire-

less fading channels with applicable trade-off between accuracy and complexity. In

the following, we introduce several typical channel models which will be consid-

ered in this thesis.

2.1.1 Wireless Channel models

A. Rayleigh Fading

Rayleigh fading model is often used for multipath fading channels with no di-

rect line-of-sight (LOS) path. The probability density function (PDF) of the channel

fading amplitude is given by [39]

p(α) =
2α

Ω
exp(−α2

Ω
),α ≥ 0, (2.1)

where α is the channel fading amplitude, and Ω = E{α2} denotes the mean value.

B. Rician Fading

Rician fading is frequently used to characterize propagation paths with one

strong direct LOS component and many random weaker components. Here the

channel fading amplitude α follows the distribution

p(α) =
2(1+n2)e−n2

α

Ω
exp
(
− (1+n2)α2

Ω

)
I0

(
2nα

√
1+n2

Ω

)
,α ≥ 0, (2.2)

where I0(∗) is the Bessel function of the first kind [40], and n denotes the fading

parameter ranging from 0 to 1. The Rician factor refereed to as K, which reflects the

connection between the power of the LOS component and the power of the Rayleigh

component, can then be derived using K = n2. Particularly when K = 0, there is no

LOS component and the Rician PDF is reduced to the Rayleigh PDF.
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2.1.2 Channel State Information

The channel state information (CSI) of a communication link is defined as the

known channel properties describing the propagation of a signal between the trans-

mitter and the receiver, and reflecting the combined effect of wireless transmission,

such as scattering, fading, and power decay with distance [41]. As it is crucial

to adapt transmissions to current channel conditions to reconstruct the useful in-

formation with minimum distortion at the receiver, CSI needs to be estimated at

the receiver and fed back to the transmitter. And the process of CSI acquisition is

referred to as channel estimation.

There are two major types of channel estimation methods, the data-aided

method and the blind estimation method. The data-aided method is also referred

to as training sequence (or pilot sequence), where a known sequence is transmitted

and the channel coefficient will be estimated by removing the known data at the

received signal. If there is no noise at the received signal, the estimation will be

perfect. There are two typical ways to insert the pilot sequence, block-type pilot

arrangement and comber-type pilot arrangement [42]. According to the evaluation

criteria, the channel estimation methods can be divided into least-square (LS) esti-

mation and the minimum mean square error (MMSE) estimation. The former aims

to minimize the sum of squared errors while the later focuses on the mean square

error (MSE) between estimated and actual received signal [43]. Generally speaking,

MMSE estimation outperforms LS estimation by shortening the required pilot se-

quence and reducing the estimation error. However, MMSE estimation requires the

channel correlation and noise correlation information in advance, and therefore can

be seen as the Bayesian counterpart to LS estimation. In contrast, blind estimation

only depends on the received data without any training symbols [44]. Data-aided

estimation usually achieves better accuracy than blind estimation at the expense of

a higher overhead, e.g., more bandwidth.

2.1.3 Imperfect CSI Models

In practice, CSI needs to be estimated in the presence of noise, and therefore the

acquired CSI is destined to be imperfect. For this reason, channel errors are some-
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times considered in the design of more robust communication systems. Channel

errors are often modeled using stochastic or deterministic (worst-case) models. A

popular stochastic model utilizes Gaussian random variables to model the CSI un-

certainty, while the deterministic model usually assumes that the error is modeled by

an ellipsoid-bounded uncertainty region [45]. Compared with the perfect CSI case,

the imperfect CSI case is always more challenging for optimizing the resource al-

location for wireless communication. Here, we discuss about the typical types of

channel uncertainties.

A. Ellipsoidal Channel Vector Uncertainty

If the CSI is estimated in the form of channel vector (as is typical in a multi-

dimensional channel such as in a multiple antenna system), then the channel at

the receiver, denoted as the vector h, can be modeled as [46]

h , ĥ+∆h, (2.3)

where ∆h is the CSI estimate while ∆h is the CSI error. Depending on the esti-

mation methods or feedback schemes, the channel errors follow specific random

distributions. Without loss of generality, we consider the case that ∆h is subject to

colored noise and bounded by an ellipsoid, i.e.,

H = {∆h : ∆h†C∆h≤ 1}, (2.4)

where C� 0 determines the quality of CSI and is assumed known at the receiver.

B. Ellipsoidal Channel Covariance Uncertainty

Compared with the channel vector, the second-order statistics of the channel

changes more slowly. Thus, the estimated CSIs in the form of channel covariances

are more practical. In this case, we model channel covariance uncertainties as [47]

H , hh† = Ĥ+∆H, (2.5)

where Ĥ denotes the CSI estimate at the receiver while ∆H corresponds to the CSI

errors. Similarly, we consider the more practical scenario where the channel covari-

ance matrices are estimated in the presence of colored noises, and ∆H is bounded by
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ellipsoidal regions. In addition, ∆H should be set to guarantee the positive semidef-

initeness properties of the matrix Ĥ+∆H, i.e.,

H̃ = {∆H : ∆H = ∆H†,Ĥ+∆H� 0,Tr(∆H†C∆H)≤ 1}, (2.6)

where the parameters C� 0 are known a priori.

C. Stochastic CSI Errors

The CSI error may also be modeled as Gaussian random variables following a

known distribution, i.e., [48]

h , ĥ+∆h, (2.7)

where CSI error ∆h is modeled as zero-mean Gaussian random variables with co-

variances C, i.e., ∆h ∼N (0,C). As ∆h is unbounded, meeting deterministic con-

straints in all time would be impossible and therefore probabilistic conditions occur

that guarantee the deterministic conditions being satisfied with high probability.

2.2 Performance Measures
There are many performance metrics that are commonly used in evaluating the

performance of resource allocation schemes in wireless communication systems.

The most relevant ones that are used throughout this thesis are signal-to-noise ra-

tio (SNR), signal-to-interference-and-noise ratio (SINR), channel capacity, hit ratio

and backhaul load. In this section, a brief introduction of these performance metrics

is now presented.

2.2.1 SNR and SINR

The output SNR is defined as the ratio between the power of signal component in

the output and the power of the noise component in the output. Let P be the power

of the transmit symbol defined as P = E(ss∗), σ2 be the noise level, and h be the

fading channel, the SNR r can be expressed as

r =
P |h|2

σ2 . (2.8)

Due to the fading effects of the wireless channels, the average SNR is considered,

which is defined by r̃ = E|h|(r).
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The SNR has high impact on the quality of data detection, and is therefore

frequently used as the performance metric in both network optimization and perfor-

mance analysis.

The definition of SINR is similar to the SNR except that the impact of co-

channel interferences is considered in addition to the impact of the noise. In wireless

communication systems, interference frequently appears as the result of frequency

reuse among neighboring cells, which makes the SINR more practical than the SNR.

For instance, assuming that there is only one strong interference channel of which

the fading coefficient is defined as g, the received signal can then be expressed as

y = hs+gx+n, (2.9)

where s, x, n are the transmitted signal, the interference signal and the noise signal,

respectively. The power of the interference signal is defined as Pi = E(xx∗). Con-

sidering co-channel interference, the SINR is defined as the ratio between the power

of the desired signal and the sum power of the interference and noise, i.e.,

r̃ =
P |h|2

Pi |g|2 +σ2
. (2.10)

2.2.2 Channel Capacity

Firstly proposed by Claude Shannon in [49], channel capacity refers to the maxi-

mum rate at which information can be reliably transmitted over a communication

channel. Channel capacity is defined as the maximum of the mutual information be-

tween the transmitter and the receiver. The instantaneous channel capacity is given

by

C = log2

(
1+

P |h|2

σ2

)
. (2.11)

Depending on the situations, channel capacity can be divided into two types,

i.e., ergodic capacity and outage capacity, according to the property of the fading

channel h. The basic assumption for ergodic capacity is that the transmission time

is long enough to present the long-term ergodic properties of the fading process.

In this case, the ergodic capacity can be written as Ce = E|h|{C}. However, the

assumption on ergodicity is not always achievable in practical delay-constrained
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communication systems. On the contrary, when there is no significant channel vari-

ability in the transmission process, the actual transmitted rate may exceed the in-

stantaneous channel capacity at a non-negligible probability. In this case, it is better

to consider q% outage capacity Co, which is defined as the channel capacity which

can be achieved by (100− q)% of the channel realizations and guarantees reliable

services, i.e., Pr{C ≤Co} ≤ q%.

2.2.3 Hitting Rate

Hitting rate is one of the most frequently used metrics in measuring the performance

of cache content placement scheme. In deterministic caching, it is defined as the ra-

tio between the number of cached files that are requested and the overall number of

files stored in the storage. For instance, a hitting rate higher than 90% demonstrates

that most of the requests are satisfied by the cache. On the other hand, in proba-

bilistic caching, the hitting ratio is the probability for the required file being stored

in the cache. An efficient caching scheme maximizes the cache hits while minimiz-

ing the cache misses, yielding higher hitting rate, lower latency, and better storage

utilization. Although hitting rate directly shows the cache miss, it fails to reflect

the impact of the caching scheme on the performance of wireless communication

system [50].

2.2.4 Network Delay

Network delay is defined as the response time from the time when the file is re-

quested until delivery [51]. From the perspective of the users, it is necessary to

minimize the delay of being served which is critical to user’s experience especially

for delay-sensitive content services. As fetching content from local storage is much

faster than delivering content from the core network, the network delay can be re-

duced by taking full advantage of storage space.

2.2.5 Backhaul Load

In cache enabled wireless networks, backhaul load refers to the amount of content

that requires to be delivered form the core network to the BSs via backhaul. As the

user demands are usually assumed to be unknown and random following particular
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distributions, e.g., Zipf’s distribution, the backhaul load is usually measured in long

term average in terms of all possible user demands [52]. In general, higher backhaul

load results in higher peak-time traffic and network delay, and places higher demand

on backhaul capacity.

2.3 More on SWIPT Systems

2.3.1 Receiver Architectures for SWIPT Systems

In wireless communication systems, RF signals can convey both information and

energy simultaneously, and hence RF-based SWIPT has become a promising en-

ergy harvesting technology where the terminals can not only access wireless data

but also harvest energy from RF signals simultaneously. Though early fundamental

studies on SWIPT have assumed lossless information and power transfer with the

same signal [53], it is difficult to achieve in reality as the power transfer affects the

performance of information transmission directly. For instance, enhancing trans-

mit power can increase harvested energy but also impose high interference. More-

over, the RF signal acts as a dual-purpose carrier for conveying information and

energy to the receivers simultaneously. However, the huge gap between the power

sensitivity for energy harvesting receivers (-10 dBm) and information decoding re-

ceivers (-60 dBm), which is referred to as the near-far issue, becomes a barrier to

implement SWIPT technology and requires reconsideration of receiver architecture

design [10].

In general, there are two types of receivers in SWIPT systems, the separated

and collocated receivers. Fig. 2.1 presents the different receivers architectures.

A. Separated Receivers

For separated receivers, the receivers are either responsible for energy har-

vesting (EH) or information decoding (ID). For instance, a location based receiver

scheduling was proposed in [54], where receivers located near or far away from the

transmitter were assigned for energy harvesting or information decoding, respec-

tively. This technique can be easily implemented.

B. Collocated Receiver
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Figure 2.1: Typical SWIPT receiver structures. α1 denotes the TS factor, ρ1 denotes

the PS factor, and T denotes the transmission block duration.

The collocated receiver can coordinates between the energy harvesting and the

information decoding processes. To achieve SWIPT for systems with collocated re-

ceivers, the received signal requires to be split for information decoding and energy

harvesting, respectively. The signal splitting strategies involve different domains,

i.e. time, power, antenna, space domains [4].

• Time Switching (TS): In consideration of TS, each time slot is partitioned

into two orthogonal slots. The receiver works alternatively as information

decoder and energy harvester by a certain ratio referred to as a TS ratio [55].

• Power Splitting (PS): As an opposite, the PS technique enables SWIPT by

splitting the received signal into two parts of different power levels according

to a PS ratio, one of which is converted to base-band for information decod-

ing while the other is sent to the rectenna circuit for energy harvesting [56].

Compared with TS, the PS technique requires higher complexity in receiver

design, but achieves information and power transfer in the same time slot

which makes it more suitable for delay-sensitive networks. Compared with

other techniques, it achieves the best trade-off between information rate and



2.3. More on SWIPT Systems 35

harvested energy.

• Antenna Switching (AS): In this architecture, the receiver always has mul-

tiple antennas a subset of which is assigned to decode the information, while

the remaining are responsible for energy harvesting [57]. Antenna switch is

an easy-to-implement and low-complexity protocol.

• Spatial Switching (SS): In this architecture, spatial domain is mainly on the

spatial degrees of freedom of the channel rather than the antenna elements.

Utilizing the singular value decomposition (SVD) of the MIMO channel, the

SS technique transforms the communication link into parallel eigenchannels

conveying either information or energy [58].

2.3.2 The Application of Beamforming for SWIPT Systems

Beamforming has been widely applied in wireless communications to focus the sig-

nal in a narrow direction by generating pencil beams. In wireless networks, the

usage of beamforming can bring lots of advantages. By focusing the signal towards

the intended receiver, and therefore reducing the multi-path attenuation and interfer-

ence, beamforming enhances SINR, data rate, security level and spectral efficiency,

and therefore helps accommodate more users and provide larger coverage area [59].

However, there are still a couple of challenges in beamforming design for wireless

networks. For instance, the usage of antenna arrays and signal processing modules

places higher requirements on money and power in deployment. Moreover, the SCI

acquisition and signal processing needed in learning the channel status and deriving

optimal beamforming solution, result in higher complexity and overhead.

As mentioned previously, the power sensitivity of the EH process is quite low

compared with the ID process [10]. And the EH process is quite sensible to sig-

nal decay caused by the properties of wireless propagation, such as scattering, re-

flection, and fading. To deal with this problem, multi-antenna techniques, e.g.,

beamforming, have been widely applied in SWIPT enabled communication net-

works to guarantee efficient information and power transfer [20]. The advantages

of beamforming in wireless communication mentioned above make beamforming a
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significant transmission scheme in SWIPT systems.

And the main target for beamforming design in SWIPT systems is to derive

the optimal beamforming solution that achieves desired energy-information trans-

mission tradeoff. Recently, many studies have focused on the beamforming design

in SWIPT systems. For instance, an optimal beamforming solution was derived for

MISO SWIPT with two and three PS-based receivers in [60]. Physical layer secu-

rity is another important issue worth careful investigation in beamforming design for

SWIPT systems [59]. Another challenge will be channel conditions acquirement,

because the selection and updating of transmit beams and transmit scheme depend

heavily on channel conditions as mentioned in the previous section. Compared with

the perfect CSI case, the imperfect CSI case is always more challenging for beam-

forming design in SWIPT systems. However, it is quite difficult to guarantee perfect

CSI for SWIPT systems in reality, as the CSI acquirement of the ID receiver will be

heavily interfered by the interference of both information and power signals while

the EH receiver, even worse, usually has no special circuit to feedback the CSI to the

transmitter. Robust beamforming is consequently an indispensable process for re-

source allocation for SWIPT systems. What is more, the energy constraints, which

always conflict with the information transmission efficiency, bring extra difficulties

to the beamforming design, compared with the conventional networks.

2.3.3 Taxonomy of Beamforming for SWIPT Systems

Recently, there have been many papers focusing on beamfoming design for SWIPT

systems which differ from each other in a variety of design aspects, such as the net-

work topology, performance metric, and mathematical tool. These works focused

on joint data transmission and power transfer factor design for SWIPT systems in

terms of enhancing the energy or spectral efficiency assuming either perfect CSI

or imperfect CSI with bounded or stochastic uncertainties at the transmitters. Due

to the broadcasting nature of wireless channels, increasing transmit power can not

only boost the harvested energy but also increase the susceptibility to eavesdroppers,

which shows synergy between communication, energy and security, a significant is-

sue for SWIPT systems [21, 61, 62].
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A. Network Topology

The emergence and development of SWIPT has opened up numerous new op-

portunities including the SWIPT works for orthogonal frequency-division multi-

plexing (OFDM) systems [64], frequency-selective channels [65] and multiuser

scenarios, such as the relay channel [13], the interference channel [66], the mul-

ticasting channel [67], and the broadcast channels [56] and [68]. Instead of con-

sidering the essential issues in implementing SWIPT for conventional networks,

the research of SWIPT has recently been extended to involve emerging network

topologies and techniques to achieve the targets of the 5G cellular communication

systems, such as full-duplex communications, MIMO, D2D, symbol level precod-

ing, NOMA, mmWave communications, HetNets, CoMP systems, smart grid, and

sensor networks [9–19].

B. Performance Metric and Constraints

The beamforming design problem in SWIPT systems has been formulated

from different perspectives, such as minimizing total transmit power or outage

probability [56], maximizing system capacity or throughput [63], and deriving rate-

energy trade-off [10]. The possible constraints in these cases may differ accord-

ing to the design objectives. There are several general types of constraints, such

as power consumption constraint, energy harvesting constraint and the SINR con-

straint [10, 56, 63]. To control the power consumption, the total transmit power

should not surpass a given threshold. On the other hand, to ensure enough power

from the energy harvesting, we need to make sure that the power received at the

EH receiver is higher than a threshold. To meet quality of service requirements, the

SINR at the ID receiver should be large enough to guarantee accurate information

decoding at the ID receiver. However, those constraints are always conflicting, and

also not jointly convex, which turns the beamforming design problems non-convex

optimization problems. As an example, [10] characterized the rate-energy regions

for MIMO broadcast systems for SWIPT with separated and co-located information

and energy receivers.

D. Optimisation Strategy
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The most frequently used optimization strategies for beamforming design in

SWIPT systems are Semi-Definite Programming (SDP) [69], Second Order Cone

Programming (SOCP) [70], sub-optimal algorithms like block coordinate descent

(BCD) method [71], or convex relaxation methods like, Successive Convex Ap-

proximation (SCA) [72]. Meanwhile, reformulation is a good way to convexify

the original unconvex problems by strategies such as introducing new variables and

matrix transformation. For robust beamforming design with ellipsoidal channel vec-

tor uncertainty, S-Procedure is usually used for reformulation. Taking the SWIPT

MIMO system with perfect CSI as an example [10], the transmit power minimiza-

tion problem subject to the SINR and harvested energy constraints is a minimum

convex SDP because the objective function is linear and the constraints are defined

by a finite number of convex sets [73]. However, the number of constraints be-

comes infinite when it comes to the imperfect CSI scenario. To handle the infinitely

many inequalities, S-Procedure is an efficient way to turn the constraints with chan-

nel uncertainty into linear matrix inequalities (LMIs) [45]. In particular, for MISO

systems with beamforming vector defined as b, there is always uncovexity in beam-

forming design problems due to the presence of (bbH) in essential performance

metrics such as transmitted power or SINR. By replacing (bbH) with a new matrix

W which satisfies W , bbH , the original problem can again be reformulated into an

SDP. However, this type of reformulation is not completely equivalent as we are not

guaranteed to be able to derive the optimal vector b by decomposing the obtained

W, unless the rank of W equals to 1. To deal with this rank-one issue, we need to

prove that Rank(W) = 1 holds true, or alternatively resort to suboptimal solution

utilizing randomization [74].

2.4 More on Wireless Edge Caching

2.4.1 The Development of Edge Caching

As one of the emerging techniques to deal with the explosive wireless traffic growth,

caching techniques have been widely applied in wired networks for web caching

firstly emerged in the early 1990s [75], content distribution networking (CDN) since
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Figure 2.2: Architectures of typical wired and wireless networks with caching.

the late 1990s and 2000s [76, 77] and more recently, information centric network-

ing (ICN) [78], with the popular content changing from web pages and images, to

videos generated by servers or clients, and the cache memories installed at clients,

proxy servers, and routers, respectively. In particular, ICN achieves efficient con-

tent placement based on content popularity and network parameters [78]. Fig. 2.2a

presents a typical cache-enabled wired network consisting of clients, routers, and

servers. When the clients send requests to the routers, if the routers store the re-

quested content, the clients can be served by the routers directly without contacting

the core network, which reduces the latency in the network [79].

The concept of caching has recently been introduced to the physical layer to

reduce peak-time traffic, latency as well as the requirement for expensive high ca-

pacity backhaul links [34]. Similarly, the main idea of caching in cellular networks

is to store popular content at the network edge, either at the BSs or/and UTs to bring

the content closer to the users. Fig. 2.2b provides a typical cache-enabled cellular

network consisting of a wired core network, BSs and backhaul links connected to

the internet. If the requested content is stored in the user itself, neighboring users,

or serving BSs, the user can fetch the content therein. Otherwise, the requested

content should be fetched from the core network via backhaul. Though implement-

ing caching techniques in wireless networks share a lot of resemblance with that
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in wired networks, the wired caching strategies in upper layer cannot be directly

applied to cellular networks due to the unique structures and transmission features

of cellular networks [80]. Firstly, wireless users usually have smaller cache capac-

ities than the wired clients. Moreover, challenges appear due to node mobility and

dynamic network topology in wireless networks. For instance, wired clients are

usually fixed while users in wireless networks may move from one cell to another.

And wireless channels are more uncertain and complicated compared with wired

channels. The unique barriers of wireless transmission, such as co-channel inter-

ference and limited spectrum, make it even more challenging to design efficient

caching strategies for wireless networks.

For cache-enabled cellular networks, one needs to address, e.g., where to

cache, what to cache, the corresponding delivery and transmission policy, and so

on [35]. Regarding the first question, caching can take place at the BSs or UTs.

By caching at the BSs, we can reduce the traffic in backhaul and improve the en-

ergy and spectral efficiencies, while caching at the UTs adds cooperation gain and

improves network scalability, facilitating D2D links.

Also, cache content placement addresses what to cache. As far as content

updating is concerned, caching schemes can be divided into adaptive caching and

proactive caching. Adaptive caching, a.k.a. pull-based caching, works in a reac-

tive manner by storing content in the caches on demand. In this scheme, caching

decision is performed only after users have made their requests so that online algo-

rithms, such as the least frequently used (LFU) and least recently used (LRU), can

be used. As a result, the cached content in each cell is updated every time a new

round of requests is made by the users. By contrast, proactive caching is a push-

based approach which proactively estimates user demand patterns and performs

content placement before the users make requests. Popular schemes include com-

mon uniform placement, popularity based placement, probabilistic placement [50],

partition-based placement [36] and other offline schemes. When caching contents,

we can either store the entire files or fragments of the files based on file splitting

to ensure diversity of the cached contents in the case that the cache capacity is rel-
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atively limited compared to the average file size. For this reason, network codes,

such as MDS codes have been utilized to construct file pieces in order to improve

storage utilization. In optimizing content placement, the objective is usually on one

of the followings: the hit ratio [50], latency [51], backhaul load [52], service cost,

spectral/energy efficiency, and so on.

Recently, considerable research has been done on physical layer caching. In-

spired by the primary research [81] where caching schemes were designed in

presence of routing, cooperative, and physical layers in 2009, an comprehensive

information-theoretic study was first given in [52] in 2010 for a homogeneous sys-

tem with a single content server and several users served with a shared link. Sub-

sequently in, e.g., [82–89], more complex network topologies with heterogeneous

network settings have been studied for, respectively, nonuniform file popularity,

file sizes and cache sizes, random requests, secure delivery, interference channel,

D2D networks, and recently fog random access networks (F-RANs). In 2012, a

typical femto-cell BSs (helpers) assisted wireless distributed caching network was

proposed in [90] aimed at minimizing the network delay by jointly designing the

content placement and the cooperation among the helpers. More recently, wire-

less caching techniques have been extended into diverse network topologies, e.g.

cache-enabled macro-cellular networks [91, 92], HetNets [93, 94], D2D cellular

networks [95,96], cloud-radio access networks (C-RANs) and fog-radio access net-

works (F-RANs) [97, 98]. Most of these papers focused on the typical issues of

designing the content placement and content delivery algorithms.

Another hot topic for cache-enabled networks is the beamforming design

which focuses more on the transmission aspects in presence of caching. In [97], in-

stantaneous beamforming and BS activation for C-RAN were addressed, while [99]

considered the joint design of data assignment and beamforming for a cooperative

multi-cell network both assuming a given cache content placement in a short-term

time scale. In [100], beamforming and cache content placement were jointly op-

timized utilizing a mixed time-scale stochastic optimization scheme. In addition,

performance analysis of cache-enabled wireless networks has also been extensively
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Figure 2.3: Taxonomy of cache-enabled wireless networks.

conducted in the literature, e.g., [101–104]. To summarize, those results largely an-

alyzed cache-enabled small-cell networks using stochastic geometry to model the

stochastic properties of channel fading and interference. However, the results either

ignored the spatial diversity of the cached content and disabled the coordination and

cooperation aspect among different cells [101, 102] or even ignored the file popu-

larity information altogether [103, 104].

Apart from the above, emerging topics in physical layer caching also in-

clude multicast-aware caching [105], hierarchical caching [106], mobility-aware

caching [107, 108], cooperative caching, and caching architecture design in fog-

RAN [109]. Moreover, learning, matching and online algorithms have also be used

to solve physical layer caching problems in [110–112].

2.4.2 Taxonomy of Cache-Enabled Wireless Networks

According to the network topology, caching model, performance metric, control

structure and mathematics tool, the existing research on physical layer caching can

be classified into different categories. Next, we briefly discuss the caching tech-

niques in cellular networks from different design aspects (seeing Fig. 2.3) [113].

A. Network Topology

There are four typical types of cache-enabled cellular networks: cache-enabled
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macro-cellular networks, cache-enabled HetNets, cache-enabled D2D networks,

and cache-enabled CRANs/F-RANs. One of the most notable differences among

them is the cache location which ranges from the BSs, the SBSs, the UEs, the

baseband units (BBUs), and remote radio heads (RRHs), respectively. Moreover,

reducing the requirements on backhaul is the major target in the first two types

of networks, while edge caching is expected to facilitate collaboration and improve

the spectral efficiency and energy efficiency additionally in cache-enabled D2D net-

works and C-RANs/F-RANs. In the following, we briefly discuss the different net-

works, respectively.

• Cache-Enabled Multi-Cell Networks: In this type of networks [91], each

BS is equipped with memory storage to store popular content. And it is al-

ways assumed that no coverage overlap exists among the BSs.

• Cache-Enabled HetNets: Cache-enabled HetNets integrates a variety of

technologies, and cell layers, i.e. macro-cells, small cells (femtocells, pico-

cells), and relay nodes, in order to meet the higher requirements on coverage,

capacity, and latency. In this case, coverage overlap and spectrum sharing

occurs among the macro-cells, and other nodes, which causes concerns on

interference and coordination aspects [93]. The associated network topology

can be grid-based or random spatial. For the former, the macro base station

(MBS) is central-located with a number of small cell base Stations (SBSs)

being deployed inside the cell. In the random spatial topology, the MBSs and

SBSs are randomly deployed in each cell based on stochastic geometry [114].

Since both the MBSs and SBSs can have memory storage, the multiple-level

hierarchical caching and cooperative caching can be considered to further im-

prove the caching gains.

• Cache-Enabled C-RANs/F-RANs: C-RAN is a centralized, cloud

computing-based architecture while F-RAN takes the advantages of both

edge caching and centralized processing and creates a new distributed, edge

computing-based radio access network [116]. In both of the two structures,
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there are a number of BBUs with caches clustered as the BBU pool, the RRHs

connected to the BBU pool through fronthaul links, and the UEs. In C-RAN,

the BBU pool carries memory and offers collaborative processing, while the

edge nodes, RRHs, take charges of edge caching and signal processing in

F-RAN, which reduces the latency and transmission power by moving major

transmission tasks from the BBU pool from RRHs [117].

• Cache-Enabled D2D Networks: In cache-enabled D2D networks, the de-

vices are enabled to have memory storage and communicate directly with

nearby devices without contacting the BSs [95, 115]. In this case, adjacent

devices usually form a cluster, if the requested file has not been stored in lo-

cal cache, it can fetch the file from any user in the same cluster that caches the

file. Compared with the base station caching, D2D caching has some unique

challenges due to the properties of the network topology, such as smaller

cache capacity, more limited transmitted power and coverage, denser com-

munication links, and higher user mobility.

B. Caching Strategy

As mentioned, the caching process always has two phases: the content place-

ment phase and the content delivery phase. The former decides which files should

be stored in the caches, and occurs during off-peak hours, e.g. night time. The

later usually happens right after the users make requests in peak traffic periods. In

this phase, the requested files need to be sent to the users from the caches or the

core network. Note that the content placement phase, except for the online caching

case, happens in a relative long-term time scale compared with the content delivery

phase which occurs instantaneously, and therefore lots of papers have assumed that

the content placement has been fixed when designing the content delivery strate-

gies, while authors in [100] proposed a new strategy for joint optimization of the

two phases utilizing mixed time-scale stochastic optimization.

• Caching Placement Strategy: As mentioned previously, there are a variety

of content placement schemes which can be grouped into several types ac-

cording to different aspects, e.g. file partition, placement updating, caching



2.4. More on Wireless Edge Caching 45

model, performance metric and etc. For instance, we can distinguish the con-

tent placement schemes among uncoded caching or coded caching, proactive

caching or reactive caching, deterministic caching or probabilistic caching,

and so on. For the uncoded caching, complete files or uncoded segments of

the files will be stored in the caches. For the coded placement, each file is par-

titioned, processed by particular codes [118,119], and then cached, in order to

improve the utilization of storage. Most of the literature considers proactive

content placement strategy, e.g. popularity based placement and probabilistic

placement, which is an offline caching strategy deciding the content place-

ment by actively predicting the file popularity. Oppositely, adaptive content

placement strategy, e.g. the least frequently used (LFU), least recently used

(LRU), and other online algorithms [121], determines how to update the con-

tent in the caches according to the users’ demands. The basic idea of the two

typical replacement strategies is removing the least recently requested or least

frequently used content from the caches, and then replacing them with more

popular content, respectively [122].

• Caching Delivery Strategy: The target of caching delivery strategy design

is to find a most effective way to transmit the requested content to the users.

To do so, we need to decide where and how to fetch the requested con-

tent, which requires carefully optimization of user association, transmission

method (e.g. unicast, or multicast), power allocation, channel allocation, and

other required transmission parameters, according to different performance

metrics and physical transmission conditions. In particular, multicast trans-

mission plays an important role in content delivery by utilizing a single mul-

ticast transmission to serve temporal-spatial requests for the same content,

instead of sending multiple unicast transmissions each corresponding to an

individual request [123]. Coded multicast is another effective way to satisfy

different requests concurrently with multicast utilizing linear coding [52].

C. Control Structure

• Centralized: There always exists an entity working as a central controller,
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which collects useful information for the entire network, e.g., the content

popularity, user demands, and channel information, and then uses it to decide

optimum caching strategies [94,124]. The centralized structure guarantees the

global optimality at the expense of solving large-scale optimization problem.

• Distributed: The nodes decide the caching strategies only based their own in-

formation so that local optimality is achieved in a distributed structure. Since

the information about other nodes does not need to be considered, the size of

the caching problem is much smaller compared with centralized algorithms.

D. Mathematical Tools

• Optimization: In general, the caching optimization problems usually aim to

maximize/minimize a performance metric, e.g. hit ratio, successful trans-

mission rate, backhaul cost, or network delay, under the storage capacity

constraints and QoS requirements by designing the placement and delivery

strategies.

• Game Theory: Game theory is a mathematical tool modeling the conflict

and cooperation among competing players, and has been widely used for re-

source allocation. In cache-enabled wireless networks, the entities, e.g. the

SBSs, and UEs, need both competition and cooperation due to limited storage

capacity, transmit power, or backhaul resource, and therefore they can be con-

sidered as the players competing to maximize their own utilities [125, 126].

• Stochastic Geometry: Stochastic geometry is a typical tool to model random

network topology, where independent homogeneous Poisson point processes

(PPPs) or Poisson cluster process (PCP) are used to model the heterogeneity

of the MBS and SBS locations [114]. Moreover, this model takes the interfer-

ence aspect among different links into account, which makes it more practi-

cal and suitable for performance analysis and optimization for cache-enabled

wireless networks with random topology or high mobility.

• Machine Learning: Though it has been frequently assumed that the BS or
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UT has knowledge of the file popularity when designing caching strategies in

literature, the nodes usually have no prior information about that in practice.

Machine learning provides a solution to this problem by collecting the users’

request history and using that to predict the file popularity [31, 127].

2.4.3 Content Placement and Delivery Strategies

In this section, we briefly introduce several typical models in designing the content

placement and delivery strategies for cache enabled cellular networks.

A. Femto-Caching

In [94], a wireless system was considered where UTs communicated with a set

of distributed cache-enabled helpers. The authors minimized the expected down-

loading time by optimizing the content placement at the helpers in both the un-

coded caching case and coded caching case. For uncoded caching, the users can

communicate with multiple helpers and therefore may have conflicting interests on

optimum content placement in the shared helpers because of different transmission

speeds on those links. The cache content allocation became a combinatorial dis-

tributed caching problem requiring sophisticated algorithms to solve it. To this end,

they modeled the network as a bipartite graph, as shown in Fig. 2.4, with the weight

of each edge indicating the associated transmission speed of the link between the

connected user and helper. Now that the uncoded caching problem became a mono-

tone submodular function maximization with matroid constraints and NP-hard to

get the optimal solution, they resorted to the greedy algorithm by caching the file

that brought the greatest caching gain in each iteration [32].

Opposite to the uncoded caching case, where the content assignment matrix X

was binary, that in the coded caching case satisfied X ∈ [0,1]N×H . N and H denoted

the number of files and the number of helpers, respectively. The cache content

allocation became convex, and can be linearized by introducing new variables and

then solved in a distributed manner. Even if we need to deal with thousands of files

in large-scale networks, approximation methods are available to solve the problem,

which makes the coded caching scheme gain better applicability than the uncoded

caching schemes. In addition, the coded caching scheme makes better use of the
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Figure 2.4: An example of a bipartite graph indicating the connectivity between the

UTs and the helpers.

content diversity and therefore improves the memory utilization.

B. Coded Caching (Coded-Multicasting)

Coded caching was firstly proposed by Mohammad Ali Maddah-Ali and Urs

Niesen in [52] where a new information-theoretic model was formulated for the

caching problem. They investigated both the content placement and delivery phases

so that the demands of different users can be satisfied with a single coded multicast

transmission in the delivery phase to achieve a global caching gain. In their model,

a single server network with K users was considered, where all the users were con-

nected to the server through a shared, error-free link. The server can access all the

N files (N ≤ K) while each user can store at most M files in its local cache and

request a single file at a time. They also assumed simplest settings, such as uniform

file popularity, file size and cache size. The aim was to minimize the rate, i.e., the

load of the shared link in the delivery phase, in worst case.

To illuminate the theory of coded multicast, here we introduce an example

of a typical shared network consisting of a single server, two users and two files,

depicted in Fig. 2.5. We can then easily derive that when cache size M = 0 and

M = 2, the multicast rate equals to 2 and 0, respectively. More generally, when

M = 1, both of the files, denoted as A and B, are equally split into two subfiles, i.e.,

A = (A1,A2) and B = (B1,B2). We let each user cache one disjoint subfile of each

file, e.g. Z1 = (A1,B1) and Z2 = (A2,B2), and consider the worst-case scenario

when each user requests different files, for example that user one requests file A and



2.4. More on Wireless Edge Caching 49

A B

server
A1, A2

B1, B2

users

shared 
link

A1, B1 A2, B2caches

A2        B1

A A

A1, A2

B1, B2

A1, B1 A2, B2

A2        A1

Figure 2.5: An example of coded caching strategy for two files (A,B), two users

and cache size M = 1 with two typical user requests.

user two requests file B. Normally, we can deliver A2 to user one and B1 to user

two. In coded multicast, we reduce the backhaul load by making use of both of the

cached packages and the delivered packages to decode the missing subfiles. That is

due to the fact that each user may has part of the file that the other user needs. In

this case, we utilize bitwise XOR denoted as ⊕ and let the server multicast A2⊕B1

to both of the users. Now that user one has cached B1, it can easily recover A2 from

A2⊕B1. And user two can recover B1 using cached content A2 as well. In so doing,

the rate drops from 2 subfiles to 1 subfiles. The same logic can be used to deal with

all other possible requests and larger networks. Through the derivation, the rates for

uncoded caching and coded caching, denoted by R(M) and R∗(M), can be written

as

R(M) = K · (1−M/N), (2.12)

R∗(M) = K · (1−M/N) · 1
1+KM/N

, (2.13)

where K is the rate without caching. Thus, coded caching brings an global caching

gain of 1
1+KM/N in addition to the local caching gain (1−M/N).

Note that in this case, the placement phase must be carefully designed in or-

der to guarantee simultaneous multicasting opportunities for all possible requests

to achieve the global caching gain. It is more challenging for complex network

topologies with heterogeneous network settings, [82–89]. In addition, efforts have
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also been done to extend the results of the centralized, offline caching scheme to

decentralized coded caching [120], and online coded caching [121]. The former no

longer relies on the server to know and control the placement and delivery phases

while the later takes the evolution of content popularity into account and proposes

a content replacement protocol.

C. Probabilistic Caching

Probabilistic caching was firstly used for cache-enabled HetNets in [50]. In

this model, the probability distributions for cache content placement at different

BSs are the same. Now that define the file library as {c1,c2, . . . ,cN} with equal file

size, and the cache size in each BS as M (normalized by the file size), the probability

for file j being stored at BS i can be written as

b j = P(c j ∈ Ξ
i), (2.14)

where Ξi is the exact content distribution of BS i, and {b j} satisfy

∑
j

b j ≤M, (2.15)

0≤ b j ≤ 1,∀ j. (2.16)

The target of this model is to maximize the total hit probability of the typical user

which can be expressed as follows:

f (b1, . . . ,bN) = 1−∑
j

a j ∑
m

pm(1−b j)
m, (2.17)

with m being the number of BSs that covers the user, and pm being the probability

for the considered user being covered by m BSs. a j denotes the content popularity

for file j, i.e., the probability for file j being requested.

Once the probability vector {b j} has been designed, there is an easy way for

the BSs to implement the content placement accordingly. As shown in the example

of Fig. 2.6 which assumes equality in (2.15), the cache memory is divided into M

continuous chunks of unit length. Then we fill the memory chunks with the proba-

bility values of the N files, {b j}, one by one. If the current chunk has been occupied,

the remaining part of the current probability fills the chunk that follows. We then
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uniformly pick a random number within [0,1] and draw a vertical line which crosses

the memory chunks. As b j ∈ [0,1] and the space between two adjacent intersections

always equals to an unit length, we can always guarantee that the intersections ap-

pear at M distinct contents. Moreover, the probability for one of the intersections

appearing at file j exactly equals to b j as depicted in Fig. 2.6. For instance, file 2 is

cached only when the selected random falls in (b1,b2 +b1] when (b1 +b2 ≤ 1), or

[0,b1+b2−1]∪(b1,1] when (b1+b2 > 1). In both of the cases, the total probability

of caching this file is b2.

0.70

0 1

b1 b2 b3

b3 b4 b5

b5 b6 b7

b7 b8 b9 b10

Figure 2.6: An example of the probabilistic placement policy when N = 10 and

M = 4. Drawn uniformly a random number (0.7), the vertical line intersects with

the memory chunks at {c2,c4,c7,c9}, respectively, i.e. the four files will be cached.

Compared with deterministic caching strategies, the random-caching-based

methods, e.g. probabilistic caching, are more suitable for the optimization and

analysis of random topologies, e.g., HetNets, or high mobility scenarios. How-

ever, the associated caching problem may become too complicated to develop any

non-iterative methods.



Chapter 3

Robust Beamforming for SWIPT

Broadcast Channels

3.1 Overview

To combat the effects of multipath fading in energy harvesting enabled networks,

e.g. decaying the power transfer efficiency as well as the spectral efficiency and

hence hindering long-distance SWIPT, multiple antenna techniques are adopted at

transmitters and/or receivers to provide spatial energy and information diversity

gains. In this case, the beamforming and energy transfer ratios need to be jointly

designed in order to achieve trade-offs between the wireless information transmis-

sion and energy transfer, e.g. ensuring particular signal to noise ratio (SNR) while

satisfying least harvested energy threshold as discussed in [10]. In particular, the

broadcast channel is a typical multiuser network of great interests, where the base

station (BS) communicates with several mobile stations (MSs). Using SWIPT, each

MS can be an information decoder (ID) as well as energy receiver (ER), either by

time-switching or power splitting technologies. In this chapter, we consider MISO

broadcast system for SWIPT using receiver power splitting and aim to optimize

jointly the beamforming vectors and the power splitting ratios for minimizing the

transmit power of the base station subject to the individual SINR and the energy-

harvesting constraints at the MSs. However, the CSI is assumed imperfect but has

a deterministic uncertainty region. Unlike existing attempts that resort to iterations
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guided by semi-definite relaxation (SDR), we propose a reverse convex non-smooth

optimization algorithm, which provides the near-optimal rank-one solution.

3.2 Related Work

As mentioned, the SWIPT systems with the communication nodes adopting multi-

antenna techniques have received considerable attentions so as to facilitate long-

distance wireless energy transfer. As opposite to the MIMO channels, the beam-

forming design in the multiple-input single-output (MISO) channels always meets

a crucial rank-one issue of proving the tightness of SDR which makes it challenging

to obtain the optimal solution. Instead, approximation strategies, e.g. randomization

are used to get the suboptimal solution. [10] and [54] provided pioneer works on the

beamforming design for MISO broadcast SWIPT systems with single or multiple

separate information and energy receivers. Recently, the joint optimization problem

of power splitting ratios and beamforming was studied in [56] for MISO broadcast

SWIPT systems with multiple co-located information and energy receivers assum-

ing perfect CSI at the BS. Later in [68], the results were extended to cope with

the case of imperfect CSI, via a highly complex suboptimal two-step optimization

process, which relies on alternatively solving SDR problems with a K-dimensional

search (where K denotes the number of users in the broadcast system). The greedy

searching algorithm not only imposed high computing load, but also lacked careful

clarification on the rank-one issue. In this chapter, we revisit the problem in [68]

which aims to minimize the transmit power of the BS subject to the SINR and the

energy harvesting constraints at the MSs, assuming the availability of imperfect CSI

at the BS, for the MISO SWIPT broadcast system. For MIMO SWIPT broadcasting

in [10], there is no rank-one issue and this means that existing results will not be

optimal for MISO SWIPT systems. The contributions of our proposed approach

over [68] are twofold: (i) significant complexity reduction and (ii) near-optimality.

In particular, we present a feasible SDR-guided randomization approach for the

joint optimization of transmit beamforming and receive power splitting factors. In

contrast to [68], the SDR-based solution is non-iterative but only provides an upper-
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Figure 3.1: A MISO SWIPT broadcast system with power splitters.

bound performance after rescaling. Hence, we propose a reverse convex constraint

based penalty function method which guarantees a rank-one and near-optimal solu-

tion.

3.3 System Model
Consider a K-user MISO broadcast system as illustrated in Fig. 3.1, where the BS,

with Ns antennas, communicates with K single-antenna MSs. Each MS acts simul-

taneously as an ID and an ER via power splitting. With transmit beamforming at

the BS, the received signal at the kth MS can be written as

yk = hH
k

K

∑
i=1

bisi +nA,k, for k = 1, . . . ,K, (3.1)

where bi and si denote the transmit beamforming vector and the data symbol for the

ith MS, respectively, hk is the channel vector between the BS and the kth MS, nA,k

is the antenna noise at the kth MS, and (·)H is the Hermitian operation.

With a power splitter at the kth MS, suppose that we have the power splitting

ratio ρk ∈ [0,1]. Then the signal split to the ID of the kth receiver is given by

yI,k =
√

ρk

(
hH

k

K

∑
k=1

bisi +nA,k

)
+nP,k, (3.2)

where nP,k denotes the additive noise at the ID of the kth MS. Meanwhile, the signal

split to the energy harvester of the kth MS can be expressed as

yE,k =
√

1−ρk

(
hH

k

K

∑
i=1

bisi +nA,k

)
. (3.3)
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As such, the SINR of the ID at the kth MS is given by

SINRk =
ρkhH

k bkbH
k hk

ρkσ2
A,k +σ2

P,k +ρkhH
k

(
∑

K
i=1
i 6=k

bibH
i

)
hk

, (3.4)

and the power harvested at the kth MS is written as

Ek = ξk(1−ρk)

(
hH

k

(
K

∑
i=1

bibH
i

)
hk +σ

2
A,k

)
, (3.5)

where ξk ∈ (0,1] is the energy conversion efficiency of the energy harvester, and

E{|si|2}= 1 has been assumed.

To guarantee desirable QoS in communication and also enough power in the

energy harvesting, the beamforming design for MISO broadcast SWIPT should sat-

isfy the SINR constraints and energy harvesting constraints which are written as

SINRk =
ρkhH

k bkbH
k hk

ρkσ2
A,k +σ2

P,k +ρkhH
k

(
∑

K
i=1
i 6=k

bibH
i

)
hk

≥ γk, (3.6)

and

Ek = ξk(1−ρk)

(
hH

k

(
K

∑
i=1

bibH
i

)
hk +σ

2
A,k

)
≥ ηk, (3.7)

where γk > 0 and ηk > 0 are the given SINR and energy harvesting thresholds at the

kth MS, respectively.

3.4 Robust Optimization
Here we model the channel by

hk = ĥk +∆hk, for k = 1, . . . ,K, (3.8)

where hk is the actual channel vector, but ĥk denotes the CSI estimate with an error

vector ∆hk, which satisfies

‖∆hk‖2 = ‖hk− ĥk‖2 ≤ εk, for εk ≥ 0, (3.9)

where {εk} denotes the given threshold of the channel uncertainty reflecting the

quality of the estimates.
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We aim to minimize the BS transmit power subject to the SINR and the energy-

harvesting constraints at the MSs as

min
{bk}

{0<ρk<1}

K

∑
k=1

bH
k bk s.t. (3.10a)

min
∆hk

|bH
k (hk +∆hk) |2

γk
−

K

∑
i=1
i6=k

|bH
i (hk +∆hk) |2 ≥ σ

2
A,k +

σ2
P,k

ρk
,∀k, (3.10b)

min
∆hk

K

∑
i=1
|bH

i (hk +∆hk) |2 ≥
ηk

ξk(1−ρk)
−σ

2
A,k,∀k, (3.10c)

‖∆hk‖2 ≤ εk,∀k. (3.10d)

Due to imperfect CSI, however, our problem is not convex and has infinitely many

constraints as opposed to that in [56].

Lemma 3.1 (S-Procedure): Let fi(x) = xHAix + 2bH
i x + ci, i = 1,2 where Ai ∈

Cn×n,bi ∈ Cn and ci ∈ R. The implication f1(x) ≤ 0⇒ f2(x) ≤ 0 holds if and

only if there exists µ ≥ 0 satisfying [45, 73]

µ

A1 b1

bH
1 c1

−
A2 b2

bH
2 c2

� 0. (3.11)

Now, we define Wk , bkbH
k and substitute (3.10d) and (3.10b) into Lemma 1.

Then for any arbitrary k, we obtain that f k
1 (∆hk) =∆hH

k ∆hk−εk with Ak
1 = INs,bk

1 =

0,ck
1 =−εk. In the same way, we can derive that f k

2 (∆hk)=∆hH
k Ak

2∆hk+bk
2∆hk+ck

2

with

Ak
2 =−

Wk

γk
+

K

∑
i=1
i 6=k

Wi (3.12)

bk
2 = Ak

2hk, (3.13)

ck
2 = σ

2
A,k +

σ2
P,k

ρk
+hH

k Ak
2hk, (3.14)

where the superscript k indicates the reformulation is done in terms of user k. We

will then get a group of positive semi-definite matrices named {ΓΓΓk} (see (3.15)),

associated with parameters {µk}. Similarly, if we apply S-Procedure to (3.10d) and
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(3.10c), then we will have another group of semi-definite matrices {ϒϒϒk} (see (3.16)),

associated with parameters {λk}. To be brief, we let ΠΠΠk = Wk
γk
−∑

K
i=1
i 6=k

Wi,ΘΘΘk =

∑
K
i=1 Wi,φk = σ2

A,k +
σ2

P,k
ρk
−µkεk, and ϕk =

ηk
ξk(1−ρk)

+σ2
A,k−λkεk.

ΓΓΓk({Wk},ρk,µk) =

µkINs +ΠΠΠk ΠΠΠkhk

hH
k ΠΠΠk hH

k ΠΠΠkhk−φk

� 0, (3.15)

ϒϒϒk({Wk},ρk,λk) =

λkINs +ΘΘΘk ΘΘΘkhk

hH
k ΘΘΘk hH

k ΘΘΘkhk−ϕk

� 0. (3.16)

Based on the S-Procedure, (3.10) becomes

min
{Wk},{ρk},
{µk},{λk}

K

∑
k=1

tr (Wk) s.t. (3.17a)

ΓΓΓk({Wk},ρk,µk)� 0,∀k, (3.17b)

ϒϒϒk({Wk},ρk,λk)� 0,∀k, (3.17c)

Wk � 0,0 < ρk < 1,∀k, (3.17d)

µk ≥ 0,λk ≥ 0,∀k, (3.17e)

Rank(Wk) = 1,∀k. (3.17f)

In terms of {ρk}, φk and ϕk are both convex as the corresponding second

derivatives are positive. Ignoring the rank-one constraint, problem (3.17) will be

convex but cannot be solved by optimization packages CVX [73] due to the cou-

pling of 1
ρk

and 1
1−ρk

in ΓΓΓk and ϒϒϒk. This was why [68] resorted to iterative subop-

timal approaches. Here, we propose to solve the problem by introducing a group

of new variables, qk and q̃k to get a definitely convex problem after rank relaxation
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which can be processed by existing solvers:

min
{Wk},{ρk},{qk},
{q̃k},{µk},{λk}

K

∑
k=1

tr (Wk) s.t. (3.18a)

Γ̃ΓΓk({Wk},qk,µk)� 0,∀k, (3.18b)

ϒ̃ϒϒk({Wk}, q̃k,λk)� 0,∀k, (3.18c)

Wk � 0,0 < ρk < 1,∀k, (3.18d)

qk ≥
1
ρk

, q̃k ≥
1

1−ρk
,∀k, (3.18e)

µk ≥ 0,λk ≥ 0,∀k. (3.18f)

Rank(Wk) = 1,∀k. (3.18g)

where Γ̃ΓΓk and ϒ̃ϒϒk are similar to those of ΓΓΓk and ϒϒϒk except that we change 1
ρk

and
1

1−ρk
to qk and q̃k, respectively.

Proposition 3.1 Regardless of the new variables qk and q̃k, problems (3.17) and

(3.18) are equivalent. The optimal solution to either of the two problems should

also be optimal for the other one.

Proof 3.1 Please refer to Appendix A.

However, the rank-one constraint makes both (3.17) and (3.18) non-convex.

To tackle this, SDR with randomization is used.

3.4.1 SDR Guided Randomization

In particular, the rank constraint is first dropped to obtain a suboptimal solution.

Then the randomization technique is used to generate the feasible solutions to

(3.17). Assuming that the solution of SDR is W∗k ,∀k, with the eigenvalue decom-

position defined as W∗k = UΣΣΣUH , the feasible beamforming vector of (3.17) under

randomization can then be given by

bk = UΣΣΣ
1
2 v. (3.19)

Here U is unitary and ΣΣΣ is diagonal with eigenvalue arranged in decreasing order,

and v is a vector of complex circularly symmetric uncorrelated Gaussian random
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variables with zero-mean and unit-variance. However, some of the constraints in

(3.17) may be violated after randomization, and one needs to rescale the beamform-

ing vector bk with an appropriate factor αk to meet the constraints. Thus we have

b̃k = αkbk,∀k. (3.20)

Then we reformulate the problem as follows and rely on CVX to derive the optimal

scaling factors:

min
{βk}

K

∑
k=1

tr(W̃k) s.t. (3.21a)

Γ̃ΓΓk({W̃k},q∗k ,µ∗k )� 0,∀k, (3.21b)

ϒ̃ϒϒk({W̃k}, q̃∗k ,λ ∗k )� 0,∀k, (3.21c)

W̃k � 0,∀k, (3.21d)

where W̃k = βkb̃kb̃H
k ,βk = α2

k , and q∗k ,µ
∗
k , q̃
∗
k ,λ
∗
k are the corresponding solution by

the SDP approach. With the optimal scaling factors, we can easily generate bk

using (3.19) and (3.20). The downside is that randomization always offers worse

performance due to the relaxation involved. As a remedy, in the following, we

solve the problem by expressing the rank-one constraint (3.18g) as a single reverse

convex constraint which is then incorporated into the objective function as a penalty

function. The resulting problem belongs to the class of concave programming with

a nonsmooth objective.

3.4.2 Penalty Function Method

Since Wk,∀k is always positive semi-definite, we then have tr(Wk) ≥ λmax(Wk)

where λmax(Wk) is the maximum eigenvalue of Wk. In this case, if tr(Wk) ≤

λmax(Wk) also holds, it will be easy to prove that tr(Wk) = λmax(Wk). That is to

say, Wk has only one non-zero eigenvalue. Then we will have Rank(Wk) = 1,∀k.

Thus, the rank-one constraints (3.18g) can be expressed by the following con-

straint [130]:
K

∑
k=1

(tr(Wk)−λmax(Wk))≤ 0. (3.22)
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Substitute (3.22) into problem (3.18), and we can then obtain

min
{Wk},{ρk},{qk},
{q̃k},{µk},{λk}

K

∑
k=1

tr (Wk) s.t. (3.23a)

(3.18b)–(3.18f), (3.22). (3.23b)

Note that the function λmax(X) is proved to be convex on the set of Hermitian

matrices [129]. Therefore, we can easily derive that ∑
K
k=1 (tr(Wk)−λmax(Wk)) is

actually a concave function of Wk, which is to say that (3.22) is a reverse con-

vex constraint [128]. Consequently, problem (3.23) is now a convex program with

additional reverse convex constraint, a typical type of nonconvex global optimiza-

tion [128, 130].

It is worth pointing out that when tr(Wk)−λmax(Wk) is small enough, we will

have Wk≈ λmax(Wk)wk,maxwH
k,max, where wk,max denotes the unit-norm eigenvector

corresponding to the maximum eigenvalue λmax(Wk) (i.e.,
∥∥wk,max

∥∥= 1). Then the

optimal beamforming vector can be obtained as

bk = λmax(Wk)
1
2 wk,max, (3.24)

satisfying the rank-one constraints (3.18g). Our aim is therefore to make

∑
K
k=1 (tr(Wk)−λmax(Wk)) as small as possible. Thus we consider the alterna-

tive formulation to (3.18):

min
{Wk},{ρk},{qk},
{q̃k},{µk},{λk}

τ (3.25a)

s.t. (3.18b)–(3.18f). (3.25b)

where τ , ∑
K
k=1 (tr(Wk)+κ (tr(Wk)−λmax(Wk))) and κ > 0 is a constant. If the

weight κ is chosen to be large enough, then the difference tr(Wk)−λmax(Wk) will

be minimized. Clearly, the objective of (3.25) is to minimize both ∑
K
k=1 tr(Wk) and

∑
K
k=1 (tr(Wk)−λmax(Wk)).

Lemma 3.2 Let X and Y be positive semidefinite matrices. Using the fact that

a sub-gradient of λmax(Y) is ymaxyH
max, we always have λmax(X)− λmax(Y) ≥

yH
max(X−Y)ymax. Meanwhile, λmax(Y) and ymax denote the maximum eigenvalue

and corresponding eigenvector of Y, respectively.
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According to Lemma 2, given some feasible W(n)
k of problem (3.25), we obtain

tr(W(n+1)
k )+κ

[
tr(W(n+1)

k )−λmax(W
(n)
k )

− (w(n)
k,max)

H
(

W(n+1)
k −W(n)

k

)
w(n)

k,max

]
≤ tr(W(n)

k )+κ

(
tr(W(n)

k )−λmax(W
(n)
k )
)
, (3.26)

where the superscript n denotes the n-th iteration. Accordingly, the following SDP

problem gives an optimal solution W(n+1)
k that is better than W(n)

k of problem (3.25):

min
{Wk},{ρk},{qk},
{q̃k},{µk},{λk}

K

∑
k=1

tr(W(n+1)
k )+κ

[
tr(W(n+1)

k )

−λmax(W
(n)
k )− (w(n)

k,max)
H
(

W(n+1)
k

−W(n)
k

)
w(n)

k,max

]
(3.27a)

s.t. (3.18b)–(3.18f). (3.27b)

Now, (3.27) can be further simplified to

min
{Wk},{ρk},{qk},
{q̃k},{µk},{λk}

K

∑
k=1

tr (Wk)+κ

[
tr(Wk)− (w(n)

k,max)
HWk×w(n)

k,max

]
(3.28a)

s.t. (3.18b)–(3.18f). (3.28b)

Due to the initial condition tr(W(0)
k )−λmax(W

(0)
k ) = 0, at some n, we will have

tr(W(n)
k )−λmax(W

(n)
k ) = 0.

The proposed nonsmooth iterative algorithm to resolve the rank-one beam-

forming problem is summarized in Algorithm 1. {ζk} is the iteration terminating

threshold.

3.4.3 Complexity Analysis

Firstly, the suboptimal two-step optimization process in [68] is highly complex,

because it requires alternatively solving SDR problems with a K-dimensional

search. That is to say we need to solve K
∆ρ

SDP problems (where ∆ρ denotes

step length), which makes the two-step optimization much more computation-

ally demanded than the proposed methods. The complexity for a single SDP is
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Algorithm 1 A nonsmooth iterative algorithm
1. Initialization

Choose a proper value of κ > 0 and a feasible solution (W(0)
k ,ρ

(0)
k ),∀k, of (3.28).

Set n = 0.

2. Repeat

a. Solve problem (3.28) to obtain W(n+1)
k , and ρ

(n+1)
k ,∀k.

b. if W(n+1)
k = W(n)

k then

set κ = 2κ

end if

c. n = n+1

Until tr(W(n)
k )≈ λmax(W

(n)
k )

3. Reset W(0)
k = W(n)

k ,ρ
(0)
k = ρ

(n)
k ,n = 0.

4. Repeat

a. Solve problem (3.28) to obtain W(n+1)
k and ρ

(n+1)
k .

b. n = n+1

Until tr(W(n)
k )≈ λmax(W

(n−1)
k ), i.e.

∣∣∣tr(W(n)
k )−λmax(W

(n−1)
k )

∣∣∣≤ ζk

5. Calculate bk according to (3.24).

O(n0.5
sdp(msdpn3

sdp+m2
sdpn2

sdp+m3
sdp)). Meanwhile, nsdp denotes the dimension of the

positive semidefinite cone and msdp is the number of constraints. The sum com-

plexity would be O( K
∆ρ

n0.5
sdp(msdpn3

sdp +m2
sdpn2

sdp +m3
sdp)). In our considered robust

beamforming design, it holds true that nsdp =Ns+K+1 and msdp =K+1. Our pro-

posed SDP method, which is based on reformulation, only requires to solve a single

SDP without iteration. The SDP guided randomization comprises of two SDPs, to

derive the optimal {Wk} and the optimal scaling factors {βk}, respectively. The

complexity of those SDPs is all approximate to that of the ones in [68] according

to the structures of the problems. Though each iteration requires an SDP solver,

it has been noticed that the PenFun method only requires tens of iterations to con-

verge, which makes it competitive in terms of computational complexity in addition

to the performance advantages. In addition, in the perfect CSI case [56], where full

knowledge of CSI is assumed, the rank-one guaranteed optimal solution is achieved
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by solving a single SDP.

3.5 Simulation Results
In this section, the performance of the proposed methods is investigated via sim-

ulations. We considered γk = γ,ηk = η , ξk = 0.5, σ2
A,k = 10−8, ζk, and σ2

P,k =

10−6,εk = 0.001,∀k. In each realization, the frequency-flat channels are generated

according to Rician fading channel modeling. The channel vector is modeled as

hk =
1√
dmk

k

(√
KR

1+KR
hLOS

k +

√
1

1+KR
hNLOS

k

)
, (3.29)

where hLOS
k = 10−2[1, e jθk , e j2θk , . . . , e j(Ns−1)θk ]T with θk =−π sinφk, φk ∈ [−π,π]

is randomly generated and the Rician ratio KR = 5dB, dk(= 1.5) and mk(= 2.7)

denote the BS to MS distances and the path loss exponents, respectively, with ref-

erence to [13], and hNLOS
k is an independent zero-mean complex Gaussian random

variable with variance of 10−2. The final results are obtained by averaging over

1000 Monte Carlo simulation runs. To demonstrate the advantages of the proposed

methods, the randomization approach, the penalty function method (PenFun), the

SDP method, and the optimal performance with perfect CSI [56] are all compared.

Fig. 3.2 shows the performance in terms of the transmit power versus SINR

targets (γ) and fixed harvested power threshold η = 10 dBm with K = 2 and K = 4,

respectively. Here we set Ns = 4. As can be observed, the minimum transmit power

rises with the increase of the number of MSs. Also in both cases, the randomization

approach shows an upper-bound performance compared with the other methods due

to randomization. PenFun also performs nearly as the SDP method and is also quite

close to the perfect CSI case which demonstrates that the proposed PenFun method

not only guarantees a rank-one solution but also yields the global optimal solution.

Moreover, the gap between PenFun and the randomization approach is narrowed

when increasing the SINR threshold while that between the PenFun method and the

perfect CSI case follows a reverse trend.

Next, we compare the performance of the methods mentioned above versus the

energy harvesting threshold η with targeted SINR fixed at γ = 10 dB, K = 4 and
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Figure 3.2: The BS transmit power versus the SINR γ .

Ns = 4 or 8 in Fig. 3.3. Similarly, in this figure the PenFun method outperforms the

randomization approach and shows comparable performance to the SDP method,

and the perfect CSI case. In addition, we provide two groups of data with different

numbers of transmission antennas Ns to discuss how the number of transmission

antennas affects the performance. As can be seen from the figure, increasing the

number of antennas at BS can reduce the minimum demanded transmit power to

some degree.

Finally, we discuss the impact of the channel uncertainty threshold ε on the

performance of the proposed robust beamforming schemes. Here, we compare the

performance of the methods mentioned above versus ε with targeted SINR, energy

harvesting threshold, number of users, number of transmission antennas fixed at γ =

10 dB, η = 10 dBm, K = 4, Ns = 4, and the distance d = 1.5 or 0.5, as can be seen in

Fig. 3.4. In this figure, the transmission power rises with the increase of the channel

uncertainty threshold ε . In all the cases, the transmission power for the PenFun

method is lower than the one for the randomization approach, and approximate to
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Figure 3.3: Transmission power versus harvested power η .

the one for the SDP method. In the case of small ε , the proposed PenFun method

performs close to the perfect CSI case. When the channel estimation error goes

up, the performance gaps between the perfect CSI case and the other three schemes

gradually increase as expected.

3.6 Summary
In this chapter, a MISO SWIPT broadcast system was investigated where a multiple-

antenna transmitter communicated with multiple users each with single antenna

while acting simultaneously as an ID and an ER via power splitting. The joint-

optimal transmit beamforming and power-splitting ratio with imperfect CSI was

obtained using a penalty function based method. In particular, we have shown that

the penalty function method yields a more reliable and better solution than the ran-

domization method. Moreover, the penalty function method performs nearly as the

SDP method and is also quite close to the perfect CSI case which demonstrates that

the proposed PenFun method not only guarantees a rank-one solution but also yields
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Figure 3.4: Transmission power versus channel uncertainty threshold ε .

the global optimal solution. Note that flat-fading channels have been assumed for

resource allocation in SWIPT systems in this thesis, and the extension to the more

complex frequency-selective channels would be useful and deserves further investi-

gation. It has been noticed that the frequency-diversity gain can also be exploited to

further improve the energy transfer efficiency, by transmitting more power over the

sub-band with higher channel gain, for SWIPT over frequency-selective channels.

Theoretically, energy transfer efficiency is maximized by transmitting at the fre-

quency with the strongest channel frequency response [53]. However, it is imposed

to split the transmission power over multiple strong sub-bands to satisfy various

regulations in practice, such as the power spectral density constraint. Therefore, it

is necessary to extend the research into wireless power transfer in single and multi-

antenna frequency-selective channels under a general SWIPT setup [7, 131].

While we focused on energy efficiency optimization for power splitting based

SWIPT MISO multi-user networks here, rate maximization was studied for time

switching based SWIPT MIMO relaying in the next chapter.



Chapter 4

Beamforming for SWIPT MIMO

Relaying

4.1 Overview

Combining multiple-input multiple-output (MIMO) antenna and relaying is a

promising means to enhance both coverage and performance of wireless commu-

nications networks and hence has received considerable attentions [132–135]. The

optimal transmission policies have been intensively investigated in order to achieve

the best performance of the cooperative communication networks. On the other

hand, energy harvesting has emerged as an attractive component for relaying and

cooperative communication as the battery storage of the relay nodes is usually lim-

ited. In consideration of SWIPT, the cooperative techniques of the multi-antenna

relay networks require to be revisited to finish information transmission while sat-

isfying the demands on harvested energy. In this chapter, we consider SWIPT for

a MIMO relay system. The relay is powered by harvesting energy from the source

via time switching (TS) and utilizes the harvested energy to forward the informa-

tion signal. Our aim is to maximize the rate of the system subject to the power

constraints at both the source and relay nodes. In the first scenario in which the

source covariance matrix is an identity matrix, we present the joint-optimal solution

for relaying and the TS ratio in closed form. An iterative scheme is then proposed

for jointly optimizing the source and relaying matrices and the TS ratio.
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4.2 Related Work

As a crucial issue for multi-antenna relay networks, the optimal source, relay, and

receive matrices have been explored from all kinds of perspectives. In [132], the op-

timal structure of the relay processing matrix to maximize the rate assuming unitary

source precoding was presented. Joint source and relay optimization was consid-

ered in [133, 134]. Recently, more complex applications such as robust beamform-

ing design with imperfect CSI were studied [135]. Moreover, research has been

carried out to study SWIPT for multi-antenna relay networks [136–138]. For com-

plexity reasons, preference was given to the time-switching (TS) mechanism over

power splitting for energy harvesting, e.g., [137, 138]. Unfortunately, the existing

approaches failed to provide a joint energy transfer ratio and precoding matrices

design for a generic MIMO relay system. For example, [136, 137] depended on

either semi-definite relaxation (SDR) and existing solvers or iterative approaches

while in [138] a closed form solution was given for a MISO relay system rather

than general MIMO network. Closed-form solutions as well as the structures of

the source covariance and relay beamforming matrices are not well understood. To

this end, we consider the rate maximization problem for the SWIPT MIMO relay

system. The fixed source covariance matrix case and the joint source, relay, and TS

ratio optimization case are both investigated. Unlike the existing attempts which

rely on SDR, we give the structures of the optimal relay beamforming matrix and

the source covariance matrix and propose a closed-form solution and an iterative

solution for the two cases, respectively.

4.3 System Model

We consider a two-hop MIMO relay network with an energy harvesting relay node

and assume that the source, relay and destination nodes are all equipped with mul-

tiple antennas, as shown in Fig. 4.1. The numbers of antennas are M,L,N, respec-

tively. The relay harvests energy from the source and uses it to forward the infor-

mation. Here we assume that the direct link between the source and destination is

negligible with perfect CSI known at all nodes.
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Figure 4.1: A SWIPT enabled relay system.

The TS-based relaying involves three phases, as shown in Fig. 4.2, with T

being the block length, and ε denoting the TS ratio. In the first phase, the channel

and source covariance matrices are defined as H̃1 and Q̃, respectively. s̃ is the source

symbol vector. In the information transmit phases, we will use s to denote the source

symbol vector, P to denote maximum transmit power, H1 and H2 to represent the

channel matrices between the source and relay, and the relay and the destination,

respectively, Q to denote the source covariance matrix and F the relay beamforming

matrix. We will also consider the additive white Gaussian noises (AWGNs), n1 and

n2, at the relay and destination nodes with variances σ2
1 and σ2

2 , respectively. In

this chapter, T = 1 is assumed. The superscript H is the Hermitian operator and I is

an identity matrix.

(1- )T/2(1- )T/2T

Energy harvesting 

at relay

Information receiving 

at relay

Information forwarding 

from relay to destination

Figure 4.2: The framework of the proposed TS relaying.

The harvested power at the relay can be expressed as

tr(yeyH
e ) = tr(H̃1Q̃H̃H

1 +σ
2
1 ID), (4.1)

where ye = H̃1s̃+ n1 is the received signal at the relay in the energy harvesting

phase. Then in the information transmission phase, the received signal at the relay

can be written as

yr = H1s+n1. (4.2)
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In the last time phase, the received signal at the destination is

yd = H2FH1s+H2Fn1 +n2. (4.3)

4.4 Relay and TS Ratio Only Design
Here, we fix the source covariance matrix in the information transmit phase as

Q =E(ssH)= P
DID, where D (D≤min(M,L,N)) is the number of data streams.

To proceed, we firstly consider the direct link between the source node and

the destination node without relaying. In this scenario, the received signal can be

written as

y0 = H0s+n0, (4.4)

where H0 denotes the channel matrix of the direct link. The noise is modeled with

complex circular white Gaussian, i.e., n0→N (0, σ2
0 ). The achievable rate, which

is refereed to as the instantaneous capacity corresponding to a packet duration, can

then be written as [139]

C0 =
1− ε

2
log2 det

(
ID +ρ0HH

0 H0
)
, (4.5)

where det represents the determinant of a matrix, and ρ0 ,
P

Dσ2
0

is the normalized

SNR. And the term 1−ε

2 results from the time switching EH strategy.

Comparing the two scenarios with and without relaying, the equivalent covari-

ance matrix of the equivalent total noise term (with interference) in (4.2) for the

relay scenario refereed to as R satisfies

R = σ
2
2

(
ID +

σ2
1

σ2
2

H2FFHHH
2

)
. (4.6)

The noise whitening matrix can then be defined as R−1/2, and the equivalent chan-

nel matrix can be written as H̃ , R−1/2H2FH1.

Substituting the noise whitening matrix R−1/2 and equivalent channel matrix

H̃ into (4.5), the achievable rate can be written as
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C =
1− ε

2
log2 det

(
ID +

P
D

H̃HH̃
)

=
1− ε

2
log2 det

(
ID +

P
D
(R−1/2H2FH1)

H(R−1/2H2FH1)

)
=

1− ε

2
log2 det

(
ID +

P
D

HH
1 (H2F)HR−1(H2F)H1

)
(4.7)

Substituting the expression of R in (4.6) into (4.7), the achievable rate can be

further reformulated into [132]

C =
1− ε

2
log2 det

ID+
P

Dσ2
1

HH
1 (

σ1

σ2
H2F)H

(
ID+(

σ1

σ2
H2F)(

σ1

σ2
H2F)H

)−1

(
σ1

σ2
H2F)︸ ︷︷ ︸H1


=

1− ε

2
log2 det

ID +
P

Dσ2
1

HH
1

(
ID−

(
ID +(

σ1

σ2
H2F)H(

σ1

σ2
H2F)

)−1
)

︸ ︷︷ ︸H1

 .

(4.8)

Meanwhile, the equivalence of the underbraced terms can be verified uti-

lizing straightforward proof or matrix inverse lemma. Moreover, we let S =

ID +
σ2

1
σ2

2
FHHH

2 H2F, and the SNR at the relay ρ1 , P
Dσ2

1
, (4.8) can be rewritten

as [132]

C =
1− ε

2
log2 det

(
ID +ρ1H1HH

1 −ρ1H1HH
1 S−1) . (4.9)

Therein, we utilize the important property that det(I+AB) = det(I+BA) for any

complex conjugate symmetric matrices A and B.

The transmitted signal at the relay

xr = FH1s+Fn1 (4.10)

will have to satisfy the harvested power constraint

1− ε

2
σ

2
1 tr(F(ID +ρ1H1HH

1 )F
H)≤ εη tr(H̃1Q̃H̃H

1 +σ
2
1 ID) (4.11)

where 0≤ η ≤ 1 is the energy conversion efficiency.

Note that in the energy harvesting phase, the objective is to maximize the har-

vested power subject to the transmit power constraint, solution to which is given

in [10] as described below.
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Lemma 4.1 Let the singular value decomposition (SVD) of H̃1 be H̃1 = UΓ
1
2 VH

where U and V are unitary while the diagonal elements of Γ, g1,g2, ...,gD, are

arranged in a descending order. v1 is defined as the first column of V. P0 denotes

the transmit power threshold in the energy harvesting phase. The optimal solution

to the optimization problem

max
Q̃

tr(H̃1Q̃H̃H
1 +σ

2
1 ID) (4.12)

s.t. tr(Q̃)≤ P0,Q̃� 0. (4.13)

is Q̃ = P0v1vH
1 and the corresponding maximum harvested power is given by g1P0+

σ2
1 D.

Proof 4.1 See [10, Proposition 2.1].

Let us now define G = σ1
σ2

F and formulate the following optimization problem

max
G,ε

C s.t.
1− ε

2
tr(G(ID +ρ1H1HH

1 )G
H)

≤ εη

σ2
2
(g1P0 +σ

2
1 D). (4.14)

Note that for fixed ε , problem (4.14) becomes technically identical to the one con-

sidered in [132]. Moreover, it can be proved that the presence of ε does not change

the optimal structure of the relay processing matrix. Hence, we have the relay pro-

cessing matrix given by

F = V2ΛΛΛFUH
1 , (4.15)

where ΛΛΛF denotes a diagonal matrix. V2 and U1 come from the SVDs of the matri-

ces:

H1 = U1ΣΣΣ1VH
1 , (4.16)

H2 = U2ΣΣΣ2VH
2 . (4.17)

Now, let G = V2X
1
2 (I + ρ1ΛΛΛ1)

− 1
2 UH

1 , where X is a diagonal matrix with

X = diag(x1,x2, . . . ,xD). In addition, we let ΛΛΛ111 = ΣΣΣ1ΣΣΣ
H
1 and ΛΛΛ222 = ΣΣΣ

H
2 ΣΣΣ2 with the
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diagonal vectors ααα = [α1, . . . ,αD] and βββ = [β1, . . . ,βD], respectively. The optimiza-

tion problem (4.14) can then be rewritten as

max
{xk≥0},0≤ε≤1

f ({xk},ε) s.t. (4.18a)

g({xk},ε),
εη

σ2
2
(g1P0 +σ

2
1 D)− 1− ε

2

D

∑
k=1

xk ≥ 0, (4.18b)

in which f ({xk},ε), 1−ε

2 [∑D
k=1 log2(1+ρ1αk)+∑

D
k=1 log2(

1+βkxk
1+ρ1αk+βkxk

)]. Consid-

ering the Lagrangian, we have

min
{xk≥0},0≤ε≤1

ν≥0,{λk≥0}

L , f ({xk},ε)+νg({xk},ε)+
D

∑
k=1

λkxk. (4.19)

Based on the Karush-Kuhn-Tucker (KKT) conditions, we have

νg({xk},ε) = 0, (4.20a)

λkxk = 0,∀k, (4.20b)

∇xkL = 0,∀k, (4.20c)

∇εL = 0. (4.20d)

Since λk ≥ 0, k = 1, ...,D, using (4.20c) we can show that

ν ≥ 1
ln2

(
ρ1αk

βk

)
(

xk +
1
βk

)(
xk +

ρ1αk+1
βk

) ,∀k. (4.21)

Let hk(xk) =
1

ln2

ρ1αk
βk

(xk+
1

βk
)(xk+

ρ1αk+1
βk

)
. It is obvious that hk decreases when xk rises from

0 to ∞, i.e., hk(0) = 1
ln2

ρ1αkβk
1+ρ1αk

, hk(∞)→ 0. Then according to (4.20b), we know that

xk

[
ν− 1

ln2

ρ1αk
βk

(xk +
1
βk
)(xk +

ρ1αk+1
βk

)

]
= 0,∀k. (4.22)

If ν ≥ 1
ln2

ρ1αkβk
1+ρ1αk

, we know that xk = 0. Otherwise, if 0 < ν < 1
ln2

ρ1αkβk
1+ρ1αk

, then

we will have xk > 0 and ν = 1
ln2

ρ1αk
βk

(xk+
1

βk
)(xk+

ρ1αk+1
βk

)
. Then according to [132], the

optimal xk can be written as

xk =
1

2βk

(√
ρ2

1 α2
k +

4
ln2

ρ1αkβkµ−ρ1αk−2

)+

, (4.23)
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where (a)+ = max{0,a} and µ = 1
ν

can be obtained by substituting (4.23) into

(4.20d) such that

l(µ),−1
2

D

∑
k=1

log2

[
(1+ρ1αk)

(
1+βkxk

1+ρ1αk +βkxk

)]
+

1
µ

[
η

σ2
2
(g1P0 +σ

2
1 D)+

1
2

D

∑
k=1

xk

]
= 0. (4.24)

Obviously, l(µ) decreases when µ ≥ maxk ln21+ρ1αk
ρ1αkβk

. Moreover, when µ ∈

[mink ln21+ρ1αk
ρ1αkβk

,maxk ln21+ρ1αk
ρ1αkβk

], xk either maintain at 0 or increases with µ which

makes l(µ) decreases within this interval. To be exact, we have

l(∞)→−1
2

D

∑
k=1

log2(1+ρ1αk)< 0, (4.25)

and

l
(

min
k

ln2
1+ρ1αk

ρ1αkβk

)
=

(
max

k

1
ln2

ρ1αkβk

1+ρ1αk

)
η

σ2
2
(g1P0 +σ

2
1 D)> 0. (4.26)

In contrast, when µ ∈ (0,mink ln21+ρ1αk
ρ1αkβk

], xk = 0,∀k and

l(u) =
1
µ

η

σ2
2
(g1P0 +σ

2
1 D)> 0. (4.27)

As a consequence, we can always find an optimal value µ∗ ∈ (mink ln21+ρ1αk
ρ1αkβk

,∞)

which makes l(µ∗) = 0 and this can be done by root-finding approaches such as

bisection. When µ∗ and xk,∀k, are known, the optimal TS ratio can easily be calcu-

lated according to (4.20a), which is given by

ε
∗ =

∑
D
k=1 x∗k

2η

σ2
2
(g1P0 +σ2

1 D)+∑
D
k=1 x∗k

. (4.28)

Regarding the complexity of the algorithm, the computations mainly result

from the singular value decompositions of channel matrices. The complexity of

root-finding is rather low.
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4.5 Joint Source, Relay and TS Ratio Design
In this section, we consider a more general but challenging scenario with any avail-

able Q. Based on (4.7), the achievable rate in this case is given by

C =
1− ε

2
log2 det

(
ID + H̃HH̃Q

)
=

1− ε

2
log2 det

(
ID +HH

1 (H2F)HR−1(H2F)H1Q
)

=
1− ε

2
log2 det

(
ID +R−1(H2F)H1QHH

1 (H2F)H)
=

1− ε

2
log2 det

(
ID +

H2FH1QHH
1 FHHH

2
σ2

2 ID +σ2
1 H2FFHHH

2

)
. (4.29)

Note that to derive the results in (4.29), we utilize the expression of R in (4.6)

and also the property that det(I+AB) = det(I+BA) for any complex conjugate

symmetric matrices A and B. And it is obvious that when Q is fixed at Q = P
D , the

expression of achievable rate becomes the same as that in the previous section, i.e.

(4.7).

Then the optimization problem of interest becomes

max
F,ε

tr(Q)≤P

C s.t.
1− ε

2
tr(σ2

1 FFH +FH1QHH
1 FH)

≤ εη tr(H̃1Q̃H̃H
1 +σ

2
1 ID). (4.30)

By introducing an equivalent channel Ĥ1 = H1Q
1
2 , the optimization problem be-

comes similar to the previous fixed source covariance matrix case. Therefore, we

have F̂ = V2Σ̂ΣΣFÛH
1 where Σ̂ΣΣF is diagonal, and Û1 and V2 come from the SVDs of

Ĥ1 = Û1Σ̂ΣΣ1V̂H
1 , and H2 given in (4.17).

As can be observed, both the objective function and the energy harvesting con-

straint have nothing to do with Û1 which indicates that any available Ĥ1 with the

same Σ̂ΣΣ1 acts equally in terms of the rate and the energy harvesting constraint. That

is to say, the optimal Q must require the least transmit power. Considering the

fact that the presence of the TS ratio ε will not change the structures of the source

covariance and relay processing matrices, we provide the optimal structures of the

source covariance and relay processing matrices below.
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Lemma 4.2 The optimal solution of the optimization problem (4.30) has the fol-

lowing structures

F = V2ΣΣΣFUH
1 , (4.31)

Q = V1ΛΛΛQVH
1 , (4.32)

where ΣΣΣF ,ΛΛΛQ are diagonal matrices, and the unitary matrices U1,V1,U2,V2 have

been defined in (4.16) and (4.17).

Proof 4.2 See [133, Theorem 1].

Then we let ΛΛΛQQQ = diag(q1,q2, . . . ,qD), and ΛΛΛFFF = ΣΣΣ
2
F = diag( f1, f2, . . . , fD).

Substituting (4.31) and (4.32) into (4.30) and introducing a set of new variables

dk = fk(αkqk +σσσ2
1),∀k, the optimization problem (4.30) can be rewritten as

max
0≤ε≤1,{dk},{qk}

f̃ (ε,{dk},{qk}) (4.33a)

s.t.
D

∑
k=1

qk ≤ P, (4.33b)

g̃(ε,{dk},{qk})≥ 0, (4.33c)

where we have defined

f̃ (ε,{dk},{qk}),
1− ε

2

D

∑
k=1

log2

(
1+ αk

σ2
1

qk

)(
1+ βk

σ2
2

dk

)
1+ αk

σ2
1

qk +
βk
σ2

2
dk

, (4.34)

g̃(ε,{dk},{qk}), εη(g1P0 +σ
2
1 D)− 1− ε

2

D

∑
k=1

dk. (4.35)

Note that (4.33) involves only scalar variables in contrast to matrix variables in

(4.30). But the problem is still non-convex and a closed-form solution is difficult to

obtain. In the following, we develop an alternating optimization based iterative al-

gorithm which can be proved to converge at least to a local optimal solution. Since

the subproblems are convex, close-form solutions are derived by solving Lagrangian

dual problems. To proceed, we let qqq = [q1,q2, . . . ,qD]
T , and ddd = [d1,d2, . . . ,dD]

T .

When either qqq or ddd is fixed, the corresponding problem to update the other one

becomes equivalent to the relay and TS ratio only design problem in the previous
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section. As mentioned previously, the complexity falls into the computations of

SVD. Finally, an iterative procedure can be designed by optimizing qqq and ddd alter-

nately.

4.5.1 Optimization with Fixed qqq

We first fix qqq and search for the optimal ddd and ε with the given qqq. Considering the

Lagrangian of the problem, we have the following dual problem:

max
0≤ε≤1,{dk≥0}
ν1≥0,{λk≥0}

L , f̃ (ε,{dk})+ν1g̃(ε,{dk})+
D

∑
k=1

λkdk. (4.36)

Based on the KKT conditions, we have

ν1g̃(ε,{dk}) = 0, (4.37a)

λkdk = 0,∀k, (4.37b)

∇dkL = 0,∀k, (4.37c)

∇εL = 0. (4.37d)

Comparing with the fixed source covariance matrix case, we notice that dk here

is equivalent to σ2
2 xk. As a result, we have

dk =
σ2

2
2βk

√( qk

σ2
1

αk

)2

+
4qkαkβkµ1

σ2
1 σ2

2 ln2
− qk

σ2
1

αk−2

+

. (4.38)

Meanwhile, µ1 =
1
ν1

is decided by (4.37d). Substituting (4.38) into (4.37d), we have

l̃(µ1),−
1
2

 D

∑
k=1

log2

(
1+ αk

σ2
1

qk

)(
1+ βk

σ2
2

dk

)
1+ αk

σ2
1

qk +
βk
σ2

2
dk


+

1
µ1

[
η(g1P0 +σ

2
1 D)+

1
2

D

∑
k=1

dk

]
= 0. (4.39)

Using (4.39), we can obtain the optimal µ1 by a bisection search and then use it

calculate ddd. Then according to (4.37a), we have

ε
∗ =

∑
D
k=1 dk

2η(g1P0 +σ2
1 D)+∑

D
k=1 dk

. (4.40)
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4.5.2 Optimization with Fixed ddd and ε

Since the transmit power constraint at relay (4.33c) is independent on q, and thus

can be satisfied with the obtained ddd and ε when fixing qqq, here we do not need to

consider it any longer. Referring to the Lagrangian of (4.33), we have

max
{qk≥0},

ν2≥0,{λk≥0}

L , f̃ ({qk})+ν2

(
P−

D

∑
k=1

qk

)
+

D

∑
k=1

λkqk. (4.41)

Deriving the relevant KKT conditions again, we obtain

ν2

(
P−

D

∑
k=1

qk

)
= 0, (4.42a)

λkqk = 0,∀k, (4.42b)

∇qkL = 0,∀k. (4.42c)

Then according to (4.42c), we have

1− ε

2
αk

ln2σ2
1

 1
1+ αk

σ2
1

qk
− 1

1+ αk
σ2

1
qk +

βk
σ2

2
dk

−ν2 +λk = 0. (4.43)

Thus from (4.43), we have

qk =
σ2

1
2αk

√( βk

σ2
2

dk

)2

+
2(1− ε)βkdkαkµ2

σ2
1 σ2

2 ln2
− βk

σ2
2

dk−2

+ , (4.44)

where µ2 =
1
ν2

. Substituting (4.44) into (4.42a), the optimal v2 can easily be derived

through root finding methods.

4.5.3 Iterative Optimization

The iteration to solve (4.30) is given in Algorithm 1. Meanwhile ζ is the iteration

terminating threshold.

4.6 Simulation Results
This section investigates the performance of the proposed schemes for the MIMO

relay system. The results of the naive amplify-and-forward (NAF) algorithm are

also provided for comparison. In the NAF algorithm, we use the ε derived with



4.6. Simulation Results 79

Algorithm 2 Iteration Framework for TS Relaying
1. Initialization: Let qqq satisfying (4.33b)

2. Calculate optimal ddd and ε with fixed qqq using (4.38) and (4.40)

3. Re-optimize qqq with the obtained ddd and ε using (4.44)

4. Return to Step 2 until convergence, i.e. |qqq∗−qqq| ≤ ζ ∗ |qqq|

the uniform source precoding scheme and let Q = P
DI and F =

√
χI where χ is the

scalar that makes the constraint (4.11) satisfied. Here we assume that N = M = L

and ζ = 10−3. Both of H1 and H2 are modeled as flat Rician fading channels with a

series of independent zero-mean complex Gaussian random variables with variance

of −10dB.
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Figure 4.3: Rate results against different P0.

Fig. 4.3 plots the achievable rate of the proposed TS relaying schemes against

various P0 with P = 1. The considered values of P0 range from 0 dBm to 50 dBm.

The numbers of antennas are all set to be 4 and 6, respectively. As is expected, the

NAF algorithm falls far behind the proposed schemes. The joint source, relay and
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Figure 4.4: Rate results against the number of antennas N.

TS ratio optimization outperforms the relay and TS ratio only optimization with

their gap increasing slightly as the numbers of antennas increase. In all cases, the

achievable rate increases as either P0 or the numbers of antennas increase.

Fig. 4.4 then presents the rate results for different numbers of antennas with

P0 = P = 1. It is clear that the instantaneous capacities of the proposed schemes are

much better than that of the NAF algorithm and the joint source, relay and TS ratio

optimization shows performance gain over the uniform source precoding scheme.

Notably, if numbers of the antennas increase, the performance gaps among the three

schemes also increase, which agrees with the results in Fig. 4.3.

4.7 Summary
This chapter studied the rate maximization of a MIMO relay network with a time

switching based energy harvesting relay node. We started with the fixed source co-

variance matrix scenario assuming uniform source precoding and then considered

joint optimization with the source covariance. Closed-form solution as well as an
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iterative scheme were proposed, respectively, for the two cases. Simulations demon-

strate that joint optimization of the source, relay and TS ratio yields rate gain over

the relay and TS ratio only optimization. Now that the a series of crucial issues in

beamforming for SWIPT systems have been investigated, such as the power split-

ting and time switching based receiver design, the combination of multi-antenna

techniques, robust beamforming, and also the application in multi-user networks

and relay systems, with the performance metrics ranging from energy efficiency to

data rate. In the chapters that follow, we will continue to investigate the resource

allocation techniques for wireless edge caching.



Chapter 5

Optimizing Cache Placement for

Heterogeneous Small Cell Networks

5.1 Overview

To achieve the targets of the 5G cellular communication systems, a new round of

exploration on communication technology has begun. To name just a few, mas-

sive MIMO antennas, millimeter wave, D2D communication, small cell networks,

etc., have recently attracted considerable attentions. Although these techniques are

anticipated to contribute massively to 5G, challenges arise due to high demands

on backhaul for massive content delivery imposed by the explosive mobile traffic

growth. An effective solution to tackle this is to cache popular files at the network

edge before users request them. By doing so, contents are brought closer to users

and presumably, the peak-time traffic at core network, latency, and backhaul cost

can be much reduced. In this chapter, a typical cache-enabled small cell network

with heterogeneous file and cache sizes is considered with maximum distance sep-

arable (MDS) codes used for content restructuring. In particular, multicast content

delivery is adopted to reduce the backhaul rate exploiting the independence among

MDS coded packets. Unlike the online settings in literature which assume perfect

user request information, we estimate the possible joint user requests using the file

popularity information and aim at minimizing the long-term average backhaul load

subject to the cache capacity constraints by optimizing the content placement in
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all the cells jointly. The problem is reformulated into a mixed integer nonlinear

program (MINLP) and solved with existing solver after linearization. Mathemat-

ical analysis and simulation results are provided to demonstrate the advantages of

exploiting MDS codes and multicast content delivery in terms of reducing the back-

haul requirements for cache-enabled small cell networks.

5.2 Related Work

As mentioned above, we unlock the potential of multicast-aware content delivery

to reduce the backhaul requirements for cache-enabled small cell networks taking

the advantage of the MDS codes. The works related to ours are [123, 143] which

focused on optimizing the content placement for cache enabled small-cell networks.

In [143], MDS coded caching was considered with homogeneous network settings,

i.e. identical file sizes, homogenous cache sizes and file popularity for all the cells

which gave rise to the assumption of identical content placement in all the cells.

And the backhaul load minimization was performed in terms of any single user

with cache misses of different users served with separate unicast transmissions via

backhaul. As opposite to [143], [123] considered uncoded multicast-aware caching

in delay tolerant networks assuming that the consecutive requests for the same file

within a multicast period can be served by a single multicast transmission. Here

the number of requests associated to a particular file and small cell base station

(SBS) was modeled with the Poisson probability distribution determined by the

length of the multicast period and a unique parameter which was given directly

without clarification on the relation with the information of file popularity and the

served users. Both of the proposed linear relaxation based scheme and the heuristic

scheme worked in a greedy manner towards all kinds of joint user demands in the

cells as well as the possible content placement and hence could not be used in

the coded caching scenario. In this chapter, we aim to obtain the optimal (offline)

cache content placement for minimizing the long-term average backhaul rate subject

to cache capacity constraints for small cell networks. Unlike [143] considering

an unlikely setting of identical content placement in all caches with homogeneous
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settings, we consider a much more practical scenario with heterogeneous file and

cache sizes and in this case the content placement in different caches will not always

be the same. Hence, it is no longer available for the MBS to deliver the uncached

content via a shared link. However, it is obviously not a good idea to use unicast

between the MBS and SBSs. To tackle this problem, we utilize the independence

among MDS coded packets and unlock the potential of multicast content delivery

to reduce the backhaul rate. A near-optimal solution is obtained using a specific

solver for mixed integer linear program (MILP) after a series of reformulations.

5.3 System Model
In this section, the network model with caching policy, as well as the content char-

acteristics which involve the structure of the network coding and the file popularity

profiles are presented.

5.3.1 Network Model

We consider a small cell network comprising a single MBS, and K small cells

each consisting of a single SBS and Ik users among which each SBS can only an-

swer to the requests of a maximum of I(I ≥ Ik,∀k) users at the same time (seeing

Fig. 5.1). The requests of the remaining users are served by the MBS. It is assumed

that there is no coverage overlapping amongst all the SBSs which operate in sub-

channels disjoint with the MBS. Moreover, enhanced inter-cell interference coordi-

nation techniques (eICIC) or/and orthogonal spectra are utilized by the neighboring

SBSs [152, 153]. We also assume that the MBS has access to all the files defined

as F , { f1, f2, . . . , fN} with distinct file sizes s = [s1,s2, . . . ,sN ]. The users located

outside of the small cells can only be served by the MBS and hence are ignored

when considering the backhaul rate from the MBS to the SBSs. Note that it is also

assumed that each user is able to request one file at one time slot. Instead of assum-

ing identical cache size in all SBSs which is difficult to satisfy in practice, here we

consider that the SBSs have heterogeneous cache sizes. We let Mk(Mk ≤ ∑
N
j=1 s j)

be the cache size in SBS k. By caching part of the files in the SBSs before users

requesting, we are able to bring the content closer to the users and hence reduce



5.3. System Model 85

the peak data rate, latency and backhaul rate, giving rise to the so-called local gain

described in [52]. In the following, we describe the caching policy briefly.

大飒

Multicast

Cache

MBS

User

SBS

Figure 5.1: Multicast-aware cache enabled heterogeneous small cell networks.

Since each cell is allocated with limited cache capacity to store popular con-

tent, the SBSs push the cached packets to the users when requested while the un-

cached parts are delivered to the SBSs via the backhaul from the MBS. Taking

advantages of the independence among the MDS codes, we adopt multicasting be-

tween MBS and SBSs to reduce the backhaul rate. In this case, the least amount

of coded packets to be delivered via backhaul in order to rebuild the requested file

is determined by the user request profile as well as the cache content placement in

all the cells jointly. Based on the file popularity information, we aim to obtain the

optimal content placement in order to minimize the average backhaul load in terms

of all the possible user request profiles under cache capacity constraints.

5.3.2 MDS Coding

MDS codes are employed to construct pieces of a file that can be put back together

to recover the file. They are particularly suitable for our settings of multicast-aware

caching in which the cached content in different cells needs to be coordinated. Com-

pared to the case of storing uncoded fragments, MDS codes bring a unique benefit

that the coded packets are all independent from each other so that a certain num-
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ber of randomly drawn packets will be sufficient to recover the file. This allows us

to use only the number of packets stored in each cell, instead of the details of the

packets, to derive the backhaul load, simplifying the analysis.

Considering MDS codes parametrized by (l j,n j), file j is equally cut into n j

fragments and then coded into l j independent packets any n j of which can rebuild

the file. The flowchart presenting the MDS coding process is given in Fig. 5.2.

We assume that the SBS in cell k caches mk, j coded packets of file j and let

m j = [m1, j,m2, j, . . . ,mK, j] be the content placement vector for file j. To recover the

requested file with minimum redundancy, file j is coded into l j = ∑
K
k=1 mk, j +n j−

minK
k=1 mk, j packets to ensure that the uncached packets delivered from the MBS are

different from all the cached packets, even in an extreme case that the SBSs store

totally different packets.

File j nj fragments

lj packetsnj packets

MDS codes

Figure 5.2: The flowchart of the MDS coding process

5.3.3 File Popularity Profile

Without loss of generality, here we assume that the file popularity in all the cells

obey Zipf’s distribution. Assuming that the popularity of the files is arranged in a

descending order according to the Zipf’s law, the frequency for file j to be requested

by each user can be written as [154]

p j =
(1/ jγ)

∑
N
i=1 (1/iγ)

, ∀ j, (5.1)
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where γ is the skewness reflecting the concentration of the popularity distribution. A

higher γ means a more concentrated popularity distribution. Hence, the probability

of file j not being requested by the users in the cell is

α j = (1− p j)
I, ∀ j. (5.2)

Thus, the probability for file j being requested by any of the users in the cell will be

1−α j.

5.4 Content Placement Optimization
As mentioned, the cache content placement is optimized aiming to minimize the

average backhaul load in terms of all possible user request profiles which means

that the content placement should be carefully designed to satisfy different requests

at all the cells simultaneously with a single multicast transmission instead of multi-

ple unicast transmissions to each SBS separately at the least backhaul rate. Unlike

in literature where it was usually assumed that we had the knowledge of the ac-

tual requests for all the cells, here we analyze all possible request profiles and their

probabilities to appear using the learned file popularity. Note that in considera-

tion of multicast transmission at the MBS, the coordination between the requests

in different cells counts a lot and hence joint user request profiles in all the cells

are focused rather than the user request profile in individual cell. Consequently, we

let Π j be the collection of all the possible user request profiles and π j ∈ Π j de-

note a particular user request profile for file j in all cells. Given any user request

profile π j, Kπ j is used to denote the set of the cells where file j is required by the

served users. In case that file j is requested in all the cells except cell K, we let

π j = [1,1, . . . ,1,0]1×K where 1 means that file j is requested by users in the consid-

ered cell while 0 states that none of the users in the cell requests the file. And then

it follows that Kπ j = {1,2, . . . ,K−1} for the mentioned π j. The joint user request

profile for all the files simultaneously can be written as {π1, . . . ,πN}. For each file

j, if there are t(≤ K) cells where the served users request file j, the corresponding

file request profile π j and the cell set Kπ j may have
(K

t

)
possible combinations. In

this way, the total number of different π j and Kπ j will be as high as 2K .
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Our aim is to minimize the long-term average backhaul load, i.e., the volume

of the file packets needed to be delivered via backhaul using multicasting, subject

to the cache capacity constraints in terms of all possible user request profiles by

optimizing the cache content placement. The average backhaul rate is obtained

by taking expectation of the instantaneous backhaul rate with respect to the joint

probability of user request profile for all the files {π1, . . . ,πN}. Mathematically, the

problem can be written as

min
{mk, j}

∑
{π1,...,πN}

N

∑
j=1

(
1− min

k∈Kπ j

mk, j

n j

)
s jPr({π1, . . . ,πN}) (5.3a)

s.t.
N

∑
j=1

mk, j

n j
s j ≤Mk, ∀k, (5.3b)

0≤ mk, j ≤ n j, ∀k, j, (5.3c)

where Pr({π1, . . . ,πN}) shows the joint probability that a certain user request profile,

i.e. {π1, . . . ,πN} appears, and s j denotes the size for file j. Considering the number

of the cells and the size of the file profile, the analysis and calculation of the joint

probability would be rather complex. To proceed, reformulation has been given to

simplify the expression of the average backhaul rate in the following lemma.

Lemma 5.1 Based on the fact that the backhaul load for a particular file j only re-

lies on π j regardless of {πi}i6= j, the average backhaul rate in (5.3a) can be rewritten

as

CMDS
multicast =

N

∑
j=1

∑
π j∈Π j

(
1− min

k∈Kπ j

mk, j

n j

)
s jPr(π j), (5.4)

where Pr(π j) shows the probability that a certain user request profile π j appears.

Proof 5.1 See Appendix B.

To show the advantages of storing MDS coded packets over storing the un-

coded segments directly in our settings, we assume that the SBS in cell k stores mk
j

different fragments randomly drawn among the n j fragments. In this case, all frag-

ments for file j except the ones that have been stored in all of the cells requesting the
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particular file have to be sent from the MBS via backhaul using multicast. Conse-

quently, which fragments are stored in the caches is also needed to be learned to de-

termine the backhaul rate except for the numbers of packets stored in the cells. Let

M j show the detail of the fragments of file j stored in the caches and d
(
M j,Kπ j

)
denote the number of same fragments stored in all the cells requesting file j. The

backhaul rate is given by

CUncoded
multicast =

N

∑
j=1

∑
π j∈Π j

(
1−

d
(
M j,Kπ j

)
n j

)
s jPr(π j). (5.5)

Due to the fact that the number of same fragments stored in all the cells requesting

file j is always less than or equal to the minimum number of the fragments stored

in those cells, i.e. d
(
M j,Kπ j

)
≤mink∈Kπ j

mk, j, it is proved that the utility of MDS

codes helps reduce the average backhaul rate. Specially, if the uncoded segments

are assumed to be randomly drawn among the n j fragments equiprobably, the prob-

ability of each segment of file j being stored in all the cells requesting the file would

be

ρ j = ∏
k∈Kπ j

( N−1
mk, j−1

)( N
mk, j

) = ∏
k∈Kπ j

mk, j

N
. (5.6)

Because of mk, j
N ≤ 1,∀k ∈Kπ j , it holds true that ρ j ≤ mink∈Kπ j

mk, j
N . In this case,

the expectation of d in terms of different M j with given m j and π j is given by

d
(
m j,Kπ j

)
= Nρ j ≤mink∈Kπ j

mk, j. The same conclusion can be drawn.

Although Pr(π j) can be calculated using (5.2) in (5.4), it would be difficult

to fully list all possible user request profiles and analyze the objective function

correspondingly as mentioned in the beginning of this section. However, if we

know the relationships among the values of all the elements in m j, a closed-form

expression of the objective function can be obtained in the following lemma.

Lemma 5.2 Let rk, j denote the rank of the value of mk, j in m j. For instance, rk, j = 1

means mk, j is the smallest while rk, j = K states that mk, j is the largest in m j. The

objective function (5.3a) can then be rewritten as

CMDS
multicast =

N

∑
j=1

K

∑
k=1

(
1−

mk, j

n j

)
s j(1−α j)α

(rk, j−1)
j . (5.7)
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Proof 5.2 Firstly, we divide the possible user request profiles for each file, e.g., π j

into K + 1 types defined as {π0
j ,π

1
j ,π

2
j , . . . ,π

K
j } according to the different values

of the associated backhaul load for file j, i.e., {0,1− m1, j
n j

,1− m2, j
n j

, . . . ,1− mK, j
n j
},

respectively. Note that when file j is not requested by any of the cells, the backhaul

is not needed. If cell k stores the least number of packets of file j among all the cells

requesting file j, i.e., mint∈Kπ j

mt, j
n j

=
mk, j
n j

, then the associated user request profile

πk
j will imply that file j is requested by cell k and that probably some cells have

cached more packets of file j but there will not be any cell t satisfying rt, j < rk, j,

i.e., mt, j ≤mk, j. Hence, we have Pr(π
k
j ) = (1−α j)α

(rk, j−1)
j . Finally, after summing

up all types of user request profiles {πk
j} for all files, the average backhaul rate can

be written as (5.7).

As a comparison, in the typical unicast case without coverage overlap among

the SBSs, the backhaul rates for storing uncoded fragments directly or coded pack-

ets would be [143]

Cunicast =
N

∑
j=1

K

∑
k=1

(
1−

mk, j

n j

)
s j(1−α j). (5.8)

Note that after using multicast, additional multipliers 0 < α
(rk, j−1)
j ≤ 1,∀k,∀ j

appear and hence bring a global gain. That is to say, CMDS
multicast is always smaller than

Cunicast.

Substituting (5.7) into (5.3), the problem of interest becomes

min
{mk, j}

N

∑
j=1

K

∑
k=1

(
1−

mk, j

n j

)
s j(1−α j)α

(rk, j−1)
j (5.9a)

s.t. (5.3b) and (5.3c). (5.9b)

Note that we can separate the files into an arbitrary number of fragments. We define

qk, j ,
mk, j
n j

as the cached percentage of file j in SBS k. Accordingly, we let q j =
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[q1, j,q2, j, . . . ,qK, j] and their ranks remain the same. Then (5.9) is rewritten as

min
{qk, j}

N

∑
j=1

K

∑
k=1

(
1−qk, j

)
s j(1−α j)α

(rk, j−1)
j (5.10a)

s.t.
N

∑
j=1

qk, js j ≤Mk,∀k, (5.10b)

0≤ qk, j ≤ 1, ∀k, j. (5.10c)

In (5.10), {qk, j} are to be optimized and hence unknown before the problem

is solved. It is impossible to predict the ranks {rk, j} which depend on the values of

{qk, j}. To tackle this problem, we firstly sort q j,∀ j in an ascending order and define

the sorted variables as g j = [g1, j,g2, j, . . . ,gK, j] with rk, j = k in g j,∀ j. Problem

(5.10) is then expressed as

min
{qk, j},{gk, j}

N

∑
j=1

K

∑
k=1

(
1−gk, j

)
s j(1−α j)α

(k−1)
j (5.11a)

s.t. g j = sort(q j),∀ j, (5.11b)

(5.10b)–(5.10c). (5.11c)

Nevertheless, sorting the variables to be optimized is definitely unconvex. The chal-

lenge then becomes the problem of finding a way to demonstrate the relationships

between q j and g j in order to satisfy the cache capacity constraints.

Lemma 5.3 By introducing a new matrix X = [xk
t, j]K×N×K with xk

t, j ∈ {0,1} such

that

qk, j =
K

∑
t=1

gt, jxk
t, j, (5.12)
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we can rewrite problem (5.11) as

min
{gk, j},{xk

t, j}

N

∑
j=1

K

∑
k=1

(
1−gk, j

)
s j(1−α j)α

(k−1)
j (5.13a)

s.t.
N

∑
j=1

K

∑
t=1

gt, jxk
t, js j ≤Mk,∀k, (5.13b)

K

∑
t=1

xk
t, j = 1,∀k, j, (5.13c)

K

∑
k=1

xk
t, j = 1,∀t, j, (5.13d)

0≤ gk, j ≤ 1,∀k, j, (5.13e)

gk, j ≤ gk+1, j,∀k < K, and ∀ j, (5.13f)

xk
t, j ∈ {0,1},∀t, j,k. (5.13g)

Proof 5.3 See Appendix C.

Clearly, (5.13) is a mixed integer nonlinear program (MINLP) and hence can-

not be solved directly. Therefore, we resort to linearizing the products of the vari-

ables in (5.13b) to make (5.13) an MILP which can be solved by well-known solvers

such as Gurobi [155]. To proceed, the following lemma is necessary.

Lemma 5.4 Let z be the product of a binary x and a continuous variable y(0 ≤

y ≤ ỹ). We can linearize the equation z = xy by adding the following constraints

equivalently

z≤ xỹ, (5.14)

z≥ y− (1− x)ỹ, (5.15)

z≤ y, (5.16)

z≥ 0. (5.17)

Proof 5.4 See Appendix D.

According to Lemma 5.4, we can easily replace the products in constraint

(5.13b) with a new group of variables defined as Z = [zk
t, j]K×N×K . Then (5.13)
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can be rewritten as

min
{gk, j},X,Z

N

∑
j=1

K

∑
k=1

(
1−gk, j

)
s j(1−α j)α

(k−1)
j (5.18a)

s.t.
N

∑
j=1

K

∑
t=1

zk
t, js j ≤Mk,∀k, (5.18b)

zk
t, j ≤ xk

t, j,∀t, j,k, (5.18c)

zk
t, j ≥ gk, j− (1− xk

t, j),∀t, j,k, (5.18d)

zk
t, j ≤ gk, j,∀t, j,k, (5.18e)

zk
t, j ≥ 0,∀t, j,k, (5.18f)

(5.13c)–(5.13g). (5.18g)

Based on the equivalence between the obtained linear constrains and the as-

sumption of zk
t, j = gt, jxk

t, j with the basic settings of {gt, j} and {xk
t, j}, it is apparent

that the obtained solution to problem (5.18) will also be the solution to (5.13).

5.5 Simulation Results
Here, the performance of the proposed scheme is studied via simulations. For com-

parison, results for the uniform and popularity based content placement schemes

in [123, 143] are also provided. The uniform scheme assumes that all files are

equally cached in each SBS with qk, j = Mk/(Ns j),∀k, j. In the popularity based

scheme, the files are put into each cache one by one according to their popularity

(from high to low) until the cache is fully occupied. To show the benefit of multi-

cast, the unicast scenario in (5.8) is studied as well. In the following, we consider a

small cell network with K = 3 cells and the cache sizes M = [M0
3 +∆m, M0

3 , M0
3 −∆m]

where M0 is the total cache size while ∆m is the cache size differentiation. We con-

sider N = 10 files with their sizes randomly chosen uniformly between 1 and 5

independently. Unless otherwise specified, we set M0 = 20,∆m = 3, I = 10,γ = 1.

Note that the backhaul rates have been scaled with the total file size. The results

in the multicast and unicast scenarios are presented using the left and right axes,

respectively.

Fig. 5.3 studies the average backhaul rates against different total cache sizes.
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As we can see, the backhaul rates decrease with the increase of total cache size in all

cases. Also, as expected, the multicast based schemes outperform the unicast based

scheme. The proposed scheme, which considers the heterogeneity of the cache and

file sizes as well as the file popularity, apparently reduces the backhaul load among

all.
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Figure 5.3: The backhaul rates versus the total cache size M0.

Fig. 5.4 explores the impact of the cache size differentiation ∆m on the back-

haul rates with fixed M0. Similar to Fig. 5.3, the proposed scheme shows the best

performance. In addition, the backhaul rate reduction of the proposed scheme over

the popularity based scheme increases drastically when improving ∆m which illus-

trates the significance of the proposed scheme in small cell networks with hetero-

geneous cache sizes.

Fig. 5.5 shows the impact of the number of served users I in each cell on the

backhaul rate. In the unicast scenario, the backhaul rate rises rapidly with the in-

crease of I. Conversely, the backhaul rates of the multicast based schemes increase

slightly when I reaches a certain degree, which greatly increases the maximum
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Figure 5.4: The backhaul rates versus ∆m.

number of potential served users.

Finally, the impact of the skewness γ is studied in Fig. 5.6. Again, the multi-

cast based schemes show better performance than the unicast based scheme and the

proposed scheme yields the lowest backhaul rate. Moreover, the performance gain

of the proposed scheme to the popularity based scheme changes little when increas-

ing γ while that to the uniform scheme, which ignores the file popularity, rises more

obviously.

5.6 Summary
In this chapter, the optimization of cache content placement was investigated for

MDS coded caching enabled small cell networks with heterogeneous file and cache

sizes. To minimize the average backhaul rate, multicast transmission was adopted.

The cache content placement optimization is initially formulated as a nonconvex

problem, then reformulated into a typical MILP, and finally solved by optimization

tools. Results showed that the proposed scheme using MILP outperforms the ex-

isting schemes in terms of backhaul requirements. In the next chapter, the research
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Figure 5.5: The backhaul rates versus I.

will be extended into more practical scenarios with distinct number of users and

content popularity in each cells, and provide a more profound study on improv-

ing caching gains by making the best use of multicast based content delivery and

cooperative content sharing.
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Chapter 6

Coding, Multicast and Cooperation

for Cache-Enabled Heterogeneous

Small Cell Networks

6.1 Overview

Caching at the wireless edge is a promising approach to deal with massive content

delivery in heterogeneous wireless networks which have high demands on backhaul.

In this chapter, a typical cache-enabled small cell network under heterogeneous file

and network settings is considered using MDS codes for content restructuring. Un-

like those in the literature considering online settings with the assumption of perfect

user request information, we estimate the joint user requests using the file popularity

information and aim to minimize the long-term average backhaul load for fetching

content from external storage subject to the overall cache capacity constraint by op-

timizing the content placement in all the cells jointly. Both multicast-aware caching

and cooperative caching schemes with optimal content placement are proposed. In

order to combine the advantages of multicast content delivery and cooperative con-

tent sharing, a compound caching technique, which is referred to as multicast-aware

cooperative caching, is then developed. For this technique, a greedy approach and

a multicast-aware in-cluster cooperative approach are proposed for the small scale

networks and large scale networks, respectively. Mathematical analysis and sim-



6.2. Related Work 99

ulation results are presented to illustrate the advantages of MDS codes, multicast

and cooperation in terms of reducing the backhaul requirements for cache-enabled

small cell networks.

6.2 Related Work

Of relevance to our work are [105, 123, 140–149] where they focused on the opti-

mization of content placement for cache-enabled small-cell networks. Firstly, [140]

studied the optimal caching and user association strategy for a small cell network

with a macro cell and multiple cache-enabled SBSs which was similar to ours. How-

ever, multicast transmission and collaboration at the BSs were not considered with

also the limits of storing entire files and homogenous file popularity.

By using file partitioning and network coding, storing subfiles in the caches in-

stead of storing entire files has been well recognized as an effective way to improve

content diversity. The optimal uncoded and coded data allocation strategies with

the minimum expected costs were studied in [141], where only one single file was

considered ignoring the diversity of the required file library in practice. In [142],

both the analysis and optimization were extended to the multiple files scenario with

two partition-based caching designs studied for a large scale successive interference

cancellation (SIC)-enabled wireless network. In [143], MDS coded caching was

considered with homogeneous network settings, i.e., same file sizes, cache sizes

and file popularity for all the cells, which gave rise to identical content placement

in all cells. Any cache miss was dealt with by separate costly unicast transmissions

via the backhaul.

In addition to the studies on caching strategies using multiple unicast trans-

missions to serve the requests mentioned above, multicasting transmission at BSs

to serve the requests for the same file simultaneously has been explored to support

massive content delivery over wireless networks. In [144], joint throughput-optimal

caching and scheduling algorithms were developed to maximize the service rates

with both elastic and inelastic requests. For inelastic services, optimal mutlicasting

scheduling was discussed while unicast communication was assumed for elastic re-
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quests. In another work [123], the authors studied uncoded multicast-aware caching

in delay tolerant networks, with the assumption that consecutive requests for the

same file within a multicast period can be served by a single multicast transmission.

Although heterogeneous settings were assumed, no extra challenges were brought

in this case since the discrete optimization problem was solved in a rather heuristic

and exhaustive manner with all the possible joint user request profiles fully listed

and calculated which limits its usage in large scale networks and coded caching

scenarios. In the previous chapter [145], although coded multicast-aware caching

was proposed, the research was limited to the partly heterogeneous settings of dis-

tinct cache and file sizes but homogeneous file popularity and numbers of users

in all the cells. Beisdes caching design, [105, 146] offer performance analysis to-

wards caching and multicasting for single-tier and multi-tier HetNets, respectively.

Although they provide some content diversity, the assumptions made in [105, 146]

greatly limit the full usage of this diversity. For instance, the file library for the BSs

in the same tier to cache from is actually the same while those for BSs in different

tiers are mutually exclusive. The identical caching in the macro-tier, the random

caching design with the same probability distribution in the pico-tier as well as the

uncoded caching limitation of storing entire files altogether lead to this issue. An-

other main difference is that they focused more on multicast transmission between

caches and users while we also exploit the multicast opportunities for delivering the

uncached content.

While the works mentioned above are offline schemes with limited cache sizes,

an online cooperative caching scheme with infinite cache capacity was presented

in [147]. In this case, the energy consumption for content updating in the caches

was considered which can be ignored in offline schemes in a long-term time scale.

Due to the fact that the previous content placement and the current user demands

were given and the caching policies for different files were mutually independent,

the formulated problem was actually linear and therefore could be easily solved.

Subsequently in [148], the study was extended to the joint design of caching, routing

and interference management with perfect user request information.
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Finally in [149], an in-network cooperative caching scheme was proposed as-

suming that the cooperative SBSs were connected to the same service gateway to

share cached content. It was assumed that the costs for fetching content from any

of the cooperative SBSs were identical and so did the costs for fetching content

from the content provider to the SBSs. In that effort, a cooperative caching utility

maximization problem was decomposed into a number of sub-problems in differ-

ent network domains and addressed by a decentralized heuristic scheme with the

strong assumption of knowing the actual file demands of each user. Furthermore,

the scheme is suboptimal, and the heterogeneity of the locations of the SBSs and

file popularity in different cells were not well addressed.

Considering the heterogeneity of cache-enabled small-cell networks, such as

distinct file popularity, file sizes, cache sizes, coverages and locations of different

SBSs, not only requires redesign of content placement but also cache size allo-

cation amongst the SBSs, as mentioned in [150, 151]. In this setup, cache size

allocation and content placement in different cells will generally not be the same.

Considering also the fact that file sizes may be large compared to the limited cache

size in practice, files are usually split into fragments. Nevertheless, note that all of

the above-mentioned works considered whole file caching except [143, 145, 148].

When the fragments are randomly selected and stored in the caches without cod-

ing, both the number of fragments in each cell and which fragments that are stored

(i.e., the degree of content duplication amongst the cells), determine the backhaul

load. As a result, it would be very difficult for the MBS to deliver the uncached

content via a shared link to all the cells and unicast content delivery is there-

fore commonly used between the MBS and SBSs at the expense of high backhaul

cost [140–144,147–149]. On the other hand, cache content overlap among different

cells would restrain cooperative caching from being effective.

In this chapter, our aim is to unleash the potential of multicast-aware caching

and cooperative caching by taking advantages of the inherent independence

amongst the MDS coded packets for minimizing the average bakchaul rate. In

summary, this chapter has made the following major contributions:
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• We develop offline caching schemes optimizing the long-term average per-

formance of the cache-enabled network by estimating all possible joint user

requests in different cells simultaneously without the knowledge of the actual

user requests assumed in [147–149]. Furthermore, unlike [123], we classify

the large number of possible user request profiles into several types according

to their values of the associated backhaul load and therefore reduce the com-

putational complexity in terms of user request uncertainty in the analysis of

multicast-aware caching. Moreover, a multicast-aware in-cluster cooperative

approach is proposed suitable for large-scale networks.

• Unlike the homogenous settings considered in [143, 145, 149], the hetero-

geneity of the parameters that affects the design of cache management and

cooperative policy is all considered with the coordination among different

SBSs and files. Also, cache size allocation is optimized subject to an overall

cache capacity budget rather than uniform or an arbitrarily given heteroge-

neous allocation in literature.

• Furthermore, we derive the performance gains of storing coded packets over

uncoded fragments in the caches and quantify the advantages of multicast-

aware and cooperative caching over common caching schemes via mathe-

matical analysis or/and simulation results. Benefited from the independence

of the MDS coded packets, we combine the merits of multicast-aware caching

and cooperative caching to greatly reduce the backhaul load.

6.3 System Model

6.3.1 Network Model

A small cell network is considered which comprises a single MBS, and K non-

overlapping small cells each consisting of a single SBS and Ik users, for the kth cell.

Let K , {1, . . . ,K} denote the set of SBSs which operate in disjoint subchannels

with the MBS in order to remove the impact of interference. Besides, any interfer-

ence among neighboring SBSs is assumed eliminated by techniques such as eICIC
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or/and orthogonal multiple access [152, 153]. We assume that the MBS has access

to all files in the set F , { f1, f2, . . . , fN}with respective file sizes s, [s1,s2, . . . ,sN ]

while the SBSs have limited cache capacities that are subject to a network-wide to-

tal cache capacity budget M. We let Mk denote the cache capacity for SBS k, with

Mk ≤∑
N
j=1 s j. SBSs can push the cached packets to the users when requested while

the uncached parts have to be delivered to the SBSs via backhaul from the MBS (or

cooperative SBSs in the case of cooperative caching). Note that the users located

outside of any small cells are ignored when considering the backhaul requirements,

as they can only be served by the MBS.

• Multicast-aware caching: If this approach is used, SBSs will fetch the un-

cached content from the MBS via backhaul using multicast, see Fig. 6.1a.

Based on the file popularity information, we obtain the optimal content place-

ment to minimize the average backhaul load for all possible user request pro-

files with the overall cache capacity budget.

• Cooperative caching: As shown in Fig. 6.1b, neighboring SBSs can be con-

nected to each other via high-capacity links to share their cached content in

different cells collaboratively. In this scheme, the uncached content can be

fetched from not only the MBS via backhaul but also the cooperative SBSs

via the fronthaul links. Considering the different costs for fetching content

from the MBS and the neighboring SBSs, we adopt the concept of user attri-

tion (UA) cost introduced in [147], which denotes the overall cost for fetching

content from an external storage, to evaluate the performance of the cooper-

ative caching scheme. Cache content placement and the policy for SBS co-

operation are to be jointly optimized to minimize the UA cost. Unless stated

otherwise, this scheme uses unicast for content delivery.

• Multicast-aware cooperative caching: In this approach, multicast-based

content delivery and content sharing amongst neighboring SBSs are com-

bined with the aid of MDS codes. In contrast to conventional cooperative

caching, multicasting is applied by the MBS to deliver content to the SBSs
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requesting the same file simultaneously, see Case II of Fig. 6.1b.
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Figure 6.1: Cache-enabled heterogeneous small-cell networks.

6.3.2 MDS Coding

As described in the previous chapter, MDS codes can bring benefits to both the

content placement phase and the content delivery phase, in particular for the appli-

cations in multicast-aware caching and cooperative-caching which take the coordi-

nation and cooperation among different cells into account in the design of content



6.3. System Model 105

placement and delivery. As the principles and features of the MDS coding have

been presented in the previous chapter, they are omitted here for the sake of brevity.

Without loss of generality, we still parametrize MDS codes by (l j,n j) such that

file j is cut into n j fragments and then coded into l j independent packets by MDS.

Any n j packets can rebuild the entire file. Considering that the kth SBS caches mk, j

coded packets of file j, we let m j , [m1, j,m2, j, . . . ,mK, j] be the content placement

vector for file j. For multicast-aware caching, to ensure that the uncached packets

delivered from the MBS are totally different from the ones cached in local servers,

file j should be coded into at least

l j =
K

∑
k=1

mk, j︸ ︷︷ ︸
unique packets cached in SBSs

+ n j− min
k∈{1,...,K}

mk, j︸ ︷︷ ︸
unique packets delivered via backhaul

packets.

For unicast and multicast-aware cooperative caching scenarios, the total number of

packets has to be at least

l j =
K

∑
k=1

mk, j︸ ︷︷ ︸
unique packets cached in SBSs

+ n j− min
k∈{1,...,K}

K

∑
t=1

xt
k, j︸ ︷︷ ︸

unique packets delivered via backhaul

,

where xt
k, j denotes the number of packets delivered from SBS t to SBS k to serve the

requests for file j so that there is no content overlap in both content sharing process

amongst the cooperative SBSs and content delivery phase at the MBS.

6.3.3 File Popularity Profile

Note that users in different cells may have different preferences towards the files.

The most popular file in one cell may receive least attentions from another cell.

It is thus better to consider local file popularity in each cell rather than the global

popularity in the entire network which is often the case in the literature. Without

loss of generality, here we assume that the file popularity in each cell obeys Zipf’s

distribution but with unique skewness parameter and popularity rank. According to

the Zipf’s law, the frequency for file j to be requested by each user in cell k can then
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be written as [154]

pk, j =

(
1/λ

γk
k, j

)
∑

N
i=1 (1/iγk)

, ∀k, j, (6.1)

where γk is the skewness in cell k reflecting the concentration of the popularity dis-

tribution and λk, j denotes the rank of the popularity of file j in cell k. For instance,

λk, j = 1 means file j is the most popular file in cell k. Hence, the probability of file

j not being requested by the users in cell k is

αk, j = (1− pk, j)
Ik , ∀k, j. (6.2)

Thus, the probability for file j being requested by at least one of the users in cell k

will be 1−αk, j.

6.4 Multicast-Aware Caching
The aim is to minimize the average backhaul load for all possible user request pro-

files, meaning that content placement should be done to satisfy different requests for

all the cells simultaneously with a single multicast transmission instead of multiple

unicast transmissions to each SBS separately.

6.4.1 Problem Formulation

Different from the literature where the knowledge of the actual requests from the

cells was usually assumed, we analyze all possible request profiles and their prob-

abilities using the learned file popularity. Here, the joint user request profile in all

the cells is focused rather than the user request profiles in individual cells. We let

Π j denote the collection of all the possible user request profiles and π j ∈ Π j de-

note a particular user request profile for file j in all cells. Given any user request

profile π j, Kπ j is used to denote the set of the cells where file j is required by the

served users. In case that file j is requested in all the cells except cell K, we have

π j = [1,1, . . . ,1,0]1×K where 1 means that file j is requested by users in the consid-

ered cell while 0 states that none of the users in the cell requests the file. Therefore,

it follows that Kπ j = {1,2, . . . ,K−1} for the mentioned π j. The joint user request

profile for all the files simultaneously can be written as {π1, . . . ,πN}. For each file

j, if there are t(≤ K) cells where the served users request file j, the corresponding
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file request profile π j and the cell set Kπ j may have
(K

t

)
possible combinations. In

this way, we evaluate that the total number of different π j and Kπ j will be as high

as 2K .

The average backhaul load is defined as the average volume of the file packets

requiring to be fetched from the MBS via backhaul with a single multicast trans-

mission in terms of all possible user request profiles. Our objective is to minimize

the average backhaul load subject to the overall cache capacity constraint. Mathe-

matically, that is,

min
{mk, j}

∑
{π1,...,πN}

N

∑
j=1

(
1− min

k∈Kπ j

mk, j

n j

)
s jPr({π1, . . . ,πN}) (6.3a)

s.t.
K

∑
k=1

N

∑
j=1

mk, j

n j
s j ≤M, (6.3b)

0≤ mk, j ≤ n j, ∀k, j, (6.3c)

where Pr({π1, . . . ,πN}) denotes the joint probability that a certain user request pro-

file for all the files, i.e., {π1, . . . ,πN} appears. Since there are multiple cells, users

and also requested files, the required analysis and calculation of the joint probabili-

ties would be rather complex. To this end, the following lemma is used to simplify

the objective function in (6.3a).

Lemma 6.1 Based on the fact that the backhaul load for a particular file j only re-

lies on π j regardless of {πi}i 6= j, the average backhaul rate in (6.3a) can be rewritten

as

RMDS
multicast =

N

∑
j=1

∑
π j∈Π j

(
1− min

k∈Kπ j

mk, j

n j

)
s jPr(π j). (6.4)

where Pr(π j) is the probability that π j appears.

Proof 6.1 See [145, Appendix A].

The following lemma exploits the relationships among the elements in m j to

express RMDS
multicast in closed form. Let rk, j be the rank of the value of mk, j among

those of all the elements in m j. For instance, rk, j = 1 means mk, j is the smallest in

m j while rk, j = K states that mk, j is the largest.
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Lemma 6.2 The backhaul load in (6.3a) can be rewritten as

RMDS
multicast=

N

∑
j=1

K

∑
k=1

(
1−

mk, j

n j

)
s j(1−αk, j) ∏

t∈Tk, j

αt, j, (6.5)

in which Tk, j denotes the collection of cells storing no more packets of file j than

cell k, i.e., Tk, j = {t|rt, j < rk, j}.

Proof 6.2 See Appendix E.

6.4.2 Comparison

As a comparison, in the typical unicast case, the backhaul rate for storing uncoded

fragments directly or the MDS coded packets would have been given by

Runicast =
N

∑
j=1

K

∑
k=1

(
1−

mk, j

n j

)
s j(1−αk, j). (6.6)

It can be observed in (6.5) and (6.6) that additional multipliers 0 <

∏t∈Tk, j
αt, j ≤ 1,∀k,∀ j appear after using multicast transmission at the MBS in the

content delivery phase, and hence bring a global gain, i.e., RMDS
multicast < Runicast [52].

On the other hand, it is worth pointing out that storing MDS coded packets has

advantages over uncoded segments in the case of multicast-aware caching for min-

imizing the average backhaul rate. We assume that cell k stores mk, j different

fragments randomly drawn from the n j fragments equiprobably, and all fragments

except the ones stored in all the cells requesting the particular file have to be sent

from the MBS. Therefore,

Runcoded
multicast =

N

∑
j=1

∑
π j∈Π j

(
1−ρπ j

)
s jPr(π j), (6.7)

where ρπ j denotes the probability of a certain fragment of file j being stored in all

the cells requesting the file given by

ρπ j = ∏
k∈Kπ j

( n j−1
mk, j−1

)( n j
mk, j

) = ∏
k∈Kπ j

mk, j

n j
. (6.8)

Since mk, j
n j
≤ 1,∀k, it holds true that ρπ j ≤ mink∈Kπ j

mk, j
n j

. Thus, we derive that

RMDS
multicast ≤ RUncoded

multicast. A rigorous proof has been provided in our previous work

[154].
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6.4.3 Optimization

Defining qk, j ,
mk, j
n j

and using (6.5), (6.3) can be recast into

min
{qk, j}

N

∑
j=1

K

∑
k=1

(
1−qk, j

)
s j(1−αk, j) ∏

t∈Tk, j

αt, j (6.9a)

s.t.
K

∑
k=1

N

∑
j=1

qk, js j ≤M, (6.9b)

0≤ qk, j ≤ 1, ∀k, j. (6.9c)

Unfortunately, before {qk, j} are obtained, it is impossible to know the ranks {rk, j},

or Tk, j. To tackle this, we sort the elements of q j,∀ j in an ascending order and

define the sorted variables as g j , [g1, j, . . . ,gK, j],∀ j. To illustrate the relationships

between q j and g j, a new matrix Y , [yk
t, j]K×N×K with yk

t, j ∈ {0,1} is defined such

that

qk, j =
K

∑
t=1

gt, jyk
t, j. (6.10)

If qk, j is the tth lowest in q j, i.e., rk, j = t, we let yk
t, j = 1 and yk

t, j = 0,∀t 6= t. Note

that the ranks are assumed to be unique integers even if there are several elements of

q j equal to each other. The characteristics of {yk
t, j} are concluded in the following

constraints (6.11e)–(6.11g). Now, (6.9) becomes

min
{gt, j},{yk

t, j}

N

∑
j=1

K

∑
t=1

(
1−gt, j

)
s jϕt, j (6.11a)

s.t.
K

∑
k=1

N

∑
j=1

K

∑
t=1

gt, jyk
t, js j ≤M, (6.11b)

gt, j ≤ gt+1, j,∀t < K, and ∀ j, (6.11c)

0≤ gt, j ≤ 1,∀t, j, (6.11d)
K

∑
t=1

yk
t, j = 1,∀k, j, (6.11e)

K

∑
k=1

yk
t, j = 1,∀t, j, (6.11f)

yk
t, j ∈ {0,1},∀t, j,k, (6.11g)

where ϕt, j is the probability that 100gt, j% of file j requires delivery from the MBS

via backhaul. Define a new group of variables {σt} satisfying qσt , j = gt, j as the
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indices mapping gt, j to qσt , j. For instance, σt = 1 states that q1, j ranks the tth

in q j, i.e., q1, j = gt, j. And we can then obtain the expression of ϕt, j given by

ϕt, j = (1−ασt , j)∏
t−1
ν=1 ασν , j based on (9a) and the definition of g j. Utilizing (10),

it holds true that yσt
t, j = 1. Hence, ϕt, j can be further rewritten as

ϕt, j=

[
K

∑
k=1

(
1−αk, j

)
yk

t, j

]
t−1

∏
ν=1

[
K

∑
k=1

(αk, jyk
ν , j)

]
,∀t > 1 (6.12)

with ϕ1, j = ∑
K
k=1
(
1−αk, j

)
yk

1, j.

Due to the coupling among the variables in the constraints as well as the objec-

tive function, (6.11) is a mixed integer nonlinear program (MINLP) and is difficult

to deal with. The expression of ϕt, j also makes it too complex to be linearized. As

such, reformulation is done here to simplify the constraints.

Lemma 6.3 Based on the characteristics of {yk
t, j}, the overall cache capacity con-

straint in (6.11b) can be re-expressed as ∑
K
t=1 ∑

N
j=1 gt, js j ≤ M. Hence, (6.11) can

be rewritten as

min
{gk, j},{yk

t, j}

N

∑
j=1

K

∑
t=1

(
1−gt, j

)
s jϕt, j (6.13a)

s.t.
K

∑
t=1

N

∑
j=1

gt, js j ≤M, (6.13b)

(6.11c)–(6.11g), (6.13c)

with the optimal allocated cache sizes given by

Mk =
N

∑
j=1

K

∑
t=1

gt, jyk
t, js j,∀k. (6.14)

Proof 6.3 According to (6.10), it can be easily proved that (6.14) holds. Then uti-

lizing the constraint (6.11f), we obtain

K

∑
k=1

Mk =
K

∑
k=1

N

∑
j=1

K

∑
t=1

gt, jyk
t, js j,

=
N

∑
j=1

K

∑
t=1

gt, j

(
K

∑
k=1

yk
t, j

)
s j =

N

∑
j=1

K

∑
t=1

gt, js j. (6.15)

Hence, we get (6.13b), which completes the proof.
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After utilizing Lemma 6.3, {gt, j} and Y are now decoupled in the constraints

of (6.13). To proceed, we firstly fix {gt, j} and optimize Y. The problem of interest

is given by

P({gt, j}) : min
{yk

t, j}

N

∑
j=1

K

∑
t=1

(
1−gt, j

)
s jϕt, j (6.16a)

s.t. (6.11e)–(6.11g), (6.16b)

with {gt, j} satisfying (6.11c)–(6.11d) and (6.13b). Obviously, {yk
t, j} are indepen-

dent with each other in different files in problem (6.16). As a result, we can separate

the problem into a number of sub-problems with regard to different file j, e.g.,

P j({gt, j}) : min
{yk

t, j}

K

∑
t=1

(
1−gt, j

)
ϕt, j (6.17a)

s.t.
K

∑
t=1

yk
t, j = 1,∀k, (6.17b)

K

∑
k=1

yk
t, j = 1,∀t, (6.17c)

yk
t, j ∈ {0,1},∀t,k. (6.17d)

The coupling and complexity of ϕt, j makes it intractable to find the optimal {yk
t, j}

even when {gt, j} are given. To tackle this problem, we analyze the impact of {yk
t, j}

on the objective function based on the characteristics of {gt, j} and {yk
t, j}, and infer

the relations among {yk
t, j} and the probabilities {α j}. For illustrative purposes, we

let α j , [α1, j,α2, j, . . . ,αK, j], rearrange the elements in α j in a descending order

and define the new vector as β j , [β1, j,β2, j, . . . ,βK, j]. Let {θk} reflect the one-to-

one correspondence between the elements of β j and α j satisfying βk, j = αθk, j,∀k.

Meanwhile, α j, β j, and {θk} are all known. The result is given in the following

lemma.

Lemma 6.4 The optimal probability ϕ∗t, j would be ϕ∗t, j =
(
1−βt, j

)
∏

t−1
ν=1 βν , j. Ac-

cordingly, the optimal {yk
t, j} to problem (6.17) are given by

yk
t, j =

 1, if k = θt ,

0, otherwise.
(6.18)
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Proof 6.4 See Appendix F.

Since Lemma 6.4 holds true for all the files, (6.13) becomes

min
{gt, j}

N

∑
j=1

K

∑
t=1

(
1−gt, j

)
s j
(
1−βt, j

) t−1

∏
ν=1

βν , j (6.19a)

s.t. (6.13b)–(6.13c), (6.19b)

which is convex and hence can be easily solved by well known solvers, e.g., CVX

[73]. Then substituting (6.18) into (6.14), the optimal cache capacities in each cell

can be rewritten as

Mk =
N

∑
j=1

gt, js j|θ(t)=k,∀k, (6.20)

with the optimal content placement given by

qk, j = gt, j|θ(t)=k,∀k, j. (6.21)

In the proposed multicast-aware caching scheme, we classify the large number

of possible user request profiles into several types according to the values of the

associated backhaul load. By doing so, we reduce the computational complexity in

terms of user request uncertainty massively from O(NK) to O(KN) to obtain the

optimal solution.

6.5 Cooperative Caching
In this section, we consider that the SBSs can fetch content from the neighboring

SBSs via some high capacity links and study the optimal cooperative caching policy

among the SBSs. Note that the independence amongst the MDS coded packets

cached in all the cells almost surely guarantees that the shared contents are always

non-overlapping.

6.5.1 Problem Formulation

Cooperative caching consists of three phases:

(i) the content placement phase,

(ii) the content sharing phase among the SBSs, and
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(iii) the content delivery phase from the MBS via backhaul.

Note that in the content delivery phase, we assume that unicast is used by the MBS

to sent uncached content to the SBSs.

Since backhaul load is unable to provide sufficient insight about the impact of

cooperative content sharing on reducing the backhaul requirements, here we utilize

user attrition (UA) cost, i.e., the overall cost for fetching content from an external

storage, to evaluate the performance of the cooperative caching schemes. To further

eliminate the redundancy, we assume that the SBSs can selectively deliver part of

the packets from their own caches to the requested SBS rather than the whole of

the cached packets. The amounts of shared content among the cooperative SBSs

are defined as X = {xt
k, j}K×N×K where xt

k, j denotes the number of packets delivered

from SBS t to SBS k for file j. Thus, we let f t
k be the associated unit cost when SBS

k fetches unit data (e.g., per MB) from SBS t and f M
k be the cost for delivering unit

data to SBS k from MBS.

The UA costs are modeled as the products of the data loads of the BSs and

the associated unit costs [147]. Furthermore, it is assumed that the unit costs are

proportional to the square of the minimum distances between the associated BSs

with the unit cost coefficients defined as f0 and f M
0 , respectively, according to [123,

141, 147]. Note that { f t
k} must satisfy the triangle inequality, i.e., f t

k ≤ f t
l + f l

k ,

and the cost for fetching content from local storage can be ignored, i.e., f k
k = 0,∀k.

Moreover, the UA costs for fetching content from the MBS via backhaul are usually

higher than those caused by the cooperation between the SBSs due to proximity.

Instead of focusing on the backhaul load, our objective here is to minimize the

average UA cost, i.e., the cost of fetching content from external storage, subject to a

given overall cache capacity constraint by optimizing the cache content placement

and cooperation policy jointly. In this case, the expected UA cost defined as CMDS
coop

can be written as

CMDS
coop =

N

∑
j=1

K

∑
k=1

[(
1−min

(
1,

K

∑
t=1

xt
k, j

n j

))
f M
k +

K

∑
t=1

xt
k, j

n j
f t
k

]
s j(1−αk, j). (6.22)
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Hence, the problem of interest is given by

min
{mk, j},{xt

k, j}
CMDS

coop (6.23a)

s.t.
K

∑
k=1

N

∑
j=1

mk, j

n j
s j ≤M, (6.23b)

0≤ mk, j ≤ n j, ∀k, j, (6.23c)

0≤ xt
k, j ≤ mt, j, ∀k, j, t, (6.23d)

where the cache size allocation problem is merged into the optimization of the con-

tent placement as mentioned in Lemma 6.3. Apparently, xk
k, j = mk, j,∀k, j holds true

in (6.23).

6.5.2 Comparison

The significance of adopting MDS codes is to avoid content overlap among the

fragments stored in different caches, hence reducing the average UA cost. Suppose

that SBS k stores mk, j different fragments randomly drawn among the n j fragments

and xk
t, j of the mk, j fragments are randomly selected to be sent to SBS t. It is

difficult to ensure that the fragments from the neighboring cells are always mutually

exclusive. Thus, both the number of fragments stored in local cache and sent to

other cells and which fragments being cached and shared contribute in deciding the

backhaul rate and the average UA cost.

Lemma 6.5 Given any cooperative caching policy satisfying constraints (6.23b)–

(6.23d), the UA cost in the coded scenario is always lower than the associated cost

in the uncoded scenario defined as Cuncoded
coop , i.e., CMDS

coop ≤Cuncoded
coop .

Proof 6.5 See Appendix G.

6.5.3 Optimization

We can tackle (6.23) by proving that the optimal cooperative caching policy always

satisfies ∑
K
t=1

xt
k, j
n j
≤ 1,∀k, j. Letting ({x̃t

k, j},{m̃k, j}) be the optimal solution to (6.23)

with at least a group of (k∗, j∗) satisfying ∑
K
t=1

x̃t
k∗, j∗
n j

> 1, we can always find some
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({xt
k, j},{m̃k, j}) with xt

k, j = x̃t
k, j,∀(k, j, t) 6= (k∗, j∗, t) and ∑

K
t=1

x̃t
k∗, j∗
n j

= 1 which sat-

isfy all the constraints in (6.23) while demanding the same cost from backhaul but

a lower cost from content sharing among the cooperative SBSs. Consequently, the

average UA cost is given by

CMDS
coop =

N

∑
j=1

K

∑
k=1

[(
1−

K

∑
t=1

zt
k, j

)
f M
k +

K

∑
t=1

zt
k, j f t

k

]
× s j(1−αk, j), (6.24)

where we let qk, j =
mk, j
n j

and zt
k, j =

xt
k, j
n j

. Problem (6.23) can then be rewritten as

min
{qk, j},{zt

k, j}
(6.24) (6.25a)

s.t.
K

∑
k=1

N

∑
j=1

qk, js j ≤M, (6.25b)

0≤ qk, j ≤ 1, ∀k, j, (6.25c)
K

∑
t=1

zt
k, j ≤ 1, ∀k, j, (6.25d)

0≤ zt
k, j ≤ qt, j, ∀k, j, t, (6.25e)

which is linear and can easily be solved using, e.g., CVX.

For comparison, the average UA cost in the unicast based non-cooperative

caching scenario is given by

Cunicast
noncoop =

N

∑
j=1

K

∑
k=1

(
1−qk, j

)
f M
k s j(1−αk, j). (6.26)

As f t
k ≤ f M

k and zk
k, j = qk, j,∀k, t, j, we have

CMDS
coop ≤

N

∑
j=1

K

∑
k=1

(
1−

K

∑
t=1

zt
k, j+∑

t 6=k
zt

k, j

)
× f M

k s j(1−αk, j)≤Cunicast
noncoop. (6.27)

6.6 Multicast-Aware Cooperative Caching
In this section, a compound caching policy named multicast-aware cooperative

caching is proposed to take the advantages of both multicasting at the MBS and

collaboration among the SBSs. Global optimal caching scheme is proposed for

small scale networks followed by the multicast-aware in-cluster cooperative caching

scheme developed particularly for the large scale networks.
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6.6.1 Small Scale Networks

Lemma 6.6 In case of multicast-aware cooperative caching, the UA cost can be

written as

CMDS
mult,coop=

N

∑
j=1

[
∑

π j∈Π j

(
1− min

k∈Kπ j

K

∑
t=1

zt
k, j

)
max

k∈Kπ j

f M
k

×Pr(π j)+
K

∑
k=1

K

∑
t=1

zt
k, j f t

k(1−αk, j)

]
s j. (6.28)

Proof 6.6 See Appendix H.

The average UA cost minimization problem is

min
{qk, j},{zt

k, j}
CMDS

mult,coop s.t. (6.25b)–(6.25e). (6.29)

We recognize that similar content in different cells is preferred for multicast-aware

caching while for cooperative caching the cached content in different cells should

be mutually exclusive. The use of MDS codes strikes a balance in the combination.

It is worth pointing out that multicast-aware cooperative caching brings additional

multicast gain in most cases in terms of minimizing the long term average UA cost

considering the large numbers of BSs, files, and user request profiles while unicast

content delivery might only be preferred in rare extreme cases, e.g., when only a few

cells with steeply graded unit costs require the same file. To eliminate the impact

of these special cases, a new group of binary variable can be introduced to identify

which content delivery strategy is preferred for each user request profile in the case

of small scale networks.

Lemma 6.7 Given any mutlicast-aware cooperative caching policy ({qk, j},{zt
k, j})

satisfying the constraints in (6.29), the UA cost in the coded scenario is always

much lower than that in the uncoded case, i.e., CMDS
mult,coop ≤Cuncoded

mult,coop.

Proof 6.7 See Appendix I.

To solve (6.29), we resort to a greedy algorithm by listing all possible user

request profiles for each file. Furthermore, a number of new variables and con-

straints need to be added to linearize the function min(·). That is, for any user
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request profile π j, we introduce a new variable ξπ j subject to the constraints, i.e.,

(0≤ ξπ j ≤∑
K
t=1 zt

k, j, ∀k ∈Kπ j), to replace mink∈Kπ j
∑

K
t=1 zt

k, j in (6.28). Since (6.29)

can be linearized, general solvers can be employed to solve it for small-scale net-

works. However, in practical scenarios with dozens of BSs and thousands of files,

the greedy approach is not viable.

6.6.2 Large Scale Networks

In order to reduce the complexity in large scale networks, we propose a multicast-

aware in-cluster cooperative caching scheme by decomposing a macro cell into a se-

ries of annular regions {C u,∀u ∈ [1,U ]} with their radii between Ru±∆Ru(∆Ru�

Ru). In each annulus, the neighboring SBSs form a number of disjoint clusters de-

fined as {S u
1 ,S

u
2 , . . . ,S

u
Lu
} where Lu is the number of clusters in the uth annulus.

Let |S u
l | denote the number of SBSs in cluster S u

l . It is assumed that the SBSs in

the same cluster S u
l can share content over high capacity links with a cost f u

l = f0d
u
l

where d
u
l is the average of the squares of the distances among the cooperative SBSs.

The cost for retrieving content from the MBS is f M
u = f M

0 R2
u where Ru is the radius

for the uth annulus. The UA cost in cluster S u
l is given by

Cu
l =

N

∑
j=1

 ∑
πu

l, j∈Πu
l, j

1− min
k∈Kπu

l, j

∑
t∈S u

l

zt
k, j

 f M
u Pr(π

u
l, j)

+ ∑
k∈S u

l

∑
t∈S u

l \k
zt

k, j f u
l (1−αk, j)

s j. (6.30)

Therefore, this scheme solves

min
{qk, j},{zk

t, j}
∑
u

∑
l

Cu
l (6.31a)

s.t. ∑
t∈S u

l

zt
k, j ≤ 1, ∀k ∈S u

l ,∀ j,∀l,∀u, (6.31b)

0≤ zt
k, j ≤ qt, j,∀t,k ∈S u

l ,∀ j,∀l,∀u, (6.31c)

0≤ qk, j ≤ 1,∀k ∈S u
l ,∀ j,∀l,∀u, (6.31d)

∑
u

∑
l

∑
j

∑
k∈S u

l

qk, js j ≤M. (6.31e)



6.6. Multicast-Aware Cooperative Caching 118

For the sake of mathematical tractability, we decompose the problem into a number

of sub-problems each minimizing the UA cost for a cluster. In this case, we let

qk, j = qu
l, j,∀k ∈S u

l ,∀ j, l,u and the sub-problem for cluster S u
l is given by

P({qu
l, j}) : min

{zk
t, j}

Cu
l (6.32a)

s.t. ∑
t∈S u

l

zt
k, j ≤ 1, ∀k ∈S u

l ,∀ j, (6.32b)

0≤ zt
k, j ≤ qu

l, j, ∀t,k ∈S u
l ,∀ j. (6.32c)

Because the cost for fetching content from local cache can be ignored, it holds true

that zk
k, j = qu

l, j,∀k ∈S u
l . For any given cache composition satisfying the constraints

(6.31b)–(6.31e), we find it important to understand the volume of content that is

needed to be fetched from the MBS via backhaul. Let Du
l = ∑

N
j=1 ∑k∈S u

l
qu

l, js j(1−

αk, j). Given cache composition, Du
l is always constant and hence can be ignored.

The objective function can then be further reformulated into

C̃u
l =Cu

l +Du
l =

N

∑
j=1

 ∑
πu

l, j∈Πu
l, j

(
1− min

k∈Kπu
l, j

λk, j

)

× f M
u Pr(π

u
l, j)+ ∑

k∈S u
l

λk, j f u
l (1−αk, j)

s j. (6.33)

where λk, j = ∑t∈S u
l

zt
k, j denotes the percentage of file j accessible to SBS k within

the cluster and is subject to

0≤ λk, j ≤ 1, ∀k ∈S u
l ,∀ j, (6.34)

qu
l, j ≤ λk, j ≤ |S u

l |q
u
l, j, ∀t,k ∈S u

l ,∀ j. (6.35)

Note that with the assumption of homogeneous content placement in the SBSs in

the same cluster, this gives the overall percentage of a certain file j SBS k gets

access to, i.e., λk, j. In the following, we focus on obtaining the optimal values of

{λk, j}. Similar to the multicast-aware caching scenario, the objective function can
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be rewritten as

C̃u
l =

N

∑
j=1

∑
k∈S u

l

(1−λk, j
)

f M
u (1−αk, j) ∏

t∈Tk, j

αt, j

+λk, j f u
l (1−αk, j)

]
s j, (6.36)

where Tk, j is the set of cells satisfying Tk, j = {t|rt, j < rk, j} as in Lemma 6.2. In

this case, we manage to obtain the actual relation amongst λk, j,∀k ∈ S u
l in the

following lemma.

Lemma 6.8 Given any homogeneous cache decomposition in cluster S u
l , it holds

true that the optimal percentages for file j accessible to the SBSs within the cluster

either at local cache or from the cooperative SBSs are always the same regardless

of the distinct probabilities for file j being requested by users in different cells, i.e.,

λk, j = λt, j,∀k, t ∈S u
l .

Proof 6.8 See Appendix J.

According to Lemma 6.8, we let λk, j = λ u
l, j,∀k ∈S u

l . The associated UA cost

in (6.30) can be rewritten as

Cu
l = ∑

j

(
1−λ

u
l, j

)
f M
u ω

u
l, js j + ∑

j=1
∑

k∈S u
l

(
λk, j−qu

l, j

)
× f u

l (1−αk, j)s j, (6.37)

where ωu
l, j is the probability for file j being requested by any of the users served by

the SBSs in the cluster S u
l given by

ω
u
l, j = 1− ∏

k∈S u
l

αk, j,∀ j, l,u. (6.38)

Therefore, (6.31) can then be recast into

min
{qu

l, j},{λ
u
l, j}

∑
u

∑
l

Cu
l (6.39a)

s.t. 0≤ λ
u
l, j ≤ 1, ∀ j,∀l,∀u, (6.39b)

qu
l, j ≤ λ

u
l, j ≤ |S

u
l |q

u
l, j, ∀ j,∀l,∀u. (6.39c)

0≤ qu
l, j ≤ 1,∀ j,∀l,∀u, (6.39d)

∑
u

∑
l

∑
j

qu
l, js j ≤M. (6.39e)
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The problem is now linear with smaller sets of variables and constraints and can be

solved by well-known solvers.

6.7 Simulation Results
Here, we evaluate the performances of the proposed coded caching schemes in

terms of the average backhaul load as well as the UA cost via computer simula-

tions. A typical small cell network with K = 10 cells and N = 100 files is con-

sidered for the evaluation of multicast-aware caching scheme and the overall co-

operative caching schemes while a large scale network with K = 28,N = 1000 is

considered for in-cluster cooperative caching schemes. The MBS is located at the

center of the macro cell with radius R = 400km while the SBSs are randomly de-

ployed uniformly within the cell without coverage overlapping. To show clearly

the capabilities for the SBSs to accommodate the files, the overall cache capacity

budget is presented as the average cache size for each SBS scaled by the overall

file size given by ρ = M/K/∑ j s j. Unless otherwise specified, we set ρ = 0.25 for

multicast-aware caching and in-cluster caching schemes while ρ = 0.05 is assumed

for overall cooperative caching schemes to ensure the participation of backhaul in

content delivery. The file sizes are randomly chosen uniformly within [0,500]MB.

The skewness parameters {γk} are selected randomly within [0,2] while the popu-

larity ranks of the files in each cell are generated randomly. Also, the number of

users in each cell is set to be ranged within [0,10], respectively. For cooperative

caching, the neighboring SBSs are linked when the distances between them are less

than a given threshold. Here, we consider that two SBSs can share content in their

caches when the cost for retrieving content from the other SBS is lower than that

of fetching content from the MBS. The unit cost coefficients for the two routes for

fetching content from external storage are set as f M
0 = 2 and f0 = 1.

Below describes all the considered schemes.

• Unicast-Based Caching (Non-Cooperative Caching): This is the unicast-

based non-cooperative caching scheme with optimal cache management

[143].
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• Multicast-Aware Caching (Uniform): This scheme performs multicast-

aware caching with uniform cache size allocation and content placement.

• Multicast-Aware Caching (Popularity): This is same as above except with

popularity based content placement.

• Multicast-Aware Caching: This refers to our proposed multicast-aware

caching scheme with optimal cache content placement.

• Multicast-Aware Caching (Low Bound): This refers to the method with op-

timal cache size allocation and content placement of the linear relaxed multi-

cast aware uncoded caching problem in [123]. Notice that this is practically

impossible and only serves as a lower bound.

• Cooperative Caching: This refers to our proposed unicast-based cooperative

caching scheme with optimal cache management and cooperation policy.

• Multicast-Aware Cooperative Caching (Uniform): This is the multicast-

aware cooperative caching scheme that uses uniform cache size allocation

and content placement.

• Multicast-Aware Cooperative Caching (Popularity): Same as above ex-

cept with popularity content placement.

• Multicast-Aware Cooperative Caching: This refers to our proposed

multicast-aware cooperative caching with optimal cache management and

cooperation policy.

• In-Cluster Cooperative Caching: This scheme is similar to cooperative

caching except that cooperation is enabled among the SBSs in the same clus-

ters.

• Multicast-Aware In-Cluster Cooperative Caching: This scheme is similar

to multicast-aware cooperative caching except that multicasting and coopera-

tion are enabled among the SBSs in the same clusters.
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Figure 6.2: The average backhaul rate of the proposed multicast-aware caching

scheme versus the unicast based caching scheme and the multicast-aware caching

schemes.

6.7.1 Multicast-aware caching

Results in Fig. 6.2 are provided for the proposed multicast-aware caching scheme,

with different content placements, and compared with the uniform based caching

scheme. Moreover, the impacts of different parameters and file profile are investi-

gated. As can be seen in Fig. 6.2a, the increase of overall cache size budget leads

to a decrease in backhaul rates in all the cases. Also, the proposed multicast-aware

caching scheme with optimal content placement, which reaches the low bound of

the multicast aware uncoded caching scheme in [123] using linear relaxation and

optimal cache management at much lower commuting complexity, shows apparent

advantages over the unicast based scheme as expected while the multicast-aware

caching schemes with uniform and popularity based content placement show worse

performances due to the naive cache management, confirming the significance of

multicast transmission in content delivery as well as the centralized cache man-

agement in heterogeneous small cell networks. Similar results can be observed in
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Fig. 6.2b against the skewness parameter of the Zipf’s distribution, with γ = γk,∀k

and distinct popularity ranks for the files in different cells. The impact of the num-

ber of BSs on the backhaul rate is shown in Fig. 6.2a where the gain improves in

denser networks. Again, the multicast-aware scheme outperforms other caching

schemes.

6.7.2 Cooperative caching (unicast and multicast)

Results in Fig. 6.3 compare the performance of the proposed cooperative caching

schemes with that of the non-cooperative scheme in terms of the average UA cost.

As can be observed, the proposed multicast-aware cooperative caching scheme

shows the best performances followed by the unicast based cooperative caching

scheme while the non-cooperative caching scheme yields the worst performance in

all the cases. In addition, the multicast-aware cooperative caching schemes using

common content placement demand higher UA costs compared with the proposed

optimal multicast-aware caching scheme as expected. As we see in Fig. 6.3a, the

UA costs decrease with the overall cache size in all cases. Apparently, the utility of

cooperation in caching and multicast-aware caching reduce the average UA cost in

the network dramatically. For comparison, we also present the results of multicast-

aware in-cluster cooperative caching scheme with the maximum cluster size, i.e.,

the maximum number of SBSs in the clusters defined as η , equal to 2 and 3, respec-

tively. Though the in-cluster caching scheme causes certain performance loss com-

pared with the overall cooperative caching schemes, it largely reduces the compu-

tational complexity which makes it suitable for large-scale networks where overall

cooperative caching schemes are unviable. Moreover, we can see in the figure that

the performance gap can be narrowed by increasing the maximum cluster size η .

Fig. 6.3b presents the cache size allocation among the SBSs using different caching

schemes when ρ = 0.05. Results show that the optimal cache sizes for different

cells are always heterogeneous as opposed to the assumption of uniform cache size

allocation in many caching networks. Similar conclusions on the impacts of the

skewness and the number of users to the non-cooperative case mentioned above can

be drawn from Figs. 6.3a and 6.3b. Next, Figs. 6.3a and 6.3b investigate the impacts
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Figure 6.3: The average UA cost of the proposed cooperative caching schemes

versus the non-cooperative scheme.



6.7. Simulation Results 128

of the number of files and the cost coefficient f M
0 . As we can see in Fig. 6.3a,the

UA cost reduction of the proposed multicast-aware cooperative caching scheme de-

creases with the number of files when ρ = 0.05 and s j = 250MB,∀ j to unicast

based cooperative scheme. Finally, the impact of the ratio between the unit cost

coefficients is studied in Fig. 6.3b where f0 = 1 but f M
0 varies. Apparently, the UA

cost of the non-cooperative caching scheme is proportional to f M
0 while the coop-

erative schemes have much better tolerance towards the increase of f M
0 for fetching

content via backhaul.

6.7.3 Multicast-aware and in-cluster cooperative caching

Now, a large-scale small cell network with K = 28 cells and N = 1000 files is con-

sidered where the greedy algorithm for multicast-aware cooperative caching sce-

nario is no longer efficient due to high computational complexity and hence in-

cluster cooperative caching schemes are considered. Here we assume typical grid

deployment of the SBSs as depicted in Fig. 6.4a. The MBS is located at the center

of the macro cell with radius R = 400km and the distance between any two of the

neighboring SBSs is fixed at d = R/3. The SBSs are divided into 4 annuli based

on the distances and then the neighboring SBSs in each annulus are allocated into a

number of disjoint clusters where the SBSs in the same color form a cluster. Unless

stated otherwise, same parameters as before are used.

Results for the multicast-aware in-cluster caching scheme are provided in

Fig. 6.4. We see that the multicast-aware in-cluster cooperative caching scheme

achieves the best UA cost performance followed by the in-cluster cooperative

caching scheme while the non-cooperative caching scheme gives the highest UA

cost. Compared with that in small scale networks, the UA cost reduction becomes

more obvious. The reason may be that the network topologies are different and

denser which gives rise to larger number of clusters and the average cluster size

than those in the previous scenarios.
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Figure 6.4: The average UA cost of the proposed multicast-aware in-cluster co-

operative caching scheme versus in-cluster cooperative caching scheme and non-

cooperative caching scheme.
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6.8 Summary
In this chapter, we considered the design of content caching and sharing for cache-

enabled heterogeneous small cell networks using MDS codes under heterogeneous

file and network settings. We first presented two coded caching schemes, dubbed

as the multicast-aware caching and the cooperative caching schemes, for minimiz-

ing the long-term average backhaul load or the UA cost subject to the overall cache

capacity constraint. In both cases, we have obtained the optimal content placement

by reformulating the original problems into convex ones. A compound caching

scheme, referred to as multicast-aware cooperative caching, was then proposed ex-

ploiting the independence of MDS coded packets to further reduce the backhaul

requirements. In this case, a greedy algorithm can be used for small scale networks

while for large scale networks a multicast-aware in-cluster cooperative caching al-

gorithm was developed. The advantages of storing coded packets over the uncoded

fragments in all the scenarios as well as the benefits of utilizing multicast-aware

caching and/or cooperative caching over common caching schemes have been ana-

lyzed.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we studied the resource allocation strategies in both SWIPT systems

and cache-enabled networks aiming at overcoming the bottlenecks on energy supply

and backhaul capacity. Below, we summarize the main contributions of this thesis.

In Chapter 3, we considered the joint design of the transmit beamforming and

power-splitting ratio aiming to minimizing the transmit power subject to the indi-

vidual SINR and the harvested energy constraints for a MISO SWIPT broadcast

system with imperfect CSI. In comparison with the existing method of two-step

optimization scheme by iteratively updating the transmit beamforming and power-

splitting ratio, we firstly proposed an SDR guided randomization algorithm, which

is non-iterative but only provides an upper-bound performance after rescaling. To

further improve the performance, we proposed a reverse convex constraint based

penalty function method which guarantees a rank-one and near-optimal solution.

The simulation results showed that the penalty function method not only yields a

better solution than the randomization method, but also performs nearly as the SDP

method and is quite close to the perfect CSI case, which demonstrates that the pro-

posed PenFun method not only guarantees a rank-one solution but also yields the

global optimal solution.

In Chapter 4, the emphasis is shifted into time-switching based EH and MIMO

techniques. We studied the joint source, relay matrices and time switching ratio de-
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sign for the rate maximization of a MIMO relay network with an energy harvesting

relay node. The communication process was divided into three phases, first energy

harvesting phase, then information transmission from the source node to the relay

node, and finally the information forwarding form the relay node to the destination

node. To efficiently finish the entire communication process, the power constraints

at the source node and the relay node need to be satisfied. We started with the

fixed source covariance matrix scenario assuming uniform source precoding and

then considered joint optimization with the source covariance. Closed-form solu-

tion as well as an iterative scheme were proposed, respectively, for the two cases,

which provided promising principles for designing SWIPT for multi-hop MIMO

relay systems.

Chapter 5 presented an optimal cache content placement strategy for small cell

networks with heterogeneous file and cache sizes. To minimize the average back-

haul rate subject to the cache capacity constraints, multicast was adopted instead

of multiple unicast transmissions in the content delivery phase. In particular, the

multicast content delivery is facilitated by utilizing the characteristics of the MDS

codes, e.g. the independence among the MDS coded packages. The problem is

formulated as a nonconvex problem and finally reformulated into a MILP solved

by optimization tool. The analysis and simulation results showed the advantages of

storing the coded packets over storing uncoded fragments as well as utilizing multi-

cast content delivery over the existing schemes in terms of minimizing the backhaul

rate. The impacts of the parameters in both the network and content aspects have

also been carefully investigated.

In Chapter 6, we investigated the cache content placement for cache-enabled

heterogeneous small cell networks using MDS codes under heterogeneous file and

network settings, such as heterogeneous file and cache sizes, distinct numbers of

users. In particular, local content popularity is considered instead of the global con-

tent popularity. Taking the advantages of multicast content delivery and content

sharing among adjacent BSs, we presented two coded caching schemes, dubbed

as the multicast-aware caching and the cooperative caching schemes, receptively,



7.2. Future Work 135

for minimizing the long-term average backhaul load or the UA cost subject to the

overall cache capacity constraint. By reformulating the original problems into con-

vex ones, we have derived the optimal content placement in both cases. To further

reduce the backhaul requirements, we proposed a compound caching scheme, re-

ferred to as multicast-aware cooperative caching, for which a greedy algorithm and a

multicast-aware in-cluster cooperative caching algorithm were developed for small

scale and large scale networks, respectively. Through analysis, we demonstrated the

performance gains of utilizing MDS codes, multicast-aware caching, and coopera-

tive caching for coded caching, content delivery and content sharing accordingly.

7.2 Future Work
The goals for future work include further research on SWIPT and edge caching. In

the following, I highlight several research directions which I would like to explore.

7.2.1 Energy Harvesting enabled UAVs

Unmanned aerial vehicles (UAVs) have been widely adopted in military and civil-

ian applications, due to the features of high manoeuvrability and affordability [156].

An important tendency for the evolution of UAVs is towards increasingly smaller

size. However, the short endurance of small size UAVs becomes a bottleneck as

they are too small and lightweight to carry enough fuel or batteries. Energy harvest-

ing is one of the effective way to deal with this problem by providing energy supply

without increasing payloads. On the other hand, UAVs are particularly suitable for

energy harvesting due to the high flexible deployment and manoeuvrability which

makes them easily implemented even in remote or dangerous environments with

poor infrastructures. In addition, the communication distance between an UAV and

a energy-constrained IoT device is relatively limited, which is good for maintaining

a satisfactory WPT efficiency. And in order to direct the power signal to the UAV,

beamforming techniques are needed for energy harvesting enabled UAV systems.

At the same time, the acquisition of channel information and locations of the UAVs

also brings potential research topics such as robust beamforming, security and pri-

vacy. In terms of the UAVs, the deployment and trajectory design demands careful
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investigation as well in order to obtain desired energy efficiency for EH within the

considered coverage [157].

7.2.2 Energy Harvesting enabled IoTs

As one of the promising services for the 5G communication, IoT facilitates enor-

mous number of devices and enable them to efficiently connect and communi-

cate with each other without direct human interference. Aiming to provide self-

sustainable and long lifetime communications, the implementation of IoT requires

to adopt energy harvesting enabled devices and utilize energy harvesting transmis-

sion techniques to improve energy efficiency [158]. In this case, cooperative beam-

forming, robust beamforming and physical layer security, become crucial issues

requiring to be carefully dealt with. Moreover, IoT facilitates edge intelligence,

such as edge caching and edge computing, the implementation of energy harvesting

technique in existence of edge caching and computing would also be a significant

aspect in making full of the IoT systems [159].

7.2.3 Energy Harvesting enabled Satellite Communication

The application of energy harvesting techniques in satellite communication has at-

tracted considerable attentions. Most of the satellites are solar-powered, which

means that solar based energy harvesting can be utilized to provide power sup-

ply to the satellites, and then continue to facilitate both wireless power transmission

and information transmission to ground stations (low power consumed base stations

such as drones) using the harvested energy via microwave beams [160]. This strat-

egy unlocks the potential of applying SWIPT in satellite communication, and can

also be combined with the UAV techniques, e.g. exploring the development and

implementation of satellite assisted EH enabled drones or base stations, in order to

further remove the barriers caused by the battery limited communication.

7.2.4 Content Popularity Estimation and Evolution

For proactive caching approaches, the caching decision is made based on the pre-

learned content popularity information and we always assume that such knowledge

is perfect. However, the accuracy of file popularity information actually depends on
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content popularity estimation via machine learning tools. Therefore, it is important

to boost the accuracy of content popularity estimation which affects implementing

caching strategies. Motivated from this, a fundamental study on content popularity

learning for cache-enabled networks has been conducted in [110] where learning-

aided caching strategies were proposed with the file popularity dynamically learned

by observing user requests. Another issue is about content popularity evolution

due to the facts that new files may be generated and become the most popular ob-

jects and the popularity ranks of current files also tend to shift over time. In deed,

Markov chain model has been utilized to track such evolution. However, the study

discussing the impacts that this kind of evolution has on caching decisions is actu-

ally rare. Finally, it is crucial to consider local file popularity rather that global file

popularity for multi-cell systems as the users in different cells may have different

preferences towards the files, e.g., the most popular file in one cell may receive least

attentions from the users in another cell.

7.2.5 Privacy-Aware Caching

Privacy-Aware Caching is aimed to introduce the privacy issue into content-centric

networks and investigate the measurement of information leakage in content de-

livery. The privacy concerns mainly come from two aspects, the untrusted base

stations which can easily infer users preference by answering to the users queries,

and the learning process of the content popularity which requires collecting the user

request history. These give rise to the research on caching-forward protocol design

as well as the privacy-aware machine learning to control information leakage in both

the content delivery phase and the content popularity learning phase. Privacy has

been recognized as one of the open issues in IoT, big data, and other applications

of machine learning, and therefore conveys huge research potential in both fields of

networking and data science. Machine learning, is now one of the hottest issue, not

only for predicting the content popularity in cache-enabled networks, but also for

understanding the wireless communication from a brand-new perspective.
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7.2.6 Joint Transmission and Caching Designs

In literature, those focusing on caching policy design usually ignore the impacts of

the physical layer parameters while others focus more on the transmission aspects

for more realistic network models but assuming either most popular files are cached

or the cache placement is given in the considered time slot. A fundamental work for

joint transmission and caching design has been provided in [100] where a two time-

scale joint optimization of MIMO precoding and cache control was proposed for

cache-enabled opportunistic cooperative MIMO (CoMP) to minimize the transmit

power. In the short-term time scale, the precoding matrices were optimized based

on the instantaneous channel state information and cache states subject to the rate

constraint. In the long-term time scale, the cache content placement was designed

using the user requests information as well as the precoding matrices subject to the

cache capacity constraint. Due to the coupling between caching and transmission,

we deem that the joint designs are important and worthy of further investigations.

7.2.7 Mobility-Aware Caching

The mobility of users is also an important aspect that affects the performance of

caching approaches and hence requires further investigations for cache-enabled net-

works. As the users may move rapidly from one cell to another before the data de-

livery is finished, the requests of a user can be served by multiple BSs sequentially.

Therefore, the caching decision must be performed taking into account the predic-

tions about user mobility patterns and also the cooperation and coordination among

different caches, which adds more challenges to caching problems besides the un-

certainties in terms of content popularity and user demand patterns. Discrete-time

Markov chain model has been adopted to analyze the impacts of mobility of users

on caching management in [107, 108].



Appendix A

Proof of Proposition3.1

Suppose (W∗k ,ρ
∗
k ,µ

∗
k ,λ

∗
k ) be the optimal solution of (3.17). Letting q∗k = 1

ρ∗k
, and

q̃∗k =
1

1−ρ∗k
, it is easy to see that (W∗k ,ρ

∗
k ,q
∗
k , q̃
∗
k ,µ
∗
k ,λ

∗
k ) also satisfies the constraints

in (3.18). Oppositely, if (W∗k ,ρ
∗
k ,q
∗
k , q̃
∗
k ,µ
∗
k ,λ

∗
k ) is the optimal solution for (3.18),

then ΓΓΓk and ϒϒϒk will both be positive semi-definite (PSD) due to the fact that

ΓΓΓk − Γ̃ΓΓk � 0,ϒϒϒk − ϒ̃ϒϒk � 0. Also, the objective function is not directly related to

q∗k , q̃
∗
k such that we can solve (3.18) with CVX instead of (3.17).



Appendix B

Proof of Lemma 5.1

In (5.3a), the instantaneous backhaul rates for all kinds of possible user request

profiles {π1, . . . ,πN} are summed up to obtain the average backhaul rate while that

for a particular user request profile is composed of the associated backhaul rates

for all the files. Equivalently, the average backhaul rate can also be calculated by

summing up the average backhaul rate for each file in terms of all kinds of possible

user request profiles. Mathematically, we able able to rewrite (5.3a) as

CMDS
multicast=

N

∑
j=1

∑
{π1,...,πN}

(
1− min

k∈Kπ j

mk, j

n j

)
s jPr({π1, . . . ,πN}). (B.1)

For a particular file j, the volume of packets to be sent via backhaul is subject to

the content placement m j and the associated user request profile π j regardless of

the user request profiles for other files {πi}i6= j. That is to say any user request

profile {π1, . . . ,πN} with the same π j would yield the same backhaul rate for file j.

Consequently, when calculating the backhaul rate for a file, we can only consider

different user request profiles for the certain file and ignore the user request profiles

for other files. Hence, (B.1) can be further reformulated into

CMDS
multicast =

N

∑
j=1

∑
π j

(
1− min

k∈Kπ j

mk, j

n j

)
s jPr(π j), (B.2)

which is the same with (5.4) obtained by considering the user request profile for

each file and then summing up the backhaul rate for all the files. The equivalence

between (5.3a) and (5.4) is hence proved.
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Proof of Lemma 5.3

Since the solution of (5.11) always satisfies g̃ j = sort(q̃ j),∀ j, it can be easily proved

that q̃k, j = g̃r̃k, j, j where r̃k, j is the rank of q̃k, j in q̃ j. Note that the ranks must be

unique integers. Hence, if we let x̃k
t, j = 1|r̃t, j=k and otherwise x̃k

t, j = 1, we will then

get q̃k, j = ∑
K
t=1 g̃t, jx̃k

t, j, which satisfy all the constraints in (5.13). Hence, {g̃k, j} and

{x̃k
t, j} are the solution of (5.13). Oppositely, if {g̃k, j} and {x̃k

t, j} are known to be the

solution to (5.13), it is easy to prove that {g̃k, j} are the solution to (5.11) and then

use them to recover {q̃k, j}, i.e., q̃k, j = ∑
K
t=1 g̃t, jx̃k

t, j. In this case, the rank of q̃k, j in

q̃ j is r̃k, j = t|x̃k
t, j=1. The equivalence is therefore proved.



Appendix D

Proof of Lemma 5.4

Firstly, we prove that any (x,y,z) with z = xy can satisfy constraints (5.14)–(5.17).

Based on the definition that 0 ≤ y ≤ ỹ and x ∈ {0,1}, we know that z is monoton-

ically increasing with both x and y. Thus, (5.14), (5.16) and (5.17) always hold.

Also, when x = 0, we get y− ỹ ≤ 0 and z = 0 in (5.15). Similarly, when x = 1,

we can prove (5.15). Now suppose that (x,y,z) satisfies (5.14)–(5.17) and we prove

that z = xy by contradiction. Assume that there is a z satisfying z > xy. According

to (5.16), we then get z ≤ y which indicates that x = 0 and hence z > 0. This con-

tradicts with (5.14). The assumption cannot be true. Similarly, we can prove that

once z < xy happens, x must be equal to 1 and z < y in order to satisfy (5.17). This

in turn violates (5.15) which requires z ≥ y. Consequently, z = xy always holds in

this case. Lemma 5.4 is then proved.



Appendix E

Proof of Lemma 6.2

Firstly, we divide the possible user request profiles for each file, e.g., π j into K +1

types defined as {π0
j ,π

1
j ,π

2
j , . . . ,π

K
j } according to the different values of the associ-

ated backhaul load (in percentage) for file j, i.e., {0,1− m1, j
n j

,1− m2, j
n j

, . . . ,1− mK, j
n j
},

respectively. Note that π0
j states that file j is not requested by users in any of

the cells, and hence backhaul is no longer needed in this case. If cell k stores

the least number of packets of file j among all the cells requesting file j, i.e.,

mint∈Kπ j

mt, j
n j

=
mk, j
n j

, then the associated user request profile πk
j will imply that file

j is requested by cell k and that there will not be any cell t satisfying rt, j < rk, j.

Considering the definition of Tk, j, we obtain that Pr(π
k
j ) = (1−αk, j)∏t∈Tk, j

αt, j.

Summing up all types of user request profiles {πk
j} for all files, the average backhaul

rate can be written as (6.5) which ends the proof of the lemma.



Appendix F

Proof of Lemma 6.4

Here pairwise comparison is used to tackle the problem caused by the uncertain

relation of {αϑν , j}. Firstly, we utilize a simple example to help better clarify this

lemma.

Example 1. Let K = 3. Then it follows that α j = [α1, j,α2, j,α3, j]. Now,

assume that for any given j, the only three nonzero elements of {yt
k, j} are given

by yθ1
1, j = 1,yθ2

2, j = 1,yθ3
3, j = 1. Then we let ϕt, j =

(
1−αθt , j

)
∏

t−1
ν=1(αθν , j),∀t using

(6.12). As such, the objective function can be rewritten as

RMDS
multicast =

(
1−g1, j

)(
1−αθ1, j

)
+
(
1−g2, j

)(
1−αθ2, j

)
×αθ1, j+

(
1−g3, j

)(
1−αθ3, j

)
αθ1, jαθ2, j. (F.1)

Now we prove that the optimal {yt
k, j} must ensure that αθ1, j ≥ αθ2, j ≥ αθ3, j by

contradiction. Assume αθ2, j < αθ3, j and calculate RMDS
multicast using (F.1). Then we

exchange the values of αθ2, j and αθ3, j and recalculate the objective function. The

difference between the former and the later objective function can be given by

∆RMDS
multicast =

(
g3, j−g2, j

)
αθ1, j

(
αθ3, j−αθ2, j

)
. (F.2)

Considering g2, j ≤ g3, j and αθ2, j < αθ3, j, we prove that ∆RMDS
multicast ≥ 0. That is to

say, for any αθ2, j < αθ3, j, we can always obtain a smaller or at least equal objective

function by exchanging αθ2, j and αθ3, j. Hence, αθ2, j≥αθ3, j is essential to minimize

the backhaul load. In the same way, we can prove that αθ1, j ≥ αθ2, j. Consequently,

αθ1, j ≥ αθ2, j ≥ αθ3, j is proved. The same conclusion can easily be extended to
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the K cell scenario which indicates that αθ1, j ≥ αθ2, j ≥ ·· ·αθK , j. The rigorous

mathematical proof is presented below.

We let φ
j

ν ,∀ν = 2,3, . . . ,K be the summation of the items in RMDS
multicast that in-

volves αϑν−1, j and αϑν , j, given by

φ
j

ν =
ν

∑
k=ν−1

(
1−gk, j

)
(1−αϑk, j)

k−1

∏
t=1

αϑt , js j. (F.3)

Since αϑt , j, t = 1,2, . . . ,ν − 2 are interchangeable in φ
j

ν , the relation among them

will not affect the value of φ
j

ν as well as the relation between αϑν−1, j and αϑν , j.

Consequently, we consider the derivatives of αϑν−1, j and αϑν , j in φ
j

ν as follows

∂φ
j

ν

∂αϑν−1, j
=
(
gν−1, j−1+

(
1−gν , j

)
(1−αϑν , j)

)ν−2

∏
t=1

αϑt , js j, (F.4)

∂φ
j

ν

∂αϑν , j
=−

(
1−gν , j

)ν−1

∏
t=1

αϑt , js j. (F.5)

Let ∆
j
ν = ∂φ

j
ν

∂αϑν , j
− ∂φ

j
ν

∂αϑν−1, j
, and we obtain that

∆
j
ν =

N

∑
j=1

(
1−gν , j

)(
αϑν , j−αϑν−1, j

)ν−2

∏
t=1

αϑt , js j

+(gν , j−gν−1, j)
ν−2

∏
t=1

αϑt , js j. (F.6)

Because ∆
j
ν = 0 indicates that αϑν−1, j and αϑν , j are interchangeable, here we focus

on the case when ∆
j
ν 6= 0. If ∆

j
ν > 0, it follows that the derivative of αϑν , j in φ

j
ν

is higher than that of αϑν−1, j, which is to say, the weight for αϑν , j in terms of the

weighted summation φ
j

ν is higher. Hence, we should let αϑν , j ≤ αϑν−1, j in order to

minimize the objective function RMDS
multicast. On the contrary, if ∆

j
ν < 0, then it holds

true that αϑν , j ≥ αϑν−1, j. Consequently, assuming that ∆
j
ν < 0, we obtain αϑν , j ≥

αϑν−1, j and hence the right side of (F.6) is always non-negative since gν , j ≤ 1 and

gν−1, j ≤ gν , j, which conflicts with the assumption. Hence, it holds true that ∆
j
ν ≥ 0

and αϑν , j ≤ αϑν−1, j and the lemma is then proved.

Based on the definition of β j and the conclusion drawn above, we derive that

β j = [αθ1, j,αθ2, j, . . . ,αθK , j]. As a consequence, the optimal ϕ∗t, j can be written

as ϕ∗t, j =
(
1−βt, j

)
∏

t−1
ν=1 βν , j. The corresponding values of {yt

k, j} can easily be

calculated as given in (6.18).
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Proof of Lemma 6.5

Given some cooperative caching policy ({xt
k, j},{mk, j}), the costs for fetching con-

tent from neighboring cells are the same in the coded and uncoded caching scenar-

ios. Therefore, the difference in the backhaul cost shows up most clearly in the UA

costs. When uncoded fragments are stored, all the fragments except the ones that

are either stored in local cache or fetched from the neighboring cells are needed

from the MBS via backhaul to each cell requesting the particular file. Considering

the possible content overlap amongst those fragments, the number of unique frag-

ments for file j available at cell k ∈Kπ j would always be less than or equal to ∑t xt
k, j

for a certain user request profile π j which leads to a higher backhaul rate than that

in the MDS coded case. If the fragments are assumed to be randomly selected to be

stored in the cells and then sent to the neighboring cells equiprobably, the probabil-

ity of each fragment of file j needing to be sent to cell k via backhaul, i.e., not being

stored locally or sent to the particular cell k from other SBSs, would be given by

ρ̂k, j=
K

∏
t=1

(n j−1
mt, j

)( n j
mt, j

) +( n j−1
mt, j−1

)( n j
mt, j

)
(mt, j−1

xt
k, j

)
(mt, j

xt
k, j

)
=

K

∏
t=1

(
1−

xt
k, j

n j

)
. (G.1)

In this case, the average UA cost can be written as

Cuncoded
coop =

N

∑
j=1

K

∑
k=1

[
ρ̂k, j f M

k +
K

∑
t=1

xt
k, j

n j
f t
k

]
s j(1−αk, j). (G.2)

Compared with the UA cost in (6.27), if we can prove that

K

∏
t=1

(
1−

xt
k, j

n j

)
≥ 1−min

(
1,

K

∑
t=1

xt
k, j

n j

)
,∀k, j, (G.3)
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then it holds true that CMDS
coop ≤Cuncoded

coop . Hence, here we focus on the proof of the

result (G.3). As can be observed, when ∑
K
t=1

xt
k, j
n j
≥ 1, (G.3) is always true. When

∑
K
t=1

xt
k, j
n j

< 1, the right hand side of (G.3) equals to
(

1−∑
K
t=1

xt
k, j
n j

)
. In this case,

we prove (G.3) using mathematical induction.

To be brief, we mathematically reformulate the problem into a general prob-

lem, which reads
K

∏
t=1

(1−χt)≥ 1−
K

∑
t=1

χt , (G.4)

where χt ∈ [0,1]. Obviously, when K = 1 or 2, the statement is always true as

expected. Now assuming that (G.4) holds for K = κ , we hence have

κ

∏
t=1

(1−χt)≥ 1−
κ

∑
t=1

χt . (G.5)

Then it follows that

κ+1

∏
t=1

(1−χt) =
κ

∏
t=1

(1−χt)−
κ

∏
t=1

(1−χt)χκ+1

≥

(
1−

κ

∑
t=1

χt

)
−χκ+1, (G.6)

due to the fact that 0 ≤∏
κ
t=1 (1−χt) ≤ 1 as well as the inequality (G.5). Now we

are able to conclude that the statement is true for all available K via induction. Then

going back to the original problem and letting χt =
xt

k, j
n j

for any given k, we have

proved the statement

K

∏
t=1

(
1−

xt
k, j

n j

)
≥ 1−

K

∑
t=1

xt
k, j

n j
,∀k, j. (G.7)

Based on this analysis, CMDS
coop ≤Cuncoded

coop is then proved.
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Proof of Lemma 6.6

Considering multicast-aware cooperative caching, the UA cost can be written as

CMul
coop =

N

∑
j=1

∑
π j∈Π j

[(
1− min

k∈Kπ j

K

∑
t=1

zt
k, j

)
max

k∈Kπ j

f M
k

+ ∑
k∈Kπ j

K

∑
t=1

zt
k, j f t

k

Pr(π j)s j. (H.1)

As we can see, the first item denotes the backhaul cost while the second item

presents the cost for content sharing among the cooperative SBSs. For each given

user request profile for a particular file π j, the cost for fetching content from the

cooperative SBSs at cell k appears only when file j is requested by the users in cell

k which means that π j(k) = 1 regardless of the individual user request profiles in

other cells. It is easy to prove Pr(π j|π j(k)=1) = 1−αk, j, and so (6.28).



Appendix I

Proof of Lemma 6.7

If ({xt
k, j},{mk, j}) is given, then the costs for fetching content from neighboring

cells will be the same in the coded and uncoded caching scenarios. As a result, the

comparison is focused on the backhaul costs in the two scenarios. When uncoded

fragments are stored, all the fragments except for the ones that can be fetched at

all of the cells requesting the file either from local cache or from the neighboring

cells are needed to be sent from the MBS via multicast transmission. Assuming that

the fragments are randomly selected to be stored in the cells and then sent to the

neighboring cells equiprobably, the probability of each fragment of file j available

at all of the cells requesting the file either from local cache or from the neighboring

cells would be given by

ρ̃π j = ∏
k∈Kπ j

(1− ρ̂k, j), (I.1)

where ρ̂k, j is the probability of each fragment of file j not being stored locally or

sent to the particular cell k from other SBSs given by (G.1) in Appendix A. Similar

to the multicast-aware case, the average UA cost can be written as

Cuncoded
mult,coop =

N

∑
j=1

[
∑

π j∈Π j

(
1− ρ̃π j

)
max

k∈Kπ j

f M
k Pr(π j)+

K

∑
k=1

K

∑
t=1

zt
k, j f t

k(1−αk, j)

]
s j.

(I.2)

According to (G.1) and (G.7), we obtain

ρ̃π j ≤ ∏
k∈Kπ j

(
K

∑
t=1

xt
k, j

n j
). (I.3)
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As 0 ≤ ∑
K
t=1

xt
k, j
n j
≤ 1,∀k ∈Kπ j , it holds true that ρ̃π j ≤ mink∈Kπ j

∑
K
t=1 zt

k, j. Com-

pared with the average UA cost in (6.28), we derive that CMDS
mult,coop ≤Cuncoded

mult,coop.
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Proof of Lemma 6.8

To proceed, we sort λ j = {λk, j,k ∈S u
l } in an ascending order and define the sorted

vector as ψ j with ψk, j = λϑk, j and ψk, j ≤ ψk+1, j,∀k ∈ S u
l \ |S

u
l |. For instance,

if ϑ1 = k, it means that λk, j equals to ψ1, j and is therefore the lowest. On the

contrary, if ϑ|S u
l | = k, it means that λk, j equals to ψ|S u

l |, j and is hence the highest.

Consequently, the objective function in (6.36) can be rewritten as

C̃u
l =

N

∑
j=1

∑
k∈S u

l

[(
1−ψk, j

)
f M
u (1−αϑk, j)

k−1

∏
ν=1

αϑν , j

+ψk, j f u
l (1−αϑk, j)

]
s j. (J.1)

The reformulated problem can then be written as

min
{ψk, j}

C̃u
l (J.2a)

s.t. ψk, j ≤ ψk+1, j,∀k ∈S u
l \ |S

u
l |,∀ j, (J.2b)

0≤ ψk, j ≤ 1, ∀k ∈S u
l ,∀ j, (J.2c)

qu
l, j ≤ ψk, j ≤ |S u

l |q
u
l, j, ∀k ∈S u

l ,∀ j. (J.2d)

Apparently, ψk, j,∀k ∈ S u
l are treated similarly in the constraints (J.2c)-(J.2d) re-

gardless of the values of {ϑk}. Given any {ϑk}, we want to find the actual relation

of the optimal ψk, j,∀k ∈S u
l to minimize the objective function in (J.1). Further-

more, the objective function and constraints are independent towards of different

files in (J.2), and hence the UA cost minimization problem for each cluster can be

further decomposed into N sub-problems each minimizing the associated cost for a
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particular file defined as C̃u
l, j,∀ j. Thus, we consider the derivatives of {ψk, j} in C̃u

l, j

given by

∂C̃u
l, j

∂ψk, j
=

(
Qu

l −
k−1

∏
ν=1

αϑν , j

)
f M
u (1−αϑk, j)s j,∀k ∈S u

l \1, (J.3)

∂C̃u
l, j

∂ψ1, j
= (Qu

l −1) f M
u (1−αϑk, j)s j, (J.4)

where Qu
l = f u

l / f M
u denotes the ratio between the costs of fetching content via back-

haul and from the cluster. Since 0 < Qu
l < 1, it holds true that

∂C̃u
l, j

∂ψ1, j
< 0. For

any ψk, j,∀k ∈S u
l \1 satisfying the constraints, C̃u

l, j reaches its lowest when we let

ψ1, j = ψ2, j since a larger ψ1, j contributes to a lower C̃u
l, j. In the same way, it

can be proved that the relation between ψk, j and ψk+1, j is subject to the value of(
Qu

l −∏
k−1
ν=1αϑν , j

)
. Note that ∏

k−1
ν=1αϑν , j always decreases with the increase of k

which indicates that if ∏
k−1
ν=1 αϑν , j ≤ Qu

l , we always have ∏
t−1
ν=1 αϑν , j < Qu

l ,∀t > k.

Hence, we discuss about the relation among {ψk, j} in two kinds of conditions.

In the first case, we assume that Qu
l ≤ ∏

|S u
l |−1

ν=1 αϑν , j, and it is easy to prove that

ψ1, j = ψ2, j = · · · = ψ|S u
l |, j by iteratively utilizing the similar trick for proving

ψ1, j = ψ2, j. Otherwise, when

Qu
l ≥

k−1

∏
ν=1

αϑν , j =

 < 0, k ∈ [1, . . . , t],

≥ 0, k ∈ [t +1, . . . , |S u
l |],

(J.5)

it is still possible to prove that ψ1, j = ψ2, j = · · ·= ψt+1, j by fixing ψt+1, j. While for

k ∈ [t + 1, . . . , |S u
l |] when C̃u

l, j decreases with the decline of ψk, j, we let ψt+1, j =

ψt+2, j = · · · = ψ|S u
l |, j to get the lowest cost C̃u

l, j for any given ψt+1, j using (J.2b).

It is then proved that ψ1, j = ψ2, j = · · ·= ψ|S u
l |, j. As a result, we derive that λk, j =

λt, j,∀k, t ∈S u
l .
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