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If a body is at rest on horizontal ground and a sudden
horizontal flow of fluid is applied, the body either
remains on the ground (rocking, rolling, sliding or
spinning) or is lifted off impulsively. This lift-off is
followed by a return to the ground or by a fly-
away in the sense of continued departure from the
ground. Related phenomena arise in the lift-off of
an air vehicle from, effectively, moving ground. The
present investigation seeks fairly precise mechanistic
conditions under which lift-off and subsequent return
or fly-away occur for a thin body or more generally
for any thin gap of fluid between a body and the
ground. Nonlinear fluid–solid interaction takes place
in which the motion of the body and the surrounding
fluid affect each other. Small-time analysis on lift-off
and a numerical study are presented, followed by
large-time analysis showing a critical flow speed for
fly-away for any shape of the body. The changes in
ground effect, from being dominant during lift-off to
diminishing in fly-away, are explored together with
relevant applications.

1. Introduction
The interest here is in an impulsive fluid flow removing
a body originally stationary on a fixed solid surface. The
body is supposed to be much denser than the fluid, such
that gravity can affect the body movement appreciably
whereas the fluid flow feels almost no gravity effect
over the current time frame. The mechanisms for a
single body in two-dimensional flow are studied by
modelling, analysis and related computation, with a
view to understanding lift-off followed by either a
return to the surface (ground) or complete fly-away
of the body. Experimental results including saltation,
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Figure 1. (a) A sketch of the thin body at its initial position, the fixed centre of mass (CoM), the contact point x = σ at time
t = 0 and the oncoming stream of fluid. (b) The body position at some time t > 0.

take-off, entrainment are quite plentiful as in [1–6] and further pioneering experiments and
related work are in [7–9]. Of special interest are the studies of body shape effects experimentally
and numerically in [7], of turbulent-flow effects on the threshold of motion in [8] and of sheared-
flow effects for spherical particles in [9]. This last interesting recent paper (also see [10,11])
on experiments and related modelling pointed out that, in quantitative terms, the conditions
required for fluid-driven removal of a particle from a solid surface were not well established and
that there existed then no analytical results for configurations where fluid inertia is important (as
is the case here).

The approach taken in the present paper is an alternative approach which is based on
describing quantitatively the physical response of the thin layer of fluid supporting a body
as lift-off occurs, our description being by means of model analysis supported by reduced
computations and certain experimental links. This follows the fascinating results and motivation
above and is intended to be complementary to the previous studies. A significant aspect of the
present investigation is the ground effect coupled with the sudden horizontal flow. The present
contribution is also associated with the model in [12], a paper which mentions many other
applications including the relevance to the movement of dust on the planet Mars. The work in
[12] is for unsteady interactions prior to lift-off: however, after lift-off, the fluid gap opens up and
so there is no contact point in the present setting.

This paper considers phenomena that are dominated by unsteady, momentum and pressure
forces. Applications arise in the removal of debris, grain segregation, dust blowing, leaf-blowers,
sand movement, ski jumping or aircraft take-off. See for example [13–15].

The fluid is taken to be incompressible and Newtonian with uniform density (area density)
ρ∗, where the asterisk (∗) refers to a dimensional quantity. The motion of the fluid and the
immersed thin body (see figure 1) is expressed in terms of non-dimensional flow velocities (u, v),
corresponding Cartesian coordinates (horizontal x, vertical y), time t and pressure p, such that the
dimensional versions are u∗(u, v), l∗(x, y), l∗t/u∗ and ρ∗u∗2p, respectively. Here u∗ is the free-
stream fluid velocity, while l∗ is the length of the body and the temporal factor l∗/u∗ is the
typical transport time. In particular (u, v) is given by (1, 0) in the far field and the leading edge
of the solid object can be taken as the origin. The Reynolds number Re = u∗l∗/ν∗, where ν∗ is
the kinematic viscosity of the fluid, is assumed large, in line with experiments. As a first model
or approximation, an inviscid separation-free theory is applied, given that in many situations of
real concern wall layers are turbulent and less prone to separate [16–18] than are laminar layers.
A subsequent model for the laminar regime using ideas similar to those employed here would
be called upon to cope with local flow separation perhaps by means of free-streamline theory.

Our interactions are governed by a nonlinear evolutionary system for the unknown scaled
functions h, θ , u, p. Here h(t) is the vertical y-location of the centre of mass of the body, while
θ (t) is the small angle the body chord makes with the horizontal. Also, x = σ is the prescribed
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x-location of the centre of mass and the initial contact point with the ground. Similar interactions
arise in [19–21] in various different contexts of fluid–solid interplay.

Section 2 presents the model in detail including the description of the fluid–body interaction.
The reasoning here is mostly expressed in terms of a thin body nearly aligned with the uniform
incoming fluid flow but similar considerations apply for a thicker body provided that the gap
between the under surface of the body and the ground is relatively small. This is followed by §3
which studies the behaviour for small times. Section 4 examines the lift-off criterion for different
body shapes by means of the general formula derived which is then applied to specific examples.
If the body does lift off, it returns to the ground within a finite time or flies away at large time
(§§5 and 6). We focus on the latter, finding a criterion for fly-away. The final §7 provides the
conclusions including discussion of flow separation and other features concerning the physical
validity of the lift-off and fly-away criteria.

2. The fluid–body interaction
The body is assumed to have a smooth shape with a non-dimensional horizontal length of unity
and is thin, of vertical scale O(δ) for δ � 1. The incoming flow moving from left to right is the
uniform stream with (u, v) = (1, 0). Thus, the incoming vorticity of the flow is predominantly zero,
with the majority of the thin body being assumed to be located in a region outside any oncoming
turbulent or laminar boundary layer beneath the oncoming free stream, or possibly inside the
outer portion of a turbulent boundary layer where the velocity deficit from the free-stream value is
small. The present setting contrasts with that in the recent work [22,23] where non-zero incoming
vorticity due to a boundary layer or channel flow is included. In the present setting, the body is
initially in contact with the fixed horizontal surface y = 0 at its centre of mass whose x-location is
x = σ as shown in figure 1.

Concerning figure 1, the scaled body mass is represented as M̂ and moment of inertia as Î (see
details below) while ĝ denotes the scaled acceleration due to gravity. We should remark that in
effect the mass and other quantities involved are non-dimensionalized first and then if necessary
(to take account of any small or large parameters present) are scaled in order to be nominally
of order unity. Thus, here M̂ĝ is the scaled weight Ŵ of the body. It is assumed that the typical
y scale in the gap underneath the body is also of order δ, small compared with the O(1) length
scale of x, but still large compared with the representative viscous thickness at large Reynolds
numbers Re (that thickness being typically of order Re−1/2 in the laminar regime). In consequence,
the flow itself is described formally by the classical boundary layer equations without a viscous
contribution, yielding the so-called thin layer or, in another context, the shallow-water system for
an effectively inviscid fluid. It is assumed in addition that the body, moving in response to the
forces from the fluid motion, does so over time scales that are comparable with the time scales of
the fluid motion and thereby has an appreciable effect on the fluid flow. The present assumptions
imply that the flow over the horizontal length scale of order unity remains irrotational to leading
order almost everywhere (since vorticity is conserved along particle paths) and so the scaled
vorticity is zero. Thin-layer dynamics in which the vorticity is dominated by its ∂u/∂y component
therefore require that u = u(x, t) does not depend on y, which forces v through continuity to change
in y from zero at zero y to a value consistent with the kinematic condition at the unknown position
of the moving lower surface of the thin body. Thus, the governing equations are

∂H
∂t

+ ∂

∂x
(uH) = 0, (2.1a)

∂u
∂t

+ u
∂u
∂x

= −∂p
∂x

, (2.1b)

where H(x, t) = −fu(x) + h(t) + (x − σ ) θ (t). (2.1c)

Here H(x, t) denotes the unknown scaled thickness of the thin gap depending on the lower surface
shape of the body and its orientation defined in (2.1c) above; fu(x) is the prescribed shape of
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the underbody. The contributions h(t) and θ (t) are owing to changes in the lateral location and
orientation of the body, respectively, and are prescribed at the beginning in (2.1d). We remark
that the real orientation angle is small, being θδ where θ can take any finite value in principle.
Considering (2.1a–c) further, the kinematic condition yields (2.1a) while (2.1b) is the dominant
streamwise momentum balance, with p being dependent only on x, t by virtue of the normal
momentum balance, as in boundary layer theory.

Concerning initial and boundary conditions, at the initial contact point x = σ the constraints
(2.1d) below come from the requirement of zero minimum gap width for the smooth shapes
considered herein. Also, the condition (2.1e) below allows for a jump across the leading-edge Euler
zone at x = 0+. Since there is a quasi-steady local Euler flow around the leading edge [12,24], the
quasi-steady Bernoulli condition (2.1e) is valid in the present unsteady flow scenario. The reason
for the (Kutta) requirement (2.1f) below at the trailing edge of the body is that on top of the
body the pressure varies typically by only a small amount of order δ throughout the external flow
compared with its characteristic O(1) variation within the gap. Physically, the leading-edge jumps
are induced by the necessity of the equi-pressure condition at the trailing edge (see [12,24]). The
flow behind the body has no effect here to leading order. In consequence, we have the conditions

h(0) = fu(σ ); θ (0) = f ′
u(σ ); (2.1d)

p + 1
2 u2 = 1

2 at x = 0+, (2.1e)

and p = 0 at x = 1. (2.1f )

These conditions are coupled with the body-motion equations in (2.1g,h). The unknowns
CL(t), CM(t) are, respectively, the scaled evolving lift and moment coefficients. The dimensional
mass is ρ∗l∗2M̂/δ, while the dimensional moment of inertia is ρ∗l∗4 Î/δ. Also the acceleration due
to gravity is δu∗2ĝ/l∗ in dimensional terms. The Froude number is (δĝ)−1, whereas the Richardson
number is δĝ. Here Î < M̂/4 from its definition. Thus, the equations for the body motion are

M̂
d2h
dt2 = CL, with CL =

∫ 1

0
p(x, t) dx − Ŵ; (2.1g)

and

Î
d2θ

dt2 = CM, with CM =
∫ 1

0
(x − σ )p(x, t) dx. (2.1h)

The task in general is to solve the nonlinear system (2.1a)–(2.1h) for h, θ , u, p and this is addressed
successively for early times t, O(1) times and late times in the following sections.

3. Early behaviour
An investigation of the behaviour of the system at small times t proves to provide insight. This
not only leads on to a comparison with direct numerical work (in figure 2 and in appendix A) but
also yields a lift-off criterion.

The body is assumed to be initially at rest on the surface when the fluid flow is begun
impulsively at time t = 0. Two flow regions are present at small positive t: one is affected by
the complete underbody shape for x of order unity, specifically for 0 < x < σ , σ < x < 1, and the
other closely surrounds the original contact point where the local body shape, being smooth,
is O((x − σ )2) and is comparable with the initially small gap width which is O(t2) because
the initial body acceleration is expected to be uniform. The reason for the uniformity rests
in an argument based on orders of magnitude. In the two spatial dimensions present here,
the boundary conditions in (2.1e,f ) suggest that generally the pressure p should be of order
unity at most and that implies pressure force contributions of order unity on the right-hand
sides of the body movement balances in (2.1g,h). The left-hand sides then indicate that body-
acceleration responses (d2h/dt2, d2θ/dt2) of order unity are likewise to be expected in general.
Detailed working subsequently shows that u is of order t in the current setting in order to balance
the pressure gradient in (2.1b) against the acceleration term ∂u/∂t and this confirms the O(1)
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Figure 2. Comparison between small-time analytical solutions and numerical solutions for M̂= 0.5, ĝ= 0.24 at early times
(a) pressure at time t = 0+, (b) h and θ against t, (c) ḣ and θ̇ against t.

pressure estimate above. We now investigate the fluid–body interaction as the lifting starts and
in particular clarify the contributions from the inner and outer regions, which in one respect turn
out to have similar degrees of importance. The main details are described in sections (a)–(c). In
physical terms, the outer region in (a) suffers only small perturbations in height and inclination
of the body compared with the initial state but these turn out to be sufficient to cause significant
pressure forces to act over the majority of the underbody. The small inner region in (b) by contrast
has height and inclination effects of order unity relative to the initial state as anticipated earlier in
this paragraph and the pressure response is found to be logarithmically large but it acts only
over the small length scale where x − σ is of order t in region (b) and so contributes only a
comparatively minor influence on the lift and moment exerted on the body early on. The matching
between the two regions is presented in (c) together with the resulting predictions for the changes
in height and inclination of the body at small times.

(a) Outer region
In view of the initial state and the uniform body accelerations d2h/dt2, d2θ/dt2 anticipated in the
previous paragraph, we should expect the small-time expansions of the height h and inclination θ

to contain contributions of order unity (from the initial fluid-filled gap) and t2 (from acceleration).
For most x of O(1), the gap width, velocity and pressure thus develop at small times according to

(H, u, p) = (H0(x), 0, p0(x)) + (t2H1(x), tu1(x), tp1(x)) + · · · , (3.1)

with the dominant term of the gap width being defined by

H0(x) = −fu(x) + h0 + (x − σ )θ0, (3.2)
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where the constants are h0 = h(0), θ0 = θ (0) in (2.1d). The pressure variation is O(1) because of the
end constraints (2.1e,f ) as mentioned before, so the body-motion balances (2.1g,h) are in agreement
with h, θ variations of O(t2) such that

h = h0 + h2t2 + · · · , θ = θ0 + θ2t2 + · · · ,

while the tu1 term is inferred from the balance in (2.1a). Here the unknown constants h2, θ2 are
proportional to the body acceleration coefficients. Substituting (3.1) into (2.1a) and integrating in
x leads to the velocity in the outer region, of the form

u1(x) = 1
H0(x)

{−2h2(x − σ ) − θ2(x − σ )2 + c1}, (3.3)

where c1 is the integration constant. Next, integrating the momentum equation (2.1b) with respect
to x at leading order and considering (2.1e,f ) yields the leading term of the pressure as

p0(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
∫ x

0
u1(x̂) dx̂ + 1

2
, x ∈ [0, σ ),

−
∫ x

1
u1(x̂) dx̂, x ∈ (σ , 1].

(3.4)

Matching below implies that c1 is zero, leaving negligible inertial effects here. Also we observe
the singular behaviour

p0 ∼ 2h2

B ln |x − σ | + π± as x → σ±, where π+ = −
∫ σ

1
u1 dx, π− = 1

2
−

∫ σ

0
u1 dx, (3.5)

and the known constant B = f ′′
u /2 from the expression for the gap width near the original contact

point. Next, the inner region near the initial contact x = σ needs to be studied.

(b) Inner region
In the inner region a nonlinear effect asserts itself in terms of the gap width, with the solution
taking the form

(H, u, p) = (t2H∗
2(ξ ), u∗

0(ξ ),
2h2

B ln(t) + p∗
0(ξ )) + · · ·, (3.6)

for x near the lift-off point: x = σ + tξ with ξ ∼ O(1). The scalings stem directly from those in the
outer region. From substitution into (2.1a–d) and matching, the leading contributions satisfy

2H∗
2 − ξH∗′

2 + (u∗
0H∗

2)′ = 0, (3.7a)

− ξu∗′
0 + u∗

0u∗′
0 = −p∗′

0 , (3.7b)

where H∗
2(ξ ) = Bξ2 + h2, (3.7c)

and {u∗
0, p∗

0} ∼ {αξ−1, −α ln(ξ ) + O(1)} as ξ → ±∞. (3.7d)

The prime (′) denotes an ordinary derivative with respect to ξ . Here the constant α = −2h2/B in
(3.7d) for matching. The leading order terms in the local velocity and pressure expansion from
(3.7a–c) are therefore as follows,

u∗
0(ξ ) = −2ξh2 − c∗

0
Bξ2 + h2

, (3.8)

and

p∗
0(ξ ) = p∗

0(0) + ξu∗
0(ξ ) −

∫ ξ

0
u∗

0 dξ − 1
2

u∗
0(ξ )2 + 1

2
u∗

0
2(0), (3.9)

where c∗
0, p∗

0(0) are integration constants to be determined.
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(c) Matching, and body motion
Matching the velocities and pressures in the inner and outer regions yields c1 = 0 in (3.3) and the
constant c∗

0 is determined by

c∗
0π

(h2B)1/2 = −
∫ σ

1
u1 dx − 1

2
+

∫ σ

0
u1 dx. (3.10)

Similarly, p∗
0(0) can be found, and this completes the u, p solutions. Only the outer region

controls the main body motion at leading order but, to clarify, the inner region completes the
starting condition for numerical work as well as ensuring complete physical sense. Here the
body movement relations (2.1g,h) yield the leading order contributions in the scaled height and
inclination of the body at small times in the form

2M̂h2 =
∫ σ

0
p0(x, t) dx +

∫ 1

σ

p0(x, t) dx − Ŵ, (3.11a)

and

2Îθ2 =
∫ σ

0
(x − σ )p0(x, t)dx +

∫ 1

σ

(x − σ )p0(x, t)dx. (3.11b)

We need the right-hand side of (3.11a) to be positive in order that the body can lift off from the
surface. Substitution of p0(x) from (3.4) into the system (3.11a,b) then leads to two linear equations

2M̂h2 = σ

2
+ h2I1 + θ2I2 − Ŵ, (3.12a)

2Îθ2 = −σ 2

4
+ h2I2 + θ2I3, (3.12b)

with constants

I1 = −2
∫ 1

0

(x − σ )2

H0(x)
dx, I2 = −

∫ 1

0

(x − σ )3

H0(x)
dx, I3 = −1

2

∫ 1

0

(x − σ )4

H0(x)
dx, (3.12c)

for the two unknowns h2, θ2. If the body is symmetric with σ = 1/2, then I2 is identically zero.
Comparisons between the early-time predictions and the results of numerical simulations are

presented in figure 2 for the particular case of scaled mass M̂ equal to 0.5 and scaled gravity ĝ
equal to 0.24, with the scaled moment of inertia kept as 1/5 of the scaled mass. Further results
and comparisons are shown in appendix A, where the numerical procedure is also described.
The comparisons show quite close agreement at small times and tend to support both the direct
numerical work and the asymptotic analysis.

In summary, the investigation of the early behaviour has shown a multi-structure occurring,
with relatively large pressures and substantial flow velocities being induced very close to the
original contact point with the ground. Elsewhere between the body and the ground substantial
pressure variations are also provoked but with relatively minor flow velocities. The latter
pressures act to drive the early movement of the body at the leading order. The next issue
concerns, quantitatively, the question of whether lift-off actually occurs or not.

4. Lift-off criterion
The lift-off requirement is simply that h2 needs to be positive because of the nature of the gap
width near its minimum value as displayed in (3.7c). If we consider a body having a general
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shape, using the relationship θ2 = (h2I2 − σ 2/4)/β in (3.12b) where β = (2Î − I3), (3.12a) becomes

γ h2 = σ

2
− Ŵ − I2

β

σ 2

4
, with γ =

(
α − I2

2
β

)
, α = (2M̂ − I1). (4.1)

We note that I1 < 0, I3 < 0, α > 0, β > 0, while I2 can either be negative or positive. If the scaled
mass M̂ and moment of inertia Î are sufficiently large that γ > 0, then from (4.1) lift-off requires
M̂ĝ < σ/2 − σ 2/4βI2 by virtue of h2 > 0.

As a main example, for a parabolic-shaped body fu(x) = κx(1 − x) with curvature 2κ constant,
for any σ , the criterion in (4.1) becomes

M̂ĝ <
σ

2
+ σ 2

8
(1 − 2σ )(2Îκ + 1

6
(1 − σ )3 + σ 3)−1. (4.2)

Figure 3 shows the right-hand side of (4.2) versus σ for a range of Îκ . At small σ values M̂ĝ has
to be small for lift-off, whereas σ near unity allows lift-off for larger M̂ĝ. In between there is a
significant range of σ for which lift-off does not occur. Further, at σ = 1/2, the lift-off requirement
is M̂ĝ < 1/4 in scaled terms, in keeping with (3.12a), i.e. the dimensional incident flow speed must
exceed a critical value.(Other shapes lead to a more complex response.)

Figures 4 and 5 show numerical evolutions of the system (2.1a–h). These numerical solutions
were obtained by use of a finite-difference scheme similar to that in [24]. Appendix A describes
the scheme used. The results in figure 4 are for cases where the body, having a sinusoidal shape,
lifts off but, depending on the conditions, either returns to the ground after a finite time or flies
away as time increases. This tends to confirm that different outcomes can occur for an underbody
shape which is less simple than the parabolic shape. In the examples shown in figure 4c,d, each
gradual dip of the minimum gap width with time indicates that a return to the ground almost
occurs at some finite time, after which the trend towards a fly-away event takes control. Figure 5
is for the parabolic underbody shape where the given constant curvature allows comparison with
the prediction (4.2) at early times, and similarly with the prediction (4.1) for any other shapes.
In the former case, if the prediction (4.2) is not satisfied then the body cannot lift off. For the
configurations in figure 5, however, the prediction is satisfied, the body lifts off and indeed the
departure from the ground continues to large times and, similarly to the behaviour found in
figure 4c,d, produces a fly-away phenomenon with h, θ becoming large then. To emphasize, θ
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Figure 5. (a) Comparison between numerical and long-time analytical solutions for (a) scaled height h, (b) scaled angle θ for
a fly-away case. Body has symmetric parabolic shape fu = x(1 − x),σ = 0.5, scaled mass M̂= 1, moment of inertia Î = 0.2,
and ĝ= 0.1.

here can take any positive, zero or negative value as it is a scaled angle of inclination, with the
true angle being θδ in radians and δ being small. In some cases θ can keep increasing in value and
h does not increase fast enough to prevent an impact of the body with the ground, producing a
return to the surface as in the examples of figure 4a,b, whereas in the cases of figure 5 the scaled
height h rises sufficiently rapidly that such impact is avoided. A comparison is also shown in
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figure 5 with large-time analysis which is brought forward from §6 to highlight the long-term
trend here.

5. For large mass and moment of inertia
For large values of the scaled mass and moment of inertia M̂, Î, we expect the time scales of
the body movement (2.1g,h) to dominate over those associated with the fluid motion in (2.1a,b).
Hence, since the typical h, p, θ remain of O(1), t = M̂1/2T with T being of order unity. Also
ĝ ∼ O(M̂−1), keeping weight Ŵ of order unity, and we take Î = M̂Γ with the constant Γ being
O(1). The flow time derivatives in (2.1a,b) become negligible which gives us simple velocity and
pressure solutions, leading on substitution into (2.1g,h) to

ḧ = 1
2

∫ 1

0
(1 − (h(T) + (1 − σ )θ (T))2H(x, T)−2) dx − Ŵ, (5.1a)

and

Γ θ̈ = 1
2

∫ 1

0
(x − σ )(1 − (h(T) + (1 − σ )θ (T))2H(x, T)−2) dx. (5.1b)

This yields two coupled ordinary differential equations [24] for h, θ in the case of the parabolic
underbody shape. More significantly, however, even in the case of an arbitrary shape (5.1a,b)
themselves suggest a large-t response in which

h, θ grow like t2 at large times. (5.2)

This produces integrands of order unity in (5.1a,b) and also gives independence from the shape
fu(x) since, from (2.1c), H is dominated by the contributions h + (x − σ )θ of order t2 for almost all
x values. We pursue this below in the general case.

6. Large-time behaviour
This analysis applies for t 	 1 and general values of the parameters M̂, Î, ĝ. Guided by the idea in
the previous section, we see that the response at large times is that h, θ are of O(t2) as p typically
must be O(1) by virtue of (2.1e). The resulting asymptotic description takes the form

(H, h, θ , u, p) = (t2H2(x), t2h2, t2θ2, u0(x), p0(x)) + · · · . (6.1)

Hence in (2.1a,b), the time derivatives Ht, ut are negligible and simple quasi-steady relations hold
again. The body shape contribution fu(x) likewise becomes negligible compared with the h, θ
contributions. Also the Kutta condition (2.1f) leads to u0(1) = 1. The leading-order velocity u0
is therefore

u0(x) = (h2 + (1 − σ )θ2)(h2 + (x − σ )θ2)−1. (6.2)

Substituting (6.2) into (2.1e) then gives the pressure

p0(x) = 1
2 (1 − (h2 + (1 − σ )θ2)2(h2 + (x − σ )θ2)−2). (6.3)

Hence the body-balance equations in (2.1g,h) yield

2M̂h2 = − θ2

2
(h2 − σθ2)−1 − Ŵ, (6.4a)

and

4Γ M̂θ2 =
(

1
2

− σ

)
+ h2

θ2

(
h2 + (1 − σ )θ2

h2 − σθ2

)
− 1

θ2
2

(h2 + (1 − σ )θ2)2 ln

∣∣∣∣∣ h2 + (1 − σ )θ2

h2 − σθ2

∣∣∣∣ . (6.4b)

With the solutions h2, θ2 thus determined, the leading-order terms in gap width, velocity and
pressure solutions can now be determined.

Figure 5 shows a sample comparison between the numerical and the analytical solutions for
the height h and angle θ . The analytical ones use the large-time asymptotic expansions in (6.4a,b).
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Figure 6. The coefficients h2, θ2 from (6.4a,b) in the large-time response versus scaled weight: 0< M̂ĝ< 0.5 for σ =
0.5, M̂= 1. This indicates the range for lift-off and fly-away for any body shape: see text. For scaled weights over the value
0.5 fly-away cannot occur.

A close match is seen for both h, θ , with the near-constant differences between the numerical and
the large-time asymptotic results being attributable to effects of higher order in the latter approach
including an arbitrary constant shift in the origin of time. In this example, and others not shown
here, the body lifts off and rotates but does not impact on the ground, instead continuing to depart
from the ground.

Concerning the fly-away criterion, figure 6 plots the coefficients h2, θ2 versus scaled weight.
A critical value Ŵ = Ŵc(= 1

2 ) emerges. We put

M̂ĝ = 1
2 − ε with ε small and positive, (6.5)

and then expand h2, θ2 in powers of ε such that (h2, θ2) = ε(ĥ2, θ̂2) + · · · . It is found with M̂ = 1, for
example, that

(h2, θ2) =
( ε

2
, −ε

)
+ · · · . (6.6)

The critical value 1/2 applies for any shape of the body.
In the critical case, the main balance of forces is between weight and the pressure force

driven by the Bernoulli pressure head since h2, θ2 are small. The asymptotic predictions agree
well with those in figure 6 as t increases. For a symmetric body for example, the (h2 + (1 − σ )θ2)
contribution in (6.4b) implies that the trailing edge stops rising, whereas the leading edge height
is still increasing.

7. Summary
The lift-off of a single solid body from a flat surface has been modelled, analysed and calculated
and this leads to certain experimental links as discussed below. The critical value of scaled weight
is found to be 1/4 for any symmetric body in order that the body can initially lift off from the
surface. A lift-off criterion is also found for non-symmetric body shapes although the criterion in
this case is more complex as it is very shape-dependent. The body can subsequently return to the
surface for a range of scaled mass, moment of inertia, gravity and body shapes, but alternatively
fly-away occurs. This depends to a large extent on a competition between the vertical force and
the rotating force on the body at earlier times. The critical value of the scaled weight such that
the body can fly away is found: the critical value 1/2 applies irrespective of the shape of body,
which potentially may seem a powerful result although it is subject of course to the assumptions
involved, including the thinness of the body and the lack of separation. Non-dimensionally the
1/4 factor at early times is due to Bernoulli pressure acting only on the front half of the underbody
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in contrast with the complete underbody at late times due to the body being far from the wall
which yields the 1/2 factor.

If the leading edge of the body goes up that generally implies an increased lift whereas a
descending leading edge is associated with downforce. Likewise, the body rotation produced
can lead to an impact on the ground or continued departure from the ground. Here the ground
effect reduces the possibility of lift-off by reducing the lift-off force due to a given fluid flow in
comparison with the fly-away case. In dimensional terms for a body mass represented as ρ∗

Bh∗
Bl∗

where ρ∗
B is the body density and h∗

B is the mean body thickness the lift-off and fly-away criteria
on the incident velocity can be written, respectively,

u∗2

(h∗
Bg∗)

> 4
(

ρ∗
B

ρ∗

)
,

u∗2

(h∗
Bg∗)

> 2
(

ρ∗
B

ρ∗

)
, (7.1a,b)

(for a symmetric body in the case of (7.1a) with g∗ denoting gravity). We remark again that the
overall results derived here are mostly illustrated by specific examples and that the parameter
space is large. Nevertheless, (7.1a,b) appear to represent quite general criteria. Beyond a few
significant experiments and observations (see in next paragraph), there tend to be limited
comparisons possible with experiments and direct simulations owing to the different parameter
ranges involved as well as the model assumptions.

Two particular points stand out in regard to experimental links and observations. The first is
that the criteria above are on effective Froude numbers and are akin to Shield’s condition [25–27]
in sediment processes but without shear stresses, given the present model has negligible viscous
effects and corresponding friction forces are small compared with the form forces due to pressure.
Our study incorporating ground effect shows an evolution towards or away from fly-away and
determines a precise coefficient (4 or 2) rather than the order of magnitude estimate of Shield,
although this is for thin bodies. The second particular point is that, in a quite different setting, the
comparison and broad agreement concerning the scalings associated with dust movement on the
planet Mars still hold for the present work as in [12] since the present post-lift-off result agrees
exactly in terms of its orders of magnitude with that in the previous pre-lift-off work based on
normal force.

A basic explanation of fly-away is also provided by the present study via the original
governing equations (2.1a,b) where the Ht, ut contributions diminish when t 	 1. Hence the quasi-
steady Bernoulli relation holds for p. So then the body-motion balance involving M̂ḧ leads to the
requirement M̂ĝ < 1/2 in scaled terms, which simply balances weight against lift. In addition the
lift-off condition is different from the fly-away condition because of the ground effect, implying
that symmetric bodies for instance which are subject to flow velocities between the two values in
(7.1) satisfy the fly-away condition but are unable to lift off, while a body that lifts off can either
fly away or return to the ground.

Among the various major assumptions are the body thinness (or the gap thinness in the case
of a thicker body), the given quasi-inviscid fluid and the flow irrotationality over the scales
present. The assumptions are made in a first-go broad approximation for the nonlinear fluid–
body interaction arising in lift-off, return or fly-away. These seem to yield results relevant to some
applications in addition to further understanding, subject to the comments and caution above.

Other interesting matters have still to be addressed. The effect of incident shear in the
oncoming flow has not been considered yet in the present context and neither have three-
dimensionality or viscous effects: see the latter in the recent analyses of [22,23] and shear effects
in the recent experiments of [9]. We have supposed thin turbulent wall layers but we can
certainly expect separation to take place in the laminar regime. The assumption of separation-
free flow in the context of any laminar wall sublayers is certainly open to question on physical
grounds if a more detailed model is to be developed and explored, given that sublayer separation
may influence substantially the flow dynamics over a wide range of parameters and alter the
conditions for lift-off of the body and return to the ground, if not the conditions for fly-away
where the ground effect is reduced. The influence is dependent, however, on the body surface and
ground conditions in detail, for example, whether the body is moving horizontally relative to the
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ground and whether the solid surfaces involved are rough or smooth. On a larger time scale, the
normal pressure gradient within the fluid flow comes into play significantly as the ground effect
diminishes. The incorporation of non-symmetric bodies as mentioned previously and likewise
more complex bodies such as those with concavities offer interesting challenges for the future.
Other possible extensions might be to reptation, clashes, body flexibility, and investigating the
effects of the surface shape on which the body lies initially. The extension to several bodies is of
further concern.
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Appendix A. Numerical study of the complete interaction
The numerical treatment uses finite differencing. A brief overview of the algorithm is as follows.
First, we specify the initial conditions on body position and fluid flow velocity. Then the scheme

numerical p

numerical h

0.50

0.10

0

0.05

0.45

0.15

0.40

0.20

0.35

p 0.25

0.30

analytical p

analytical h
numerical q
analytical q

h,
 q

h,
 q

·
·

(b)

(a)

(c)

numerical h
analytical h
numerical q
analytical q

·
·
·
·

0
–0.030

–0.025

–0.020

–0.015

–0.010

–0.005

0.005

0

0.30

0.25

0.20

0.15

0.10

–0.05

0.05

0

0.01 0.02 0.03 0.04 0.05
t

0.06 0.07 0.08 0.09 0.100 0.01 0.02 0.03 0.04 0.05
t

0.06 0.07 0.08 0.09 0.10

1.00.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x

Figure 7. Comparison between small-time analytical solutions and numerical solutions for M̂= 1, ĝ= 0.24 at early times (a)
pressure at time t = 0+, (b) h and θ against t, (c) ḣ and θ̇ against t.
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advances the body to its new position based on (2.1g,h) and finds the velocity and pressure of the
fluid using (2.1a–f ). The scheme checks for the body returning to the surface and then either finds
the body’s new position, fluid velocity and pressure as above or stops when the body returns to
the surface.

We expand on this description in a little more detail as follows. Initially, the body is placed
horizontally on the surface. To proceed by a specified small time step δt (typically 5 × 10−5) to the
next time step, the scaled trailing-edge pressure is forced to zero in the following manner. Having
performed an integration in (2.1a), discretization yields

ui[−fu(x) + h + (x − σ )θ ] = [c − ḣ(x − σ ) − 1
2 (x − σ )2θ̇ ] (A 1)

which is solved for u = ui values at the next time step from x = 0 to x = 1 (i = 1 to i = N) as we are
only interested in this region where the body is located. The constant c is to be found. The spatial
steps δx are taken typically as 0.01 (N = 101 steps) or smaller. The c value is found directly using
the trailing-edge pressure condition. Next, (2.1b) is discretized using:

pj
i = 1

2
(1 − (uj

i)
2) − δx

δt

i∑
k=1

(uj
i − uj−1

i ) for i = 2, . . . , N, and j = 1, . . . , K. (A 2)

Here the subscript and superscript denote a variable’s spatial and time indexing, respectively,
while K is the total number of time steps. The pressure values pi are therefore determined via
(A 2). The trailing-edge pressure constraint is then addressed using a secant method. Next, the
starting value u1 is updated by carrying out iterations and continuing these until the difference
between the required value of the trailing-edge pressure and pN is sufficiently small. Here all the
terms dh/dt, h, dθ/dt, θ are renewed by integrating (2.1g,h) with an implicit Euler method and
using the trailing-edge pressure constraint pN = 0. To advance to the next time step, the same
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procedure is performed with the hj−1 being updated to hj, θ j−1 to θ j, pj−1
i to pj

i, uj−1
i to uj

i and so
on. The procedure is performed until the body either returns to the surface or in effect flies away.
A range of scaled mass and moment of inertia values (M̂, Î) are accommodated in the treatment
as well as the effect of the scaled acceleration due to gravity ĝ.

Checks on the influences of the spatial and temporal step sizes are presented in detail in [24].
The sets of finite-difference solutions there are found to be robust as the step sizes are refined
gradually.

Results and comparisons between the finite-difference solutions and the small-time analysis
are shown in figures 7 and 8 (in addition to the solutions given in figures 2–6). The results
in figures 7 and 8 enlarge the parameter range presented here, and again, as in figure 2, the
agreement between the numerical and analytical findings seems encouragingly close.
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