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Abstract: In machine learning, regression analysis is a tool for predicting the output variables
from a set of known independent variables. Through regression analysis, a function that captures
the relationship between the variables is fitted to the data. Many methods from literature tackle
this problem with various degrees of difficulty. Some simple methods include linear regression
and least squares, while some are more complicated such as support vector regression. Piecewise
or segmented regression is a method of analysis that partitions the independent variables into
intervals and a function is fitted to each interval. In this work, the Optimal Piecewise Linear
Regression Analysis (OPLRA) model is used from literature to tackle the problem of segmented
analysis. This model is a mathematical programming approach that is formulated as a mixed
integer linear programming problem that optimally partitions the data into multiple regions
and calculates the regression coefficients, while minimising the Mean Absolute Error of the
fitting. However, the number of regions is a known priori. For this work, an extension of the
model is proposed that can optimally decide on the number of regions using information criteria.
Specifically, the Akaike Information Criterion is used and the objective is to minimise its value.
By using the criterion, the model no longer needs a heuristic approach to decide on the number

of regions and it also deals with the problem of overfitting and model complexity.
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1. INTRODUCTION

In statistics, regression analysis is a process for estimating
the relationship between variables. Specifically, given a
dataset with dependent and independent variables, regres-
sion aims to understand how the value of the dependent
variable changes when the independent variables vary. The
goal of the analysis is to retrieve a mathematical function
that correlates the predictors (i.e. independent variables)
with the response (i.e. dependent variables)

There are many examples in the literature for regres-
sion analysis such as linear and least squares regression,
Support Vector Regression (SVR) (Smola and Scholkopf,
2004), K-nearest neighbour (Korhonen and Kangas, 1997),
Multivariate Adaptive Regression Splines (MARS) (Fried-
man, 1991) and Random Forest (Breiman, 2001). More
recent work includes the automated learning of algebraic
models for optimisation (ALAMO) (Cozad et al., 2014)
and an optimization based regression approach called
Optimal Piecewise Linear Regression Analysis (OPLRA)
(Yang et al., 2016).

* This work was supported by The Leverhulme Trust under Grant
number RPG-2015-240

1.1 Ower-fitting and Information Criteria

One of the challenges in statistics and machine learning
is to develop a model that fits a set of training data
but is also able to make predictions in other datasets.
During this process, the problem of over-fitting arises.
In over fitting, the proposed statistical model describes
the set of training data but also its noise. That leads
to a model that is tailored to fit the training dataset
rather than reflecting the overall population, resulting in
poor predictive performance (Hawkins, 2004). In the same
sense, there is also the problem of under-fitting, where the
constructed model is so simple that it is not able to capture
the underlying relationship that might exist in the data.

Choosing the suitable model complexity can be achieved
through model selection and assessment. In model selec-
tion, given a set of candidate models, the objective is to
select the best model according to some criterion. Once
the final model has been selected, the estimation of its
prediction error in new data will assess the quality of the
model. Such an assessment method is cross validation.

Tackling the model selection problem can be achieved
through the use of information criteria. Information cri-
teria are measures of the relative goodness of fit of a
statistical model. Akaike proposed that a model should



be evaluated in terms of the goodness of the results by
assessing the closeness between the predictive distribution
defined by the model and the true distribution. The core
idea is that introducing parameters to the model yields
good results, but having a high degree of freedom will lead
to an increase in the instability of the model, producing
unreliable results (Konishi and Kitagawa, 2008).

1.2 Contribution of this work

The focus of this work is the topic of piecewise linear
regression. Such regression methods partition the inde-
pendent variable into multiple segments, also called re-
gions, and a function is fitted to each one. The boundaries
between the different regions are called break points and
identifying the position of the break points is a key task
for piecewise regression.

In order to perform piecewise linear regression, the Op-
timal Piecewise Linear Regression Analysis (OPLRA)
model is used from literature (Yang et al., 2016). The
main objective of that model is to receive a multivariate
dataset as input, identify a single feature and partition
the samples into multiple regions based on this feature.
The partitioning of the samples into regions is solved as
an optimisation problem, minimising the absolute error
of the fitting. The number of regions has to be specified,
enabling the model to decide on the optimal position of
the break points and fit a linear function to each region.
Knowing the number of regions in advance however is
typically never the case. So an iterative approach was
proposed by the authors to choose the optimal number of
regions. An additional region is added with each iteration
and the mathematical model is solved again. Convergence
is achieved by satisfying a heuristic rule.

This work extends the OPLRA mathematical model and
addresses the issue of selecting the appropriate number of
regions. In an attempt to avoid over-fitting the data and
generate a large number of regions, the Akaike Information
Criterion is used. New binary variables are introduced to
the mathematical model that are able to ‘activate‘ regions
so that samples can be allocated to them and the AIC is
now the objective function of the optimisation problem.
Minimising its value will lead to a model that balances
complexity with predictive accuracy.

2. MATHEMATICAL FORMULATION
2.1 Akaike Information Criterion

The Akaike Information criterion is used in this work for
model selection. The objective of the AIC is to estimate
the amount of information that is lost when a model is
used to approximate the true process that occurs and
generates the data, by using the Kullback-Leibler distance.
The criterion calculates the maximised log-likelihood, but
Akaike showed that this is a biased term. This bias is
approximately equal to the number of K parameters of
the tested model, hence this term is introduced to the
formulation (Burnham and Anderson, 2003).

Since the criterion is based on the ‘difference‘ between the
model and the true underlying mechanism, it is important
to understand that the AIC is simply a measure of the

relative quality of statistical models and it is not useful
for assessing the model. As a result, if all of the models
are poor, AIC will select the one that is estimated to be
the best, even though this model might not perform well.
When it comes to regression analysis, if all the candidate
models assume normally distributed errors with a constant
variance, then AIC can be easily computed as (Burnham
and Anderson, 2003):

AICn~ln<RSS)+2K (1)
n
where:

RSS residual sum of squares

n number of observations

K number of regression parameters

With this formulation, K is the total number of estimated
regression parameters including the intercept. Since the
criterion can only be used as a measure of relative quality,
it stands to reason that the absolute value of the AIC is
not important. Instead it is the relative value of the model
that matters. The criterion chooses as the best model the
one that has the lowest AIC value. An easy interpretation
of the criterion and equation (1) is to think that the
AIC ‘rewards‘ descriptive accuracy via the residuals and
‘penalizes‘ for model complexity.

The AIC has been established as one of the most fre-
quently used information criterion for model selection
problems, with a wide variety of applications. In human
body composition predictions based on bioelectricity mea-
surements, the AIC was included to reduce redundant
influence factors (Chen et al., 2016), cancer research where
AIC was used to develop a prognostic model in patients
with germ cell tumors who experienced treatment failure
with chemotherapy (Group, 2010) and outlier detection
(Lehmann and Losler, 2016). Also, Carvajal et al. (2016)
considered an optimisation approach for model selection
using the AIC, by incorporating the £y-(pseudo)norm as a
penalty function to the log-likelihood function.

2.2 Mathematical Formulation of OPLRA

In this section the OPLRA mathematical programming
model is described as found in literature (Yang et al.,
2016).

Indices
s observation, s = 1,2,..., S
m independent input variable m = 1,2,...M
r region, r =1,2,.... R
m* the variable where sample partitioning takes
place
Parameters
AT numeric value of observation s on variable m
Y output value of observation s
Uy,U;  arbitrary large positive numbers
€ very small number



Positive variables

X break-point r on partitioning variable m*
D, training error between predicted output and
real output for sample s

Variables
wy, regression coeflicient for variable m in region
r
BT intercept of regression function in region r

Pr} predicted output for observation s in region r

Binary variables

F7 1 if observation s falls into region r; 0 other-
wise

Equations and Constraints

If there is total number of R regions, then there are R — 1
break points. The following equations arranges them in an
ordered way:
X< Xr  Vm=m* r=23,..R—1 (2)
In order to assign samples into regions, binary variables
are introduced to the model for the formulation of the
following big M constraints:
Xr=l U -(1— F')+e< A™
Vs, r=23,...R, m=m
AT < X'+ U -(1— F7) —e¢
Vs, r=12..,R—1, m=m*
(4)
The addition of the small number € is done to ensure strict
separation of samples into regions.

To enforce the logical constraint that each sample belongs
only to one region, we use the following constraint:

M FI=1 Vs (5)

The prediction of the fitted model, Pr},
following constraint:

Pri=> Al"-W; +B"  Vsr (6)

is given by the

The following two equations are used to formulate the ab-
solute deviation between the real output and the predicted
output of the model.

Dy>Y,—Prl —U,-(1—F7)
Dy>Prl =Y, —Uy-(1—F))

Vs, r (7)
Vs, r (8)

The objective function of the model is the minimisation of
the absolute deviation error:

min Z D, (9)

The resulting model can be summarised as:
objective function (9)
subject to (2)-(8) constraints

and is formulated as an MILP problem that can be solved
to global optimality.

This literature work introduced a heuristic procedure in
order to identify the partitioning feature and then find
the optimal number of regions. The partitioning feature
is identified by solving the optimisation problem defined
above for all the variables, while fixing the number of
regions to 2, and choosing the one that yields the minimum
fitting error.

Another iterative approach was used for selecting the
optimal number of regions by introducing a new parameter
which was used as a threshold to the reduction percentage
of the absolute error. If the reduction percentage of the
error is above that parameter, then a new region is added
and the model will be solved again to improve the fitting.

2.8 Extended AIC approach

Using the Akaike criterion for model selection involves
minimising its value to identify the best model in a
set of candidate models. In this proposed approach, an
extended mathematical model is constructed that aims to
solve the problem of identifying the optimal number of
regions by directly minimising the AIC value. So instead of
solving multiple MILP models using the heuristic approach
mentioned in section (2.2), the final result will be acquired
by solving a single model called AICO (Akaike Information
Criterion Optimisation).

Because of the logarithmic nature of the Akaike criterion,
some adjustments have to be made in order to overcome
the non-linear problems and formulate the model as an
MILP. The first change is the approximation of the loga-
rithmic function. To achieve this we approximate the value
of the function with piecewise linear expressions.

The new additions to the model are presented below:

Indices

) number of breaking points for the approx-

imation , 7 =1,2,...N

Variables

AIC  Akaike information criterion value

A SOS2 variable

G The approximation of the logarithm
Binary variables

E, 1 if region r is selected; 0 otherwise
Parameters

Ys The break points for the approximation

Bi The ‘output of the breaking points (define

the equation to be approximated)

Constraints

Some additional constraints have to be introduced in order
to create a model that will choose the number of regions
without any iterative approaches.

The following constraint ensures that observation s be-
longs to region r only if that region is selected:

F! <E, Vs (10)



That means that if a specific region r is selected, then the
equivalent binary variable will be set to E, = 1 allowing
variable F to receive an value. Otherwise, if F, = 0 then
FI' =0 as well.

The following constraint ensures that if region r is not
selected, then all of the following regions in the set will
not be selected as well:

By <E, Vr=12.,R-1 (11)
The next set of equations are responsible for the linear
approximation of the logarithm in the Akaike criterion. To
achieve this, we introduce \; variables which are a SOS2
set. That means that at most two variables within this
ordered set can take on non-zero values. Those two values

have to be for adjacent variables in that set.

The first step is to define the function that needs to be
approximated, in this case the in(z). Parameter ~; is used
to discretise the domain of that function.

The above equation is not part of the optimisation model.
It is used to define the function that needs to be approxi-
mated by selecting ~; points and calculating the equivalent
B; ‘output’ points.

The new constraints that are introduced to the model are
presented below. In these constraints another simplifica-
tion is applied by using absolute error values instead of
RSS for the AIC:

ZDSZZ%')\i (12)
G = Zﬁi A (13)
=1 (14)

Equation (12) is used to describe the independent variable.
In this case, the independent variable that we want to
approximate is the absolute error ) . D,. Equation (13) is
used to calculate the value of the response, meaning the
final approximated value, that was described in equation
(12). Constraint (14) ensures that the sum of all the SOS2
variables will be 1.

The objective function of the optimisation model is the
minimisation of the AIC value. So using equation (1) and
modifying it to fit the notation of this work, the objective
is formulated as follows:

min AIC = §-G —S-In(S) +2(M +1)- Y _E, (15)

The last term in equation (15) is the penalty factor of
the criterion, based on the number of parameters of the
model. M is the total number of variables in the dataset
and ) FE, is the total number of regions that will be
selected. S is the total number of observations in the
dataset and G is the approximation of the logarithm of
the error of the fitting, as discussed in equations (12)-(14).
The partitioning feature is once again identified by using
the same heuristic that was discussed in section (2.2). The

next step is to select the maximum number of regions R for
the new extended model. The binary variable E,. that was
introduced will decide the optimal number of regions that
will be selected and constraint (10) will ensure that all of
the samples belong to those regions. Overall, the proposed
MILP model can be summarised as follows:

minimise objective function (15)
subject to constraints (2) - (8) and (10) - (14)

One key difference of the AICO model when compared
to the previous approach is the computational time. This
approach requires only one MILP model to solved, once
the partitioning variable has been identified, instead of
solving multiple MILP models iteratively. But one point
of attention is the maximum number of allowable regions.
This number should be large enough to ensure that the
model will capture all of the necessary regions, but at the
same time small enough to avoid generating unnecessary
binary variables.

3. COMPUTATIONAL PART
3.1 The examined datasets

To test the proposed methods a number of real world
datasets have been used.

Table 1. Datasets used in this work

Dataset Samples Variables
Pharmacokinetics 132 4
Bodyfat 252 14
Yacht Hydrodynamics 308 6
Sensory 576 11
Cooling efficiency 768 8
Heating efficiency 768 8
Earthquake 1000 4
Concrete 1030 8
White wine quality 4898 11

The datasets reported in table (1) are derived from differ-
ent online sources. More specifically the pharmacokinetics
and earthquake data are available through a package in
R (R Development Core Team, 2016), bodyfat and sen-
sory data are available through StatLib (Pantelis Vlachos,
2005) and the rest from the UCI repository (Lichman,
2013).

The datasets that are taken from the UCI repository are
also used in the original work (Yang et al., 2016). The
yacht hydrodynamics set predicts the residuary resistance
of sailing yachts for estimating the required propulsive
power. The energy efficiency dataset (Tsanas and Xifara,
2012) assesses the heating and cooling load requirements
of different buildings. The concrete dataset (Yeh, 1998)
tries to predict the compressive strength of concrete as a
structural material. The wine dataset (Cortez et al., 2009)
tries to predict the quality of white wine according to some
of it’s properties.

As mentioned in section (2.2), the original OPLRA model
used a heuristic approach to identify the number of regions



Table 2. Cross validation results

‘ Original datasets

‘ New datasets

‘ Yacht Cooling Heating Concrete Wine ‘ Bodyfat Sensory Pharma FEarthquake
OPLRA | 0.689 1.275 0.805 4.845 0.551 1.273 0.632 1.613 7.238
AICO 0.678 1.275 0.806 4.838 0.555 0.631 0.626 1.288 7.238
KNN 5.788 2.237 2.063 8.924 0.577 2.869 0.642 1.981 8.464
SVR 3.673 1.820 1.456 4.864 0.518 1.391 0.613 1.834 7.250
RandFor | 2.454 1.326 0.861 4.029 0.439 1.532 0.562 1.677 7.978
Mars 1.079 1.340 0.826 4.932 0.569 0.389 0.616 1.420 7.389
and introduced a parameter as a stopping criterion. This 4. RESULTS

user specified parameter was set at 0.03 after a sensitivty
analysis was performed with the same UCI datasets. So
in a way, the algorithm was tailored to those datasets. In
order to test the accuracy and robustness of the proposed
extension, new datasets are introduced in this work.

The pharmacokinetics dataset contains data from a study
of the kinetics of the anti-asthmatic drug theophylline
(Boeckmann et al., 1994) on twelve subjects, with the aim
of predicting the final drug concentration. The earthquake
dataset gives the location of seismic events that occurred
near Fiji since 1964. The bodyfat dataset uses features
such as age, weight and height to try and measure the
percentage of bodyfat in a subject. The sensory dataset
has data for the evaluation of wine quality by a total of 6
judges.

3.2 Validation of the method

In order to test the accuracy of the proposed method, 5-
fold cross validation is performed for each dataset. The
method of k-folds cross validation splits the data into k
smaller sets of equal size. Then it uses one of these sets
as a testing set while the rest are being used to train the
model. The method stops when all of the k sets have been
used as the testing set.

For each run of the cross validation the mean absolute
error is calculated for every dataset. The final score is
the average of 10 runs of 5-fold cross validation. Both the
proposed method and the original OPLRA paper (Yang
et al., 2016) are implemented in the General Algebraic
Modeling System (GAMS) (GAMS Development Corpora-
tion, 2016) and are solved using the CPLEX MILP solver,
with optimality gap set at 0 and a time limit of 400s
for the proposed approach. The R programming language
(R Development Core Team, 2016) is used to create the
random partitioning of the data for the k-folds validation.

A number of methods from the literature are also imple-
mented in this work and are compared with the proposed
methods on the same datasets. The methods include KNN
regression (Korhonen and Kangas, 1997), Random For-
est regression, MARS regression (Friedman, 1991) and
Support Vector regression (SVR) (Smola and Schélkopf,
2004). All of those methods are implemented in the R
programming language (R Development Core Team, 2016)
using the appropriate packages for each method. Once
again, 10 runs of 5-fold cross validation are performed and
the final results are compared to the proposed method.

Before applying all of the methods, feature scaling is
performed to the datasets according to the following
equation:

As o —ming Ag

maxgs Ag pm — ming Ag

That means the predictors of the datasets are now all
within the range of [0,1]. The main advantage of scaling is
not having predictors with great numeric ranges that can
potentially dominate those in smaller ranges. As a result,
all of the breaking points that will be determined by the
model will also be within that same range.

Table (2) compares the proposed extension in this work
with the original model from literature (Yang et al., 2016).
For each tested dataset, the lowest mean absolute error
(MAE) achieved is marked with bold. For the Yahct
Hydrodynamics dataset, the AICO provides the lowest
MAE value, outperforming the other tested methods. For
the Cooling efficiency, the lowest score is achieved by
both the AICO and the OPRLA. On heating efficiency,
the OPLRA model emerges as the best performer, while
the AICO is a close second. On the concrete dataset,
even though there is an improvement from the OPRLA
model, the AICO approach still doesn’t perform better
than the competition. Finally, for the wine dataset, the
AICO method performs almost as well as the OPLRA
model.

Since the original OPLRA model and the value of the
parameter mentioned in section (2.2) were constructed
using the datasets from UCI, new datasets are introduced
to try and eliminate any biased performance scores. From
table (2) we can see that the proposed AICO approach
outperforms OPLRA in all of the new datasets. More
specifically, there is a noticeable difference in performance
for the bodyfat and pharmacokinetics datasets and minor
difference in the sensory dataset, while having the same
score for the earthquake dataset.

We can see that overall the proposed method has the low-
est error in only four of the datasets. However, examining
the results closer, it is obvious that the method performs
well since the error scores are always very close to the ones
that have the best overall performance. To demonstrate
this we are going to develop a graph comparing the overall
performance of each dataset. This graph is very similar to
the one found in the original work (Yang et al., 2016).



In this graph, the method that performed the best gets
awarded 10 points, while the one that performed the worst
gets 1 point. Everything else is within this range. The final
performance score is the average across all of the available

datasets.

OPLRA AICO KNN SVR

[ T—
—

Mean performance score

RndFor MARS

Regression methods

Fig. 1. The overall performance score of each method. The
final score of each method is the average performance
across all datasets.

5. CONCLUSION

This work addresses the problem of piecewise multivariate
regression analysis. An extension of a current method from
the literature is proposed that uses the Akaike information
criterion in order to select the appropriate number of
regions to split the data. The final optimisation model
is able to select the number of regions, decide on the
position of the break points and calculate the regression
coefficients.

To test the method, several real world examples have been
employed. The performance of the proposed method is
compared to the original OPLRA work as well as other es-
tablished regression methods. Computational experiments
indicate that the new proposed approach has consistently
better predictive performance than the original OPLRA
work. That means that by using the AIC, the model is
able to identify different number of regions compared to
the original OPLRA model, leading to an increased perfor-
mance. Additionally, the proposed method provides very
competitive performance when compared to other regres-
sion methods. Figure (1) is a comparison of the predictive
performance between all of the methods. Overall, the new
proposed model is able to outperform the original OPLRA
work as well as the other established methods that were
considered in this work.
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