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Abstract

The initial conditions of cosmological simulations are commonly drawn from a Gaussian ensemble. The limited
number of modes inside simulations gives rise to sample variance: statistical fluctuations that limit the accuracy of
the simulation predictions. Fixed fields offer an alternative initialization strategy; they have the same power
spectrum as Gaussian fields but no intrinsic amplitude scatter. Paired fixed fields consist of two fixed fields with
opposite phases that cancel phase correlations. We study the statistical properties of those fields for 19 different
quantities at different redshifts through a large set of 600 N-body and 530 state-of-the-art magnetohydrodynamic
simulations. We find that paired fixed simulations do not introduce a bias on any of the examined quantities. We
quantify the statistical improvement brought by these simulations on different power spectra—matter, halos, cold
dark matter, gas, stars, galaxies, and magnetic fields—finding that they can reduce their variance by factors as large
as 106. We quantify the improvement achieved by fixing and by pairing, showing that sample variance can be
highly suppressed by pairing after fixing. Paired fixed simulations do not change the scatter in quantities such as
the probability distribution function or the halo, void, or stellar mass functions. We argue that procedures aiming at
reducing the sample variance of those quantities are unlikely to work. Our results show that paired fixed
simulations do not affect either mean relations or scatter of galaxy properties and suggest that the information
embedded in one-point statistics is highly complementary to that in clustering.
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1. Introduction

The standard model of cosmology is a well-established
theoretical framework that explains with great success a large
and diverse range of cosmological observables. The parameters of
the model represent fundamental physics quantities such as the
nature of dark energy, the density of dark matter, or the sum of the
neutrino masses. The goal of current and upcoming cosmological
surveys is to determine the value of those parameters with the
highest accuracy possible, in order to improve our knowledge of
fundamental physics.

The amount of information that can be extracted from
cosmological surveys depends on the accuracy of the theoretical
model. For instance, theoretical predictions are very accurate and
fast to compute in the linear regime, but the amount of
information that can be extracted with them is limited, since that
regime can only accurately describe the largest scales. Perturba-
tion theory (Bernardeau et al. 2002) is an ideal tool to make
accurate theoretical predictions in the mildly nonlinear regime.
However, theoretical predictions in the fully nonlinear regime
require numerical simulations.

Ideally, the best way to extract cosmological information
would be by evaluating the likelihood in every point of the
parameter space by using the theoretical prediction from
cosmological simulations. This procedure has been impractical
so far (see, however, Palanque-Delabrouille et al. 2015, for
similar efforts with the Lyα forest) as a result of several factors:
(1) the volume of the parameter space can be very large,
requiring many simulations for sampling it; (2) a very large

number of simulations are needed to compute the covariance
matrix in each point of the parameter space; (3) simulations
covering representative survey volumes with the required mass
resolution are computationally expensive; and (4) each
simulation has an intrinsic variance, commonly called sample
variance, arising from the limited number of modes it contains,
such that many simulations are needed to compute the mean.
The first point can be addressed by running simulations on a

subset of strategic locations in the parameter space (see, e.g.,
Heitmann et al. 2009). For the second and third points, a large
amount of work has been carried out to speed up the running time
of N-body simulations and to evaluate the covariance matrix, at the
expense of accuracy (Monaco et al. 2002a, 2002b, 2013;
Scoccimarro & Sheth 2002; Taffoni et al. 2002; Kitaura &
Heß, 2013; Tassev et al. 2013, 2015; Kitaura et al. 2014; Chuang
et al. 2015a, 2015b; Howlett et al. 2015; Feng et al. 2016a; Rizzo
et al. 2017). We emphasize, however, that those methods, while
aiming at capturing the effect of nonlinear matter evolution, do not
include the nonlinear effects of baryons.
The scope of this paper is to investigate how to mitigate the

fourth point, i.e., the intrinsic sample variance attached to each
simulation. We focus our attention on paired fixed fields,
introduced in Pontzen et al. (2016) and Angulo & Pontzen
(2016). Those fields can be obtained from Gaussian density fields
by performing certain operations on the amplitudes and/or the
phases of their modes. Angulo & Pontzen (2016) showed that
numerical simulations run with those fields as initial conditions
lead to quantities, such as the matter power spectrum, with a much
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lower variance than those obtained from traditional Gaussian
fields.

The purpose of this work is to further investigate the
properties of paired fixed fields and (1) identify the quantities
for which paired fixed fields help in reducing the intrinsic
statistical scatter, (2) quantify the statistical improvement, and
(3) study whether a bias is introduced in any quantities.

We carry out our study using a large set of 600 N-body
simulations with different box sizes and mass and spatial
resolutions run specifically for this work using the GADGET-III
code (Springel 2005). We use them to study the impact of
paired fixed simulations on the matter, halo, and halo–matter
power spectra; the halo bias; the probability distribution
function (pdf) of matter density; the halo mass function; and
the void radius function.

We then study the statistical properties of paired fixed
simulations using a set of 530 state-of-the-art magnetohydro-
dynamic simulations also run specifically for this work through
the AREPO code (Springel 2010). We investigate the properties
of the above quantities, along with the power spectra of the
other components: gas, cold dark matter (CDM), stars,
galaxies, and magnetic fields. We also study the impact of
paired fixed fields on the star formation rate history, on the
stellar mass function, and on several internal galaxy properties
such as radii or maximum circular velocity.

This paper is organized as follows. In Section 2 we define
Gaussian, paired Gaussian, fixed, and paired fixed fields. The set
of numerical simulations run for this project is described in
Section 3, where we also explain the tools we use to carry out the
statistical analysis. We present the results from our N-body and
hydrodynamic simulations in Sections 4–6 for large, intermediate,
and small scales, respectively. In Section 7 we investigate whether
we can generate fields with reduced sample variance in both their
the one-point and two-point statistics. Finally, we draw the main
conclusions of this paper in Section 8.

2. Definitions

We now define what Gaussian, paired Gaussian, fixed, and
paired fixed fields are. For a given density field r ( )x , the
density contrast is defined as

d
r r
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where A is the mode’s amplitude and θ is its phase. We note
that the values of both A and θ depend on the particular
wavelength, k, considered. Since the density field is real, the
modes satisfy *d d- =( ) ( )k k . The power spectrum of the field
is defined as

*d d dá ñ = -( ) ( ) ( ) ( ) ( )k k k k P k , 3D
1 2 1 2 1

and for a simulation of box size L and volume V=L3 the
above equation reads
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where dk k,1 2 is a Kronecker delta of the vectors k1 and k2. In a
Gaussian density field θ is a random variable distributed

uniformly between 0 and 2π, whereas A follows a Rayleigh
distribution
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with σ2=VP(k)/(16π3). The mean value of the mode
amplitude is
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A density field built as above will satisfy
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A Gaussian field is completely described by its two-point
correlation function, or power spectrum.
It is interesting to consider a different distribution for the

amplitudes of the modes that fulfills two conditions: (1) the
amplitude of the power spectrum is the same as in Gaussian
fields, i.e., *d d pá ñ =( ) ( ) ( ) ( )k k VP k 2 3, and (2) it has no
intrinsic scatter. The following distribution satisfies these two
conditions:
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We note that in such fields the value we assign to each mode
with wavenumber k is not the mean of the Rayleigh
distribution (see Equation (6)). We emphasize that fields
constructed with amplitudes drawn from the above distribution
are not Gaussian.
We define Gaussian, paired Gaussian, fixed, and paired fixed

fields as follows:

1. Gaussian field: a field with d = q( )k Aei , where A follows
the Rayleigh distribution of Equation (5).

2. Paired Gaussian field: a pair of Gaussian fields, d =( )k1
qAei and d d= = -q p+( ) ( )( )k kAei

2 1 , where the values of
A and θ are the same for the two fields and A follows the
Rayleigh distribution of Equation (5).

3. Fixed field: a field with d = q( )k Aei , where A follows the
distribution of Equation (8).

4. Paired fixed field: a pair of fields, d = q( )k Aei
1 and d =( )k2

d= -q p+ ( )( ) kAei
1 , where the values of A and θ are the

same for the two fields and A follows the distribution of
Equation (8).

In all the above fields θ is a random variable distributed
uniformly between 0 and 2π. Any of the above fields satisfies
the Hermitian condition: *d d- =( ) ( )k k . In Figure 1 we show
the 2D power spectrum, i.e., the amplitude of the power
spectrum as a function of k̂ and k from a Gaussian and fixed
field, and its comparison with the input power spectrum. Notice
that our 2D power spectrum is in real space, so the symmetry
between k̂ and k is not broken by redshift-space distortions
(which are not included in this toy example). We also show
schematically the effects of nonlinear evolution.
Paired Gaussian fields were introduced in Pontzen et al.

(2016). Fixed fields have been relatively well known (see, e.g.,
Viel et al. 2010). Paired fixed fields were first studied in
Angulo & Pontzen (2016).

2

The Astrophysical Journal, 867:137 (24pp), 2018 November 10 Villaescusa-Navarro et al.



In this paper we have run simulations where the initial
conditions have been generated using the above fields. We refer
to these simulations as standard, paired, fixed, and paired fixed
simulations.

We note that although Gaussian and fixed fields share, by
construction, the same power spectrum, they differ in higher-
order correlations like the trispectrum. For instance, the
variance of the power spectrum

* *
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d d d d

=á - ñ

= á ñ -

( ( )) ( ( ) ¯ ( ))
( ) ( ) ( ) ( ) ( ) ¯ ( ) ( )k k k k
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2
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2 2

6

2
2

is equal to P(k) for Gaussian fields but is identically zero for
fixed fields. For this reason, we expect that the scatter in the
matter power spectrum of fixed (and paired fixed) fields will be
lower than in Gaussian fields. One of the purposes of this paper
is to study the reduction on the scatter of a considered quantity
achieved by fixed and paired fixed simulations.

On the other hand, the value of some quantities, e.g.,the pdf
of the density field, will depend on the value of the n-point
correlation function. Since the value of these functions may be
different in Gaussian and fixed fields, we expect that fixed and
paired fixed simulations may introduce a bias on the value of
those quantities. Angulo & Pontzen (2016) argued using
perturbation theory that observable quantities should be
unbiased, but the accuracy of that statement in the nonlinear
evolution remains to be tested. Thus, the other key point of this
work is to quantify the magnitude of that bias.

3. Methods

In this section we describe the numerical simulations run for
this work. We also explain the statistical analysis we carry out
to quantify (1) whether paired fixed simulations introduce a
bias on the considered quantity and (2) the statistical
improvement achieved over standard simulations.

3.1. Numerical Simulations

A large number of realizations are needed to study the
statistical properties of paired fixed simulations. Thus, in this
work we have run an unusually large number, ∼1000, of
standard and paired fixed simulations.
The purpose of this paper is to investigate the properties of those

fields across a large range of scales, from linear to fully nonlinear
scales. Doing so with a single set of simulations would require the
simulations to have a large box size and a large number of
particles. Having a sensible number of those simulations will be
computationally expensive. Thus, we decided to run three different
sets of simulations that encompass three different ranges of scales:
(1) N-body simulations with box sizes of 1000 h−1 Mpc at low
mass resolution, (2) hydrodynamic simulations with boxes of
200 h−1Mpc at intermediate mass resolution, and (3) both N-body
and hydrodynamic simulations with boxes of 20 h−1Mpc at high
mass resolution.
All our simulations share the same value of the cosmological

parameters, Ωm=0.3175, Ωb=0.049, Ων=0, ns=0.96,
h=0.67, σ8=0.834, which are in agreement with the results
by Planck (Planck Collaboration et al. 2016c). We have

Figure 1. Toy example illustrating sample variance in standard (top row) and fixed (bottom row) simulations. In both cases, a random density field (second column,
here shown as the real and imaginary Fourier components) is drawn from an input power spectrum (left column), but because the fixed simulations fix the complex
amplitude, they avoid introducing sample variance into the empirical power spectrum measured from the random realization (third column). The rightmost panels
show a sketch of the effect of further evolution: linear scales simply grow proportionally, preserving whatever sample variance was present, while on smaller scales,
nonlinearities and mode mixing reintroduce some of the suppressed cosmic variance in the fixed simulation (see Figure 4).

3
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generated the initial conditions by displacing and assigning
peculiar velocities to particles initially laid down on a regular
grid by using the Zel’dovich approximation at z=99. The
initial power spectrum and growth rates are computed by
rescaling the z=0 matter power spectrum and transfer
functions according to the method described by Zennaro
et al. (2017), i.e.,we account for both the scale dependence of
the growth factor and growth rate in simulations with two
fluids.

The N-body simulations were run using the GADGET-III
code, last described in Springel (2005). They consist of two
different sets. One set follows the evolution of 5123 CDM
particles in a periodic box of 1000 comoving h−1 Mpc, while in
the other 2563 CDM particles are evolved in a box size of
20 comoving h−1 Mpc. The gravitational softening is set to 50
and 2 comoving h−1 kpc, respectively. We call these sets
N1000 and N20, and we use them to study the statistical
properties of paired fixed fields on large and small scales (and
for very massive and low-mass objects), respectively. Each set
contains 300 simulations: 100 standard simulations and 100
pairs of fixed simulations. We will show results obtained from
the N1000 set, while the N20 set is mainly used to cross-check
the results of the H20 simulation set that we describe below.

We also have two different sets of magnetohydrodynamic
simulations, run with the AREPO code (Springel 2010). In one, we
follow the evolution of 6403 CDM plus 6403 gas particles in a
periodic box of 200 comoving h−1Mpc, while in the other we
have a box of 20 comoving h−1Mpc with 2563 CDM plus 2563

gas particles. Both use the IllustrisTNG models of galaxy
formation, which include gas radiative cooling, star formation,
metal enrichment, galactic winds, and black hole accretion and
feedback (Weinberger et al. 2017; Pillepich et al. 2018b). The
numerical methods and subgrid physics models build on the
Illustris simulation model (Vogelsberger et al. 2013, 2014a,
2014b; Genel et al. 2014; Torrey et al. 2014). The softening
lengths are 8 and 2 comoving h−1kpc, respectively. We name
these sets H200 and H20, correspondingly. H200 has 80
simulations, 30 standard and 25 pairs, while H20 is made up of
450 simulations, 250 standard and 100 pairs. We use the H200
simulations, which are very close to the TNG300-3 simulation
(Marinacci et al. 2018; Naiman et al. 2018; Nelson et al. 2018;
Pillepich et al. 2018a; Springel et al. 2018), to study the
improvement on different power spectra (matter, CDM, gas)
introduced by paired fixed simulations on intermediate scales. The
H20 set is used to study the properties of paired fixed simulations

on very small scales and to investigate the impact of those fields
on galaxy properties. A summary of our simulation suite is shown
in Table 1.
Snapshots are saved at different redshifts, from z=15 down

to z=0. In this work we focus on redshifts 0, 1, and 5. Dark
matter halos are identified using the friends-of-friends algo-
rithm (Davis et al. 1985) with a value of the linking length
parameter b=0.2. In the hydrodynamic simulations we
identify galaxies through the SUBFIND algorithm (Springel
et al. 2001). We use the algorithm described in Banerjee &
Dalal (2016) to identify voids in the matter distribution of our
snapshots.

3.2. Formalism

Here we describe the formalism we use to carry out the
statistical analysis for each quantity considered in this paper.
The most important goals of this work are to (1) study whether
paired fixed simulations introduce a bias with respect to
standard simulations and (2) quantify the statistical improve-
ment achieved by fixed and paired fixed simulations in
comparison with standard simulations.
Throughout the paper we show plots that share the same

structure and contain information on the above two statistical
properties. An example of such a plot appears in the left panel
of Figure 2.
We compute each quantity for each standard and paired fixed

realization in the considered simulation set. For example, the
left panel of Figure 2 considers the matter power spectrum at
z=99. We denote by Xs,i and Xpf,i the value of that quantity
from the realization i of the standard and paired fixed
simulations, respectively. We compute the value of Xpf,i as

= +[ ] ( )X X X
1

2
, 10pf,i pf,i,1 pf,i,2

where Xpf,i,1 and Xpf,i,2 are the considered quantities in each
simulation of a paired fixed realization.8 From Xs,i and Xpf,i we
estimate the mean and variance of each simulation type as

åº á ñ =a a a
=

¯ ( )X X
N

X
1

11
i

N

1
,i

Table 1
Specifications of the Simulations Run for This Paper

Name Type Code No. Standard No. Paired Fixed NCDM
1 3 Ngas

1 3 mCDM mgas ò Box Size
Realizations Realizations (h−1 Me) (h−1 Me) (h−1 kpc) (h−1 Mpc)

N1000 N-body GADGET3 100 100 512 L 6.6×1011 L 50 1000

N20 N-body GADGET3 100 100 256 L 4.2×107 L 2 20

H200 Hydrodynamic AREPO 30 25 640 640 2.3×109 4.2×108 8 200

H20 Hydrodynamic AREPO 250 100 256 256 3.6×107 6.5×106 2 20

Note.The value of the cosmological parameters is the same for all simulations: Ωm= 0.3175, Ωb=0.049, Ων=0, ns=0.96, h =0.67, σ8=0.834. We have four
different sets of simulations, with different box sizes and numbers of particles. The first letter of the name set represents whether it is an N-body (N) or hydrodynamic
(H) simulation, while the number thereafter is the box size in h−1 Mpc. Note that one paired fixed realization corresponds to two simulations with random phases
flipped by π. The physics included in our magnetohydrodynamic simulations is radiative cooling, star formation, metal enrichment, galactic winds, black hole
accretion, and feedback. The H200 simulations are similar to the illustrisTNG300-3 simulation.

8 In the case of the nonlinear power spectrum this demonstrably cancels phase
correlation errors at leading order. For other quantities, it may be possible to
construct improved estimators using cross-correlations between simulations,
but this is beyond the scope of the present work.
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where α={s, pf}. The top panel always shows the mean and
standard deviation from the standard and paired fixed
simulations in blue and red, respectively.

In the second panel of each figure we quantify the bias
introduced by the paired fixed simulations with respect to
standard simulations. We calculate it by computing

s
-

-

¯ ¯
( )

X X
, 13

s pf

s pf

where σs-pf is the expected error on the difference between the
means from the standard and paired fixed simulations. In this
paper we have assumed that all the considered quantities are
normally distributed. In that case, the expected error on the

difference of the means is

s
s s

= +- ( )
N N

, 14s pf
2 s

2

s

pf
2

pf

where Ns and Npf are the number of standard and paired
fixed realizations. Notice that the above expression should
also include a term to account for the covariance between
the standard and paired fixed simulations. However, since the
random seeds are different for the two setups, that covariance
has an expected value equal to 0. We note that this is a
reasonable assumption for power spectra, where the amplitude
in a given k-bin receives contributions from many different
independent modes. For halo mass function, void radius
function, and pdf’s, a more appropriate distribution will be a
Poissonian. However, in this work we only show results for
bins that contain many halos/voids/cells. In that case, the
Poisson distribution is well approximated by a Gaussian.

Figure 2. Most of the plots shown in this paper have the same structure, which we describe in detail here. First panel: mean and standard deviation of the considered
quantity from the standard (blue) and paired fixed simulations (red). Second panel: an important aspect of our study is to investigate whether paired fixed simulations
introduce a bias on the considered quantity; in this panel we show the difference between the means from the two simulation sets, divided by the expected error on the
difference (see text for details). This panel quantifies thus the statistical agreement between both data sets. Any point within the gray region indicates that the
agreement between means is within 2σ. Thus, points beyond the gray band indicate a bias on the means at more than 2σ. The black dashed line indicates a 0σ bias.
Third panel: the other important quantify in paired fixed simulations is the statistical improvement they achieve with respect to standard simulations. For the
considered quantity, the variance from standard and paired fixed simulations is given by ss

2 and spf
2 , respectively. We can express σpf as s s= +( )r1pf f , where σf is

the standard deviation of each individual pair and r is the cross-correlation coefficient between the pairs. Expressing the variance in that way is very helpful, as the
improvement achieved by fixing the amplitude and flipping the phase is embedded in the value of σf and r, respectively. In this panel we show the value of + r1 . 0
values mean that the errors are completely anticorrelated and a large statistical improvement can be achieved. When the quantities from the two pairs are independent
(dashed black line), r=0 and + =r1 1, and no statistical improvement is brought by pairing. If both simulations are completely correlated, the value of + r1 is

2 , and the normalized variance worsens. Fourth panel: this panel shows the ratios between the standard deviation from the standard and paired fixed simulations
σs/σpf (black line) and that from the standard and fixed simulations σs/σf (purple line). That ratio indicates the statistical improvement achieved by the fixing and pair
fixing over traditional simulations. The gray region around the black line in this panel represents the 1σ uncertainty on the ratio. The dashed line indicates 1 and can be
interpreted as no statistical improvement with respect to standard simulations. We can see how fixed and paired fixed simulations largely reduce the scatter on the
matter power spectrum, while they leave the variance on the matter density pdf unaffected.
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The green line in the second panel thus measures the bias
introduced by the paired fixed procedure, with respect to the
standard simulations, in σ units. The gray band indicates where
the bias is less than 2σ. Thus, any point beyond the gray region
points toward a bias between the means larger than 2σ. It is
important to emphasize that statistical fluctuations can give rise
to deviations larger than 2σ. We note that this is a bias among
the means, i.e., it is suppressed by the square root of the
number of simulations. For a single realization, the absolute
error is, in all the quantities studied in this work, negligible in
practice.

In the third and fourth panels we quantify the statistical
improvement achieved by the paired fixed simulations with
respect to the standard simulations. The normalized variance9

of the paired fixed simulations can be expressed as

s s= +( ) ( )r1 , 15pf
2

f
2

where σf is the variance of individual fixed simulations

s = á - ñ = á - ñ( ¯ ) ( ¯ ) ( )X X X X 16f
2

pf,1 pf
2

pf,2 pf
2

and r is the cross-correlation coefficient between Xpf,1 and Xpf,2

å
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= - -
=

( ¯ )( ¯ ) ( )r
N

X X X X
1

. 17
i

N

f
2

1
pf,i,1 pf,1 pf,i,2 pf,2

We note that sf
2 can be interpreted as the variance obtained by

fixing the amplitude without doing pairing (i.e., the variance of
fixed simulations), while the value of r measures the correlation
between the two sets of pairs and 1 + r can be interpreted as the
statistical improvement on the variance achieved by pairing.

The third panel of Figure 2 shows the value of + r1 . If the
two pair quantities are independent, r=0 and + =r1 1. In
this case pairing does not bring any improvement, and the
variance of paired fixed simulations will be just the variance of
fixed simulations.10 If the two pairs are completely correlated,
r=1, pairing does actually worsen the results. This happens
because the second simulation adds no information and is
therefore wasted. Finally, if both pair quantities are completely
anticorrelated, r=−1, the variance of the paired fixed
simulations reduces to 0. This can be understood taking into
account that if both pair quantities are completely antic-
orrelated, as Xpf,1 increases its value, Xpf,2 shrinks such that

+( )X X1

2 pf,1 pf,1 remains constant. Thus, the lower the value of
r, the larger the improvement brought by pairing. We
emphasize that this is the improvement achieved by pairing
once fixed. In other words, the value of r from just paired
simulations that are not fixed can be different from that of
paired fixed simulations (see Appendix A for further details).
We provide explanations for the actual values in that figure in
Section 4.

Finally, in the fourth panel of Figure 2 we show the ratios
between the standard deviations of the standard and paired
fixed simulations (solid black line), σs/σpf, and between the

standard and fixed simulations (solid purple line), σs/σf. The
purple line quantifies the statistical improvement achieved by
fixing the amplitude, while the black line represents the gain
obtained by fixing and pairing. We note that the black line can
be obtained from the purple line and the line in the third panel
through Equation (15). The dashed horizontal line in the fourth
panel shows a value of 1, indicating the level where fixed and
paired fixed simulations do not bring any statistical improve-
ment over standard simulations. The black line is also
surrounded by a gray shaded region (hard to see in Figure 2
owing to the large dynamic range), indicating the associated
error on the standard deviation ratio, which we estimate as (see
Appendix B)
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We only show it for the black line for clarity.

4. Large Scales: N-body

In this section we study the statistical properties of paired
fixed fields on large scales using the N1000 N-body
simulations. The halo catalogs are composed of all halos with
masses above ;1.5×1013 h−1Me.

4.1. Initial Conditions

We start by quantifying the improvement achieved by paired
fixed simulations at the level of initial conditions, as we naively
expect that nonlinear evolution can, in general, only degrade it.
We focus our analysis on the matter power spectrum and on the
matter density pdf.

4.1.1. Clustering

For each realization of the standard and paired fixed
simulations in the N1000 set we have computed the matter
power spectrum at z=99.
We show the results in the left panel of Figure 2. We find an

excellent agreement between the results of both simulation sets,
with paired fixed not introducing a bias on the results. Note that
a few points show a bias larger than 2σ; this is expected under
the assumption that the data are independent and normally
distributed, which implies that ;5% of the points should
exhibit a bias larger than 2σ.
From the third panel we can see that the power spectra from

the two simulations of each paired fixed realization are highly
anticorrelated on almost all scales. We note that the deviation
of + r1 from 0 is due primarily to aliasing. We have
explicitly tested this by computing the power spectra using a
grid with fewer cells. This anticorrelation is the origin of the
large improvement that we obtain by pairing once we fix the
amplitude, as we will see below.
From the fourth panel we can see how fixed simulations

highly reduce the sample variance present in the standard
simulations: from a factor of ;103 at k;10−2 hMpc−1 to a
few at k=1 hMpc−1. We find that the improvement worsens
at smaller scales. This is an effect of the way the power
spectrum is measured in an individual box; as we move to
smaller scales, there are rapidly increasing numbers of modes
per k-bin. Thus, the measured power spectrum asymptotes to
the ensemble average at high k, and no initial improvement is
achieved by fixing the power in this limit.

9 While fixed simulations only contain one simulation, paired fixed
simulations contain two. For quantities in which pairing and fixing do not
help, we will still see an improvement when using paired fixed simulations
simply because we are estimating the quantity through two simulations instead
of one. We correct for that by computing the normalized variance, so that we
can compare directly σpf, σf, and σp (see Appendix A for further details).
10 Notice that we expect an improvement of 1 2 in the variance if we
compute a quantity with two independent measurements instead of one (see
Appendix A). However, in this work we are interested in the net gain, so we
reabsorb that improvement in our definition.
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Paired fixed simulations further reduce the sample variance
amplitude with respect to fixed simulations, with ratios as large
as 105 on the largest scales we probe. The improvement
brought by pairing has its origin in the fact that the first-order
nonlinear perturbations are canceled (Pontzen et al. 2016).
Even at z=99, the Zel’dovich approximation has introduced
such nonlinearities.

4.1.2. Probability Distribution Function

We now investigate another key quantity to understand our
results at lower redshifts: the pdf of the matter density field in
real space.

For each initial condition realization of the standard and
paired fixed simulations we have computed the matter density
field by assigning particle positions to a grid with 1283 cells
using the cloud-in-cell (CIC) mass assignment scheme. We
have then computed the pdf as the fraction of cells with matter
overdensity, d r r+ = ¯1 , in the interval r r r r+[ ] ¯d, . We
show the results of our statistical analysis in the right panel of
Figure 2.

As already pointed out in Angulo & Pontzen (2016), the pdf
of paired fixed simulations shows a good agreement with that
from standard simulations, as can be seen from the first panel.
From the second panel we can see that paired fixed simulations
do not introduce a bias on the matter density pdf with respect to
the results from standard simulations.

In the third panel we show the cross-correlation coefficient
between the pairs of the paired (orange) and paired fixed
(black) simulations. We find that in both cases the value r is
compatible with 0 ( + =r1 1), meaning that the results of
both pairs are independent from each other. Thus, pairing does
not help in reducing the variance on the matter density pdf from
the standard simulations.

We show the statistical improvement achieved by fixed and
paired fixed simulations, with respect to standard simulations,
in the fourth panel. We find that all simulation types exhibit the
same scatter as standard simulations. We do not find
improvements on the variance amplitude for fixed or paired
fixed simulations, meaning that fixing the amplitude does not
reduce the pdf fluctuations either. In some ways this is a
blessing: the local statistical properties of a fixed field are
identical to the properties of its Gaussian counterpart, and
therefore one can expect local physics such as galaxy formation
to proceed correctly in a fixed universe.

Thus, we conclude that while paired fixed simulations can
reduce the scatter on the power spectrum of the initial
conditions by large factors, the pdf does not benefit from this
and its scatter remains unchanged. We will see below that other
quantities tightly related to the pdf, such as the halo mass
function, the void radius function, the stellar mass function, and
intrinsic galaxies properties, will not exhibit significant
statistical improvement when estimated using paired fixed
simulations.

We find only modest improvements on the variance of paired
fixed simulations on the halo mass function, matter density pdf,
and star formation rate history when analyzing the H20
simulations, as we will see in Section 6.

4.2. Clustering

For each simulation in N1000 we have computed the matter
and halo auto-power spectrum and the halo–matter cross-power

spectrum. The results of our statistical analysis are displayed in
Figure 3.
The top row shows the results for the matter power spectrum

at redshifts 0 (left), 1 (middle), and 5 (right). The bottom row
displays the results for the halo–matter cross-power spectrum
(left) and halo power spectrum (right). For those quantities we
only show results at z=0, since at z=5 the number density
of halos in our simulations is very low and results are very
similar at z=1.
From the first panels we can see that the agreement between

the results of the standard and paired fixed simulations is very
good in all cases. In the second panels we quantify the bias
introduced by the paired fixed simulations with respect to
standard simulations and find no evidence for a bias for any of
the three quantities at the different redshifts considered. We
emphasize that with a finite number of simulations, this kind of
claim has to be considered as an upper bound. It may be that
paired fixed simulations induce a bias on those quantities, but
its magnitude is too small for detection with 100 realizations.
We note that in some cases, e.g.,the matter power spectrum at
z=0, there seems to be a systematic bias offset on small
scales. This is, however, due to the fact that modes on those
small scales are highly correlated, through nonlinear evolution,
and therefore not fully independent.
In the third panels we show the value of the cross-correlation

coefficient. We find that for all the considered quantities on
small scales, k0.2–0.5 hMpc−1, its value is compatible with

+ =r1 1, indicating that the power spectra from the two
pairs are independent. In that case, pairing does not help in
reducing the statistical error due to sample variance. We find
that the value of + r1 is smaller than 1 on scales larger than
k0.2–0.5 hMpc−1. The scale at which + r1 equals 1
decreases with redshift, independently of the considered power
spectrum, but the effect is more pronounced in the matter
power spectrum.
The value of + r1 for the matter power spectrum can be

as low as ;4×10−2, pointing out that pairing, once fixed, can
reduce the scatter of the standard simulations by that factor.
The value of + r1 increases with scale, until reaching the
value of 1. At z=5, however, we find a dip around
3×10−2 hMpc−1. It is interesting to note that the lowest
values of + r1 take place at z=0 rather than z=5. At
present, we do not have an explanation for this.
We find much higher values of + r1 for the matter–halo

and the halo–halo power spectra than for the matter power
spectrum. In those cases, we also find a dip around
4×10−2 hMpc−1. On large scales, the value of + r1
barely goes below 0.7, indicating that pairing can only reduce
the variance by ;0.7. We note that halos are the main driver of
the increase in the value of + r1 , as on large scales the halo
power spectrum barely deviates from 1.
From the fourth panels of Figure 3 we can see that for the

matter power spectrum on large scales, reductions on the
standard deviation of standard simulations can be as large as
103, at all redshifts considered. Since the standard deviation on
the mean from standard simulations goes as µ N1 s , the
above numbers can be interpreted as follows. A single paired
fixed simulation can be used to evaluate the amplitude and
shape of the matter power spectrum on large scales, with an
error equal to that achieved by running ∼106 standard
simulations. On small scales, k∼0.2–0.4 hMpc−1, the ratios
tend to 1, showing that no improvement is achieved by the
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fixed or paired fixed simulations. The reason why fixed and
paired fixed simulations do not improve the statistics of
standard simulations on small scales is that in the nonlinear
regime modes get mixed in a complicated manner that affects
both the amplitudes and phases and gives rise to sample
variance. We show this schematically in Figure 4, where a set
of complex numbers with fixed amplitude end up with very
different amplitudes after each mode mixes with its neighbors.
This happens because whether complex numbers with the same
amplitude add up or cancel depends on whether their phases
align. In fixed and paired fixed simulations the phases are
random.11

We note, however, that on very small scales and at z=0,
the Pmm(k) results for σs/σ are between 2 and 3. The

improvement on those scales is mostly coming from fixing
the amplitude rather than from pairing. We also observe this
effect in the smaller box size simulations that we study in
Section 5. Thus, the above argument can explain the behavior
we find in simulations only qualitatively.
The statistical improvement on large scales is much smaller

for the halo–matter and halo–halo power spectra. For the halo–
matter cross-power spectrum, we reach values of σs/σpf;6 on
large scales at both redshifts 0 and 1. For the halo auto-power
spectrum those values shrink to σs/σpf;3. For those two
power spectra no statistical improvement is achieved by
fixed or paired fixed simulations on scales smaller than
k0.3 hMpc−1. Notice that we have not subtracted the
shot-noise amplitude in the halo auto-power spectra. In the
following subsections we will see how paired fixed simulations
do not introduce a bias on the halo mass function. Thus, the
halo mass functions from standard and paired fixed simulations
will, on average, be identical. In that case, the mean abundance

Figure 3. Impact of paired fixed simulations on the clustering of matter (top row), on halos (bottom right), and on the halo–matter cross-power spectrum (bottom left).
We show results at redshifts 0 (left column), 1 (middle column), and 5 (right column) for matter and at z=0 for the halo and halo–matter power spectra. Paired fixed
simulations can reduce the sample variance scatter on these power spectra by large quantities without introducing a bias on them.

11 In paired fixed simulations there is a correlation between the phases in the
initial conditions of the two simulations in a pair. The argument regarding
random phases applies, however, to the mode mixing of each individual
simulation in a pair.
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of halos will be the same in both setups, and the shot-noise
amplitude will be identical in the two situations.

We conclude that while paired fixed simulations can yield
very large statistical improvements, σs/σpf;1000, for the
matter power spectrum, for the halo–matter and halo power
spectra the gain is much smaller, σs/σpf∼5, but still valuable.

4.3. Halo Bias

We now turn our attention to the halo bias. For each standard
and paired fixed realization we have computed the halo bias
using the estimator

=( ) ( )
( )

( )b k
P k

P k
. 19hm

mm

We show the results of our statistical analysis in the top left
panel of Figure 5. We only show the results at z=0 since at
z=1 our conclusions are unchanged. From the first panel we
see the very good agreement between the results of both
simulations, while in the second panel we show that paired
fixed simulations do not introduce a bias on this quantity. The
value of the cross-correlation coefficient is, for almost all
scales, compatible with 0 ( + =r1 1), implying that pairing
does not help in reducing the scatter. Finally, in the fourth
panel we can see how fixing the amplitude does not reduce the
scatter either, and therefore paired fixed simulations exhibit the
same scatter in the halo bias as standard simulations.

We have repeated the above analysis by computing the bias
as =( ) ( ) ( )b k P k P khh mm , reaching identical conclusions:
fixed and paired fixed simulations exhibit the same scatter on
the halo bias as standard simulations.

This result may appear surprising at first since, as we saw
above, paired fixed simulations can reduce the scatter on the
matter, halo–matter, and halo power spectra by factors as large
as 103, 6, and 3, respectively. In order to understand the reason
for this result, let us write the variance of the halo bias at linear

order (see Appendix B for the derivation)
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where N(k) is the number of independent modes in the
considered k-interval and the halo power spectrum includes
both cosmological signal and the shot-noise term, i.e., =( )P khh

+( ) ¯P k n1hh
cosmo . If the shot-noise amplitude were zero,

Phh=b2Pmm, Phm=bPmm(k), and the linear-order variance
of the bias would be zero too. This tells us that in the absence
of shot noise, the halo–matter and matter–matter power spectra
are perfectly correlated, and hence their ratio, the halo bias, has
zero variance.
What breaks this perfect correlation and becomes the source

of variance in our bias estimate is the presence of shot noise in
the halo power spectrum. The amplitude of the shot noise on
large scales is the same in paired fixed and standard
simulations, as it only depends on the halo number density.
Thus, it should not be surprising after all that the scatter in the
halo bias from paired fixed and standard simulations is the
same as well.
We leave for future work a formal derivation of this result on

mildly nonlinear scales and a deeper understanding of why
paired fixed simulations do not even reduce the scatter of the
halo bias on nonlinear scales.

4.4. Matter Density pdf

We now focus our attention on the pdf of the matter density
field. For each realization of the standard and paired fixed
simulations we have computed the matter density field on a
grid with 1283 cells using the cloud-in-cell (CIC) mass
assignment scheme. We show the results of our analysis in
the top right panel of Figure 5. We only show results at z=0
since results at higher redshift do not change our conclusions.
Unlike the matter power spectrum, where both pairing and

amplitude fixing greatly reduced the variance, the matter density
pdf is indifferent to these techniques, at least on this scale. There

Figure 4. Illustration of how mode mixing from nonlinear evolution introduces sample variance in fixed simulations. Left: in the initial conditions each cell in Fourier
space has a random phase (the arrow) but a fixed amplitude (the radius of the circle). Right: after each mode mixes with its neighbors, some amplitudes grow and
others diminish, depending on how their phases align with those of their neighbors. Hence, the amplitudes are no longer fixed after mixing, reintroducing sample
variance. The exact form of mixing shown here is just an example, while any kind of mixing will have similar effects.
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is, however, no harm: the bias is consistent with zero, showing full
agreement between standard and paired fixed simulations. But
there is also no benefit: the value of + r1 is consistent with 1,

so pairing after fixing is of no help, and all the effects of amplitude
fixing are washed out in this basis. See, however, Section 6.3 for
how this changes on smaller scales.

Figure 5. Impact of paired fixed simulations on halo bias (top left), matter density pdf (top right), void radius function (bottom left), and halo mass function (bottom
right) at z=0 from the N1000 simulation set. Paired fixed simulations do not introduce a bias on these quantities, but they do not reduce their scatter either.
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We can interpret these results by taking into account that
paired fixed simulations do not reduce the scatter on the pdf
already at the starting redshift of the simulation (see
Section 4.1). Thus, it is unlikely that nonlinear evolution
would lead to different pdf’s at low redshift.

4.5. Halo Mass Function and Void Radius Functions

Here we study the impact of paired fixed simulations on the
halo and void radius functions. For each standard and paired
fixed simulation we have computed the halo mass function,
defined as the number density of halos per mass interval. We
show the results in the bottom right panel of Figure 5. We have
also computed the void radius function, defined as the number
density of voids per radius interval, for each realization of the
standard and paired fixed simulations. We show the results in
the bottom left panel of Figure 5. For both cases we only show
results at z=0, as higher redshifts lead to identical
conclusions.

From the top panels we find that the agreement between the
standard and paired fixed simulations is very good for both the
halo and void radius functions, and in the second panels we
show that no bias is introduced on these quantities by the paired
fixed simulations. In the third panels we show the cross-
correlation coefficient from the results of each pair. Our results
are compatible with the + =r1 1, pointing out that the
results of each pair are independent. From the fourth panels we
find that there is no statistical improvement on these two
quantities from fixed or paired fixed simulations.

We believe that paired fixed simulations do not improve the
abundance of halos and voids statistics because the formation
of those takes place on small scales, where the one-point
properties are more relevant to determining the final outcome.
A different way to see this is to take into account that the
formation and evolution of halos and voids will be more
sensitive to phases than to amplitudes. Besides, when pairing, a
halo will become a void and vice versa (Pontzen et al. 2016), so
it seems unlikely that paired fixed simulations can help in
reducing the scatter of these quantities. As we saw in
Section 4.1, these are not affected by the fixing and pairing
procedure.

In Section 6 we will, however, see that paired fixed
simulations slightly reduce the scatter of the halo mass function
and matter density pdf when analyzing hydrodynamic simula-
tions with small box sizes. This may be related to nonlinearities
reaching the halo filtering scale, but further exploration is
deferred to future work.

We thus conclude that large-scale box size paired fixed
simulations reduce the scatter on clustering quantities like the
matter, halo–matter, or halo power spectra. They do not,
however, help in reducing the scatter of the halo bias or on one-
point statistics like the halo or void radius functions, or the
matter density pdf.

5. Intermediate Scales: Hydrodynamic

In this section we investigate the statistical properties of
paired fixed simulations on intermediate scales using state-of-
the-art magnetohydrodynamic simulations. We carry out the
statistical analysis using the H200 simulations. Those simula-
tions are computationally expensive, so we could only run 80
of them: 30 standard and 25 paired fixed realizations. This
small number of simulations does not allow us to reach robust

statistical conclusions for most of the quantities considered in
this paper. For this reason we focus our analysis on clustering,
where the effect is large enough to establish that paired fixed
simulations do reduce the intrinsic scatter due to sample
variance.
We have also computed the matter density pdf, the halo mass

function, and the void radius function, and our results are in
agreement with those from large scales, i.e.,paired fixed
simulations do not introduce a bias but also do not reduce the
intrinsic scatter. However, the associated error bars are too
large to rule out a small statistical improvement such as that we
observe in the H20 simulations (see Section 6).

5.1. Clustering

For each standard and paired fixed simulation we have
computed the power spectrum of matter, CDM, gas, stars, and
galaxies at redshifts 0, 1, and 5. The relatively low resolution of
the H200 simulation highly affects the power spectrum of stars
and galaxies, due to the large amplitude of the shot noise, on all
scales we probe. Hence, we focus our analysis on the matter
(Pmm(k)), CDM (Pcc(k)) and gas (Pgg(k)) power spectra.
We show our results in Figure 6. From the first panels we

deduce that the agreement between the different power spectra
from the different simulations is very good at all redshifts.
From the second panels we see that no bias is introduced by
paired fixed simulations, with respect to standard simulations,
on these power spectra at z=5. However, at lower redshifts,
in some situations and for some scales, the bias deviates
more than 2σ. In some cases a large set of points deviate
continuously from 2σ. We emphasize that those scales are
highly correlated, so it is expected that if one scale deviates,
the others will exhibit the same behavior. Since the number of
realizations we have in the H200 set is very small, it is not
unreasonable to expect mean differences of ;2σ. We find
similar results at z=0, where in some cases, e.g.,gas power
spectrum on very small scales, the difference between the mean
of both data sets can be around 3σ, but again, on highly
correlated scales. In order to verify that this bias is not
statistically significant, we have repeated the above analysis but
removing some random paired fixed or standard simulations.
By doing so, we find that in some of the cases the bias between
the two data sets decreases and remains below 2σ. This points
out that our low number of realizations may be underestimating
the intrinsic scatter. Furthermore, as we will see in the next
section, with a much larger number of hydrodynamic
simulations covering a range of scales similar to those we
explore here, we do not find a bias on any of the power spectra
studied here. We think that the bias we find in the H200
simulations may be due to statistical fluctuations. More
simulations are, however, needed to clearly disentangle this
issue. We emphasize again that this is the bias among the
means. Even if the bias will be real and not a statistical
fluctuation, for a single realization the absolute magnitude of
this bias will be very small.
We find that the power spectra from the two pairs are

strongly anticorrelated on large scales, for all the considered
fields. This translates, as we shall see below, into large
statistical improvements of the paired fixed simulations with
respect to standard simulations. On smaller scales the value of
the cross-correlation coefficient tends to zero, although it
usually remains smaller than zero. We note that at z=0 and
for k;1.5 hMpc−1, the cross-correlation coefficient exhibits a
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Figure 6. Impact of paired fixed simulations on the clustering of matter (top row), CDM (middle row), and gas (bottom row) from the magnetohydrodynamic
simulations set H200 at redshifts 0 (left column), 1 (middle column), and 5 (right column). Paired fixed simulations largely reduce the sample variance errors
associated with standard simulations on large scales. We believe that some of the rather large bias values we find are not statistically significant.
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sizable dip. That dip also seems to take place at higher redshifts
but on smaller scales.

On large scales and for fixed simulations we find an
improvement on the standard deviation of standard simulations
that ranges from ;7 at z=0 to ;30 at z=5. The improvement
for paired fixed simulations is much higher, induced by the low
values of the cross-correlation coefficient. It is worth pointing out
that running one paired fixed realization can be used to determine
the mean of the matter, CDM, or gas power spectrum with an error
equal to that achieved by running ;900 standard simulations for
k;0.1 hMpc−1, a very important scale for baryonic acoustic
oscillation (BAO) studies.12 On smaller scales the statistical
improvement vanishes, although we observe some residual
improvement on scales where the value of the cross-correlation
coefficient is below 0.

We thus conclude that paired fixed simulations bring large
statistical improvements on the matter, CDM, and gas power
spectra on large scales from full hydrodynamic simulations.

6. Small Scales: Hydrodynamic

We now push the limits of paired fixed simulations by
studying their properties on small scales through the H20
hydrodynamic set. We focus our analysis on clustering, one-
point statistics, and internal galaxy properties.

6.1. Initial Conditions

We have computed the matter, CDM, and gas power spectra
of each realization of the H20 simulations. The result of our
statistical analysis for these quantities is similar to what we
found for the N1000 simulations, i.e., a very large improve-
ment on the largest scales of the box, while on smaller scales
the variance reduction is smaller. We thus do not show these
results, as they do not add much to our discussion.

We have also computed the matter density pdf for each
standard and paired fixed realization of the H20 simulations
using a grid with 643 cells by employing the CIC mass
assignment scheme. Figure 7 shows the result of our analysis.
We find that paired fixed simulations do not introduce a bias on
the matter density pdf of the standard simulations.

The value of + r1 is compatible with 1 for almost all
overdensities, with deviations being mostly statistical fluctua-
tions. From the fourth panel we can see that both fixed and
paired fixed simulations reduce the scatter of the matter density
pdf of standard simulations in a nontrivial way. Those
improvements, although small, are not statistical fluctuations.
We obtain very similar results for the matter field when using
the N20 simulations. We leave it for future work to understand
the reason why paired fixed simulations reduce the scatter
of the matter density pdf relative to standard simulations in the
way they do.

6.2. Clustering

For each standard and paired fixed realization we have
computed the power spectrum of matter, CDM, gas, magnetic
fields, stars, galaxies (Pgal(k)), halos, and halo–matter. In
Figure 8 we show the results at redshifts 0, 1, and 5 for the total
matter and gas power spectra (for gas only at redshifts 0 and 1)
in the top and middle rows, respectively. We do not show the

results for CDM since they are pretty similar to those from total
matter and gas. The results for gas at z=5 are also similar to
those of matter at that redshift. In the middle right panel we
show the results for the magnetic field power spectrum, while
in the bottom row we display our findings for the stars,
galaxies, and halo–matter power spectra. Since our conclusions
for those components do not change significantly with redshift,
we only show those at z=0.
From the first panels we can see that the agreement between

the results of the two simulation types is very good. In the
second panels we demonstrate that for all power spectra and
considered redshifts the bias introduced by paired fixed
simulations, with respect to standard simulations, is compatible
with 0. We emphasize that the scales we probe with the H20
simulations are highly nonlinear and correlated, as expected.
This is why the green curves look so smooth in comparison
with those of, e.g., Figure 3.
We find that on almost all scales, for all power spectra, and

at all redshifts, the value of + r1 is lower than 1, pointing
out that the power spectra from the two pairs of the paired fixed
simulations exhibit a degree of anticorrelation. At z=0, and
on the largest scales we can probe with the H20 simulations,
the value of + r1 is around 0.7. At higher redshift that value
shrinks, reaching ;0.2 for matter, CDM, and gas at z=5. As
we move to smaller scales, the value of the cross-correlation
coefficient increases. At low redshift and for matter, CDM, gas,
magnetic fields, and galaxies it tends to 1, while for stars it

Figure 7. Impact of paired fixed simulations on the matter density pdf of the
initial conditions of the H20 simulation set. Contrary to what we found for the
N1000 simulations, for small smoothing scales we find that fixed and paired
fixed simulations can slightly reduce the scatter in the matter density pdf
without introducing a bias on it. The statistical improvement takes places over
different overdensities in a complicated manner.

12 Notice that boxes with 200 h−1 Mpc may be too small to properly capture
the BAO feature.
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Figure 8. Impact of paired fixed simulations on the power spectrum of matter (top row), gas (left and middle panels of middle row), magnetic fields (right panel of middle
row), stars (bottom left), galaxies (bottom middle), and halo–matter (bottom right) from the N20 simulations. Results for matter and gas are shown at redshifts 0 (left column),
1 (middle column), and 5 (right column, only for matter), while for magnetic fields, stars, galaxies, and the halo–matter we only show results at z=0 since we observe little
time evolution. Paired fixed simulations do not introduce a bias on any of these quantities and improve the statistics of standard simulations.

14

The Astrophysical Journal, 867:137 (24pp), 2018 November 10 Villaescusa-Navarro et al.



remains quite constant at + r1 0.8. We observe a similar
behavior at z=5 for matter, CDM, and gas.

In the fourth panel we see that at low redshift the
improvement on the sample variance reduction is moderate,
with the standard deviation ratio reaching factors of 2 to 3 for
matter, CDM, and gas on the largest scales. For the magnetic
fields, stars, and galaxies the improvement is slightly lower. In
the case of stars the improvement is surprisingly very scale
independent. As we move to smaller scales, the improvement
decreases, although showing a nonmonotonic dependence with
redshift. The difference between the improvement from fixed
and paired fixed is not large at low redshifts, while at z=5 it
can be a factor of almost 5 on the largest scales.

We note that the power spectrum of the magnetic field, stars,
and galaxies is highly affected by shot noise (which we do not
attempt to subtract). It is thus interesting to see that paired fixed
simulations help to reduce the intrinsic error on it.

We find very interesting results for the halo–matter cross-
power spectrum. First, notice that at kä5–10 hMpc−1 the
value of the cross-power spectrum becomes negative. Second,
the value of + r1 exhibits an oscillatory behavior that is not
due to statistical fluctuations and whose value is, in almost all
scales, below 1. From the fourth panel we can see how on
scales larger than ;2 hMpc−1

fixed and paired fixed simula-
tions slightly improve the statistics of the standard simulations.
The oscillatory features we found in the value of the cross-
correlation coefficient are reflected in the statistical improve-
ment of paired fixed simulations, although fixed simulations
also present that behavior, to a lesser extent.

We find similar oscillatory features in the halo auto-power
spectrum and the halo bias. While the former are not due to the
behavior of the cross-correlation coefficient, the latter exhibit
the same features as the halo–matter power spectrum. We
believe that the oscillations in the standard deviation ratio of
the different halo power spectra are related to the features we
observe in the matter density pdf of the initial conditions,
which propagate to the matter density pdf and halo mass
function at lower redshift (see next section). A more detailed
study of this is beyond the scope of the present paper.

We thus conclude that even with small box size hydro-
dynamic simulations where all scales are nonlinear at low
redshift, paired fixed simulations always produce power spectra
with lower scatters than those from standard simulations. The
statistical improvement can be pretty large at high redshift. Our
results also point out that paired fixed simulations do not
introduce a bias on any of the above power spectra.

6.3. One-point Statistics

We now study the impact of paired fixed simulations on one-
point statistics. We focus our analysis on the halo mass
function, the void radius function, the matter density pdf, the
star formation rate history, and the stellar mass function. We
only show results at z=0,13 since our conclusions are
unchanged at higher redshifts.

6.3.1. Halo Mass Function

For each realization of the standard and paired fixed
simulations we extracted halo catalogs by selecting all halos
with masses above ;9×108 h−1Me. We then computed the

halo mass function for each realization, and we show the results
in the top left panel of Figure 9. We find an excellent agreement
between the results of both simulation types, and our results
point out that paired fixed simulations do not introduce a bias.
We can also see that the value of the + r1 is compatible
with 1 for all halo masses.
From the fourth panel we can see how fixed and paired fixed

simulations slightly reduce the scatter on the halo mass function
from standard simulations for some halo masses. This contrasts
with our results of Section 4, where we found that paired fixed
simulations do not reduce the scatter in the halo mass function.
Note, however, that in Section 4 we only probed halos with
masses above ;1013 h−1Me; thus, for the halo mass range
common to both simulations, our results are in agreement.
We note that the statistical improvement is not very

significant, taking into account the error bars associated with
the paired fixed simulations. In order to verify the robustness of
these results, we have repeated the same analysis but using the
N20 simulations, which are N-body and contain a different
number of paired fixed realizations. By doing so, we find very
similar results to what we find with the H20 simulations,
implying that the improvement is not a statistical fluctuation
but a physical effect.
Understanding the origin of this improvement on the halo mass

function of small halos is beyond the scope of the current work.

6.3.2. Void Radius Function

For each realization of the standard and paired fixed
simulations we have extracted voids in the matter field. In
the top middle panel of Figure 9 we show the results for the
void radius function. As always, we find a good agreement
between the results of both simulations types and a bias
between the mean of both simulations that is below ;2σ. The
value of the cross-correlation coefficient is compatible with
0 ( + =r1 1) for most of the void radii. We find that fixed
and paired fixed simulations do not reduce the scatter on the
void radius function. This is in agreement with our findings for
larger voids in Section 4.

6.3.3. Matter Density pdf

We have computed the matter density field on a grid with
643 cells using the CIC interpolation scheme for each
realization of the standard and paired fixed simulations. Our
results for the pdf of the matter field are shown in the top right
panel of Figure 9. We find good agreement among the results
of both simulation types and that most of the points are below
2σ. The value of + r1 is compatible with 1 for all
overdensities with the exception of two dips for values of
1 + δ around 0.04 and 0.4. The origin of those dips is unclear to
us, but we have verified that they are not statistical fluctuations.
We obtain similar results by using the N20 simulations.
The fourth panel shows the statistical improvement achieved

by fixed and paired fixed simulations with respect to standard
simulations. We find that for overdensities larger than ;5, fixed
and paired fixed simulations do not reduce the intrinsic scatter
of the standard simulations. For lower overdensities, we do,
however, observe improvements. Those come from both the
fixed and paired fixed simulations and manifest themselves as
two bumps for overdensity values similar to those quoted
above. In paired fixed simulations the improvement is more
pronounced on those bumps owing to the anticorrelation of the

13 For the star formation rate history we show results between redshifts 0
and 15.
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pdf’s we find in the third panel. This result is different from
what we found in Section 4, where we concluded that paired
fixed simulations do not reduce the scatter of the matter density
pdf. We note, however, that the scales we are probing in the
two cases are very different. Besides, for these very small
smoothing scales, we find that paired fixed simulations slightly
improve the statistics of the matter density pdf already in the
initial conditions (see Section 6.1). Future investigation of this
effect will be required to disentangle whether the improvement
propagates from the initial conditions or is brought by
nonlinear evolution.

6.3.4. Stellar Mass Function

The results for the stellar mass function from the H20
simulation set are shown in the bottom left panel of Figure 9.
As expected, the results from the two simulation types show a
good agreement, and we find no bias between their means
within 2σ (first and second panels). The third panel shows that

the value of + r1 is compatible with 1 for all stellar masses.
Finally, we find no evidence for statistical improvement of
fixed and paired fixed simulations over standard simulations for
the stellar mass function (fourth panel).

6.3.5. Star Formation Rate History

We have computed the star formation rate history of each
standard and paired fixed realization as the sum of the star
formation rates of all gas particles divided by the simulation
volume. That quantity informs us about the rate at which stars are
being formed at a given redshift and therefore complements the
stellar mass function when studying overall abundance. We show
the results of our statistical analysis in the bottom right panel of
Figure 9. The agreement between the results of both simulations is
excellent, and we find no evidence that paired fixed simulations
introduce a bias on that quantity. The value of the cross-
correlation coefficient is compatible with 0 ( + =r1 1),
although between redshifts 4 and 12 it is less than 1.

Figure 9. Impact of paired fixed simulations on the halo mass function (top left), void radius function (top middle), matter density pdf (top right), stellar mass function
(bottom left), and star formation rate history (bottom right) from the N20 magnetohydrodynamic simulations at z=0. We find similar results at higher redshifts.
Paired fixed simulations do not introduce a bias on any of these quantities, and they slightly improve the statistics of some quantities in a complicated manner.
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We find that fixed simulations barely improve the statistics
of standard simulations, although there exist two significant
bumps at redshifts ;4 and ;9. The improvement is slightly
larger in paired fixed simulations, due to the values of the
cross-correlation coefficient being less than 1 at some redshifts.

6.4. Galaxy Properties

The above results point out that, at least for clustering-related
quantities, paired fixed or fixed simulations can improve the
statistics of standard simulations without introducing a bias on the
results. Thus, state-of-the-art cosmological hydrodynamic simula-
tions such as ILLUSTRISTNG (Marinacci et al. 2018; Naiman
et al. 2018; Nelson et al. 2018; Pillepich et al. 2018a; Springel et al.
2018), EAGLE (Schaye et al. 2015), HORIZONAGN (Dubois
et al. 2014), MAGNETICUM (Dolag et al. 2017), or BLUETIDES
(Feng et al. 2016b) will highly benefit, for clustering analysis, by
generating their initial conditions through fixed or paired fixed
fields rather than standard Gaussian fields.

On the other hand, the main analysis scope of the above
simulations is usually not clustering, but rather galaxy proper-
ties and evolution. It is thus very important to investigate (1)
whether paired fixed simulations introduce a bias in internal
galaxy properties and (2) whether the intrinsic physical scatter
in their properties is changed in paired fixed simulations. The
purpose of this section is to answer these two questions.

For each galaxy in each realization of the standard and paired
fixed simulations, we have computed a number of different
internal quantities: stellar mass, star formation rate, radius,
black hole mass, maximum circular velocity, and metallicity of
star-forming gas. We limit our analysis to well-resolved
galaxies, which we define as those with a stellar mass above
109 h−1Me. We then make a scatter plot between the above
quantities and stellar mass from the results of both simulation
types. Finally, we take narrow bins in stellar mass and compute
the mean and standard deviation of the results for the
considered quantity.
The above procedure is slightly different from the treatment

we have been using for the paired fixed simulations. For all the
quantities considered so far in this work, we have estimated
the value for the paired fixed realization as the average between
the results within each pair. Here, for each paired fixed realization
we just create the scatter plot and compute mean and standard
deviation values for all galaxies (in a mass bin) together, without
separating first between each simulation in the pair. This is
because there is no way to pair individual objects for taking an
average; indeed, individual halos become voids in their paired
partner (Pontzen et al. 2016).
We show the results of this analysis in Figure 10. From the

first panels we can see that the agreement between the results of
both simulation types is very good, as in all the other quantities

Figure 10. Impact of paired fixed simulations on internal galaxy properties. We show star formation rate (top left), radius (top middle), black hole mass (top right),
maximum circular velocity (bottom left), and metallicity of star-forming gas (bottom right) as a function of stellar mass. Paired fixed simulations do not reduce the
intrinsic physical scatter in these quantities, and they do not introduce a bias on them. Galaxies in paired fixed simulations look thus completely normal.
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considered in this work. From the second panels we can see
that paired fixed simulations do not introduce a bias on any of
the studied internal galaxy properties. We have estimated the
error on the difference of the means through Equation (14), but
using the number of points in standard and paired fixed
simulations in each bin as the value of Ns and Npf, respectively.

The third panels show the ratio between the intrinsic scatter
from each simulation type. Since the distribution of some of
those properties is highly non-Gaussian, e.g., the distribution of
star formation rates at fixed stellar mass, using Equation (18)
with Ns and Npf being the number of standard and paired fixed
points in the scatter plot, respectively, will underestimate the
errors on the ratio of the standard deviations. To avoid that, we
have computed the errors on the ratio using bootstrap: for each
studied quantity, we have created 15,000 bootstrap catalogs.
For each catalog we have computed the ratio between the
standard deviation of the standard and paired fixed simulations.
Finally, we compute the standard deviation of the results from
the previous step to get an estimate of the error on the standard
deviation ratio from the whole sample. We create bootstrap
catalogs by randomly subsampling, with replacement, the
initial catalogs from the standard and paired fixed simulations.

The errors we obtain using this procedure are very similar to
the ones we derive through Equation (18) for the radii, black
hole mass, and maximum circular velocity versus stellar mass
quantities, but very different for the star formation rate versus
stellar mass.

We find that paired fixed simulations exhibit the same scatter on
the considered quantities as standard simulations. In this case, this
is precisely what we want, because the scatter on those quantities is
due to internal physical processes and not to sample variance. We
note, however, that we find a significantly lower scatter in the
standard simulations for the star formation rate versus stellar mass
of galaxies with stellar masses ;1011 h−1Me. In that case, the
ratio between the standard deviations is different from 1 at ;3.5σ.
Although the probability of having a point with such low standard
deviation ratio is pretty low (under the assumption that the variance
of standard and paired fixed is the same), we believe that it is not
completely unreasonable given the large number of quantities
considered. More simulations are, however, needed to disentangle
whether this is a statistical fluctuation or pointing toward an
increase in the scatter in paired fixed simulations.

We thus conclude that galaxies in paired fixed simulations
look very much like those in standard simulations. We find no
evidence that paired fixed simulations introduce a bias, and
they do not reduce the internal physical scatter on their internal
properties.

7. Improving One-point Statistics

So far we have seen that while paired fixed simulations can
greatly reduce the sample variance in the power spectra, they
have little to no effect on one-point statistics like the matter
density pdf. The fact that amplitude fixing only works for the
power spectra is not that surprising, since that procedure was
designed to carefully tune complex amplitudes in Fourier space
while letting the phases stay random. However, this clean
separation between amplitudes and phases only exists in
Fourier space. Other bases can be expressed as combinations of
many different Fourier modes, and as we have seen (Figure 4),
mixing the amplitudes of fixed modes undoes the fixing.
However, just like amplitude fixing is an operation designed

to minimize sample variance in the power spectrum, we could
construct different operations to minimize sample variance in
other observables. For example, we could optimize for low
sample variance in the initial one-point function of the density
field by replacing the value in each grid cell with the value
from the theoretical initial one-point function at that cellʼs
quantile: if there are a total of n cells in the initial mass field,
then the value of the cell with the kth largest value (counting
from 0) would be replaced by the theoretical cumulative
distributionʼs [(2k + 1)/(2n)]th quantile (see the left panel of
Figure 11).
We can call this operation CDF fixing, and it does eliminate

the sample variance in the pdf of the density field in the initial
conditions. Furthermore, since amplitude fixing and CDF
fixing are defined in very different spaces, it turns out to be
possible to perform both at the same time to high accuracy. A
simple algorithm that achieves this is to iterate between fixing
amplitudes in Fourier space and fixing the CDF in real space
(see the middle and right panels of Figure 11).
In the same way that amplitude fixing for the power

spectrum works as long as Fourier modes do not mix, CDF
fixing works as long as real-space cells do not mix. Both

Figure 11. Middle and right: approximate CDF fixing and amplitude fixing can be applied at the same time by iteratively CDF fixing and amplitude fixing the same
field. This is shown here for a simple Gaussian field with a truncated power-law power spectrum. The PDF (middle) and power spectrum (right) are shown in red, with
corresponding standard deviations shown in green (before fixing) and blue (after fixing). Joint fixing results in a large reduction in the standard deviation of both
statistics, with the largest improvement in the one that was last in the iteration scheme, in this case the power spectrum.
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conditions are fulfilled under linear evolution, but once
nonlinear effects appear, CDF fixing breaks down much more
quickly than amplitude fixing. This happens because while
nonlinear effects are relatively localized in Fourier space (they
are most important at small scales), they occur practically
everywhere in real space. Soon after nonlinear effects become
important, all cells would start mixing, and the careful tuning of
quantiles needed to cancel sample variance in the pdf would
be lost.

Moreover, the reduction of the one-point function sample
variance only happens for the exact set of cells it was defined
for. Changing the resolution, or even just applying a noninteger
displacement in position to the cells, will lead to destructive
mixing. For example, if we optimize the pdf at a given grid size
but measure it after downsampling to half resolution, the pixel
mixing inherent in this operation completely destroys the
sample variance cancellation. This is shown in Figure 12.

For the halo and void radius functions the problem is even
worse, as the location and size of each halo and void are not
known at the outset, preventing us from tuning the volumes
that will end up as halos or voids to have reduced variance.
And as we have seen, the tuning needs to exactly match the
position and size of the objects we care about for there to be
any effect. For example, simply tuning the pdf will not help, as
each halo and void is a combination of multiple cells.

We conclude that while we can generate initial conditions
with highly suppressed sample variance in the power spectrum,
the corresponding operation for the matter density pdf is too
fragile for practical use and would not survive even a small
amount of nonlinearities and mode mixing. Even if such an
operation were possible, we believe that it would not improve
any other one-point statistics like the halo and void radius

functions owing to the locality and nonlinearity involved in the
formation of those objects and the highly nonlinear mode
mixing involved thereby.

8. Discussion and Conclusions

Numerical simulations are an invaluable tool for under-
standing a large variety of processes such as the nonlinear
growth of matter perturbations, the abundance of halos, and the
formation and evolution of galaxies. The most powerful way to
extract information from cosmological surveys will be to
contrast observations with theoretical predictions from
simulations.
The initial conditions of cosmological simulations are

usually generated from Gaussian fields. The reason is that
cosmic microwave background observations have shown that
the temperature fluctuations in the early universe can be very
accurately described by Gaussian fields (Planck Collaboration
et al. 2016a, 2016b), whose properties are completely
determined by their power spectra. The Fourier modes of a
Gaussian field can be written as d = q( )k Aei , where A follows
the Rayleigh distribution of Equation (5) and θ is a random
variable with a uniform distribution between 0 and 2π.
Running simulations with initial conditions generated from

Gaussian fields gives rise to sample variance, i.e.,statistical
fluctuations arising from the fact that the mode distribution is
not fully sampled. That problem is particularly important on
scales approaching the box size, where only a few modes are
sampled by simulations. To evaluate the likelihood and
compute posteriors, the theoretical prediction should be free
of statistical fluctuations. For this reason, many simulations are
needed to beat down sample variance.

Figure 12. Left: CDF fixing is a nonlocal operation that only applies to a specific basis. This is an example of how a sample-variance-free CDF-fixed simulation
completely loses its whiteness after being downsampled to half its original resolution. An 8×8 pixel white Gaussian field was simulated and CDF fixed, resulting in
the sample-variance-free CDF shown in red. It was then downsampled to 4×4 via simple nearest-neighbor averaging. The blue points show the CDF of the
downsampled field, and the horizontal blue lines show their deviation from the theoretical CDF. No trace of the fixing remains. Any operation or change in basis that
mixes voxel values will have this effect, making CDF fixing very fragile. Right: a field can be approximately CDF fixed on multiple length scales at the same time by
iteratively CDF fixing each scale. Here a 1024 × 1024 density field was CDF fixed at full resolution (downsampling factor of 1) and five power-of-two reductions in
resolution (2, 4, 8, 16, 32). The variance was then measured on these scales, as well as several intermediate scales. Donwsampling was done using Fourier space
truncation. The scales that were explicitly CDF fixed have reduced standard deviation, but almost no benefit is seen at any other length scale.
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Fixed fields (see, e.g., Viel et al. 2010) are those with
d = q( )k Aei , where A takes a fixed value as specified by
Equation (8) and θ is a random variable with a uniform
distribution between 0 and 2π. The properties of those fields are
that they share the same power spectrum of Gaussian fields but
they do not exhibit any scatter around it.

Paired fixed fields consist of two fixed fields d = q( )k Aei
1 ,

d d= = -q p+( ) ( )( )k kAei
2 1 , where the values of A and θ are
the same in both. In Angulo & Pontzen (2016) it was shown
that if simulations are run with initial conditions generated
from those fields, large reductions on the sample variance
amplitude of several important quantities can be achieved. The
fixing serves to prevent sample variance in the linear
amplitudes, while the pairing allows us to cancel some of the
leading-order effects of phase correlations on nonlinear
evolution in a finite box.

In this work we have further explored the properties of
paired fixed fields by quantifying (1) the sample variance
reduction achieved and (2) the bias introduced by paired fixed
simulations with respect to standard simulations. We have
carried out our analysis by using a large set of N-body (600)
and state-of-the-art magnetohydrodynamic (506) simulations.
Our simulations cover a wide range of scales, as well as mass
and spatial resolutions, hence allowing us to investigate the
statistical properties of paired fixed simulations in many
different setups. We have analyzed the impact of paired fixed
simulations in many different quantities: matter, CDM, gas,
stars, galaxies, magnetic field, halo, and halo–matter power
spectra, matter density field pdf’s, void radius function, halo
mass function, star formation rate history, stellar mass function,
and internal galaxy properties such as black hole mass or
galactic radii.

We now enumerate the main conclusions of this work. A
summary the impact of paired fixed simulations on different
statistics is shown in Table 2.

1. We find that paired fixed fields do not introduce a bias,
with respect to standard Gaussian fields, on any of the
quantities we have investigated in this paper. This is not
an absolute statement. It may be that paired fixed
simulations introduce a bias, but its magnitude has to
be small since we do not find it with our rather large
simulation set.

2. Paired fixed simulations reduce the scatter on the power
spectrum of matter, halos, halo–matter, CDM, gas, stars,
galaxies, and magnetic fields. The scatter reduction
depends primarily on scale, with the variance on large
scales being much more suppressed than on small scales.

3. Paired fixed simulations do not reduce the scatter on the
halo bias. The linear-order explanation is that the variance
on the halo bias is due to the amplitude of the shot noise,
which is the same in standard and paired fixed
simulations.

4. For large box sizes paired fixed simulations do not reduce
the variance of the matter density pdf or the halo and void
radius functions. For the matter density pdf, we find no
improvement already in the initial conditions. Pairing has
no effect because it simply mirrors the pdf around δ=0,
and there is no special connection between points with
values δ=+a and δ=−a in a simulation. Amplitude
fixing has no effect either on the pdf since it is defined in
real space, where the Fourier amplitudes and phases are
scrambled.

5. For small boxes we find a small, statistically significant
improvement on the matter density pdf and the halo mass
function, but not on the void radius function. This may be
due to a small reduction of the sample variance amplitude
on the matter density pdf of those simulations that is
already present in the initial conditions.

6. We find that paired fixed simulations do not reduce the
scatter on the stellar mass function, while they seem to
marginally improve it on the star formation rate history.
We think that this follows as a result of the locality of the
relevant physics.

7. Galaxies in paired fixed simulations look completely
normal. We do not find any bias among the several
intrinsic quantities, such as radii, black hole mass, star
formation rate, metallicity, maximum circular velocity,
and stellar mass, that we have investigated. The intrinsic,
physical scatter on those quantities is not reduced by
paired fixed simulations.

8. We have shown that procedures aiming at fixing the
matter density pdf in the initial conditions are very
fragile, and it seems almost impossible to fix the pdf on
all possible scales. We thus conclude that it is unlikely
that general operations performed in the initial conditions
can be used to reduce the sample variance associated with
statistics like the matter density pdf or the halo and void
radius functions.

From the above results we can derive two further conclu-
sions. First, let us recall that the values of parts of the
trispectrum and higher-order moments are expected to be
different in standard and fixed simulations. But we do not see
any biases in any of our measured quantities. This suggests that
the perturbation theory argument of Angulo & Pontzen (2016)
—that the modifications do not propagate to observables except
in a very specific, measure-zero subset—seems to hold even in
highly nonlinear regimes.
The second conclusion is that, since paired fixed simulations

help in reducing the scatter of clustering-related quantities
while they do not improve the statistics of one-point quantities
(or improve them marginally), we believe that the two
quantities cannot be very correlated. If they were, we would
have expected that as we reduce the scatter in one, the other
should also be affected by it. We thus believe that the
information embedded in clustering and one-point statistics
should be highly complementary. While this is not surprising
(see, e.g., Schaan et al. 2014), our conclusions arise from a
completely different methodology than more traditional
methods.
This paper constitutes an empirical confirmation of the

benefits brought about by paired fixed simulations. We believe
that upcoming large box size hydrodynamic simulations can
highly benefit by being run with initial conditions from paired
fixed fields. Since a paired fixed simulation requires running
two simulations, the computational cost doubles with respect to
a standard simulation. If that is computationally too expensive,
one can run a single fixed simulation, which will bring a large
fraction of the paired fixed simulation benefits at no extra cost.

We thank the referee, Pierluigi Monaco, for his very
constructive report that has helped us to improve the quality
of this work. This work has made extensive use of the python
PYLIANS libraries, publicly available at https://github.com/
franciscovillaescusa/Pylians. The simulations have been run in
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Table 2
Summary of the Main Findings of This Work

Simulation Ns Npf Statistics Redshift Bias? Max(σs/σf) Max(σs/σpf) Corresponding
Set Figures

N1000 100 100 Pmm(k) 99 no 1,169.0 136,821.0 2

5 no 176.9 1,464.1 3

1 no 80.0 1,472.4 3

0 no 49.6 1,187.4 3

Phm(k) 0 no 6.3 7.3 3

Phh(k) 0 no 3.2 3.5 3

Phm(k)/Pmm(k) 0 no 1.3 1.6 5

Matter pdf 99 no 1.4 1.4 2

0 no 1.3 1.3 5

Halo mass function 0 no 1.3 1.3 5

Void radius function 0 no 1.2 1.3 5

H200 30 25 Pmm(k) 5 no 31.2 771.9 6

1 no 10.8 87.1 6

0 no 6.9 34.0 6

Pcc(k) 5 no? 31.3 761.0 6

1 no? 10.9 92.0 6

0 no 7.0 34.3 6

Pgg(k) 5 no? 37.2 426.3 6

1 no 16.0 59.0 6

0 no 8.8 29.3 6

H20 250 100 Pmm(k) 5 no 5.9 25.4 8

1 no 2.3 4.1 8

0 no 1.8 2.6 8

Pgg(k) 5 no 6.3 23.9 8

1 no 2.4 4.3 8

0 no 1.8 2.7 8

Pss(k) 0 no 1.8 2.1 8

Pgal(k) 0 no 1.8 2.3 8

PB(k) 0 no 1.6 2.1 8

Phm(k) 0 no 1.9 2.5 8

Halo mass function 0 no 1.7 1.8 9

Void radius function 0 no 1.4 1.6 9

Matter pdf 99 no 1.5 1.6 7

0 no 1.6 2.2 9

Stellar mass function 0 no 1.2 1.2 9

Star formation rate history [0–15] no 1.5 1.7 9

Star formation rate versus stellar mass 0 no L 1.4 10

Radius versus stellar mass 0 no L 1.2 10

Black hole mass versus stellar mass 0 no L 1.2 10

21

The Astrophysical Journal, 867:137 (24pp), 2018 November 10 Villaescusa-Navarro et al.



the Gordon cluster at the San Diego Supercomputer Center.
The work of F.V.-N., S.N., S.G., L.A., N.B., and D.N.S. is
supported by the Simons Foundation. A.P. is funded by the
Royal Society. This work was partially enabled by funding
from the UCL Cosmoparticle Initiative.

Appendix A
Variance of Paired Fixed Simulations

In this appendix we derive Equation (15) and discuss the
different origins of the statistical improvement of paired fixed
simulations over traditional simulations for any generic
quantity.

Suppose we are considering a quantity, Xs, e.g.,the
amplitude of the power spectrum at a given wavenumber k,
or the halo mass function at massM, from standard simulations,
with a variance given by

s = á - ñ = á ñ -( ¯ ) ¯ ( )X X X X , 21s
2

s s
2

s
2

s
2

where = á ñX̄ Xs s . Now consider the same quantity but
estimated through the paired fixed simulations

= +( ) ( )X X X
1

2
, 22pf pf,1 pf,2

where Xpf,1 and Xpf,2 are the values of X from the two pairs of a
paired fixed simulation. The variance of Xpf is given by
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where = á - - ñ( ¯ )( ¯ )X X X Xcov12 pf,1 pf,1 pf,2 pf,2 . Finally, since
the variance of the two pairs from the paired fixed simulations
is the same, s s s= =pf,1 pf,2 f , we obtain

s s=
+⎜ ⎟⎛

⎝
⎞
⎠ ( )r1

2
, 26pf

2
f
2

where the cross-correlation coefficient r is defined as
s=r cov12 f

2, and it satisfies  - r1 1. We note that the
variance of each individual pair within paired fixed simulations

is, by definition, equivalent to the variance of individual fixed
simulations. This is why we write σf above. It is interesting to
consider some limiting situations:

1. The two sets of simulations of paired fixed simulations
are independent, r=0, and their variance is the same as
in standard simulations, s s=s f . In this case, statistical
improvement of the paired fixed Gaussian simulations
will be just s s= 2pf s . In this situation, the variance
reduction arises simply because in the paired fixed
simulations the quantity considered is estimated using
two independent realizations instead of one.

2. The two sets of simulations of paired fixed simulations
are completely correlated, r=1, and the variance of each
set is the same as in standard simulations, s s=s f . In this
case no improvement is achieved by the paired fixed
simulations: σpf=σs. This corresponds to a situation
where the two paired fixed simulations are equivalent to
one, e.g.,the second is the same as the first, and therefore
no improvement can be achieved.

3. The two sets of simulations of paired fixed simulations
are completely anticorrelated, r=−1. In this case, the
variance of the paired fixed simulations will be 0,
independently of the variance of each pair, σf. The
interpretation of this situation is that since the two
simulations in each pair are completely anticorrelated, if
Xpf,1 increases its value Xpf,2 will decrease, such that

+X Xpf,1 pf,2 will be kept constant.
4. The variance of each set of paired fixed simulations is

lower than the variance of the standard simulations,
s s<f

2
s
2. In this case, even if the two paired fixed

simulations are completely correlated, there will be a
statistical improvement. This happens simply because
even if the two pairs are completely correlated, i.e.,only
one independent realization is available, its variance is
lower than that of a standard simulation. We note that this
case applies to fixed simulations as well.

From the above arguments we see that, in most situations,
paired fixed simulations will perform better than standard
simulations by a factor of at least 1 2 . This arises because
each paired fixed realization contains two simulations while
fixed or standard does only one. In order to avoid that artificial
improvement, and to be able to carry out a fair comparison, in
this paper we work with the normalized variance, defined as

Table 2
(Continued)

Simulation Ns Npf Statistics Redshift Bias? Max(σs/σf) Max(σs/σpf) Corresponding
Set Figures

Vmax versus stellar mass 0 no L 1.1 10

Metallicity versus stellar mass 0 no L 1.2 10

Note.The first column indicates the simulation set used to carry out the analysis. The first letter indicates whether it is from N-body (N) or hydrodynamic (N)
simulations, while the following number represents the simulation box size in h−1 Mpc. The second and third columns show the numbers of standard and pairs of fixed
simulations composing each set, respectively. The fourth column represents the statistic considered, and its redshift is shown in the fifth column. The sixth column
indicates whether we find that paired fixed simulations introduce a bias on the considered quantity with respect to standard simulations. The maximum reduction on
the standard deviation from standard simulations achieved by fixed and paired fixed simulations is shown in the seventh and eighth columns, respectively. The relative
error on those values is given by +N N0.5 2 2s pf . For galaxy properties (last five rows) we estimated the errors through bootstrap, finding that paired fixed
simulations do not reduce the intrinsic scatter on galaxy properties. Finally, the ninth column shows the corresponding figure where we plot our results for the
considered quantity. We note that for the matter density pdf we find larger reductions on the scatter of standard simulations, but we do not quote them, as they are due
to statistical fluctuations.
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the variance per number of simulations. In that case, we can
express the normalized variance of paired fixed simulations as

s s= +( ) ( )r1 . 27pf
2

f
2

This is the expression we have used along the text. It is
interesting to relate the different pieces of Equation (27) to the
properties of the paired fixed fields. On the one hand, a fixed
field is expected to have different variance from a standard
Gaussian field. Thus, the improvement of the fixed fields will
arise from σf in Equation (27). On the other hand, the two
simulations in a pair, independently of whether they are from
pair simulations or paired fixed simulations, will contribute to
the variance through r. We, however, emphasize that the value
of r will, in general, be different for paired and paired fixed
simulations. Thus, the correct interpretation of the (1 + r)
factor is the statistical improvement brought by pairing (for
paired simulations) or by pairing once the amplitude is fixed
(for paired fixed simulations).

In other words, for paired simulations σf=σs and any
statistical improvement arises solely from r. For fixed
simulations the statistical improvement comes through σf,
while for paired fixed simulations the improvement comes from
both, by fixing the amplitude through σf and by pairing, once
fixed, through the value of r.

Appendix B
Variance of the Ratio

Here we derive the expression we use to compute the
variance of the ratio of two quantities. In general, given two
random variables X and Y, the distribution of their ratio
Z=Y/X cannot be expressed analytically. We now derive a
well-known expression for the variance of the ratio, making
the assumption that the variances of both X and Y are smaller
than their mean values. Given two random variables, X and Y,
with means and variances given by

s

s

=á ñ = á - ñ

= á ñ = á - ñ

¯ ( ¯ )
¯ ( ¯)

X X X X

Y Y Y Y ,
x

y

2 2

2 2

we can Taylor-expand any function of them, Z=f (X,Y),
around the mean as
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At leading order, the mean of Z will be given by =¯ ( ¯ ¯ )Z f X Y, ,
while its variance
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where r is the cross-correlation coefficient between X and Y. In
the case where Z=Y/X we obtain
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We can finally express the above quantity as
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For b=Phm(k)/Pmm(k) the above expression reduces to
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where we have used the fact that at linear order (see, e.g.,
Smith 2009)
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where N(k) is the number of independent modes in the interval
+[ ]k k dk, where the different power spectra are measured and

Phh(k) is the halo power spectrum, which includes both the
cosmological signal and the shot-noise term

= + -( ) ( ) ¯ ( )P k P k n , 37hh hh
cosmo 1

where n̄ is the mean number density of halos.
We can also use Equation (32) to compute the error on the

ratio between the standard deviation of standard and paired
fixed simulations. Let us first compute the variance of

s s=r2
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where ss
2

s
2 and ss

2
pf
2 denote the variance on the standard and

paired fixed simulations, respectively. Under the assumption
that data are Gaussian distributed, the quantity å -= ( ¯ )X Xi

N
1

2

follows a c2 distribution with N degrees of freedom. Thus, the
variance of the variance is given by s s=

s
N22 4

2 , and we
obtain
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We are, however, interested in the variance of the standard
deviations, i.e., sr

2. By using the above Taylor expansion, we
obtain s s= r4

r r
2 2 2

2 ; thus, the standard deviation of the standard
deviation ratio is given by

s
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