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Abstract 

 
FOXP3 controls the development and function of T regulatory cells (Tregs). Autoimmunity is 

linked to changes in FOXP3 activity that can occur at multiple levels and lead to Treg 

dysfunction. For example, changes in IL-2 signaling, FOXP3 transcription and/or post-

translational modification can all contribute to loss of self-tolerance. As additional pathways 

of FOXP3 regulation are elucidated, new therapeutic approaches to increase Treg activity 

either by cell therapy or pharmacological intervention are being tested. Early success from 

pioneering studies of Treg-based therapy in transplantation has promoted the undertaking of 

similar studies in autoimmunity, with emerging evidence for the effectiveness of these 

approaches, particularly in the context of type 1 diabetes.  

 

Highlights  
 

x Dysregulation of FOXP3 expression can occur at multiple levels in autoimmunity  
x Autoimmune SNPs diminish IL-2 sensitivity and FOXP3, resulting in impaired 

Tregs  
x Splicing, posttranslational modification, and subcellular localization regulate 

FOXP3  
x Many new Treg-targeted therapies are being tested in autoimmunity  
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Introduction  

Forkhead box protein 3 (FOXP3) is the master transcription factor for CD4+ regulatory T 

cells (Tregs) [1], a cell type that plays a critical role in immune regulation. The essential role 

of FOXP3 and Tregs in autoimmunity was discovered through studies of humans with 

immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome and the 

scurfy mouse model [2]. IPEX patients and scurfy mice have monogenic mutations in 

FOXP3 causing absent or poorly functional FOXP3 protein, a lack of normal Tregs, and the 

consequent development of multi-system autoimmunity [2]. 

 

Following these seminal studies in primary immunodeficiencies, many groups investigated 

whether changes in FOXP3 and associated changes in Treg numbers or function might also 

underlie the common polygenic forms of autoimmunity. Indeed there is now ample evidence 

that FOXP3 can be dysregulated in many ways, leading to altered Tregs that initiate and/or 

perpetuate autoimmunity. Here we review advances made in our understanding of how 

FOXP3 regulates autoimmunity, focussing on research in humans in the past 2 years 

addressing two main questions: 1) How is FOXP3 dysregulated in autoimmunity? and 2) 

How can FOXP3 be therapeutically targeted to treat autoimmunity?  

 

1. How is FOXP3 dysregulated in autoimmunity? 

Autoimmunity is clearly associated with changes in the proportion and/or function of 

FOXP3-expressing Tregs [3], but there is no dominant mechanism driving these changes. 

Rather, factors affecting Treg function range from the effects of genetics, to changes in 

FOXP3-promoting signaling pathways, FOXP3 mRNA expression, or protein modification, 

summarized in Figure 1. Autoimmunity may be driven by one or more of these mechanisms, 

ultimately resulting in disrupted balance between Tregs and pathogenic conventional T cells 
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(Tconvs).   

 

Genomic regulation of FOXP3 expression 

In addition to loss-of-function mutations leading to IPEX [2], multiple single nucleotide 

polymorphisms (SNPs) located in coding or non-coding regions of genes important for 

FOXP3 are associated with autoimmunity [4,5]. Multiple different SNPs in putative 

regulatory regions of FOXP3 are present in children with autoimmunity, allergy or both. 

Interestingly, children suffering from both autoimmunity and allergy had a distinct genetic 

profile, with a high prevalence of the 7340C>T SNP, located in the 3’ untranslated region of 

FOXP3 which could affect mRNA stability [4]. Epigenetic modifications, particularly in the 

Treg specific demethylated region (TSDR, also known as CNS2) [6], also influence FOXP3; 

however this topic has been comprehensively reviewed [6,7], and will not be further 

discussed here. 

  

In addition to SNPs in FOXP3 itself, SNPs in three other loci indirectly affect FOXP3 

expression and are associated with autoimmunity: IL2RA (CD25), PTPN2 and PTPN22 [5,8-

12]. All three genes are involved in regulating responses to IL-2, an essential paracrine 

survival cytokine for Tregs that stimulates a positive feedback loop for STAT5-regulated 

FOXP3 expression. For example, a Type 1 Diabetes (T1D) associated SNP in PTPN2 results 

in reduced IL-2-stimulated activation of STAT5 [9], leading to low FOXP3 protein and 

reduced Treg suppression in conditions of limited IL-2 availability. A similar phenotype of 

reduced STAT5, low FOXP3 and impaired suppression, is linked to SNPs in IL2RA in 

patients with Primary Sclerosing Cholangitis [11], T1D, and Multiple Sclerosis (MS) [12]. 

This diminished FOXP3 expression could underlie the finding that T1D Tregs have 

diminished production of CCL3 and CCL4, two chemokines that are trans-activated by 
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FOXP3 and are crucial for Treg function [13]. 

 

Polymorphisms of PTPN22 affect multiple signaling pathways [14], including those 

modulating sensitivity to IL-2 [15], but its role in controlling the strength of TCR activation 

may be most critical for FOXP3 function. Diminished PTPN22 expression limits Treg 

differentiation in strong TCR activation conditions, but enhances FOXP3 expression with 

weak TCR activation [16]. This finding may explain the controversy surrounding whether 

PTPN22 SNPs are “good” or “bad” for Tconvs versus Tregs, since experimental results 

would vary significantly depending on TCR stimulation strength. Changes in regulation of 

TCR signal strength may also be related to the observed requirement for persistent self-

antigen and low ERK activity to preserve Tregs in target tissues [17]. 

 

It is worth noting that several causal autoimmunity-associated SNPs map to enhancer and 

super-enhancer-like regions of the genome and are often near, but not within, transcription 

factor binding sites [8]. Only 10–20% of these noncoding SNPs alter a known transcription 

factor target motif, indicating that more research is needed to understand how these alleles 

affect enhancer activity. Since FOXP3 contributes to transcriptional architecture organization 

[18], it would be of interest to determine whether SNPs in these enhancers interfere with 

FOXP3-mediated control of short or long-ranging chromosome interactions, and thus affect 

Treg function.  

 

Regulation of FOXP3 mRNA and protein expression  

Tregs are typically enumerated by measuring FOXP3 protein levels at a given time point, but 

often overlooked are changes in FOXP3 mRNA splicing and half-life, which have major 

affects on its function [1,3]. An intriguing study reported that expression of the two main 
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FOXP3 splice variants in humans (FOXP3a, the full-length isoform equivalent to mouse 

Foxp3) and FOXP3b (which lacks exon 2 and has diminished repressive activity) is regulated 

by metabolism [19]. Inhibitors of glycolysis or fatty acid oxidation blocked TCR-induced 

FOXP3 expression and acquisition of suppressive function by Tconvs. Moreover, impaired in 

vitro induction of Tregs from patients with MS or T1D was associated with low glycolysis 

and low expression of FOXP3a. Mechanistically, glycolysis inhibition caused increased 

binding of enolase 1 to the FOXP3 promoter and TSDR region, inhibiting transcription. The 

same group showed that ex vivo human Tregs express higher levels of various glycolytic 

enzymes [20], further supporting a role for glycolysis in human Tregs. These findings in 

human Tregs are contradictory to multiple studies in mice reporting that Tregs preferentially 

use fatty acid oxidation as an energy source [21]. However, it is important to note that all 

these studies in mice have used in vitro differentiated Tregs, which may not be fully lineage 

committed. Moreover, Tregs and Tconvs have different kinetics of proliferation; this is a 

major confounding factor limiting data interpretation since glycolysis activity changes 

profoundly depending on the rate of cell division. More studies of metabolism using ex vivo 

human Tregs that are controlled for measures of cell division are needed to fully understand 

the impact of glycolysis on FOXP3 expression and Treg function.  

 

Micro RNAs (miRNAs) also regulate FOXP3 mRNA by binding, cleaving, destabilizing 

and/or targeting them to stress granules [22]. Activated naïve Tregs from subjects at risk for 

T1D have increased levels of miR-26a [23], which indirectly impairs FOXP3 function by 

decreasing expression of EZH2, a histone methyltransferase responsible for repressive 

epigenetic modifications. Normally FOXP3 and EZH2 associate, leading to repressive 

methylation at FOXP3-regulated loci [24]; this activity is lost when there is increased miR-

26a-induced degradation of EZH2. Accordingly, EZH2-deficient mouse Tregs cannot control 
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autoimmunity and have defects in FOXP3-mediated gene-expression [25]. 

 

In the context of inflammation, maintenance of FOXP3 protein expression is crucial for 

sustained tolerance. In Juvenile Idiopathic Arthritis (JIA) affected joints contain Tregs with 

high CD25 expression, a demethylated TSDR as well as suppressive function in vitro, yet 

these Tregs express low levels of FOXP3 [26]. These FOXP3lo Tregs have impaired IL-2R 

signaling, as judged by low pSTAT5, which is known to reduce FOXP3 mRNA and thus 

impairs the necessary renewal of at least 50% of FOXP3 proteins every ~10 min. [27]. As 

discussed below, this constant need for IL-2 signaling forms the basis for a variety of 

therapies currently being tested in autoimmunity.  

 

In contrast to STAT5, STAT3 negatively regulates FOXP3 transcription by binding to a 

silencer element and reducing SMAD3 binding [28]. In psoriasis, Tregs seem to have 

heightened phosphorylated STAT3 and decreased suppressive function, possibly related to 

high levels of IL-6, IL-21 and/or IL-23 [29]. On the other hand, in vitro downregulation of 

FOXP3 protein in Tregs from JIA synovial fluid can be rescued by IL-6R-stimulated STAT3 

activation [30]. Therefore depending on the context and activity of other signalling pathways, 

STAT3 may have positive or negative effects on Tregs. 

 

Regulation of FOXP3 through post-translational modifications 

FOXP3 protein is regulated through phosphorylation, acetylation and ubiquitination [31]. 

Here, we focus on studies of post-translational modifications that are linked to autoimmunity. 

Acetylation of lysine residues normally stabilises FOXP3 protein expression and 

transcriptional activity; inhibition of this process by histone/protein deacetylases such as 

Sirtuin 1 (SIRT1) causes loss of FOXP3 expression and impaired Treg function [32]. SIRT1 
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polymorphisms are associated with autoimmune thyroiditis [33] and T1D [34] suggesting that 

SIRT1 could affect FOXP3 protein stability in autoimmunity. Indeed, treatment of children 

who were positive for insulin autoantibodies but non-diabetic with the SIRT1-inhibitor 

nicotinamide, prevented progression to T1D, although the mechanisms were not explored 

[35].  

 

FOXP3 can be phosphorylated on Ser, Thr or Tyr residues by cyclin-dependent kinase 2 

(CDK2) [36], lymphocyte-specific protein tyrosine kinase (Lck) [37], proto-oncogene 

serine/threonine-protein kinase (PIM)-1 [38], or PIM-2 [39]. Phosphorylation seems to 

impair FOXP3 function, leading to reduced transcriptional repression [37,38] and impaired 

Treg suppression [36,38,39]. Cytokines, such as IL-6, may modulate PIM expression [38], 

and inhibitors can reduce kinase activity [38,39]. Engineering of a phosphorylation-resistant 

version of FOXP3 [36] may open possible therapeutic strategies. In contrast, FOXP3 

dephosphorylation by protein phosphatase 1 reportedly impairs Treg function. In rheumatoid 

arthritis, high TNF-D in the synovial fluid drives PP1-mediated dephosphorylation of 

FOXP3, and this can be reversed by the anti-TNF antibody infliximab [40,41].  

 

2. How can FOXP3 be targeted in autoimmunity? 

With more than a decade of evidence that poor FOXP3 expression and Treg function causes 

or perpetuates autoimmunity, a variety of approaches to reverse these phenomena have been 

explored. The approaches are broadly classified as cellular or non-cellular treatments, with a 

combined approach likely being the most effective.  

 

Regulatory T cell therapy in autoimmunity  

Definitive evidence from mouse models shows that infusion of Tregs can prevent or treat 
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autoimmunity, so this strategy is now being tested in humans. The first reports of Treg 

therapy for autoimmunity were in the context of T1D [42]; 43]. In both studies polyclonal 

Tregs were infused, with doses ranging from 0.05-28x108 cells/Kg, with no safety concerns 

observed [43]. Tracking Tregs through 6,6-2H2 glucose labeling revealed that infused cells are 

present for at least a year, with no evidence for loss of the expected Treg phenotype [43]. 

These findings contrast to reports of Treg therapy in hematopoietic stem cell transplantation 

(HSCT) where high levels of circulating Tregs are only detected for 2 weeks [44]. The 

difference could simply be due to lack of a marker for the infused Tregs in the HSCT trials, 

but it is also possible that the viability of infused Treg is compromised in lymphopenic and 

immunosuppressed HSCT patients, who likely have minimal sources of IL-2. An open 

question is whether Treg therapy in autoimmune patients will require mild pre-conditioning 

for optimal engraftment, and/or delivery of IL-2 in parallel.  

 

It is challenging to obtain therapeutic doses of Tregs. By extrapolating data from mice, the 

therapeutic dose of polyclonal Tregs is estimated to be 3-5x109 Tregs for a 70kg patient [45]. 

The need to grow billions of cells has led to efforts to improve expansion of Tregs in vitro, 

with a general consensus that high IL-2 (>1000 U/mL) and mTOR inhibition with rapamycin 

[46] are needed to stimulate Treg division and limit Tconv outgrowth, respectively. An 

interesting effect of rapamycin is that it also inhibits the expansion of CD161-expressing 

effector Tregs, which are poised to produce IL-17 [47]. Since IL-17-expression may actually 

be beneficial in some diseases, e.g. in IBD where it plays a role in healing of wounded 

epithelial tissue [48], it may not always be desirable to expand Tregs with mTOR blockade.  

 

In addition to limiting cell numbers, polyclonal Tregs carry the risk of non-specific 

suppressive side effects. Indeed a transient increase in viral reactivations was observed in 
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HSCT patients treated with cord blood-derived Tregs [49]. To overcome limitations of 

polyclonal Tregs, methods to generate antigen-specific Tregs are being explored, including 

antigen-stimulated expansion [50], TCR transduction [51], and engineering with chimeric 

antigen receptors (CARs) [52]. All of these strategies should allow for infusion of lower 

numbers of Tregs since, at least in mice, antigen-specific Tregs are 100 fold more potent than 

polyclonal cells [53].  

  

We engineered antigen-specific Tregs by CAR-expression, and found this increased Treg 

potency without compromising phenotype or function in therapy of xenogeneic graft-versus-

host disease.[52]. Proof of concept for this approach has also been demonstrated in 

autoimmunity, with studies of CAR-expressing Tregs in mouse models of inflammatory 

bowel disease and Experimental Autoimmune Encephalomyelitis [53]. With the success of 

CAR-T cells for cancer immunotherapy, use of CARs in Tregs promises to be an exciting 

new direction in cell therapy. Indeed TxCell, a company founded on the basis of Tr1 cell 

therapy, recently announced efforts to develop CAR Tregs for Lupus Nephritis and bullous 

pemphigoid (http://www.txcell.com). 

 

In addition to therapy with ex vivo Tregs, Tconvs can be endowed with suppressive function 

by over-expressing FOXP3, or by culture with immunosuppressive cytokines such as TGF-E. 

The stability of cells arising from the latter approach, however, is unclear, with epigenetic 

analysis suggesting that these induced “iTregs” may not be stable in humans [54]. The first 

application of over-expressing FOXP3, will likely be as gene therapy for IPEX patients [2]. 

For wider application in autoimmunity, a better understanding of which aspects of Treg 

function are recapitulated by simple FOXP3 over-expression is needed [55]. 
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Non cell-based Therapies 

Because of the complexity and highly personalized nature of cell therapy, strategies to 

enhance endogenous Treg numbers and function in vivo may be preferable to cell infusion 

approaches. Protocols manipulating IL-2 availability are the most advanced in clinical 

testing, with other methods that modulate environmental factors to promote FOXP3 

expression in early stages of exploration.    

 

Targeting IL-2 signaling. The unique requirement of Tregs for exogenous IL-2, constitutive 

expression of the high affinity IL-2R, and the association with poor IL-2 response in 

autoimmunity offers an ideal target for therapeutic manipulation. Whereas high-doses of IL-2 

enhance Tconvs in vivo, low doses (1.5-3 x106 units/day) seem to specifically stimulate Treg 

survival/expansion. A trial in T1D found a dose-dependent increase in numbers of CD4+ and 

CD8+FOXP3+ Tregs, and increased CD25, GITR, CTLA-4, and pSTAT5 [56] (also 

Klatzmann et al. in this issue). Encouragingly, at the highest dose, Tconv responses against 

beta-cell antigens were suppressed in all patients, supporting the initiation of a larger phase 

IIb trial (NCT02411253). This approach has also had success in the treatment of systemic 

lupus erythematosus [57], with additional trials of low-dose IL-2 planned in rheumatoid 

arthritis (NCT02467504), relapsing remitting MS (NCT02424396) and 11 

autoimmune/autoinflammatory disorders (TRANSREG study, NCT01988506). 

 

IL-2 has a short half-life, which can be prolonged through administration of a cytokine-

antibody complex. Careful selection of the anti-IL-2 antibody can allow tailored signaling. 

For example, the JES6-1 anti-mouse IL-2 antibody lowers the affinity of IL-2 for CD25, 

favoring signaling to CD25hi Treg cells [58]. IL-2 itself can also be engineered, creating 

variants that have more or less affinity for the individual receptor chains, allowing 
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preferential stimulation of Tconvs [59] or, presumably, in the future, of Tregs.  An open 

question is whether these strategies will be feasible in humans due to high CD25 expression 

on activated human Tconvs. 

 

Alternate approaches to enhance FOXP3 in vivo. Rapamycin (sirolimus) preferentially favors 

Tregs by blocking Tconv proliferation and promoting FOXP3 mRNA expression, and is now 

commonly used as a “Treg sparing” immunosuppressant in transplantation. Its use is also 

being explored in autoimmunity, with a trial of sirolimus in multi-lineage autoimmune 

cytopenias showing rapid and long-lasting responses in a majority of children with 

autoimmune lymphoproliferative syndrome, and encouraging results in those with lupus [60]. 

Clinical trials are ongoing to test the effect of rapamycin in Crohn’s disease patients with 

stenosis (NCT02675153) or in combination with islet transplantation in T1D (NCT02505893; 

NCT00679042). 

 

As we learn more about how peripheral Tregs develop naturally, therapies that harness these 

natural processes are also being explored [61]. For example, Vitamin C can potentiate Tregs 

by regulating the activity of ten-eleven translocation (TET) enzymes, which demethylate 

Treg-specific hypomethylated regions, including the FOXP3 locus [62]. Similarly all-trans 

retinoic acid, the metabolite of vitamin A, prevents human Tregs from becoming unstable by 

increasing histone acetylation in the FOXP3 promoter and demethylation of the TSDR [63].  

 

Overall, there are many complementary strategies to enhance Tregs in vivo and it will be 

important to compare the effectiveness of these relatively simple and low cost approaches to 

the more complex and costly, but potentially more effective, cell-based therapies.     
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3. Conclusions and Perspective 

How autoimmunity is affected by changes in FOXP3 as it specifically relates to Tregs has 

been extensively studied, but it is important to note that FOXP3 also has regulatory roles in 

other immune cells. Activated CD4+ T cells express FOXP3, restraining their cytokine 

production and proliferation [64], and there are also reports of FOXP3 expression in CD8+ 

and invariant NKT cells. Whether or not autoimmunity is linked to changes in FOXP3 in 

non-Tregs is an underexplored area of investigation. Another aspect of FOXP3 that is often 

over-looked is its subcellular localization [65,66] as well as how changes in expression of 

FOXP3 isoforms with distinct regulatory functions and/or nuclear export/import sequences 

[65] are linked to autoimmunity.  

 

Cell therapy with FOXP3+ Tregs, or methods to promote them in vivo show tremendous 

promise in transplantation [44,67,68], and with the demonstrated safety of these approaches 

in autoimmunity [42,43,56], there will likely be an expansion of activity in this area. Because 

of the limitations of measuring FOXP3 expression in humans  - i.e. the inability to 

definitively identify Tregs versus activated Tconvs - an important caveat to all Treg-targeted 

therapies is the difficulty of assessing success in Treg manipulation. Ways to track the fate of 

infused, or in vivo boosted Tregs are urgently needed, to understand how long the cells live, 

where they go, and how their phenotype changes. We recently developed a biomarker test to 

measure gene expression in Tregs sorted from the blood of children, which can distinguish 

healthy Tregs from those from subjects with T1D [69]. Use of this signature or other 

approaches to track changes during Treg-targeted therapy in autoimmunity will help identify 

the best clinical approaches.  
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Figure Legend 
 
Figure 1. Layers of FOXP3 regulation. The expression and/or function of FOXP3 can be 

affected by multiple molecular mechanisms: from the genome, to the epigenome, to 

transcription, translation, and protein stability. Through understanding how expression of 

FOXP3 can be deregulated in autoimmunity, therapeutic approaches to restore normal 

FOXP3 expression and Treg function are being developed.   
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