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Abstract. Since the classification of discrete Painlevé equations in terms of rational surfaces, there has been much
interest in the range of integrable equations arising from each of the 22 surface types in Sakai’s list [1]. For all but
the most degenerate type in the list, the surfaces come in families which admit affine Weyl groups of symmetries,
translation elements of which define discrete Painlevé equations with the same number of parameters as their family of
surfaces. While non-translation elements of the symmetry group have been observed to correspond to discrete systems
of Painlevé-type through projective reduction, the resulting equations have fewer than the maximal number of free
parameters corresponding to their surface type. We show that equations with the full number of free parameters can
be constructed from non-translation elements of infinite order in the symmetry group, constructing several examples
and demonstrating their integrability. This is prompted by the study of a previously proposed discrete Painlevé
equation related to a special class of discrete analogues of surfaces of constant negative Gaussian curvature [2]. We
obtain a full-parameter generalisation of this equation from the Cremona action of a non-translation element of the

extended affine Weyl group W̃ (D
(1)
4 ) on a family of generic D

(1)
4 -surfaces.
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1. Introduction

In a seminal paper, Sakai proposed a geometric framework for the study of discrete Painlevé equa-
tions [1]. Sakai defined and classified families of surfaces generalising Okamoto’s space of initial
values for the continuous Painlevé equations [3], with discrete Painlevé equations defined in terms
of the translation part of the affine Weyl symmetry group of each family. In addition to a classifi-
cation scheme, the geometric approach offers a suite of tools for describing many apects of Painlevé
equations, as demonstrated thoroughly in an important recent survey by Kajiwara, Noumi and Ya-
mada [4]. Further, recent work (e.g. [5]) has also pointed out the value of the geometric approach
in identifying when a given system is equivalent to a known example, in which case one can make
use of known special solutions, Bäcklund transformations, etc.

It is now widely appreciated that Sakai’s scheme classifies surfaces into a finite number of types,
but does not further classify the equations belonging to each. Recently, much research has explored
the range of inequivalent discrete systems which may be associated with each of the 22 surface
types in Sakai’s list. In particular, systems proposed to be of discrete Painlevé type independently
of Sakai’s scheme being placed within the geometric framework has shed much light on the infinite
number of discrete Painlevé systems associated with each surface type. Examples include equations
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sharing the same space of initial values but corresponding to non-conjugate translations in the affine
Weyl symmetry group [6, 7], as well as elements of infinite order, though not translations, giving
rise to difference equations with finer time evolution and less free parameters through projective
reduction [8–11].

Our approach continues along these lines, in that we begin with a difference equation previ-
ously proposed as a discrete analogue of a special case of the third Painlevé equation, and place it
within the geometric framework with a view to better understanding the features of Sakai’s scheme.

The equation we consider was constructed by Hoffmann in [11], through a discrete version of
the process by which Amsler surfaces (surfaces of constant negative Gaussian curvature with two
straight asymptotic lines, studied by Bianchi [12] then Amsler [13]) are controlled by a reduction of
the sine-Gordon equation to a special case of the third Painlevé equation. The discrete analogues
of this class are known as discrete Amsler surfaces [2,14], and are related to solutions of the discrete
sine-Gordon equation [15]

Ql+1,m+1Ql,m = F (Ql+1,m)F (Ql,m+1), (1.1)

where F (x) = 1−kx
k−x , with free complex parameter k 6∈ {0,±1}. Solutions of equation (1.1)

corresponding to discrete Amsler surfaces satisfy an additional condition, which may be interpreted
as invariance under Lorentz rotations of the frame (see [2, 14] for details). Analogously to the
continuous case, in which reduction involves considering solutions of the sine-Gordon equation
along the diagonal, equation (1.1), after imposing the additional condition, gives a system which
may be iterated along a zigzag path in the (l,m)-lattice, leading to the following system of ordinary
difference equations:

Q2n+1 =

1
F (Q2n) −

Q2n−1

2n+1

Q2n−1F (Q2n)− 1
2n+1

, (1.2a)

Q2n+2 =
1

Q2n(F (Q2n+1))2
. (1.2b)

We rewrite this in terms of the variables (fn, gn) = (Q2n, Q2n−1), which gives

f̄ =
(k − ḡ)2

f(kḡ − 1)2
, (1.3a)

ḡ =
(k − f) (kfg − (2n+ 1)f − g + k(2n+ 1))

(kf − 1) (k(2n+ 1)fg − f − (2n+ 1)g + k)
, (1.3b)

where (f, g) = (fn, gn) and (f̄ , ḡ) = (fn+1, gn+1).

In what follows, we construct the space of initial values for the system (1.3), which is a family of

D
(1)
4 -surfaces with one free parameter, rather than five in the generic case. The Cremona isometry

corresponding to iteration of the system is a ‘twisted translation’: the composition of a translation in
the weight lattice and a Dynkin diagram automorphism which preserves the translation direction.
The parameter specialisation causes the action on parameter space to coincide with that of the
untwisted translation, so the system is in this sense a projective reduction, whose properties we



Discrete Painlevé systems from non-translational Cremona isometries 3

compare to previously studied examples [6, 8–11]. This prompts us to construct a generic version
(in the sense that it has the maximal number of free parameters for its surface type), for which
the action on parameter space is translational except for a permutation of parameters. We express
this explicitly as a system of difference equations, and show that it is integrable in the sense of
vanishing algebraic entropy [16]. We then show how full-parameter discrete integrable systems can
be obtained in this way from the Cremona action of elements of infinite order on a family of generic
surfaces, though they will not necessarily be difference equations of purely additive, multiplicative
or elliptic type.

1.1. Background

The continuous Painlevé equations PI-PVI are six nonlinear second-order ordinary differential equa-
tions, the study of which has become one of the cornerstones of the field of integrable systems.
Beginning in the 1990’s, important steps were made towards defining and understanding their dis-
crete analogues, through the proposal by Ramani and Grammaticos, together with Papageorgiou,
of singularity confinement [17] as the discrete counterpart to the Painlevé property. This led to
the technique of deautonomisation by singularity confinement, which when applied to the Quispel-
Roberts-Thompson (QRT) mappings [18,19] resulted in the discovery of many integrable equations
of discrete Painlevé type (see e.g. [20]).

The property of the continuous Painlevé equations that would prove most useful in formulat-
ing the theory in the discrete setting was a geometric one. Okamoto demonstrated that each of
the Painlevé equations could be associated with a family of rational surfaces obtained from CP2

through a sequence of nine blowups [3]. This was through the construction of a bundle over the
independent variable space (excluding locations of singularities of the equation) whose fibres are
rational surfaces with certain curves removed. These curves are known as inaccessible divisors, and
form the subset of each fibre on which the Painlevé vector field diverges. On the resulting bundle,
known as Okamoto’s space of initial conditions, the Painlevé equation is regularised in the sense
that the Cauchy problem for the differential equation is well-posed at every point. In particular,
the intersection configuration of the removed curves was observed to be given by a Dynkin diagram
of affine type, complementary to the one associated with the affine Weyl group of Bäcklund trans-
formation symmetries of the equation.

It was shown that Okamoto’s space essentially determines the Painlevé equation in each case
[21–23]. The curves removed from each fibre were observed to give a decomposition into irreducible
components of a representative of the anticanonical divisor class of the surface, which led to the idea
of classifying rational surfaces with such a configuration of curves via the notion of an Okamoto-
Painlevé pair [24,25]. This is a pair (S,D) of a smooth rational surface S and a representative D of
its anticanonical divisor class which is of canonical type. That is, its decomposition into irreducible
components D =

∑r
i=1miDi is such that

deg D|Di
= D ·Di = 0, for all i = 1, . . . r. (1.4)

Sakai used this idea to great effect in the formulation of discrete Painlevé equations, defining gen-
eralised Halphen surfaces of index zero as rational surfaces which have a unique representative of
the anticanonical class of canonical type [1]. Families of such surfaces admit affine Weyl group
symmetries, from which discrete Painlevé equations can be constructed in an explicit way. Further,
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the surfaces are classified into 22 types according to the intersection configuration and homology of
the irreducible components of their anticanonical divisors, which is now regarded as the definitive
classification scheme for second-order discrete systems of Painlevé type.

In the years since the publication of Sakai’s paper [1], many known discrete analogues of the
Painlevé equations have been found to fit naturally into the geometric framework. Studying exam-
ples in this way has led to a better understanding of the range of equations associated with each
surface type on the list. For example, while in Sakai’s theory discrete Painlevé equations are defined
to correspond to elements of the translation part of the symmetry group of a family of surfaces,
the degeneration from a q-discrete analogue of PIII [26] to a q-discrete PII [27] was formulated in
the geometric setting as the process of projective reduction [10], in which difference equations are
obtained from elements of infinite order which are not translations in the affine Weyl group sense,
by projecting onto an appropriate parameter subspace.

Here we will briefly recount this important example, following [10], as it will illustrate concepts
relevant to the interpretation of our results. Consider the extended affine Weyl group

W̃ ((A2 +A1)(1)) = 〈s0, s1, s2, π, w0, w1, r〉 , (1.5)

defined as in [10,28] by the fundamental relations

s2
i = (sisi+1)3 = π3 = 1, w2

0 = w2
1 = r2 = 1, (siwj)

2 = 1, (1.6a)

πsi = si+1π, w0r = rw1, (1.6b)

where i ∈ Z/3Z, j ∈ Z/2Z. In [10], Kajiwara, Nakazono and Tsuda considered a left-action of
this group by birational mappings on the field of rational functions of parameters a0, a1, a2, c, and
variables f0, f1, f2 subject to the constraint

f0f1f2 = a0a1a2c
2. (1.7)

Letting q = a0a1a2, the action of the element T1 = πs2s1 on the parameters is given by

T1. (a0, a1, a2, c) =
(
qa0, q

−1a1, a2, c
)
. (1.8)

The element T1 is a translation by a weight of the root system (A2 + A1), and its action on the
variables leads to a system of first-order q-difference equations. To be precise, this is given by
repeated iteration of the mapping

T1 :

(
a0, a1, a2

c
; f0, f1, f2

)
7→
(
qa0, q

−1a1, a2

c
;T (f0), T (f1), T (f2)

)
, (1.9)

where by letting Fn = Tn1 (f0) and Gn = Tn1 (f1), we obtain

Gn+1Gn =
qc2

Fn

1 + qna0Fn
qna0 + Fn

, Fn+1Fn =
qc2

Gn+1

1 + qna0a2Gn+1

qna0a2 +Gn+1
, (1.10)

which is a previously known q-discrete analogue of PIII [26]. We note that this equation fits Sakai’s

definition of a discrete Painlevé equation associated with a family of generic A
(1)
5 -surfaces.
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A related equation, obtained as a q-discrete analogue of PII [27], is given by

Fn+1Fn−1 =
qc2

Fn

1 + qn/2a0Fn
qn/2a0 + Fn

, (1.11)

where a0, c are free parameters, with q corresponding to the multiplicative timestep in the inde-
pendent variable. The process by which this is obtained from equation (1.10) was referred to as
symmetrisation of discrete Painlevé equations [20] after the corresponding process on the level of
QRT maps, and was found to correspond in the geometric setting to structural features of the affine
Weyl group and its birational representation [10], in a way which we now recall.

With the same birational representation of W̃ ((A2 + A1)(1)), consider the element R = π2s1,
which is regarded as a half-translation because of the identity

R2 = T1. (1.12)

The action of R on the parameters is given by

R.(a0, a1, a2, c) = (a2a0, q
−1a2a1, qa

−1
2 , c), (1.13)

which is not translational, meaning that the action on variables does not directly give a q-difference
equation as in the case of T1. However, restricting to the parameter subspace on which a2 = q1/2,
the action becomes

R.(a0, a1, c) = (q1/2a0, q
−1/2a1, c). (1.14)

With the parameter specialisation, the action of R on the variables f0, f1 is given by

R(f1) = f0, R(f0) =
qc2

f0f1

1 + a0f0

a0 + f0
, (1.15)

which, because of the translational motion in parameter space, induces the q-difference equation
(1.11), where Fn = Rn(f0), which is said to be a projective reduction of equation (1.10).

We now make some remarks about the equations (1.10) and equation (1.11), as well as the
restriction to the parameter subspace. In the language of Sakai’s theory (to be established in sec-

tion 2), the birational representation of W̃ ((A2 + A1)(1)) is the Cremona action on a family Xa

of generic A
(1)
5 -surfaces, where the parameters a = (a0, a1, a2, c) are the root variables associated

with a basis of the symmetry root lattice of the family. In particular, this means that the action
of the symmetry group W̃ ((A2 +A1)(1)) on the parameters will correspond in a natural way to its
action by Cremona isometries on the simple root basis of the symmetry lattice Q((A2 + A1)(1)).
This guarantees that a translation element of the symmetry group will give a translational motion
in parameter space with root variables as coordinates, and its action on the variables will give a
q-difference equation, as in the case of T1 giving equation (1.10).

The system (1.11), on the other hand, was constructed from the non-translation element R
acting on the subfamily of surfaces with a2 = q1/2. In the geometric framework, projective reduc-
tion refers to the process by which a difference equation is obtained from the Cremona action of a
non-translation element on a proper subfamily of a family of generic surfaces of one of the types in
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Sakai’s list, with the subfamily corresponding to a parameter subspace on which the non-translation
element in question acts by translation. In keeping with the literature [6,8,10,29], we use the term
projective reduction to refer to both this process, and the resulting equations. Further, as in the
case above, when some power of the non-translation element ϕ is a translation, say ϕm = T , we
say the equation given by ϕ with the parameter restriction is a projective reduction of the full-
parameter discrete Painlevé equation associated to T .

We note that without the restriction to the parameter subspace, the birational action of R on
parameters and variables still defines a discrete dynamical system, as R is of infinite order. The
fact that the motion in parameter space is not translational for general a means that without the
parameter constraint the system will not be given directly by a q-difference equation using these
parameters, as we will illustrate when we construct it explicitly in section 5. The fact that the
Cremona actions of non-translation elements of infinite order still give discrete integrable systems
with the full number of parameters for their surface type is the central idea of the second part of
the paper.

1.2. Outline of the paper

The paper is structured as follows. In section 2 we introduce notation and recall material from
Sakai’s theory in order to formulate rigorously our geometric treatment of equation (1.3). In
section 3 we construct its space of initial values, compute bases for the surface and symmetry root
lattices and obtain the induced Cremona isometry. We then express this Cremona isometry in
terms of generators of the extended affine Weyl group, and show that it is the composition of a Kac
translation and a Dynkin diagram automorphism. The main result of section 4 is the construction
of a generic (5-parameter) version of equation (1.3). To do this, we first introduce a 5-parameter

family of D
(1)
4 -surfaces generalising the space of initial values for equation (1.3), and obtain the

Cremona action of the extended affine Weyl group W̃ (D
(1)
4 ) on this family, from which we recover

(1.3) as a special case of a projective reduction. Next we obtain the parametrisation of this family

by root variables, through a transformation to the form of the family of generic D
(1)
4 -surfaces given

in [4]. With the root variable parametrisation, we use the Cremona action to construct a generic
version of equation (1.3), and demonstrate that it has vanishing algebraic entropy. In section 5, we
construct more examples of difference equations with the maximum number of free parameters for
their surface type from non-translation elements of infinite order in the symmetry group, which are
shown to be integrable but not directly of additive, multiplicative or elliptic type.

2. Preliminaries on the geometric framework

In this section we will introduce notation and highlight some important results in preparation for
our geometric treatment of equation (1.3). We concentrate on summarising the theory and results
of Sakai rather than providing a review of rational surfaces and affine root systems. For a more
comprehensive introduction to the background for the study of discrete Painlevé equations, we refer
the reader to one of the excellent existing treatments, e.g. [1, 4, 5, 29].
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2.1. Root system of type E
(1)
8 in the Picard group

Consider C2 with coordinates (f, g). Compactify this to P1 × P1, with f and g being local affine
coordinates in each P1-factor. Then consider the smooth projective surface X obtained by blowing
up eight (possibly infinitely near) points p1, . . . , p8 on P1 × P1.

We denote by Pic(X) the Picard group, whose elements are line bundles on X, with the group
operation being the tensor product. As X is smooth, Pic(X) is isomorphic to the divisor class
group, which is the quotient of the group Div(X) of Weil divisors by linear equivalence. Writing
operations additively, Pic(X) is a free Z-module of rank 10 given by

Pic(X) = ZHf ⊕ ZHg ⊕ ZE1 ⊕ · · · ⊕ ZE8, (2.1)

where Hf and Hg are the total transforms of divisor classes of lines of constant f and g respectively,
while Ei, i = 1, . . . , 8 are the exceptional classes arising from the eight blowups.

The intersection product on Pic(X) is the symmetric bilinear pairing given by extension of the
formulae

Hf · Hf = Hg · Hg = Hf · Ei = Hg · Ej = 0, Hf · Hg = 1, Ei · Ej = −δij , (2.2)

where i, j ∈ {1, . . . , 8}. The top wedge product of the cotangent bundle on X is the canonical
bundle, which is given in terms of generators by KX = −2Hf − 2Hg + E1 + · · · + E8. The dual of
this is the anticanonical bundle

−KX = 2Hf + 2Hg − E1 − E2 − E3 − E4 − E5 − E6 − E7 − E8, (2.3)

which corresponds to the equivalence class of the pole divisors of rational 2-forms on X.

We will be concerned with rational surfaces which admit root system structures in Pic(X). For
a root system of type R (usually referred to by its Dynkin diagram), we denote the root lattice by
Q(R), the weight lattice by P (R), and in the affine case, the null root by δ ∈ Q(R). We quote the
following observation of Sakai [1]:

Proposition 2.1. For X as above, the Picard group equipped with the negative of the intersection
pairing is isomorphic, as a free Z-module with symmetric bilinear product, to the Lorentzian lattice
of rank 10. Further, the orthogonal complement in Pic(X) of the canonical class is isomorphic to

the root lattice Q(E
(1)
8 ), with the null root δ ∈ Q(E

(1)
8 ) identified with the anticanonical class −KX .

2.2. Generalised Halphen surfaces of index zero

Sakai defined a class of complex projective surfaces generalising Okamoto’s space of initial values,
and classified such surfaces into 22 types. Sakai defined a generalised Halphen surface of index zero
to be a rational surface whose anticanonical class is effective and of dimension zero, with the unique
representative D ∈ | − KX | being of canonical type. That is, its decomposition into irreducible
components

D =
∑
i∈I

miDi, (2.4)
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is such that −KX · δi = 0 for all i, where δi = [Di] ∈ Pic(X) are the divisor classes of the
irreducible components. This definition leads to two important complementary root sublattices of

Q(E
(1)
8 ) ⊂ Pic(X), as shown by the following result of Sakai [1].

Proposition 2.2. For a generalised Halphen surface X of index zero, the irreducible components
of the unique anticanonical divisor define a basis of simple roots {δi}i∈I for an indecomposable root
system in Pic(X), with generalised Cartan matrix A = (aij) given by

aij = −δi · δj . (2.5)

This root system is of affine type, with null root identified with the anticanonical class:

δ = −KX =
∑
i∈I

miδi. (2.6)

Further, if we denote the associated root lattice by Q(R) =
⊕

i∈I Zδi ⊂ Q(E
(1)
8 ), the orthogonal

complement Q(R)⊥ ⊂ Q(E
(1)
8 ) is another root lattice Q(R⊥), which is also of affine type. The

possible pairs of complementary root systems R,R⊥ are classified according to indecomposable root

subsystems of E
(1)
8 . The possible surface root system types R are shown in Figure 1, with arrows

indicating degenerations of point configurations through which certain surface types may be obtained
from others.

A
(1)
7

A
(1)
0 A

(1)
1 A

(1)
2 A

(1)
3 A

(1)
4 A

(1)
5 A

(1)
6 A

(1)′

7 A
(1)
8

D
(1)
4 D

(1)
5 D

(1)
6 D

(1)
7 D

(1)
8

E
(1)
6 E

(1)
7 E

(1)
8

Figure 1: Surface root system type R for generalised Halphen surfaces of index zero

The classification given by Sakai of generalised Halphen surfaces of index zero is finer than
the type R of the root system defined by the components of D. By further classifying X with
unique anticanonical divisorD =

∑
imiDi according to rankH1 (

∑
iDi,Z), we differentiate between

families of surfaces whose associated discrete Painlevé equations are of elliptic, multiplicative and
additive type. The 22 possible surface types are shown in Table 1, and we refer to them by type as
R-surfaces.

Surface types can be described in terms of configurations of nine points in P2, or equivalently eight
points in P1×P1, which after blowups will give an anticanonical divisor with the required decompo-

sition. For example, the elliptic A
(1)
0 -surface may be obtained by blowing up eight points in general

position on an irreducible elliptic curve in P1×P1 of bi-degree (2, 2), with the anticanonical divisor
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Elliptic type A
(1)
0

Multiplicative type A
(1)∗
0 , A

(1)
1 , A

(1)
2 , . . . , A

(1)
7 , A

(1)′

7 , A
(1)
8

Additive type A
(1)∗∗
0 , A

(1)∗
1 , A

(1)∗
2 , D

(1)
4 , . . . , D

(1)
8

E
(1)
6 , E

(1)
7 , E

(1)
8

Table 1: Classification of generalised Halphen surfaces index zero by surface type R

given by the proper transform of the curve. The most general form of such a surface (up to Möbius
transformation in each P1-factor) has eight free parameters b1, . . . b8 controlling the locations of the
basepoints. Indeed, all but the most degenerate point configuration corresponding to surface type

E
(1)
8 involve one or more free parameters, and we call a family of R-surfaces with the maximum

number of parameters for their type a family of generic R-surfaces.

For any familyXb ofR-surfaces indexed by some list b of parameters, we may naturally identify
their Picard groups and components of their anticanonical divisors to form a single Z-module,
which we also denote Pic(X). Special automorphisms [30, 31] of this Z-module will correspond to
symmetries of the family of surfaces, which we now describe.

Definition 2.3. Let Xb be a family of R-surfaces, and let Pic(X) be the identification of the Picard
groups Pic(Xb) as above. A linear map

ϕ : Pic(X)→ Pic(X) (2.7)

is called a Cremona isometry of the family of R-surfaces if it:

(i) preserves the intersection form on Pic(X),

(ii) leaves the canonical class KX fixed,

(iii) preserves effectiveness of divisor classes.

For each surface type R, Sakai described the group Cr(X(R)) of Cremona isometries of a
family of generic R-surfaces. We quote the part of this result relevant to this paper:

Theorem 2.4. For R 6= A
(1)
6 , A

(1)
7 , A

(1)′

7 , A
(1)
8 , D

(1)
7 or D

(1)
8 , the group of Dynkin diagram

automorphisms Aut(R⊥) acts on Pic(X), and

Cr(X(R)) ∼=
(
W (R⊥) o Aut(R⊥)

)
∆nod . (2.8)

Here the right-hand side is the part of the extension by Dynkin diagram automorphisms of the affine
Weyl group of the symmetry root system R⊥ which stabilises the set ∆nod ⊂ Pic(X) of classes of
nodal curves distinct from the irreducible components of the anticanonical divisor.

Thus we have an action of W̃ (R⊥) = W (R⊥) o Aut(R⊥) on Pic(X) defined as the extension
of the usual one on the root lattice Q(R⊥), where the reflection associated to the root α ∈ R⊥ is
given by

rα(λ) = λ− 2
α · λ
α · α

α, (2.9)

where λ ∈ Pic(X), and Dynkin diagram automorphisms act on Q(R⊥) in the natural way induced
by the permutation of simple roots.
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2.3. Cremona action and discrete Painlevé equations

In Sakai’s theory, discrete Painlevé equations are constructed through a Cremona action of the
symmetry group, which realises the Cremona isometries as pullbacks of birational maps between
specific members of a family of R-surfaces. The fact that the birational maps are between differ-
ent elements of the family of surfaces is essential for obtaining non-autonomous difference equations.

The Cremona action is most conveniently described using the root variable parametrisation
of the family of generic R-surfaces, in which the parameters are associated to simple roots in
Q(R⊥) ⊂ Pic(X), as we now illustrate.

Definition 2.5. Consider a generalised Halphen surface X with unique anticanonical divisor
D =

∑
imiDi, and with surface and symmetry root systems of type R and R⊥ respectively. Let ω

be a rational 2-form on X such that div(ω) = −D, and denote Dred =
∑
iDi. Then from relative

homology of the pair (X,X −Dred) and Poincaré duality on Dred we have a short exact sequence:

0 −→ H1(Dred;Z) −→ H2(X −Dred;Z) −→ Q(R⊥) −→ 0. (2.10)

The isomorphism given by this sequence, together with the map

χ̂ : H2(X −Dred;Z)→ C,

Γ 7→
∫

Γ

ω,
(2.11)

defines the period mapping

χ : Q(R⊥)→ C mod χ̂(H1(Dred;Z)). (2.12)

In practice, we choose the rational 2-form ω according to a normalisation such that the period
mapping is a well-defined function. The kind of normalisation required depends on the rank of
H1(Dred;Z), and therefore whether the R-surface is of elliptic, multiplicative or additive type. The
period mapping allows us to construct the root variable parametrisation of a family of generic R-
surfaces. Pick a basis of simple roots {α0, . . . , αl} ⊂ Q(R⊥) and define the simple root variables
as

aj = χ(αj). (2.13)

Together with the ‘extra parameter’ corresponding to the independent variable of the continuous

Painlevé equation in the cases R = D
(1)
4 , D

(1)
5 , D

(1)
6 , D

(1)
7 , D

(1)
8 , E

(1)
6 , E

(1)
7 and E

(1)
8 , the root vari-

ables allow us to parametrise the family of generic R-surfaces.

We are now ready to describe the Cremona action of the group W̃ (R⊥). This consists of
birational maps constructed from changes of blowing-down structures of generic R-surfaces which
induce Cremona isometries through their pullbacks. Such a change of blowing-down structure
induces a change in the root variables of the surface and therefore a change in parameters in the
form of a generic R-surface, so can be regarded as a birational map between different members of
a family of surfaces. Thus the Cremona action can be described as an action of the extended affine
Weyl group W̃ (R⊥) on the parameters a = {a0, . . . , al} and local affine coordinates (f, g) for Xa,
which play the role of variables in the discrete Painlevé equations. This action defines birational
maps

w : Xa → Xw.a,

(f, g) 7→ (w.f, w.g),
(2.14)
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which give the actions of W̃ (R⊥) by Cremona isometries by their pullbacks, when the Picard groups
of the surfaces are identified with the module Pic(X).

Sakai’s discrete Painlevé equations arise from the translation part of W̃ (R⊥), which we now
describe. As R⊥ is of affine type, the root system obtained by deleting the 0th row and column
from the generalised Cartan matrix is of finite type, which we denote R⊥◦ . The affine Weyl group
W (R⊥) (not extended by the Dynkin diagram automorphisms Aut(R⊥)) can be expressed as the
semi-direct product

W (R⊥) ∼= W (R⊥◦ ) nQ(R⊥◦ ). (2.15)

The translation part of the extended affine Weyl group is identified with the weight lattice P (R⊥◦ ),
which gives Cremona isometries via Kac translations [32], according to the formula

Tv(λ) = λ− (λ · δ)v −
(

1

2
(v · v)(λ · δ)− λ · v

)
δ, (2.16)

for any λ ∈ Pic(X), where v ∈ P (R⊥◦ ) is the translation vector. We are now ready to formally
define Sakai’s discrete Painlevé equations.

Definition 2.6. A discrete Painlevé equation of surface type R is a second-order difference equation
given by the Cremona action of a Kac translation Tv, for some v ∈ P (R⊥◦ ).

In other words, we call a second-order difference equation a discrete Painlevé equation if it lifts
to a family of birational isomorphisms between R-surfaces, given by the Cremona action of a Kac
translation by an element of the weight lattice associated with the symmetry root system.

3. Space of initial values and Cremona isometry

We now give a geometric treatment of equation (1.3), beginning with the construction of its space
of initial values.

Proposition 3.1. The system (1.3) lifts to a family of birational isomorphisms

Φn : X(k,n) −→ X(k,n+1), (3.1)

where for each n ∈ Z the surface X(k,n) is obtained from P1×P1 by blowing up the points p1, . . . , p8

given in coordinates by

p1 : (f, g) = (k, 0), p5 : (u1, v1) =

(
f − k
g

, g

)
=
(
(k2 − 1)(2n+ 1), 0

)
, (3.2a)

p2 : (F,G) = (k, 0), p6 : (u2, v2) =

(
F − k
G

,G

)
=
(
(k2 − 1)(2n+ 1), 0

)
, (3.2b)

p3 : (f, g) = (0, k), p7 : (u3, v3) =

(
f

g − k
, g − k

)
= (0, 0) , (3.2c)

p4 : (F,G) = (0, k), p8 : (u4, v4) =

(
F

G− k
,G− k

)
= (0, 0) . (3.2d)
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Proof. We compactify the domain and target spaces of the forward iteration map from C2 to
P1 × P1. We cover this with charts (f, g), (F, g), (f,G) and (F,G) for the domain space, where
F = 1/f,G = 1/g, and the same charts with the overline notation for the target space. We will use
blowups to resolve the points of indeterminacy in P1 × P1 of the forward and backward mappings,
which we call basepoints by analogy with the case of linear systems of divisors. Lifting the maps
defined by iteration of the system to the blown-up surfaces, we will obtain a family of birational
isomorphisms.
Recall that in the (f, g) chart, we have the forward iteration of the system given by the mapping
(f, g) 7→ (f̄ , ḡ), where

f̄ =
(k − ḡ)2

f(kḡ − 1)2
, ḡ =

(k − f) (kfg − (2n+ 1)f − g + k(2n+ 1))

(kf − 1) (k(2n+ 1)fg − f − (2n+ 1)g + k)
, (3.3)

whereas the backward iteration is given by the inverse of this, which we write as

f =
(k − ḡ)2

f̄(kḡ − 1)2
, g =

(f − k) (kfḡ + (2n+ 1)f − ḡ − k(2n+ 1))

(kf − 1) (k(2n+ 1)fḡ + f − (2n+ 1)ḡ − k)
. (3.4)

Direct calculation shows that the indeterminacies of the forward mapping are

p1 : (f, g) = (k, 0), p2 : (F,G) = (k, 0), (3.5)

while the indeterminacies of the backward mapping are given in coordinates by

p̄3 : (f̄ , ḡ) = (0, k), p̄4 : (F̄ , Ḡ) = (0, k). (3.6)

We blow up these points in both the domain and target copies of P1 × P1. For each j = 1, . . . , 4,
the exceptional divisor Ej replacing pj in the domain space is covered by the pair of local affine
coordinate charts (uj , vj) and (Uj , Vj), with the part of the line visible in the first chart parametrised
by uj when vj = 0, and similarly in the second chart by Uj when Vj = 0. The basepoints
pj : (f, g) = (fj , gj) for j = 1, 3 are visible in the (f, g) chart, and the blowup coordinates are
defined as

uj =
f − fj
g − gj

, vj = g − gj , Uj =
g − gj
f − fj

, Vj = f − fj , (3.7)

and similarly

uj =
F − Fj
G−Gj

, vj = G−Gj , Uj =
G−Gj
F − Fj

, Vj = F − Fj , (3.8)

for the points pj : (F,G) = (Fj , Gj), for j = 2, 4.
In order to examine the image under the forward mapping of the exceptional line E1 that replaces
p1 after the blowup, we rewrite (3.3) using the chart (u1, v1) for the domain, and (f̄ , ḡ) for the
target. Direct calculation reveals another basepoint on the exceptional line E1, with the forward
mapping becoming indeterminate at

p5 : (u1, v1) =

(
f − k
g

, g

)
=
(
(k2 − 1)(2n+ 1), 0

)
. (3.9)

The corresponding point p̄5 in the target space is also an indeterminacy of the backward iteration,
which is evidenced by the following. Writing the mapping in charts (f, g) and (ū1, v̄1), we see that
f = k, g 6= 0 implies

ū1 = (k2 − 1)(2n+ 3), v̄1 = 0, (3.10)
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so the forward mapping sends the line f = k (excluding p1) to the single point p̄5 on Ē1. We blow
up this point in both the domain and target spaces too, covering the exceptional line E5 with the
affine charts (u5, v5) and (U5, V5) defined by

u5 =
u1 − (k2 − 1)(2n+ 1)

v1
, v5 = v1, (3.11a)

U5 =
v1

u1 − (k2 − 1)(2n+ 1)
, V5 = u1 − (k2 − 1)(2n+ 1). (3.11b)

Writing (3.3) in charts (f, g) and (ū5, v̄5), we see that f = k with g 6= 0 implies that

ū5 =
(k2 − 1)

(
(k2(4n+ 5)− 4(n+ 1)2)g − 4n(2n2 + 3n+ 1)k

)
kg

, v̄5 = 0, (3.12)

so we have a one-to-one correspondence under the forward mapping between the proper transform
of the line f = k in the domain surface and the exceptional line Ē5 in the target surface.
Next, we compute the image of the exceptional line E1 under the forward mapping, using the charts
(u1, v1) and (ū1, v̄1) we see that when v1 = 0 and u1 6= (k2 − 1)(2n+ 1), we have

ū1 =
(k2 − 1)

(
(k2 − 1)(2n+ 3)− (4n+ 3)u1

)
k2 − 1− (2n+ 1)u1

, v̄1 = 0. (3.13)

With similar results in the charts (U1, V1), we see that the forward mapping injects E1 (excluding
p5) into Ē1. We now examine the image of the exceptional line E5 under the forward mapping,
writing (3.3) in charts (u5, v5) and (f̄ , ḡ) then setting v5 = 0, we see that the exceptional line E5 is
mapped bijectively to the proper transform of the curve defined in the (f̄ , ḡ) chart by

kf̄(kḡ − 1)2 − (k − ḡ)2 = 0. (3.14)

We also deduce from (3.13) that the proper transforms E1−E5 and Ē1− Ē5 of the exceptional lines
arising from p1, p̄1 are in bijective correspondence under the mapping. Further, (3.12) shows that
the exceptional line Ē5 is in bijective correspondence with the proper transform Hf − E1 of the
line f = k, so we have lifted the mapping to a birational isomorphism in the neighbourhood of p1.
Calculations in the neighbourhoods of the exceptional lines E2, E3 and E4 reveal similar phenomena,
such as Hf −E2 being blown down by the forward mapping to the single point p6 ∈ E2, while under
the backward mapping Hḡ − Ē3 and Hḡ − Ē4 are blown down to p7 ∈ E3 and p8 ∈ E4 respectively.
After blowing up these points p6, p7 and p8, calculations in local coordinates similar to those above
show that the system lifts to a family of birational isomorphism as claimed.

We next show that the surfaces X(k,n) are a family of generalised Halphen surfaces of index
zero, and place them in Sakai’s classification.

Proposition 3.2. Each surface X(k,n) has a unique representative of its anticanonical class, given
by

D = D0 +D1 + 2D2 +D3 +D4, (3.15)

where the divisor classes δj = [Dj ] of the irreducible components are

δ0 = E1 − E5, δ1 = E2 − E6, δ2 = Hf +Hg − E1 − E2 − E3 − E4, (3.16a)

δ3 = E3 − E7, δ4 = E4 − E8. (3.16b)
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The divisor D is of canonical type, and X(k,n) form a family of R-surfaces with R = D
(1)
4 .

The surface root lattice is given by Q(R) = spanZ {δ0, . . . , δ4}, while the symmetry root lattice
is Q(R⊥) = spanZ {α0, . . . α4}, with the simple roots given by

α0 = Hg − E1 − E5, α1 = Hg − E2 − E6, α2 = Hf −Hg, (3.17a)

α3 = Hg − E3 − E7, α4 = Hg − E4 − E8. (3.17b)

Proof. We aim to identify irreducible divisors of X(k,n) which give the decomposition of a unique
representative D ∈ | − KX(k,n)

| = 2Hf + 2Hg − E1 − · · · − E8 ∈ Pic(X(k,n)). We first note that
the proper transforms of the exceptional lines E1, . . . , E4 under the blowups of p5, . . . , p8 are the
divisors E1 −E5, E2 −E6, E3 −E7 and E4 −E8 respectively. These have self-intersection −2 and
are irreducible. Further, the proper transform of the curve defined in the chart (f, g) by

kfg − f − g − k = 0, (3.18)

corresponds to the divisor Hf + Hg − E1 − E2 − E3 − E4. This can be verified by noting that
the polynomial defining the curve is of bi-degree (1, 1) in (f, g), and the curve passes through
the points p1, . . . , p4 with multiplicity 1, but its proper transform under their blowups does not
intersect p5, . . . , p8, which can be checked by direct calculation. We deduce that this curve defines
a representative of the divisor class Hf +Hg − E1 − E2 − E3 − E4, and compute its self-intersection
to be −2. If we denote these five divisors by

D0 = E1 − E5, D1 = E2 − E6, D2 = Hf +Hg − E1 − E2 − E3 − E4, (3.19a)

D3 = E3 − E7, D4 = E4 − E8, (3.19b)

we see that D = D0 +D1 + 2D2 +D3 +D4 is a representative of the anticanonical class of X(k,n),
as

[D] = [D0] + [D1] + 2[D2] + [D3] + [D4] = 2Hf + 2Hg − E1 − · · · − E8 = −KX(k,n)
. (3.20)

With regards to the dimension of the anticanonical class, each of the divisors D0, D1, D3 and D4

defined as proper transforms of exceptional lines give unique representatives of their classes in
Pic(X). Further, it can be shown by direct calculation that (3.18) defines the unique curve of bi-
degree (1, 1) passing through p1, . . . , p4, which means the divisor D2 does not move in a family and
its class in Pic(X(k,n)) is of dimension zero. Thus we deduce that D is the unique representative
of the anticanonical class. Direct computation shows that [Dj ] · KX = 0 for j = 0, . . . , 4, so we see
also that D is of canonical type.
Computing the pairwise intersections of the classes δj = [Dj ], for j = 0, . . . , 4, we obtain

−(δi · δj) =


2 0 −1 0 0
0 2 −1 0 0
−1 −1 2 −1 −1
0 0 −1 2 0
0 0 −1 0 2

 . (3.21)

The matrix on the right-hand side is the generalised Cartan matrix of type D
(1)
4 , meaning that each

X(k,n) is a D
(1)
4 -surface in the sense of Sakai’s theory.
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The root lattice given by the orthogonal complement Q(R)⊥ ⊂ δ⊥ ⊂ Pic(X) is also of type

R⊥ = D
(1)
4 . We find a basis of simple roots forQ(R⊥) by looking for a set of five linearly independent

elements of δ⊥ with the required intersection numbers. This yields a system of linear equations for
the coefficients of the generators in each of the simple roots, from which we obtain the basis (3.17)
for the symmetry root lattice, and the proof is complete.

We now identify the Cremona isometry induced by the family of birational isomorphisms,
which determines whether the system is a discrete Painlevé equation according to definition 2.6.

According to theorem 2.4, the Cremona isometries of a family of generic D
(1)
4 -surfaces form the

group

W̃ (D
(1)
4 ) =

〈
r0, r1, r2, r3, r4, π(01), π(34), π(14)

〉
, (3.22)

subject to the relations

r2
i = 1, (rirj)

2−aij (i 6= j), rσ(i)πσ = πσri, πσπτ = πστ , (3.23)

where i, j ∈ Z/5Z, (aij)
4
i,j=0 is the generalised Cartan matrix D

(1)
4 given in equation (3.21), and

σ, τ are permutations of the indices {0, 1, 2, 3, 4} of the simple roots which obey the usual rules of
composition.

Theorem 3.3. The family of birational maps Φn lifted from the system (1.3) induce via their
pullbacks the map ϕ : Pic(X)→ Pic(X) given by

ϕ :



Hf 7→ 5Hf + 2Hg − 2E1 − 2E2 − E3 − E4 − 2E5 − 2E6 − E7 − E8,
Hg 7→ 2Hf +Hg − E1 − E2 − E5 − E6,
E1 7→ Hf − E5,
E2 7→ Hf − E6,
E3 7→ 2Hf +Hg − E1 − E2 − E5 − E6 − E7,
E4 7→ 2Hf +Hg − E1 − E2 − E5 − E6 − E8,
E5 7→ Hf − E1,
E6 7→ Hf − E2,
sE7 7→ 2Hf +Hg − E1 − E2 − E3 − E5 − E6,
E8 7→ 2Hf +Hg − E1 − E2 − E4 − E5 − E6.

(3.24)

In particular, ϕ acts on the symmetry roots according to

ϕ : (α0, α1, α2, α3, α4) 7→ (α1, α0, α2, α4, α3) + (0, 0, δ,−δ,−δ) . (3.25)

Further, ϕ is a Cremona isometry for the family X(n,k) of D
(1)
4 -surfaces, and can be written in

terms of generators of W̃ (D
(1)
4 ) as

ϕ = r2r0r1r2r3r4 = π(01)(34)Tv, (3.26)

where Tv is Kac translation by the weight vector v = 1
2 (α3+α4) ∈ P (R⊥◦ ), and π(01)(34) is the Dynkin

diagram automorphism corresponding to the permutation (01)(34) of indices of simple roots.

Proof. We note that there are many equivalent calculations by which the map (3.24) may be deduced
from the birational isomorphisms Φn. The basic idea is to choose effective classes in Pic(X(k,n))
such that computing the images of their representatives under the pushforward

(Φn)∗ : Div(X(k,n))→ Div(X(k,n+1)), (3.27)
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is as simple as possible, and gives enough conditions to deduce ϕ. The calculations we outline are
based on those from the proof of Proposition 3.1.
First recall that by considering the forward mapping in charts (u1, v1) and (ū1, v̄1), we obtained
(3.13), from which we deduce that (Φn)∗(E1 − E5) = Ē1 − Ē5, which means that with the
identification of Picard groups of the family X(k,n) we have

ϕ−1(E1 − E5) = E1 − E5. (3.28)

Similarly, our calculation of the image under Φn of the line f = k led to (3.12), which shows that
(Φn)∗(Hf − E1) = Ē5 and therefore

ϕ−1(Hf − E1) = E5. (3.29)

The map ϕ−1 is linear by construction, so if we obtain ϕ−1(E5), we may deduce ϕ−1(Hf ) and
ϕ−1(E1) from (3.28) and (3.29). In order to do this, we consider the mapping in charts (u5, v5) and
(f̄ , ḡ) and obtain the image of E5 to be the proper transform of the curve defined by (3.14). To
determine the element of Div(X(k,n+1)) defined by the proper transform, we check its intersection
with the exceptional lines Ē1, . . . Ē8. For example, to check intersections with Ē1 and Ē5, we
substitute f̄ = ū1v̄1 + k and ḡ = v̄1 into the equation of the curve (3.14), which gives the equation
of the total transform in the chart (ū1, v̄1) as

v̄1

(
k(kv̄1 − 1)2ū1 + (k4 − 1)v̄1 − 2k(k2 − 1)

)
= 0. (3.30)

The factor v̄1 appearing here with exponent one indicates that the proper transform of the curve
intersects Ē1 with multiplicity one, so (Φn)∗(E5) · Ē1 = 1. Further, the proper transform of the
curve (3.14) is given by

k(kv̄1 − 1)2ū1 + (k4 − 1)v̄1 − 2k(k2 − 1) = 0. (3.31)

The coordinates of the point p̄5 do not satisfy this equation, so we deduce that (Φn)∗(E5) · Ē5 = 0,
so the coefficient of E5 in ϕ−1(E5) is zero. Similar calculations in charts covering the rest of the
exceptional lines, and the observation of the bi-degree of the polynomial defining the curve allow
us to deduce the coefficients, and we arrive at

ϕ−1(E5) = Hf + 2Hg − E1 − E3 − E4 − E7 − E8. (3.32)

By similar calculations we obtain more conditions on ϕ:

ϕ−1(E2 − E6) = E2 − E6, ϕ−1(E3 − E7) = E3 − E7, ϕ−1(E4 − E8) = E4 − E8, (3.33a)

ϕ−1(Hg − E1) = Hf + 3Hg − E1 − E2 − E3 − E4 − E6 − E7 − E8, (3.33b)

ϕ−1(Hg − E2) = Hf + 3Hg − E1 − E2 − E3 − E4 − E5 − E7 − E8, (3.33c)

ϕ−1(E6) = Hf + 2Hg − E2 − E3 − E4 − E7 − E8, (3.33d)

ϕ−1(E7) = Hg − E3, ϕ−1(E8) = Hg − E4. (3.33e)

From these, we find the map ϕ induced by the pullbacks to be given by (3.24), from which we
may check directly that ϕ fixes each of δ0, δ1, δ2, δ3 and δ4, as well as the canonical class in Pic(X),
and that ϕ preserves the intersection product. We also note that as ϕ is induced by the pullbacks
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of birational isomorphisms it must preserve effectiveness of classes in Pic(X). Therefore ϕ is a

Cremona isometry of the family of D
(1)
4 -surfaces, and by Sakai’s results (theorem 2.4) we may

express it in terms of generators of W̃ (D
(1)
4 ).

Recall that for each simple root αj from our basis (3.17) for Q(R⊥) ⊂ Pic(X), the corresponding
simple reflection is defined by the formula

rj(λ) = λ− 2
αj · λ
αj · αj

αj , (3.34)

for λ ∈ Pic(X). A Dynkin diagram automorphism of R⊥ will be denoted by πσ, where σ is the
permutation of indices of nodes of the Dynkin diagram corresponding to the simple roots α0, . . . , α4.

The extended affine Weyl group W̃ (D
(1)
4 ) is then generated by these simple reflections together with

a generating set for Aut(R⊥), and by standard techniques [4, 5, 32], we obtain the expression

ϕ = r2r0r1r2r3r4 = r201234, (3.35)

where for conciseness we have used the subscript notation to indicate the composition of a sequence
of simple reflections. The action of the element ϕ on the symmetry root lattice Q(R⊥) is found
to be given by (3.25) by direct calculation. In light of the Kac translation formula (2.16), we note
that ϕ is not itself a translation, otherwise it would act on the simple roots by adding multiples
of the null root δ. Consider the Dynkin diagram automorphism π(01)(34) which acts on the simple
roots by permutation (01)(34) of their indices, and is realised by the following action on Pic(X):

π(01)(34) : E1 ↔ E2, E3 ↔ E4, E5 ↔ E6, E7 ↔ E8. (3.36)

The composition of this with ϕ acts on the symmetry root lattice according to

π(01)(34)ϕ : (α0, α1, α2, α3, α4) 7→ (α0, α1, α2, α3, α4) + (0, 0, δ,−δ,−δ) , (3.37)

which is translational, as we now demonstrate. To determine the weight vector v ∈ P (R⊥◦ ) = P (D4)

giving this action via the Kac translation Tv, we form an ansatz v =
∑4
j=1 cjαj , and determine

rational coefficients cj such that

(v · α0, v · α1, v · α2, v · α3, v · α4) = (0, 0, 1,−1,−1), (3.38)

which ensures Tv gives the action (3.37) according to the Kac translation formula (2.16). By direct
calculation in this case we obtain the unique solution (c1, c2, c3, c4) = (0, 0, 1/2, 1/2), so we have
the translation vector

v =
1

2
(α3 + α4) , (3.39)

and the proof is complete.

Remark 3.4. The weight vector v has squared length ||v||2 = −(v ·v) = 1, which is minimal among
all nonzero elements of P (D4), so we may think of v as a ‘nearest-neighbour connecting vector’ in
the D4 weight lattice, in the sense of [6, 33]. Further, we have that

ϕ2 = T 2
v = T2v, (3.40)

so in particular the element ϕ = π(01)(34)Tv is of infinite order in W̃ (D
(1)
4 ). Further, if we are

to regard (1.3) as a projective reduction of a discrete Painlevé equation, it is the one given by the
translation T2v. This contrasts with the projective reduction (1.11) introduced in the introduction, in

the sense that the element R ∈ W̃ ((A2 +A1)(1)) squared to give a translation by a nearest-neighbour
connecting vector, which T2v is not.
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4. Generic version of the equation

We have found that the system (1.3) is regularised on a family of D
(1)
4 -surfaces with less than

the full number of parameters, and corresponds to a non-translation element of W̃ (D
(1)
4 ). In this

section, we demonstrate first how the equation may be recovered as a projective reduction using
a birational representation of the symmetry group. Unlike previous studies of such systems, we
proceed to show that although the action of the element of the symmetry group is not translational
on the full parameter space, it still defines a discrete equation with the full number of parameters,
which we construct explicitly from the birational representation.

4.1. Birational representation of W̃ (D
(1)
4 ) on generic D

(1)
4 -surfaces

The first step in our construction of a full-parameter version of the system (1.3) is to define a family

of generic D
(1)
4 -surfaces through a basepoint configuration generalising that which gives the family

X(k,n). We introduce the extra parameters controlling basepoint locations first in a naive way, and

give a birational representation of W̃ (D
(1)
4 ) on this family, with the system (1.3) recovered as a

projective reduction. We then obtain the root variable parametrisation in subsection 4.2, which
allows our full-parameter version to be constructed explicitly.

Proposition 4.1. Consider the surface Xb = X(k,b1,b2,b3,b4) obtained from P1 × P1 by blowing up
points p1, . . . , p8 given in coordinates by

p1 : (f, g) = (k, 0), p5 : (u1, v1) =

(
f − k
g

, g

)
= (b1, 0) , (4.1a)

p2 : (F,G) = (k, 0), p6 : (u2, v2) =

(
F − k
G

,G

)
= (b2, 0) , (4.1b)

p3 : (f, g) = (0, k), p7 : (u3, v3) =

(
f

g − k
, g − k

)
= (b3, 0) , (4.1c)

p4 : (F,G) = (0, k), p8 : (u4, v4) =

(
F

G− k
,G− k

)
= (b4, 0) . (4.1d)

Then Xb form a family of generic D
(1)
4 -surfaces, with surface root basis in Pic(X) given by (3.16)

and symmetry root sublattice with basis (3.17). Further, we have a Cremona action of the symmetry
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group W̃ (D
(1)
4 ), which we write as an action on the parameters and coordinates defined as follows:

r0 :

 f 7→ (b1 + 1)fg − kf − kg + k2

kfg − f + (b1 − k2)g + k
,

g 7→ g,

r0.b1 = k2 − 1− b1, r0.b3 = 1−b1b3
k2−1−b1 ,

r0.b2 = (k2−1)2−b1b2
k2−1−b1 , r0.b4 = 1−b1b4

k2−1−b1 ,

r1 :

 f 7→ kfg + (b2 − k2)f − k + k

k2fg − kf − kg + (b2 + 1)
,

g 7→ g,

r1.b1 = (k2−1)2−b1b2
k2−1−b2 , r1.b3 = 1−b2b3

k2−1−b2 ,

r1.b2 = k2 − 1− b2, r1.b4 = 1−b2b4
k2−1−b2 ,

r2 :


f 7→ g − k

kg − 1
,

g 7→ f − k
kf − 1

,

r2.b1 = (k2−1)2

b1
, r2.b3 = 1

b3(k2−1)2 ,

r2.b2 = (k2−1)2

b2
, r2.b4 = 1

b4(k2−1)2 ,

r3 :

 f 7→
f(k − g)

(
(k2 − 1)b3 − 1

)
f(kg − 1)− b3(k2 − 1)(g − k)

,

g 7→ g,

r3.b1 = (k2−1)(b1b3−1)
(k2−1)b3−1 , r3, b2 = (k2−1)(b2b3−1)

(k2−1)b3−1 ,

r3.b3 = (k2 − 1)−1 − b3, r3.b4 = (k2−1)2b3b4−1
(k2−1)2b3−k2+1 ,

r4 :

 f 7→ b4(k2 − 1)f(kg − 1)− g + k

(kg − 1)(b4(k2 − 1)− 1)
,

g 7→ g,

r4.b1 = (k2−1)2(1−b1b4)
(k2−1)b4−1 , r4.b2 = (k2−1)2(1−b2b4)

(k2−1)b4−1 ,

r4.b3 = (k2−1)2b3b4−1
1−k2−b4(k2−1)2 , r4.b4 = (k2 − 1)−1 − b4,

π(01) :

{
f 7→ f,

g 7→ 1/g,

π(01).k = 1/k, π(01).b1 = −b2/k2, π(01).b3 = −k2b3,
π(01).b2 = −b1/k2, π(01).b4 = −k2b4,

π(34) :

{
f 7→ 1/f,

g 7→ g,

π(34).k = 1
k , π(34).b1 = −b1/k2, π(34).b3 = −k2b4,

π(34).b2 = −b2/k2, π(34).b4 = −k2b3,

π(14) :


f 7→ f(k2 − 1)1/2

kf − 1
,

g 7→ g(k2 − 1)1/2

kg − 1
,

π(14).k = k/(k2 − 1)1/2, π(14).b1 = b1/(k
2 − 1)2, π(14).b2 = b4,

π(14).b3 = (k2 − 1)2b3, π(14).b4 = b2.

Through the pullbacks of these birational maps and the identification of the Picard groups, this

representation corresponds to the action of W̃ (D
(1)
4 ) on Pic(X) by Cremona isometries.

Proof. The birational mapping defined by the action of each generator may be verified to give
the required change of blowing-down structure and parameters by similar calculations to those
involved in the proofs of Proposition 3.2 and Theorem 3.3. For helpful discussions of the methods
for constructing such a Cremona action we refer the reader to, for example, one of [1,4,5,29,34].

Before we construct the generic version, we illustrate how to recover the system (1.3) from
the action of ϕ on the variables and parameters. To reconstruct the equation using this birational
representation, we compute the action of the element ϕ = r201234 on the variables and parameters.

For composing the actions of different elements of the group, we note that W̃ (D
(1)
4 ) acts on rational



Discrete Painlevé systems from non-translational Cremona isometries 20

functions of the variables and parameters by replacement, so for w ∈ W̃ (D
(1)
4 ) and rational function

R ∈ C(f, g; b), we have
w.R(f, g; b) = R(w.f, w.g;w.b). (4.2)

Using the formulae given in proposition 4.1, we may compute ϕ.f and ϕ.g, which are complicated
rational functions of the variables and parameters, which we omit for the moment for conciseness.
Direct computation shows that ϕ.b = (ϕ.k, ϕ.b1, ϕ.b2, ϕ.b3, ϕ.b4) is given by

ϕ.k = k, (4.3a)

ϕ.b1 = b2 +
b2b3 − 1

b3 + t
+
b2b4 − 1

b4 + t
+
b1 − b2
1 + b1t

, (4.3b)

ϕ.b2 = b1 +
b1b3 − 1

b3 + t
+
b1b4 − 1

b4 + t
+
b2 − b1
1 + b2t

, (4.3c)

ϕ.b3 =
(1 + b1t)(1 + b2t)(b3 + t)b4

(b4 + t) (2b1b2b3t+ b1b2t2 + (b1 + b2)b3 − 1)
, (4.3d)

ϕ.b4 =
(1 + b1t)(1 + b2t)(b4 + t)b3

(b3 + t) (2b1b2b4t+ b1b2t2 + (b1 + b2)b4 − 1)
, (4.3e)

where we have denoted t = 1/(1 − k2). We note that this is not a translational motion in the
parameter space, but if we restrict to the case when b = (k, b1, b1, 0, 0), then ϕ acts on this
parameter subspace by translation, with

ϕ.(k, b1, b1, 0, 0) = (k, b1 − 2/t, b1 − 2/t, 0, 0). (4.4)

Therefore the result of iterating the action on parameters n times is given by ϕn.(k, b1, b1, 0, 0) =
(k, b1 − 2n/t, b1 − 2n/t, 0, 0), so letting fn = ϕn.f, gn = ϕn.gn, we obtain the following system of
difference equations.:

f̄ =
(ḡ − k)2

f(kḡ − 1)2
, (4.5a)

ḡ =
(f − k)

(
k(1− k2)fg + (b1 + 2n(k2 − 1))f + (k2 − 1)g − k(b1 + 2n(k2 − 1))

)
(kf − 1) ((k(b1 + 2n(k2 − 1))fg + (1− k2)f − (b1 + 2n(k2 − 1))g + k(k2 − 1))

. (4.5b)

Setting the initial value of the parameter to be b1 = k2 − 1 = −1/t, we recover (1.3), as well as the
family of surfaces X(k,n) constructed as its space of initial values in section 3.

Remark 4.2. We note that the process by which we recovered the system (1.3) from the birational
representation is a projective reduction as described in the introduction. However, with the root
variable parametrisation, the action of ϕ becomes translational on a larger parameter subspace than
the one defined by the constraint b = (k, b1, b1, 0, 0), which is given by a1 = a2, a3 = a4 in the
root variable parametrisation obtained in the following section. This differs from the example [10]
described in the introduction, in which the projection was onto the maximal parameter subspace on
which the element R ∈ W̃ ((A2 + A1)(1)) gave translational motion. The equation obtained from
ϕ by projective reduction with the constraint a1 = a2, a3 = a4 includes equation (1.3) as a special
case, so in this sense equation (1.3) is not the most general projective reduction associated with the
Cremona isometry ϕ.
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4.2. Transformation to the canonical model and root variable parametrisation

To write down an equation from the action of ϕ on the variables and parameters in the generic
case, we let (fn, gn) = ϕn.(f, g) be the result of acting by ϕ on the variables n times, and seek
an explicit form of ϕn.b as a function of n with parameters b = (k, b1, b2, b3, b4). Obtaining this
expression amounts to solving the system of difference equations (4.3), which are nonlinear in their
present form. However, if we change our parametrisation of the family of surfaces to that given
by the root variables, the transformation of parameters will linearise the system (4.3) and it will
be explicitly solvable by elementary methods. This will be the case for the action of any element
of infinite order on the root variables, so difference equations can always be explicitly constructed
from these elements, as we will demonstrate.

Rather than obtaining the root variable parametrisation from the period map by directly com-

puting integrals, we will obtain a transformation to the canonical form of a family of generic D
(1)
4

surfaces with root variable parametrisation given by Kajiwara, Noumi and Yamada [4], which we
call the KNY form. Incidentally, this is Okamoto’s space of initial conditions for PVI, so reveals
(1.3) as a Bäcklund transformation for a special case. Our method for constructing this transfor-
mation will be to first find a map between Pic(X) and the corresponding module for the KNY form
of the family, which identifies the surface and symmetry roots, then obtain a birational map that
induces it. This is similar to that employed in the recent work [5], though here we emphasise its
application in obtaining the root variables, direct computation of which is not practical in our case.

We begin by recalling the point configuration and root data for the KNY family of generic

D
(1)
4 -surfaces. Considering C2 with coordinates (x, y) and compactifying to P1 × P1, we obtain the

family of surfaces Ya with root variable parametrisation a = (t, a0, a1, a2, a3, a4), by blowing up
eight points given in coordinates by

p̃1 : (x, y) = (∞,−a2), p̃2 : (x, y) = (∞,−a1 − a2), (4.6a)

p̃3 : (x, y) = (t,∞), p̃4 : (ũ3, ṽ3) =

(
y(x− t), 1

y

)
= (ta0, 0) , (4.6b)

p̃5 : (x, y) = (0, 0), p̃6 : (x, y) = (0, a4) , (4.6c)

p̃7 : (x, y) = (1,∞), p̃8 : (ũ7, ṽ7) =

(
y(x− 1),

1

y

)
= (a3, 0) . (4.6d)

Denoting divisor classes of total transforms of lines of constant x, y by Hx,Hy respectively and the
exceptional classes arising from the blowups of points p̃1, . . . , p̃8 by L1, . . . ,L8, we have

Pic(Y ) = ZHx ⊕ ZHy ⊕ ZL1 ⊕ · · · ⊕ ZL8, (4.7)

with the surface root basis {δ̃0, . . . , δ̃4} and symmetry root basis {α̃0, . . . , α̃4} given by

δ̃0 = L3 − L4, α̃0 = Hx − L3 − L4, (4.8a)

δ̃1 = Hx − L1 − L2, α̃1 = L1 − L2, (4.8b)

δ̃2 = Hy − L3 − L7, α̃2 = Hy − L1 − L5, (4.8c)

δ̃3 = L7 − L8, α̃3 = Hx − L7 − L8, (4.8d)

δ̃4 = Hx − L5 − L6, α̃4 = L5 − L6. (4.8e)
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The following proposition, which provides an isomorphism of modules preserving the surface and

symmetry root lattices associated with the two families of generic D
(1)
4 -surfaces, may be proved by

direct calculation.

Proposition 4.3. The linear map ψ : Pic(X)→ Pic(Y ) defined by

ψ :



Hf 7→ Hx +Hy − L1 − L5,
Hg 7→ Hx,
E1 7→ L3,
E2 7→ Hx − L1,
E3 7→ L7,
E4 7→ Hx − L5,
E5 7→ L4,
E6 7→ L2,
E7 7→ L8,
E8 7→ L6,

(4.9)

preserves the intersection product and identifies the canonical classes in Pic(X),Pic(Y ).
Further, we have that

ψ(αi) = α̃i, ψ(δi) = δ̃i. (4.10)

We next demonstrate how to find a change of variables inducing this map, which will determine
the relation between parameters a and b.

Proposition 4.4. The map ψ is induced by the pushforward Ψ∗ of

Ψ : Xb → Ya, (4.11)

defined by

x =
kg − 1

k2 − 1
, y =

a2

k

(1− kf)(kg − 1)

(kfg − f − g + k)
, (4.12)

with the correspondence between parameters a and b given by

t =
1

1− k2
, b1 = −a0 + a2

ta0
, b2 = −a1 + a2

ta1
, b3 = − t(a2 + a3)

a3
, b4 = − t(a2 + a4)

a4
. (4.13)

Proof. We will obtain the transformation by lifting a map defined by

(f, g) 7→ (x, y) , (4.14)

where x and y are rational functions of f, g and the parameters. The form of these rational functions
is determined by the condition that Ψ∗ = ψ. In particular, as Ψ∗(Hg) = Hx, the total transform
in Xb of a line of constant g must be sent under Ψ to the total transform of a curve of constant
x in Ya. This implies that the rational function x(f, g) is a fractional linear transformation of g
independent of f , and we obtain our ansatz for x:

x =
λ1g + λ2

λ3g + λ4
, (4.15)

where λ1, . . . , λ4 are complex constants to be determined. Further, as Ψ∗(Hf ) = Hx+Hy−L1−L5,
the total transform in Xb of a line of constant f must be sent to the proper transform of a curve of
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bi-degree (1, 1) in (x, y) passing through p̃1 and p̃2 each with multiplicity one. Taking into account
the fact that x and g are related by Möbius transformation, the desired correspondence dictates
that y be of the form

y =
µ1fg + µ2f + µ3g + µ4

µ5fg + µ6f + µ7g + µ8
, (4.16)

where µ1, . . . , µ8 are to be determined.
We now demonstrate how the unknown coefficients in (4.15) and (4.16) can be deduced from
the requirement that Ψ induces ψ by pushforward. Similarly to the way in which the Cremona
isometry in Theorem 3.3 was deduced from the birational maps by one of many possible sequences
of calculations, here we also have the freedom to choose how we deduce the conditions on the
coefficients, and present one which simplifies calculations.
We first note that the general forms (4.15) and (4.16) determine the coefficients of Hx,Hy in the
pushforwards of Hf ,Hg, but not any of the exceptional classes. Given that

ψ−1(Hy) = Hf +Hg − E2 − E4, (4.17)

we see that an arbitrary line of constant y should be sent by Ψ−1 to a (1, 1)-curve in (f, g) coordinates
passing through p2 and p4, each with multiplicity one. Indeed, letting c ∈ C be arbitrary and setting
y = c in (4.16) we obtain a (1, 1)-curve, which we rewrite in the chart (F,G), in which p2, p4 are
visible, as

c (µ5 + µ6G+ µ7F + µ8FG) = µ1 + µ2G+ µ3F + µ4FG. (4.18)

Requiring that this intersects p2 : (F,G) = (k, 0), we obtain

c(µ5 + kµ7) = µ1 + kµ3. (4.19)

Since the curve must intersect p2 independent of the value of the constant c, we require

µ1 = −kµ3, µ5 = −kµ7. (4.20)

Similarly, the requirement that any such curve should pass through p4 : (F,G) = (0, k) yields the
conditions

µ6 = µ7, µ3 = µ2, (4.21)

after which our ansatz reads

y =
µ4(kfg − f − g) + kµ1

k(kfg − f − g + k)
. (4.22)

Before finding the coefficients µ1, µ4, it will be convenient to first determine the fractional linear
transformation (4.15) relating x and g.
We consider lines corresponding to special values of x and g, whose proper transforms give unique
representatives of their divisor classes. For example, as ψ(Hg − E3) = Hx − L7, the line g = k
should be sent under Ψ to the line x = 1. Computing this condition explicitly, we obtain

λ4 = k(λ1 − λ3) + λ2. (4.23)

Similarly, from the fact that ψ(Hg − E1) = Hx − L3, the lines g = k and x = t should be in
correspondence, so we may obtain λ2 in terms of the other coefficients and parameters, and our
ansatz is refined:

x =
λ1(t− 1)g + kt(λ3 − λ1)

λ3(t− 1)g + k(λ1 − λ3)
. (4.24)
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A third condition may be deduced from the fact that ψ(Hg − E2) = L1, so the proper transform of
the line G = 0 should be mapped to the exceptional divisor replacing p̃1, and in particular setting
G = 0 in (4.24) should recover its x-coordinate. Direct calculation yields λ3 = 0, and therefore

x =
(1− t)g + kt

k
. (4.25)

The parameters k and t each correspond to the ‘extra parameter’ [1] in their respective families of
surfaces, and their relationship can be deduced as follows. We have already found the unknown
coefficients in the relation between g and x, by considering three special values of g corresponding
to the coordinates of the basepoints p1, p2, p3. However, there is one more special line of constant g
which we have not considered, and we must verify that (4.25) is consistent with the required image
of the corresponding divisor class under ψ. To be precise, the divisor class of the proper transform
of the line G = k is sent under ψ according to ψ(Hg − E4) = L5, so setting G = k in (4.25) should
recover the x-coordinate of p̃5, namely x = 0. This condition is computed to be equivalent to

t =
1

1− k2
, (4.26)

so we have obtained a necessary correspondence between the parameters k and t such that the
birational map Ψ : Xb → Ya induces ψ.
We now return to our expression (4.22), and use similar calculations to determine the remaining
unknown coefficients. For instance, in order to satisfy the condition Ψ∗(Hg − E2) = L1, we require
that setting G = 0 with F 6= k in (4.22) and (4.25) gives the (x, y) coordinates of p̃1. We have
already imposed this condition on the expression for x, so substitute in to (4.22) to obtain

µ4 = −ka2. (4.27)

A similar calculation based on ψ(Hg − E4) = L5 leads to the condition

µ1 = −(a1 + a2)/k, (4.28)

and we have determined the birational map completely and obtained (4.12).
We now demonstrate how to obtain the correspondences between the remaining parameters. We
require that Ψ∗(E5) = L4, so the basepoint p5 on the exceptional line E1 in Xb should be mapped
under Ψ to p̃4 on the line L3 in Ya. To compute this condition, we use the previously defined charts
(u1, v1) on the exceptional line E1, and (ũ3, ũ3) for L3 given by

ũ3 = y(x− t), ṽ3 =
1

y
. (4.29)

Substituting these coordinates in (4.12), we obtain

ũ3 =
a2(kv1 − 1)(1− k2 − ku1v1)

(k2 − 1)(k2 − 1− u1 + ku1v1)
, ṽ3 =

kv1(k2 − 1− u1 + ku1v1)

a2(kv1 − 1)(1− k2 − ku1v1)
, (4.30)

in which setting v1 = 0 leads to

ũ3 =
a2

k2 − 1− u1
, ṽ3 = 0, (4.31)
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which demonstrates that Ψ indeed gives a one-to-one correspondence between the exceptional lines
E1 and L3. Requiring that p5 : (u1, v1) = (b1, 0) is mapped to p̃4 : (ũ3, ṽ3) = (ta0, 0), we obtain the
condition

b1 = −a0 + a2

ta0
. (4.32)

Similar calculations based on the requirements ψ(E7) = L8, ψ(E6) = L2, ψ(E8) = L6 yield the rest of
the correspondences (4.13). The proof is completed by checking, using the same calculation methods
as in previous parts, that the birational map obtained does indeed induce ψ as its pushforward when
parameters are identified according to (4.13).

We note that this transformation, and in particular the parameter correspondence, recovers the
root variable parametrisation of the family Xb associated with the simple root basis {α0, . . . , α4} ⊂
Pic(X). The map Ψ gives a change in blowing-down structure of the D

(1)
4 -surface X = Xb, under

which the period map is invariant, in the sense that χX(λ) = χΨ(X)(Ψ∗(λ)) for λ ∈ Pic(X), as has
been noted in [5]. Therefore we may obtain the root variables of the surface X = Xb as

χX(αj) = χY (Ψ∗(αj)) = χY (α̃j) = aj . (4.33)

In particular, the correspondence (4.13) gives the root variable parametrisation of the family Xb,
which we write as Xa with a = (t, a0, a1, a2, a3, a4), with the normalisation a0+a1+2a2+a3+a4 = 1.

Remark 4.5. Solving the system (4.13) for the root variables a0, . . . , a4, we see that they are given
by rational functions of degree three in the parameters b1, . . . , b4, which suggests that if we were
to compute them directly using the period mapping it would have involved evaluating complicated
integrals, which this transformation has allowed us to avoid.

We also note that the family of surfaces Ya forms the space of initial values for PVI, with the
coordinates (x, y) related to the variables in the Hamiltonian form [4] according to

q = x, p =
y

x
, (4.34)

with t playing the role of the independent variable. In particular, the birational representation of

W̃ (D
(1)
4 ) given in Proposition 4.1 corresponds to the Bäcklund transformation symmetries of PVI

in the sense that for each w ∈ W̃ (D
(1)
4 ), we have a birational map

w : Xa → Xw.a, (4.35)

through the action on the variables (f, g) and root variables parameters, which we may conjugate
by our transformation to obtain a birational map

w̃ : Ya → Yw.a, (4.36)

which gives a Bäcklund transformation on the variables (q, p) via the relation (4.34). We remark
that it may be checked that conjugating the actions from Proposition 4.1 by the transformation

Ψ in this way recovers the birational representation of W̃ (D
(1)
4 ) on the family of surfaces Ya given

in [4].
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4.3. Full-parameter system

We are now in a position to construct the full-parameter version of (1.3) using our Cremona action

of W̃ (D
(1)
4 ) on the family of generic D

(1)
4 -surfaces Xa with the root variable parametrisation. We

emphasise again that the key to writing down an explicit form of the discrete system defined by
the Cremona action of an element of the symmetry group is to obtain a closed form for the result
of acting on the parameters n times. In our case, we are able to do this as the system (4.3) giving
the action of the element ϕ = r201234 on the parameters is linearised by the transformation to root
variables, and we now have

ϕ.(t, a0, a1, a2, a3, a4) = (t, a1, a0, a2 + 1, a4 − 1, a3 − 1). (4.37)

This leads to a linear difference equation for ϕn.a, which we may solve explicitly by elementary
methods to arrive at the following formulae:

ϕn.t = t, ϕn.k = k, (4.38a)

ϕn.a0 =
1

2
((1 + (−1)n)a0 + (1− (−1)n)a1) =

{
a0 for n even,

a1 for n odd,
(4.38b)

ϕn.a1 =
1

2
((1− (−1)n)a0 + (1 + (−1)n)a1) =

{
a1 for n even,

a0 for n odd,
(4.38c)

ϕn.a2 = a2 + n, (4.38d)

ϕn.a3 =
1

2
((1 + (−1)n)a3 + (1− (−1)n)a4 − 2n) =

{
a3 − n for n even,

a4 − n for n odd,
(4.38e)

ϕn.a4 =
1

2
((1− (−1)n)a3 + (1 + (−1)n)a4 − 2n) =

{
a4 − n for n even,

a3 − n for n odd.
(4.38f)

Therefore by setting fn = ϕn.f and gn = ϕn.g, we obtain the explicit form of our full-parameter
version of equation (1.3), which we write with (f, g) = (fn, gn) and (f̄ , ḡ) = (fn+1, gn+1) as follows:

f̄ =
(ḡ − k)

(kḡ − 1)

(
(a2 + a

(n+1)
34 )f(kḡ − 1) + (ḡ − k)(a

(n)
34 − n− 1)

)
(

(a2 + a
(n)
34 )(ḡ − k) + f(kḡ − 1)(a

(n+1)
34 − n− 1)

) , (4.39a)

ḡ =
(f − k)

(kf − 1)

(
(f − k)(a2 + n)− a(n+1)

01 (kfg − f − g + k)
)

(
g(kf − 1)(a2 + n) + a

(n)
01 (kfg − f − g + k)

) , (4.39b)

where a
(n)
01 =

{
a0 for n even,

a1 for n odd,
a

(n)
34 =

{
a3 for n even,

a4 for n odd,

and a0 + a1 + 2a2 + a3 + a4 = 1. The parameter specialisation (b1, b2, b3, b4) = (k2 − 1, k2 −
1, 0, 0) by which we recovered (1.3) in subsection 4.1 is given in terms of the root variables as
(a0, a1, a2, a3, a4) = (1/2, 1/2, 0, 0, 0), substitution of which in (4.39) again recovers the original
system.
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5. Integrability and other examples from non-translation symmetries

We now discuss the integrability of the full-parameter system (4.39), as well as how similar systems
may be obtained for other surface types in Sakai’s list. Firstly, we note that system (4.39) has
algebraic entropy zero, which follows from the same result of Takenawa [35] guaranteeing this
property for the discrete Painlevé equations arising from translations. If we consider the iterates
(fn, gn) of a discrete system given by the Cremona action of some element of infinite order in the
extended affine Weyl group as rational functions of arbitrary initial conditions (f, g), their degrees
may be computed using the intersection product on Pic(X) by the method of Takenawa, which we
now recall following [35].
Consider a rational map given in inhomogeneous coordinates (f, g) for P1 × P1 by

η : P1 × P1 → P1 × P1,

(f, g) 7→ (P (f, g), Q(f, g)) ,
(5.1)

and define its degree to be

deg(η) = max {degP (f, g),degQ(f, g)} , (5.2)

where the degree of a rational function P (f, g) is defined as the maximum of the degrees of its
numerator and denominator as bivariate polynomials. Letting the maps induced by iteration of
the system (4.39) be ηn+1 : (fn, gn) 7→ (fn+1, gn+1), we write the map giving the nth iterate as a
function of arbitrary initial conditions (f0, g0) = (f, g) as

η(n) : P1 × P1 → P1 × P1,

η(n) = ηn ◦ ηn−1◦ . . . η1 ◦ η0 : (f, g) 7→ (Pn(f, g), Qn(f, g)) ,
(5.3)

The sequence of degrees of iterates of the system is then given by dn = deg η(n), and its algebraic
entropy [16] is defined as

ε = lim
n→∞

1

n
log dn, (5.4)

in the cases where the limit exists. Such a discrete system is said to be integrable in the sense of
vanishing algebraic entropy if the growth of the degrees is polynomial, or in other words if ε = 0.
Computing the first few iterates of the system (4.39), we obtain the following:

degPn(f, g) = 1, 7, 21, 43, 73, . . . (5.5a)

degQn(f, g) = 1, 3, 13, 31, 57, . . . (5.5b)

This appears to be quadratic, which we may confirm by computing explicit forms for degPn and
degQn, using the fact that the system lifts to a family of birational isomorphisms by construction.
Letting this family be

Φn+1 : Xϕn.a → Xϕn+1.a, (5.6)

we obtain the maps ηn through the blowup projections such that the following diagram commutes:

Xϕn.a Xϕn+1.a

P1 × P1 P1 × P1

Φn+1

ηn+1



Discrete Painlevé systems from non-translational Cremona isometries 28

The Cremona isometry induced by the pullbacks Φ∗n+1 is again denoted ϕ, and coincides with that
given in theorem 3.3. We have the following useful formulae,

degPn(f, g) = ϕ−n(Hf +Hg) · Hf , degQn(f, g) = ϕ−n(Hf +Hg) · Hg, (5.7)

in which we note that the inverse of ϕ appears because we have defined ϕ in terms of pullbacks,
whereas these formulae in their original form [35] considered the pushforwards.
Indeed, the linear map ϕ−1 : Pic(X) → Pic(X) gives a system of difference equations for the
coefficients of Hf ,Hg, E1, . . . , E8 in ϕ−n(Hf + Hg), which we can solve and compute intersection
numbers to obtain the degrees exactly as

degPn(f, g) = 4n2 + 2n+ 1, degQn(f, g) = 4n2 − 2n+ 1. (5.8)

With these formulae, we have proven that the system (4.39) is integrable in the sense of vanishing
algebraic entropy. In fact, any system obtained as the Cremona action of an element of the sym-
metry group of a family of R-surfaces will have at most quadratic degree growth, which follows
from the fact that the matrix giving the action on Pic(X) is a product of finite order matrices and
therefore must have eigenvalues only on the unit circle in the complex plane.

We will now demonstrate how other systems may be obtained in the same way from non-
translation elements of infinite order, through the birational representation of W̃ ((A2 + A1)(1))
discussed in the introduction. Consider again the element R = π2s1, which we recall acts on the
parameters according to

R.(a0, a1, a2, c) = (a2a0, q
−1a2a1, qa

−1
2 , c). (5.9)

Again, this gives a linear system of equations, this time of q-difference type, for Rn.(a0, a1, a2, c),
which we may solve explicitly to obtain

Rn.a0 = q
1
4 (3+(−1)n+2n)a−1

1 a
− 1

2 (1+(−1)n)
2 =

{
a0q

n/2 for n even,

a1q
1/2+n/2 for n odd,

(5.10a)

Rn.a1 = q
1
4 (−1+(−1)n−2n)a1a

1
2 (1+(−1)n)
2 =

{
a1q
−n/2 for n even,

a1a2q
−1/2−n/2 for n odd,

(5.10b)

Rn.a2 = q
1
2 (1+(−1)n+1)a

(−1)n

2 =

{
a2 for n even,

qa−1
2 for n odd,

Rn.c = c. (5.10c)

With this, we can write down an explicit form of the discrete system induced by the action of R on
the variables by setting Fn = Rn.f0, and therefore obtain the following generic version of (1.11):

Fn+1Fn−1 =
qc2

Fn

(a
1
2 ((−1)n−1)
0 + a0Fnq

n
2 q

1
4 ((−1)n−1))

(a0q
n
2 q

1
4 ((−1)n−1) + a

1
2 ((−1)n−1)
0 Fn)

. (5.11)

Numerical experiments reveal the sequence of iterates of this system to have degree growth identical
to that of the projective reduction (1.11), which is to be expected given that they correspond to the

same Cremona isometry. We now consider an element of W̃ ((A2 +A1)(1)) which may be regarded as

a ‘twisted translation’ similarly to the element ϕ ∈ W̃ (D
(1)
4 ) associated with the systems (1.3) and
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(4.39), and construct another integrable full-parameter system from its Cremona action. Keeping
the notation of [10], we consider the translation T4 = rw0, whose action on the parameters is given
by

T4.(a0, a1, a2, c) = (a0, a1, a2, qc). (5.12)

It can be shown that the Dynkin diagram automorphism π preserves the Kac translation vector
corresponding to T4, and the element T̃4 = πT4 is of infinite order, and satisfies T̃ 3

4 = T 3
4 . Its action

on the parameters is given by

T̃4.(a0, a1, a2, c) = (a1, a2, a0, qc), (5.13)

from which we may deduce, by solving a linear system of difference equations as in the previous
example, that the result of acting on the parameters n times has the explicit form

T̃n4 .c = qnc, T̃n4 .(a0, a1, a2) =


(a0, a1, a2) for n ≡ 0 mod 3,

(a1, a2, a0) for n ≡ 1 mod 3,

(a2, a0, a1) for n ≡ 2 mod 3.

(5.14)

From this, we let (Fn, Gn, Hn) = T̃n4 .(f0, f1, f2) and obtain the system of difference equations

Fn+1 = a(n+1)a(n−1)Hn

1 + a(n)Fn(1 + a(n+1)Gn)

1 + a(n+1)Gn(1 + a(n−1)Hn)
, (5.15a)

Gn+1 = a(n−1)a(n)Fn
1 + a(n+1)Gn(1 + a(n−1)Hn)

1 + a(n−1)Hn(1 + a(n)Fn)
, (5.15b)

Hn+1 = a(n)a(n+1)Gn
1 + a(n−1)Hn(1 + a(n)Fn)

1 + a(n)Fn(1 + a(n+1)Gn)
, (5.15c)

FnGnHn = q2n+1c2, (5.15d)

where a(m) =


a0 for m ≡ 0 mod 3,

a1 for m ≡ 1 mod 3,

a2 for m ≡ 2 mod 3.

(5.15e)

The method we have outlined for obtaining full-parameter systems from elements of infinite order
works for any of the surface types in Sakai’s list which admit non-translation elements of infinite
order in their symmetry groups. This is due to the fact that the action on the root variables induces
a linear system which may always be solved to obtain an explicit form of the result of acting on
the parameters n times. The equations (5.11), (5.15), and more generally any systen given by
the Cremona action on a family of generic R-surfaces of a non-translation element will contain the
maximum number of free parameters for their surface type. Moreover, they will be integrable in the
sense of vanishing algebraic entropy for the same reason that Sakai’s discrete Painlevé equations
are. We note that there exist other systems, known as strongly asymmetric discrete Painlevé
equations [36, 37], in which the independent variable enters in a similar way to our full-parameter
non-translation equations. These were obtained through deautonomisation of QRT mappings, and
it is natural to ask whether they arise as Cremona actions of non-translation elements on a family
of generic R-surfaces, and whether this can be explained in terms of the elliptic fibrations preserved
by the QRT maps in question, as in [38].
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6. Concluding remarks

To summarise, we hope that this paper may be regarded as an effort to better understand the
range of integrable systems arising from Sakai’s framework, prompted by the geometric treatment
of equation (1.3). Through the geometric approach this system was found to be regularised on a

family of D
(1)
4 -surfaces and obtained as a projective reduction. In the process, a change of variables

was obtained relating the system to PVI which, though not clear by inspection of the equations,
was constructed naturally using geometric methods. In particular, the parameter k in system (1.3)
was found to correspond to the independent variable in PVI, and an interesting question is whether
known results on PVI could be applied to discrete Amsler surfaces using this relationship.
We then demonstrated how generic (full-parameter) discrete systems can be constructed explicitly
from the Cremona action on a family of generic R-surfaces using any element of infinite order in
the symmetry group. The method relied on the fact that with the root variable parametrisation,
the action of the symmetry group is linear in either the additive, multiplicative or elliptic sense, so
obtaining an explicit form for the result of acting on the parameters n times is possible through
solving a linear difference equation. We then demonstrated that any such system must have
vanishing algebraic entropy, for essentially the same reason that the discrete Painlevé equations
defined by translations do. Though previous studies of projective reductions have demonstrated
that the range of integrable systems arising in Sakai’s framework is not limited to those defined
by translations, to our knowledge this is the first time that systems with the maximal number of
parameters for their surface type have been constructed from the Cremona actions of non-translation
symmetries.
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