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We present a procedure for simulating epitaxial growth based on the phase-field method. We consider
a basic model in which growth is initiated by a flux of atoms onto a heated surface. The deposited
atoms diffuse in the presence of this flux and eventually collide to form islands which grow and
decay by the attachment and detachment of migrating atoms at their edges. Our implementation of
the phase-field method for this model includes uniform deposition, isotropic surface diffusion, and
stochastic nucleation (in both space and time), which creates islands whose boundaries evolve as the
surface atoms “condense” into and “evaporate” from the islands. Computations using this model in
the submonolayer regime, prior to any appreciable coalescence of islands, agree with the results of
kinetic Monte Carlo (KMC) simulations for the coverage-dependence of adatom and island densities
and island-size distributions, for both reversible and irreversible growth. The scaling of the island
density, as obtained from homogeneous rate equations, agrees with KMC simulations for irreversible
growth and for reversible growth for varying deposition flux at constant temperature. For reversible
growth with varying temperature but constant flux, agreement relies on an estimate of the formation
energy of the critical cluster. Taken together, our results provide a comprehensive analysis of the phase-
field method in the submonolayer regime of epitaxial growth, including the verification of the main
scaling laws for adatoms and island densities and the scaling functions for island-size distributions,
and point to the areas where the method can be extended and improved. Published by AIP Publishing.
https://doi.org/10.1063/1.5049548

I. INTRODUCTION

Epitaxial phenomena have been studied for almost a cen-
tury,1 not least because epitaxial growth is vital for the control
of interfacial composition, structure, and integrity that under-
lies many important technologies based on heterogeneous
interfaces. Examples include quantum-well and quantum-dot
lasers,2 high-electron mobility transistors,3 and photodetec-
tors.4 The exceptional transport properties5,6 and the concomi-
tant widespread technological promise of graphene provided
an impetus for the development of methods for producing
large-scale quantities of this material. These efforts include
experimental advances in graphene fabrication by numerous
epitaxial techniques, as well as work by many groups striving
to understand the atomistic mechanisms that govern graphene
formation on various surfaces.7

Imaging and diffraction techniques have provided infor-
mation over a range of length and time scales about the
effects of particular epitaxial processes for various combi-
nations of deposited materials and substrates. Such measure-
ments have established a conceptual base for the development
of theoretical and computational methods for understand-
ing many aspects of morphological evolution.8–11 Density-
functional calculations provide ground-state energies and
structures,12,13 and preferential absorption sites and configu-
rations of adsorbed molecules,13 as well as information about

kinetics, such as energy barriers for activated processes.14

Methods for the direct exploration of epitaxial kinetics range
from molecular dynamics (MD) simulations, based on forces
obtained from fully quantum mechanical calculations15 or
empirical potentials,16 to coarse-grained stochastic methods.
Among the latter, the most prevalent are kinetic Monte Carlo
(KMC) simulations.17–20 In contrast to MD, which follow
the trajectories of each constituent particle, KMC simula-
tions treat the evolution of the system as a sequence of
stochastic transitions between configurations specified by the
occupancy of lattice sites in the system. Such simulations
can be performed for much larger systems over far longer
times than MD, which enables detailed comparisons to be
made with experiments19 and scaling regimes studied at long
times.8

The main computation challenge for models of epitax-
ial growth is the incorporation of the broad range of length
and time scales of processes that produce the desired surface
morphology.21 Consider a typical experimental scenario dur-
ing molecular-beam epitaxy.22 Atoms or simple homoatomic
molecules are deposited onto a heated substrate. Deposition
rates are typically of the order of 1 monolayer (ML) per sec-
ond, representing the average arrival rate per site. Deposited
atoms diffuse along the surface with an average residence
time of 10−3–10−6 s per site (the reciprocal of the hop-
ping rate). Migrating adatoms collide to form dimers which
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grow/decay by the capture/emission of atoms, eventually
forming a morphology whose structure depends on the choice
of materials and growth conditions (deposition fluxes and
temperature).

The growth of graphene on hexagonal substrates provides
an extreme example of growth conditions that provide model-
ing challenges. Growth is initiated by several fast processes:
adsorption and decomposition of precursor molecules, desorp-
tion of their fragments once carbon is released, and nucleation
of clusters of carbon atoms, which grow by the attachment
of migrating carbon atoms.23,24 Low deposition rates produce
graphene growth times of macroscopic sheets that can extend
over hours. Moreover, the high temperatures and rapid surface
diffusion mean that simulating graphene growth can exceed
the capabilities of even the most efficient algorithms.25,26 In
this case, reduced models, such as homogeneous rate equa-
tions, which describe the time-dependent spatially averaged
concentrations of species on a substrate,27–29 provide practical
alternatives.

One approach to addressing the challenges of modeling
large-scale epitaxial growth is based on replacing the diffu-
sion of discrete adatoms by a continuous field governed by
the diffusion equation.30–32 A noteworthy implementation of
this scheme is the “island dynamics” model.33 The Burton–
Cabrera–Frank (BCF) equations,34 which describe the growth
and decay of epitaxial islands due to the attachment and detach-
ment of adatoms, are solved by using the level-set method.35,36

A simple rate equation for the island density that depends only
on the average adatom density determines nucleation times,
with the position of a nucleated island chosen by a stochastic
algorithm. Excellent agreement is obtained between experi-
ment and KMC simulations for irreversible aggregation, where
adatoms cannot detach from island edges, in the submono-
layer regime. The method has been extended to account for
adatom detachment from island edges (reversible aggrega-
tion),37 Ostwald ripening,38 and the effects of strain due to
lattice mismatch.39

Here, we apply a somewhat different strategy by using
the phase-field method to model the submonolayer growth of
a monatomic crystal. The phase-field method is based on the
Ginzburg–Landau theory of phase transitions and provides a
mathematical description for moving boundary problems dur-
ing phase transformations, such as solidification, in which the
interface has a finite, but small, thickness. The central quantity
in this method is an auxiliary function, called the “phase field,”
whose value identifies the phase at every point in space and
time. The phase-field model of the solid-liquid phase trans-
formation was first proposed by Langer40 and has become a
widely used method for computing realistic morphologies in
a variety of settings.41,42 For our purposes, this method offers
several advantages over the level-set method, including the
ability to treat irreversible and reversible aggregation within a
single framework, that is, without resorting to ad hoc, albeit
sophisticated, schemes.37

There have been several applications of the phase-
field method to epitaxial systems, including growth in the
submonolayer43–45 and multilayer45,46 regimes, on stepped
surfaces47–49 and spirals,50 and on patterned surfaces.51

Submonolayer epitaxy, the focus of our interest here, has been

the most extensively studied regime, both experimentally and
theoretically,52 because scanning tunneling microscopy pro-
vides detailed information about island sizes and their distribu-
tions, which can be compared directly with predictions based
on scaling theory to identify growth mechanisms and criti-
cal island sizes. Scaling theory yields power laws for adatom
and island densities,53 scaling functions for distributions of
island sizes,54–56 and the spatial correlations between island
positions.57 Previous work has focused either on island-size
distribution functions for reversible and irreversible aggrega-
tion, but with uncertain results for island density scaling,44 or
solely on the scaling of island densities.43,45 Here, we carry
out a detailed examination of phase-field calculations of sub-
monolayer epitaxy by determining exponents for adatom and
island densities and, crucially, island-size distributions and
demonstrate the crossover of these quantities from irreversible
to reversible aggregation.

The organization of this paper is as follows. In Sec. II, we
show how the growth of islands can be described by the BCF
equations. The phase-field equations, which provide solutions
to the BCF equations, and their “thin interface limit” are devel-
oped in Sec. III. The nucleation of islands, which is an adjunct
to the phase-field equations, is described in Sec. IV, includ-
ing when and where dimers are placed on the surface and
how they are incorporated into the phase field. The numeri-
cal implementation of our phase-field method is described in
Sec. V. Results for irreversible and reversible aggregation are
presented in Sec. VI. We have determined surface morpholo-
gies, island-size distributions, and the scaling of adatom and
island densities. Agreement with KMC simulations is obtained
for all of these quantities. For reversible growth with varying
temperature but constant flux, agreement relies on an estimate
of the formation energy of the critical cluster. Conclusions and
an outline of directions for further development are provided
in Sec. VII.

II. THE MODEL

We consider a model in which deposited adatoms are
the only mobile surface species. All other species (dimers,
trimers, etc.) are assumed to be immobile and are referred
to as “islands” which can grow/decay by the gain/loss of
adatoms at their edges. This model has been used to quantita-
tively account for several aspects of epitaxy on semiconduc-
tor58–60 and metal52 surfaces. However, for some materials,
other species, such as clusters of atoms, can diffuse on the
surface29 and, hence, contribute to the nucleation and growth
of islands. Mobile clusters and other extensions to our basic
method will be discussed in Sec. VII.

The limit where no detachment of adatoms from islands
occurs is known as irreversible growth or aggregation.61 This
is the regime of low temperatures and/or high fluxes. This
means that when two adatoms collide on the surface, they
combine irreversibly to form an immobile dimer which then
grows by capturing diffusing adatoms. Growth is “reversible”
if adatoms can detach from island edges. In the language of
classical nucleation theory,27 irreversible growth corresponds
to a critical number i = 1 of atoms, where islands with two
atoms are stable and grow by capturing migrating atoms.
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Reversible growth corresponds to critical sizes i ≥ 2, where
islands with fewer than i atoms tend to decay, while those
with greater than i atoms tend to grow. The assumption of irre-
versibility reduces the number of atomistic processes that must
be considered. Although irreversible aggregation is somewhat
idealized, there are materials10,52,62–64 that exhibit this growth
mode.

The philosophy of coarse-grained models for epitax-
ial growth, such as the phase-field method used here, is to
replace some of the discrete atomistic processes by contin-
uous equations valid over large length and time scales.30–32

This is accomplished in part by introducing a continuous field
c(r, t) for the mobile adatom density at position r on the
surface at time t. Away from island boundaries, the evolu-
tion of c(r, t) is determined by the two-dimensional diffusion
equation

∂c
∂t
= D∇2c + J , (1)

where D is the adatom diffusion coefficient, assumed to be
a constant across the surface, and J is a continuous flux of
adatoms onto the surface. In the following, we will work with
the dimensionless quantity n = Ωc, which is the number of
atoms per atomic site with area Ω = a,2 where a is a lattice
spacing. Multiplying (1) by Ω yields

∂n
∂t
= a2D̃∇2n + J̃ , (2)

in which D = a2D̃, so D̃ is the hopping rate between the
nearest neighbor sites separated by a distance a and J̃ = ΩJ is
the deposition rate per site. Both D̃ and J̃ have units of inverse
time.

Island edges act as sources or sinks for the adatom density.
The fluxes of adatoms at these edges determine the normal
velocity vn = v · n̂ of the island boundaries,

vn = a2D̃ n̂ · (∇n|+ − ∇n|−), (3)

for an interface with outward normal n̂. Here, the subscript +
(−) refers to the lower (upper) terrace at an island boundary
(Fig. 1).

FIG. 1. Schematic diagram for a system described by the BCF equations with
upper (“−”) and lower (“+”) terraces (the latter shown shaded) separated by
the sharp interface of an island edge. Adatoms are deposited onto the surface
(including the top of islands) at a rate of J̃ per lattice site, and then migrate
with the hopping rate D̃ between the nearest neighbor lattice sites separated
by a. Arrows to and from the interface show the flux from the upper and lower
terraces to the interface with outward normal n̂ [Eq. (3)].

The curvature of the interface between the island and the
mobile adatoms is accounted for by an approximate form of
the Gibbs–Thomson equation65 appropriate for fast adatom
detachment at step edges. This effectively assumes that the
adatoms near a step edge are dilute enough to be regarded as
mutually noninteracting. In this case, the number of adatoms
outside an island of radius R,

nstep = n0
eq exp

(
γΩκ

kBT

)
≈ n0

eq(1 + d0κ), (4)

is enhanced relative to the equilibrium adatom density n0
eq,

where

d0 =
γΩ

kBT
(5)

is the capillary length, γ is the step free energy per unit
length (assumed to be isotropic and independent of curva-
ture), κ is the local curvature of the interface, kB is Boltz-
mann’s constant, and T is the absolute temperature of the
substrate. Equation (4) serves as the boundary condition for (1)
at the interface. Equations (1)–(4) are referred to as the BCF
equations.34

The capillary length (5) determines the effect of curvature
on the growth and decay of islands. For d0 small compared
to the radius of an island (d0κ � 1), capillarity has little
influence, and islands grow at a rate proportional to the super-
saturation of the adatom density. However, capillarity becomes
important for larger d0, and islands below a critical radius
tend to decay unless the surrounding adatom density is high
enough to enable detachment to be balanced or exceeded by
attachment.

The role of n0
eq in (4) can be understood by examining

reversibility in relation to the boundary conditions of the BCF
equations solved by (12) and (14) in the thin interface limit
(Sec. III B). These points are discussed in Ref. 37, but we
repeat the main elements of the argument here. The key obser-
vation is that, if growth is irreversible, island boundaries act
as perfect sinks and the diffusion equation is solved subject to
the absorbing boundary condition

n(r, t)��step = 0. (6)

If adatoms can detach from island boundaries, this condition
becomes

n(r, t)��step = n(0)
step, (7)

where n(0)
step is the equilibrium density for an island of radius

R. For large circular islands,

κ =
1
R

, (8)

and n(0)
step is given by the corresponding Gibbs–Thomson rela-

tion (4), which is satisfied by the phase-field equations in the
thin interface limit (Sec. III B). The Gibbs–Thomson relation
implies that, on a surface with islands of various curvatures,
a concentration gradient is established whereby adatoms dif-
fuse from interfaces with large curvature to interfaces with
small curvature, that is, from small islands to neighboring large
islands. This coarsening process is known as Ostwald ripen-
ing66 and is particularly effective during equilibration, when
there is no particle source.
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This argument highlights two features of our model. First,
the assumption that the linearized Gibbs–Thomson equation
is valid for islands containing as few as two atoms, the small-
est islands in our model. This approximation captures enough
of the curvature effects to produce the crossover between
irreversible and reversible growth, as will be shown below.
Second, for irreversible aggregation, the phase-field equations
do not reproduce the boundary condition (6) exactly in the
thin interface limit. However, for an0

eqd0 � 10−6, agreement
is obtained with previous models of irreversible aggregation.
We conclude that errors resulting from the boundary condition
in (6) are negligible.

III. THE PHASE-FIELD METHOD
A. Solution of BCF equations

The BCF equations constitute a “Stefan problem,” in
which moving boundaries separate two phases (in our case,
mobile adatoms and their condensed phase, which are islands).
The motion is specified by quantities on either side of the
boundary, that is, within the two phases. The phase-field
method enables us to solve the BCF equations without having
to keep track of the motion of interfacial boundaries.

In phase-field formulations of epitaxial growth, an aux-
iliary field called the “phase field” and denoted by φ(r, t)
is introduced to describe the position and spatial extent of
immobile islands on the surface of the substrate. The phase
field varies continuously between regions where φ = 1, indi-
cating the presence of islands, and regions where φ = 0,
which is associated with the presence of the adatom field
n(r, t).

The equation of motion for the phase field is derived by
first postulating a (dimensionless) “free energy” functional
F[φ(r, t)] of the phase field. The choice of this functional
depends on the problem at hand and is typically based on phe-
nomenological considerations. A common choice is the sum
of a “bulk free energy,” which in a two-phase system is a
double-well potential, a gradient term representing the free
energy cost of spatial variations between the two phases, such
as interfaces, and a term to account for interactions between the
phase field and any other fields. If φ is not conserved locally,
its time dependence can be obtained by assuming dissipative
dynamics,

τ
∂φ(r, t)
∂t

= −
δF
δφ

, (9)

where τ is a time scale that determines the relaxation of
the phase field to equilibrium and the right-hand side is the
functional derivative of F with respect to φ.

The free energy used here43 is an extension of the expres-
sion proposed by Liu and Metiu67 and has been used in other
studies of epitaxial growth44,45 on initially flat surfaces,

F[φ(r, t)] =
∫

d2r
Ω

{
W2

2
(∇φ)2 −

1
π

cos(2πφ)

+ λ
(
n − n0

eq

) [
1
π

sin(2πφ) − 2φ

]}
, (10)

where W is the width of the interface between regions where
φ = 1 and where φ = 0, λ is a dimensionless coupling constant,
and u0

eq is the equilibrium adatom number density at a straight
step,

u0
eq = e−βE0 , (11)

in which E0 is the energy difference between a free adatom
and an atom at a step and β = 1/(kBT ).

The second term on the right-hand side of (10) is the “bulk
free energy,” which has degenerate minima at φ = 0, 1, 2, . . ..
The first term is the free energy cost of creating an interface
between regions with different values of φ, which corresponds
to an island boundary (Fig. 1). The third term couples the phase
field and the adatom density through the supersaturation n−n0

eq
and causes the island boundary to advance or retract by the
capture or release of adatoms, depending on the sign of the
supersaturation.

The number of adatoms per site is determined by a
diffusion equation similar to (1),

∂n
∂t
= a2D̃∇2u −

∂φ

∂t
+ J̃ − 2Ω

∑
k

δ(r − rk)δ(t − tk). (12)

The first term on the right-hand side accounts for adatom diffu-
sion on the terraces between island edges. The diffusion coef-
ficient has the Arrhenius form obtained from transition-state
theory,

D̃ = ν e−βED , (13)

where ν = 2kBT /h ∼ 1011–1013 s−1 is an attempt frequency,
h is Planck’s constant, and ED is the energy barrier for hop-
ping between the nearest lattice sites. The second term in (12)
accounts for the capture of adatoms by existing islands. The
third term corresponds to the uniform deposition rate of atoms
per lattice site J̃ of atoms onto the substrate. The fourth term
accounts for the loss of two atoms with each nucleation event
of a dimer. Studies68,69 of epitaxial processes in such mod-
els have revealed that, in the early stages of growth, island
nucleation is the dominant source of noise, while deposition
noise is negligible. Hence, we take deposition to be a uniform
deterministic process.

The equation of motion for the phase field is obtained
from (9) and (10),

τ
∂φ

∂t
= W2∇2φ − 2 sin (2πφ) − 2λ

(
n − n0

eq

) [
cos (2πφ) − 1

]
.

(14)

The evolution of an island boundary, which we take as the con-
tour φ = 1

2 , is then determined by the solution of the coupled
equations (12) and (14). This system of equations corresponds
to the “isothermal variational formulation,”70 in which the two
equations are not derived from a single free energy functional.
Instead, the second term in the right-hand side of (12), which
describes the gain/loss of adatoms by islands, is entirely phe-
nomenological. The relation to the BCF equations is discussed
in Sec. III B.

In previous implementations43–45 of the phase-field
method for submonolayer epitaxy, deposition was based on
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the random arrival of adatoms, and the nucleation rate of new
islands was derived from the estimate λnn2 obtained from rate
equations,27,28,52 where λn is an inverse time scale. This term
is added to (14) as a new coupling for the phase field. By con-
trast, we regard nucleation as a discrete stochastic event in both
space and time. Details are explained in Sec. IV.

B. Thin interface limit

The connection between the parameters in the phase-field
formulation and the BCF equations is provided by the thin
interface analysis.70 We define solutions φin, nin, φout, and nout

to (12) and (14), which are valid in an “inner region” near
the interface and an “outer region” far away from the inter-
face. In the outer region, φout is a constant determined by the
minimum of the free energy, and nout satisfies the diffusion
equation with source J̃ because the source/sink term −∂φ/∂t
in (12) then vanishes. Equations for φin and nin are obtained
by transforming a local coordinate system into a reference
frame that moves with the velocity of the interface. Both φin

and nin are then expressed as asymptotic expansions of the
form

φin = φ0,in + εφ1,in + ε2φ2,in + O
(
ε3

)
, (15)

where ε = W /`c is a small dimensionless parameter and `c

is the diffusion length. These equations are solved order by
order subject to matching conditions for the inner and outer
solutions at the interface. Equation (3) is recovered at O(ε).
At O(ε2), an expression is obtained for n(r, t) at the inter-
face which, when compared with (4), provides relationships
between the parameters in the phase-field and BCF equa-
tions. In the limit of instantaneous adatom attachment to island
edges,

τ =
c1c2W3

n0
eqd0a2D̃

, λ =
c1W

n0
eqd0

, (16)

where c1 and c2 are the numerical constants that depend
on the free energy functional. For F in (10), c1 = 0.36 and
c2 = 0.51.43

IV. NUCLEATION

There are two ways of stipulating when a nucleation event
occurs. Nucleation can be considered to be deterministic in
time and based upon solving a rate equation,

dN
dt
= σ1D̃〈n(r, t)〉2, (17)

for the number N of islands per lattice site during irreversible
aggregation, as was done in Ref. 33. This equation assumes
that an island is formed when two adatoms meet at the same
point r. Hence, we regard the formation of a dimer as syn-
onymous with the formation of an island. Here, σ1 is the
adatom capture number that represents the collision cross
section,27,28,71

σ1 =
4π

ln
(
π〈n〉

D̃

J̃

) . (18)

Equation (17) is integrated over time, with a nucleation event
occurring whenever the quantity NL2/Ω passes the next inte-
ger. Here, L2 is the area of the square domain used in the
simulations, so L2/Ω is the corresponding number of lattice
sites.

Alternatively, nucleation events can be regarded as
stochastic in time. In this case, at each time step, we form
the quantity

σ1D̃〈n(r, t)〉2
L2

Ω
, (19)

which is the mean rate of dimer production on the sub-
strate. This is similar to the expression used in rate equa-
tions (without the factor L2/Ω) for the average production rate
of dimers per site. Assuming that the nucleation events are
Poisson-distributed, the mean waiting time between nucleation
events is

∆t = −
Ω ln(Y )

σ1D̃〈n(r, t)〉2L2
, (20)

where Y is a uniform random deviate in the range [0, 1]. A
nucleation event occurs whenever ∆t < dt, where dt is the
time step. In our simulations, we regard nucleation as stochas-
tic in time. The introduction of temporal fluctuations into the
nucleation rate is not expected to have a large effect on our
results.72

Methods for choosing the position of the nucleated dimer
have been explored72 with the level-set method. The best
agreement with island-size distributions obtained from KMC
simulations of irreversible aggregation in the pre-coalescence
regime was found when the position of the nucleated dimer was
chosen randomly and weighted by the local value of n2(r, t).
This ensures that islands are more likely to nucleate in the
regions of high adatom density.

Once the position r0 of the nucleated dimer has been
selected, we must increase the value of φ around this point.
We do this by adding to the phase field an isotropic distri-
bution φ̃ centered at r0, which represents a new dimer. We
use

φ̃(r; z) =
1
2

[
1 − tanh

( r − z
W

)]
, (21)

where r is the radial distance from r0 and z is a length deter-
mined by the condition that two atoms correspond to φ̃. Trans-
forming to polar coordinates and carrying out the azimuthal
integral, we obtain

2π
∫ ∞

0
rφ̃(r; z)dr =

πW2

2

∫ − exp(2z/W )

0

ln(1 − s)
s

ds = 2a2.

(22)

The second integral is a representation of (minus) the dilog-
arithm function L2,73 which yields a transcendental equation
for z,

L2
(
−e2z/W )

= −
4a2

πW2
. (23)

For W = a, this equation yields z = 0.27 a [Fig. 2(a)]. In the
limit W → 0, φ̃ corresponds to a circular island with radius
r = a

√
2/π [Fig. 2(d)]. To ensure mass conservation, dimer

nucleation is accompanied by the simultaneous depletion of
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FIG. 2. Profiles of the phase field of nucleated dimers determined by (21)
and (22) for interface widths of (a) W = a, (b) W = 0.5 a, (c) W = 0.1 a, and
(d) W = 0.025 a. Top panels show three-dimensional phase fields φ̃, and
bottom panels show the corresponding sections through the x−φ̃ plane (shown
shaded) in the top panels. Shaded regions in the bottom panels indicate the
integral of the corresponding section of the profile. The spatial integral (22)
of φ̃ corresponds to two atoms.

the adatom density by an amount equal to the nucleated dimer.
Similarly, dimer dissociation depletes the island density, with
a concomitant increase of the adatom density field.

V. NUMERICAL IMPLEMENTATION

The phase-field equations are solved numerically on a
grid. The main computational challenge is due to the large
value of D (typically, 104–107 a2s−1), which makes explicit
finite difference methods prohibitively expensive. There are
several ways of reducing the computing time. First, (12)
and (14) can be solved with semi-implicit methods, which
are usually a combination of implicit methods and operator
splitting to account for non-linear terms. Second, finite dif-
ferences can be retained, but the problem reformulated to
facilitate parallelization, as in domain decomposition.44 We
use the former approach and implement exponential time
differencing.74

Unless stated otherwise, the phase-field equations are
solved on an LN × LN square grid with LN = 512 and spac-
ing ∆x = 1

2 a such that the physical length of one side of

the square domain is L = ∆x × LN = 256 a. Averages are
obtained over 20–30 independent simulations. For most sim-
ulations, we set J̃L/Ω = 1 ML /s and vary the tempera-
ture, but we also examine the effect on island densities of
fixing the temperature and varying J̃ . The interface width
is set equal to a, but we have performed spot checks with
smaller widths to verify that the thin interface limit has been
reached.

We use the hopping barrier ED = 1.4 eV for all simulations,
with other parameters indicated in the figure captions. A bar-
rier of 1.4 eV (with a prefactor of ν ∼ 2kBT /h) is appropriate for
basic models of growth on surfaces such as GaAs(001),59 while
those for metal (001) surfaces fall in the range of 0.5 eV.75,76

But these differences are transformed away by the scaling
analysis based on rate equations27,54–56 which, for irreversible
growth, subsumes growth statistics into expressions parame-
terized by the ratio D̃/J̃ , the coverage, and the critical island
size.

For reversible growth, there is an additional parameter
that measures56,77,78 the extent of adatom detachment from
island edges. In KMC simulations of submonolayer epitax-
ial growth, reversibility is determined by the lateral energy
barrier between adatoms.78 Such a parameter does not appear
in the phase-field formulation. However, by varying d0 and
n0

eq, we obtain results that account for the crossover between
irreversible and reversible growth. During irreversible growth,
adatoms cannot detach from islands, so we will use this ter-
minology if an island cannot become smaller for a set of
parameters. During reversible growth, however, islands can
decay or evaporate entirely.

VI. RESULTS

The phase-field calculations presented in this section have
been obtained with the adatom hopping barrier ED, the equi-
librium adatom density n0

eq (through E0), and the capillary
length d0 (through γ) chosen to show the transition between
irreversible and reversible aggregation. The hopping barrier
sets the temperature range by determining the hopping rate of
adatoms, while n0

eq and d0 determine the adatom detachment
rates from island edges. Thus, at low temperatures, adatom
hopping is suppressed, which increases the adatom density
on the terrace, but detachment is also suppressed, leading to
many small stable islands, i.e., to irreversible growth. At high
temperatures, the increased adatom hopping diminishes the
adatom density on the terrace, which reduces the island nucle-
ation rate, but increases the adatom detachment rate, which
destabilizes small islands. This is the regime of reversible
aggregation.

A. Surface morphologies

Irreversible aggregation is simulated with parameters
n0

eqd0 ∼ 10−6 a–10−8 a such that τ ∼ 1 s [cf. (16)]. This choice
is motivated by simulations79,80 which demonstrate conver-
gence to the thin interface limit. By keeping n0

eq small, and
choosing d0 such that n0

eqd0 < 10−6 a, islands are unable to
diminish in size, and we find results consistent with irreversible
growth. Larger values of n0

eqd0 introduce the possibility that
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nucleated dimers are unstable and may decay, depending on
the adatom density at the interface.

The key parameter for irreversible epitaxial growth is the
dimensionless ratio R ≡ D̃/J̃ of the hopping rate to the depo-
sition rate per lattice site area. The asymptotic analysis of rate
equations27,28,56,57 shows that, as R → ∞, adatom and island
densities scale with coverage and R and island size distribu-
tions approach a universal scaling form. This will be developed
further in Secs. VI B–VI D.

For the analysis of reversible aggregation, R must be sup-
plemented by a quantity that reflects the degree of reversibility.
Although there are several choices,56,77,78,81 an analysis based
on rate equations shows that the critical island size27 emerges
as a simple and intuitive quantity. However, as discussed in
Sec. VI C, the critical island size is a statistical quantity that
reflects the stochastic nature of the growth process and is,
therefore, rarely an integer.

Figure 3 shows snapshots of surface morphologies at
θ = 0.1 ML for irreversible and reversible growth. Such mor-
phologies provide the most detailed information about a simu-
lation and are the basis for further analysis in Secs. VI B–VI D.
Most apparent for irreversible growth [Fig. 3(a)] is the large
number of small islands and the close proximity of some
of these islands to each other and to much larger islands.
There is no mechanism for the dissolution of islands, so
only coalescence at larger coverages can eliminate small
islands.

The corresponding morphology for reversible growth
[Fig. 3(b)] is qualitatively different from the irreversible case.
There are substantially fewer, but larger, islands and their
positions are less irregular. This is a well-known feature of
reversible growth and results from nucleation in unfavor-
able positions being “corrected” by the dissolution of smaller
islands and the subsequent incorporation of their constituent
adatoms into neighboring islands.

As is particularly evident in Fig. 3(b), the islands are
square. This is an effect of the grid and, in particular, our
choice of the grid spacing ∆x = 1

2 a. We do not expect any
adverse effect on our results, as square islands have been
found28,37 to produce the same submonolayer statistics as other
compact shapes. This is borne out in the results presented in
Subsections VI B–VI D.

FIG. 3. Surface morphologies obtained from phase-field simulations of (a)
irreversible aggregation (E0 = 1.2 eV and γ = 103 eV/a) and (b) reversible
aggregation (E0 = 0.7 eV andγ = 0.5 eV/a). For both simulations, D̃/J̃ ∼ 105,
LN = 512, and θ = 0.1 ML. The square shape of the islands is the result of
the square grid with spacing ∆x = 1

2 a used for the numerical solution of the
phase-field equations.

B. Adatom and island coverages

The coverage dependence (equivalent to time-dependence
through θ = J̃ tL2/Ω) of adatom and island coverages is
shown in Fig. 4. For irreversible aggregation, the adatom
coverage increases sharply after the initiation of the deposi-
tion flux, followed by a rapid decrease at the onset of island
nucleation. Island coverage shows a continuously decreasing
slope, with the steady state attained near 0.1 ML (not shown).
The extended nucleation regime is evident in Fig. 3(a), with
the morphology showing many small islands, some in close
proximity to one another. There are also regions with few
islands, which are favorable for dimer formation, as noted
above.

The coverages of adatoms and islands during reversible
aggregation is qualitatively different from the irreversible case,
as Fig. 3 suggests. The initial peak in the adatom profile is
shifted to slightly higher coverages because island formation
is a slower process, due to the greater adatom coverage needed
to form stable islands. Indeed, the coverage profile of the
islands shows a maximum near 0.015 ML [Fig. 3(b)], fol-
lowed by a saturation regime where there is little additional
nucleation.

Nucleation is a more difficult process during reversible
growth, which is reflected in the much higher adatom and lower
island density compared to irreversible aggregation. This also
affects the spatial distribution of islands and their sizes. As
Fig. 3(b) shows, the islands are generally farther apart, larger,
and more regularly spaced than those in Fig. 3(a). However,
there are also some small islands; this is an artifact of our
algorithm and will be discussed in Sec. VI C.

C. Island-size distributions

An important measure of the ability of our method to accu-
rately describe the spatial arrangement of epitaxial islands
is the distribution of island sizes. Islands grow by accreting
mass from the ambient adatom population. The availability of
adatoms is determined by the local environment of an island,
that is, the number and sizes of neighboring islands. Hence, any
inaccuracy in the spatial arrangement of islands is reflected in

FIG. 4. Coverages of (a) adatoms and (b) islands for 0 ≤ θ ≤ 0.05 ML for
irreversible (filled blue squares) and reversible (filled red circles) aggregation,
with J̃N/Ω = 1 ML/s, so θ = t ML. For reversible aggregation, E0 = 1.5 eV
and γ = 104 eV/a while for irreversible aggregation, E0 = 2.5 eV and
γ = 105 eV/a. In both cases, D̃/J̃ = 6 × 105.
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the island-size distribution. The standard for such comparisons
is based on KMC simulations, which capture all of the spatial
correlations between islands and have been shown to quanti-
tatively account for experimental measurements of island-size
distributions.62,63,81–85

To enable consistent comparisons across systems (sim-
ulated and real), the island-size data are plotted by using
dimensionless scaled variables, which produces a data col-
lapse onto a scaling function when the same mechanisms
are operative. In particular, the number N s of s-atom islands
per site prior to any appreciable coalescence of islands
is52,54–56

Ns =
N
sav

f
( s

sav

)
, (24)

where N is the total number of islands per site, f is a scal-
ing function, and sav is the average island size. A plot of
N ssav/N against s/sav yields the scaling function, which has
normalization ∫ ∞

0
f (x) dx = 1 (25)

and first moment ∫ ∞
0

x f (x) dx = 1. (26)

Figure 5 shows island-size distributions obtained from
our phase-field simulations for different values of n0

eqd0 cor-
responding to reversible and irreversible growth. The symbols
represent results of simulations with different temperatures at
0.1 ML, prior to any significant coalescence. The red lines
are optimized analytic fits to KMC simulations for different
critical island sizes.83 There is no change in the phase-field
simulation used to obtain the distributions in Fig. 5, as they
are determined solely by the values of γ and E0. This is
in contrast to KMC simulations, where the increased num-
ber of diffusional hops per unit time leads to substantially
greater computational overhead, while in level-set simula-

FIG. 5. Island-size distributions for (a) irreversible and (b) reversible aggre-
gation at 950 K (circles) and 1000 K (triangles) plotted with scaled vari-
ables, as indicated in (24). Squares represent irreversible aggregation for
n0

eqd0 ∼ 10−6–10−8 a such that τ ∼ 1 s (see text). Each symbol represents
an average over 20–30 independent simulations at a coverage of 0.1 ML. The
parameters for irreversible aggregation are E0 = 1.2 eV and γ = 103 eV/a and
for reversible aggregation are E0 = 0.7 eV and γ = 0.5 eV/a. Red curves are
optimized fits83 to KMC simulations for (a) i = 1 and (b) i = 2 (solid curve)
and i = 3 (broken curve).

tions, a somewhat ad hoc procedure was adopted37 to account
(successfully) for reversibility. Lowering the temperature in
Fig. 5(a) takes the system deeper into the regime of irre-
versible aggregation, while raising the temperature in Fig. 5(b)
takes the system toward larger values of the critical island
size.

We consider the irreversible case first. Although the distri-
bution follows the curve for a critical island size i = 1 for s/sav &
0.5, there are systematic deviations for smaller islands, which
are manifested as a shoulder. Similar observations have been
made for level-set calculations72 of irreversible aggregation.
In fact, the same behavior is seen in rate equations and KMC
simulations of “point” islands, that is, islands with no spatial
extent, but which can still accumulate migrating adatoms in
proportion to their size.55

The shoulder in Fig. 5(a) is due to the breakdown of our
mean-field-like nucleation rule for the positions of new islands.
An examination of Fig. 3(a) indeed reveals many small closely
spaced islands and small islands near much larger islands. The
growth rate of the small islands is diminished by the close
proximity of neighboring islands, resulting in an over-estimate
of the numbers of small islands.

The main effect of reversibility is an appreciable narrow-
ing of the distribution. The solid and broken curves in Fig. 5(b)
are obtained from optimized fits to KMC simulations83 with
i = 2 and i = 3, respectively. Our parameters and growth con-
ditions produce a scaling function between i = 2 and i = 3.
This is typical of stochastic models of growth without a man-
dated critical cluster size, in which i becomes a statistical
quantity that reflects contributions from several critical island
sizes.56,77,81 Only by requiring islands to have a specific criti-
cal size does the resulting scaling function correspond to that
integer value.83

Another effect of reversibility is the much diminished
shoulder for small island sizes. This effect, and the narrowing
of the distribution, results from the system “correcting” inef-
ficient nucleation sites by eliminating them by accretion to a
neighboring larger island. Thus, there are fewer islands than
in the irreversible case for the same coverage (Fig. 4), with
a more uniform distribution of size and more regular spatial
arrangement. The surface morphology in Fig. 3(b) confirms
these observations.

Figure 6 compares the scaled island-size distributions in
Fig. 5 with scaled experimental data obtained from homoepi-
taxial growth on Fe(001) and on GaAs surfaces. The low-
temperature (20 ◦C) growth of Fe(001) and the growth of
GaAs(110) at 480 ◦C both fall onto the distribution for irre-
versible aggregation. At higher temperatures (356 ◦C), the
growth of Fe(001) clearly indicates reversibility, as do the data
for GaAs(111)A at 480◦. The data for Fe lie closer to the curve
corresponding to i = 3, as closer analysis of these data indi-
cates,62 but the data for GaAs(111)A indicate i = 2, likely
a result of the three-fold symmetry of this Ga-terminated sur-
face.83 The important point about this figure is that, despite the
differences in the structure, bonding, and growth kinetics of
Fe and GaAs surfaces, scaling plots reduce the growth process
to the most basic considerations, in these cases to the criti-
cal island sizes. This is the essence of the universality behind
scaling laws.
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FIG. 6. Comparison of the scaled island-size distributions in Fig. 5 with
experimental data of (a) homoepitaxy on Fe(001) at 20 ◦C (Ref. 62) (red
circles) and homoepitaxial growth of GaAs(110) at 480 ◦C (Ref. 63) (blue
squares) and (b) homoepitaxy on Fe(001) at 356 ◦C (Ref. 62) (red circles) and
homoepitaxial growth of GaAs(111)A at 480 ◦C [Ref. 63 (blue squares)].

D. Scaling of adatom and island densities

During the deposition of a new material, the numbers n of
adatoms and N of islands per lattice site reach a quasi-steady-
state regime in which rate equations predict scaling of adatoms
and islands of the form52,53

n ∼ θ−yi Rχi−1 exp
[ Ei

(i + 2)kBT

]
, (27)

N ∼ θyi R−χi exp
[
−

Ei

(i + 2)kBT

]
, (28)

for a critical island of size i, where Ei < 0 is the binding energy
of a critical island, R = D̃/J̃ , and

yi =
1

i + 2
, χi =

i
i + 2

. (29)

These relations are derived by assuming that the mean cap-
ture number of stable islands is independent of coverage. In
fact, capture numbers increase with coverage,86 resulting in
the saturation of island densities (Fig. 4), that is, yi = 0. The
scaling with R has been verified by KMC simulations,52,78,87,88

but the scaling with coverage has been seen only for point
islands.

Figures 7(a) and 7(b) show log-log plots of the adatom
densities in Fig. 4(a) with best fits from a linear regression to
the form

ln n = −y ln θ + constant. (30)

The conversion from the numbers of adatoms n and islands
N per site into monolayers involves multiplication by the fac-
tor L2/Ω, which is the number of lattice sites (of area Ω) in a
system of size L × L. For irreversible aggregation, we find y
= 0.79 ± 0.01, and for the reversible case, y = 0.52 ± 0.02.
Both adatom densities are in the pre-saturation regime, so
we do not expect to obtain y = 0. However, our results are
in agreement with those obtained from KMC simulations,78

which show increasing slopes with increasing lateral barriers.
More detailed comparisons based on adatom densities would
require additional calculations because of the different growth
conditions and different parameterizations of attachment and
detachment.

A log-log plot of island densities as a function of R is
shown in Fig. 7(c) for irreversible aggregation, together with

FIG. 7. Adatom density against coverage for (a) irreversible and (b) reversible
aggregation for the data in Fig. 4(a). Straight lines are fits from a linear regres-
sion with slopes of (a) y = 0.79± 0.01 and (b) y = 0.52± 0.02. (c) Island density
against R for irreversible aggregation. (d) Island density against Rε i, where
ε i is given in (32), for variations in temperature at constant flux (filled red cir-
cles) and for variations in flux at constant temperature (filled black triangles).
Straight lines are fits from linear regression with slopes of (c) χ = 0.32 ± 0.02
and (d) χ = 0.52± 0.04. Parameters for reversible aggregation are E0 = 0.8 eV
and γ = 0.3 eV a−1 and for irreversible aggregation are E0 = 2.6 eV and
γ = 106 eV a−1. Error bars are no larger than the symbol size.

the best fit from a linear regression. The value χ = 0.32 ± 0.02
is in excellent agreement with χ1 =

1
3 . This is not an alto-

gether surprising result, as all KMC simulations obtain this
slope for irreversible aggregation. However, while some phase-
field implementations43 agree with this result, others44,45

do not.
We now consider the corresponding comparisons for

reversible growth [Fig. 7(d)]. For this analysis, we write (28)
as

ln N ∼
i

i + 2
ln(Rε i), (31)

where we have defined

ε i ≡ exp
(
βEi

i

)
(32)

and we have omitted the coverage dependence since all data are
taken at the same coverage. The factor Ei/i in the exponential
is the binding energy per atom in a critical island.

We have determined the island density by varying the
growth conditions in two ways. We first varied the incident
flux at constant temperature. In this case, the factor ε i in (31)
reduced to a constant and does not affect the scaling of the
island density. We then varied the temperature at constant
flux. Here, the factor ε i does affect the scaling, which means
that the ratio Ei/i must be determined. Therefore, the quantity
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Ei/i is varied until the slope of the second dataset (variable
T at constant J) is equal to that of the first (variable J at
constant T ).

The results of our analysis are shown in Fig. 7(d). Linear
regression applied to both sets of data, with a suitably chosen
value of Ei/i for the first set of data, yields the slope χ = 0.52
± 0.04, which lies between χ2 and χ3. Indeed, by using the
second equation in (29), we obtain i = 2.2 ± 0.35, which is
consistent with Fig. 5(b) in that the island-size distribution
lies between the curves for i = 2 and i = 3. Taking this analysis
further would require calibrating a phase-field against KMC
simulations to obtain effective values of binding energies for
critical islands based on detachment barriers that reflect local
environments.

VII. SUMMARY AND FUTURE WORK

We have described the simulation of submonolayer epi-
taxial growth by using the phase-field method to solve the BCF
equations in the presence of island nucleation. Where direct
comparisons can be made, our results agree in most respects
with previous phase-field studies.43,44 However, our unified
framework for studying reversible and irreversible aggrega-
tion by varying both the capillary length and the equilibrium
density of adatoms provides an important extension of these
studies.45 The main advantage of the phase-field method over
level-set simulations is that no change in algorithm is needed to
simulate these cases. Furthermore, compared with KMC sim-
ulations, there is no appreciable increase in the computational
overhead for simulations of reversible growth, an advantage
shared with the level-set method.37

The model we have used is the most basic for describ-
ing epitaxial growth: a uniform particle source which deposits
single monatomic species onto a heated surface, which then
diffuse isotropically until the nucleation of a new island or cap-
ture by an existing island. This model has been used to great
effect for understanding a wide range of epitaxial phenomena,
but there are areas where it can be improved.

For irreversible aggregation, the island-size distribution
indicates that there are too many small islands, which is due
to our nucleation algorithm, and is also seen in level-set cal-
culations.72 This does not affect the scaling of island density
with R, but may delay the onset of the saturation regime. If we
replaced our uniform deposition flux with random deposition
of atoms,43–45 then a detailed calibration against KMC simu-
lations would enable the direct calculation of binding energies
of critical islands, which would provide a way of determin-
ing detachment barriers. Some progress along these lines was
reported in Ref. 45.

There are also many scenarios that require additional
processes and interactions to be considered, such as stepped
surfaces,47–49 step-edge barriers,43 and the mobility of dimers,
small clusters, or islands.52,89–93 All of these studies benefit
from a large body of KMC simulations and, in some cases,
analyses based on rate equations to identify appropriate scal-
ing laws. The mobility of dimers has yet to be incorporated
into the phase-field description, but is readily done, for exam-
ple, with a diffusion constant D(A) = D0A−µ for islands of size
µ > 0.

Another extension is deposition and decomposition poly-
atomic molecules that contain the atomic constituents of the
growing film, which is the basis of metal-organic vapor-
phase epitaxy. The application of the phase field method to
this growth scenario on surfaces patterned with V-grooves
or inverted pyramids,94 whose facets have different prop-
erties, would enable computations on the scale of nanos-
tructure arrays that would complement modeling based on
reaction-diffusion equations.95
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Rev. B 70, 085401 (2004).
86F. G. Gibou, C. Ratsch, M. F. Gyure, S. Chen, and R. E. Caflisch, Phys. Rev.

63, 115401 (2001).
87J. G. Amar, F. Family, and P. M. Lam, Phys. Rev. B 50, 8781 (1994).
88T. J. Oliveira and F. D. A. Aarao Reis, Phys. Rev. B 87, 235430 (2013).
89J. Villain, A. Pimpinelli, L.-H. Tang, and D. Wolf, J. Phys. I 2, 2107 (1992).
90S. Liu, L. Bonig, and H. Metiu, Phys. Rev. B 52, 2907 (1995).
91M. C. Bartelt, S. Günther, E. Kopatzki, R. J. Behm, and J. W. Evans, Phys.

Rev. B 53, 4099 (1996).
92I. Furman and O. Biham, Phys. Rev. B 55, 7917 (1997).
93P. A. Mulheran and D. A. Robbie, Phys. Rev. B 64, 115402 (2001).
94E. Pelucchi, S. T. Moroni, V. Dimastrodonato, and D. D. Vvedensky,

J. Mater. Sci.: Mater. Electron. 29, 952 (2018).
95V. Dimastrodonato, E. Pelucchi, and D. D. Vvedensky, Phys. Rev. Lett. 108,

256102 (2012).

https://doi.org/10.1021/nl2006005
https://doi.org/10.1016/j.jcrysgro.2003.11.108
https://doi.org/10.1103/physrevb.69.121406
https://doi.org/10.1103/physrevb.72.205421
https://doi.org/10.1016/s0893-9659(99)00026-9
https://doi.org/10.1098/rsta.1951.0006
https://doi.org/10.1103/physreve.64.061602
https://doi.org/10.1016/s0039-6028(03)00580-6
https://doi.org/10.1103/physrevb.80.155309
https://doi.org/10.1080/00018730701822522
https://doi.org/10.1088/0034-4885/71/10/106501
https://doi.org/10.1103/physreve.69.021601
https://doi.org/10.1103/physrevb.81.235431
https://doi.org/10.1016/j.physleta.2015.06.021
https://doi.org/10.1103/physrevb.77.195327
https://doi.org/10.1103/physrevb.70.205414
https://doi.org/10.1103/PhysRevB.73.035416
https://doi.org/10.1016/j.physd.2011.09.004
https://doi.org/10.1103/physrevb.79.235317
https://doi.org/10.1103/physrevb.94.075303
https://doi.org/10.1016/j.surfrep.2005.08.004
https://doi.org/10.1080/14786437308219242
https://doi.org/10.1103/physrevlett.52.1669
https://doi.org/10.1103/physrevb.54.r17359
https://doi.org/10.1103/physrevb.62.15435
https://doi.org/10.1103/physrevb.46.12675
https://doi.org/10.1016/0039-6028(88)90476-1
https://doi.org/10.1103/physrevb.46.6815
https://doi.org/10.1103/physrevb.69.165303
https://doi.org/10.1116/1.1600454
https://doi.org/10.1103/physrevb.49.8522
https://doi.org/10.1103/physrevlett.79.3938
https://doi.org/10.1038/35087532
https://doi.org/10.1103/physrevb.54.11741
https://doi.org/10.1103/physreve.49.2601
https://doi.org/10.1209/0295-5075/77/38004
https://doi.org/10.1016/j.mssp.2009.04.001
https://doi.org/10.1103/PhysRevE.53.R3017
https://doi.org/10.1103/physrevb.61.r10598
https://doi.org/10.1103/physrevb.61.r10598
https://doi.org/10.1006/jcph.2002.6995
https://doi.org/10.1103/physrevlett.70.3615
https://doi.org/10.1088/0953-8984/6/45/004
https://doi.org/10.1016/0039-6028(95)00930-2
https://doi.org/10.1103/physrevlett.72.3194
https://doi.org/10.1103/PhysRevLett.77.4050
https://doi.org/10.1103/PhysRevE.57.4323
https://doi.org/10.1016/0039-6028(95)00353-3
https://doi.org/10.1103/physrevb.50.5012
https://doi.org/10.1103/physrevlett.74.2066
https://doi.org/10.1016/0039-6028(95)00046-1
https://doi.org/10.1103/PhysRevB.70.085401
https://doi.org/10.1103/PhysRevB.70.085401
https://doi.org/10.1103/physrevb.63.115401
https://doi.org/10.1103/physrevb.50.8781
https://doi.org/10.1103/physrevb.87.235430
https://doi.org/10.1051/jp1:1992271
https://doi.org/10.1103/physrevb.52.2907
https://doi.org/10.1103/physrevb.53.4099
https://doi.org/10.1103/physrevb.53.4099
https://doi.org/10.1103/physrevb.55.7917
https://doi.org/10.1103/physrevb.64.115402
https://doi.org/10.1007/s10854-017-7993-0
https://doi.org/10.1103/physrevlett.108.256102

