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Abstract 5 

Microgrids are promising in reducing energy consumption and carbon emissions, compared 6 

with the current centralised energy generation systems. Smart homes are becoming popular 7 

for their lower energy cost and provision of comfort. Flexible energy-consuming household 8 

tasks can be scheduled co-ordinately among multiple smart homes to reduce economic cost 9 

and CO2. However, the electricity tariff is not always positively correlated with CO2 10 

intensity. In this work, a mixed integer linear programming (MILP) model is proposed to 11 

schedule the energy consumption within smart homes using a microgrid system. The daily 12 

power consumption tasks are scheduled by coupling environmental and economic 13 

sustainability in a multi-objective optimisation with ε-constraint method. The two conflicting 14 

objectives are to minimise the daily energy cost and CO2 emissions. Distributed energy 15 

resources (DER) operation and electricity-consumption household tasks are scheduled based 16 

on electricity price, CO2 intensity and electricity task time window. The proposed model is 17 

implemented on a smart building of 30 homes under three different price schemes. Electricity 18 

tariff and CO2 intensity profiles of the UK are employed for the case study. The Pareto curves 19 

for cost and CO2 emissions present the trade-off between the two conflicting objectives.  20 
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method, mixed integer linear programming (MILP) 22 
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Nomenclature 24 

The superscript is used to indicate equipment and subscript is used for indices: 25 

Indices 26 

i tasks 27 

j homes in the smart building 28 

t time interval  29 

  task operation period 30 

Parameters 31 

bt electricity price at time t (£/kWhe) 32 

iC  power consumption capacity of task i at operation period  (kWe) 33 

C
B
 boiler capacity (kWth) 34 

C
CHP

 CHP generator capacity (kWe) 35 

C
E
 electrical storage capacity (kWhe) 36 

C
TH

 thermal storage capacity (kWhth) 37 

D
E
 electrical storage discharge limit (kWe)  38 

D
TH 

thermal storage discharge limit (kWth) 39 

G
E
  electrical storage charge limit (kWe) 40 

G
TH

 thermal storage charge limit (kWth) 41 

Ht heat demand at time t (kWth) 42 

Pji processing time of home j task i  43 

p  difference between peak and base electricity demand price from grid (£/kWhe)  44 

q charge of the maximum of power demand from the grid (£/kWe)  45 

r price of natural gas (£/kWh) 46 

S

jiT  earliest starting time of home j task i  47 
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F

jiT  latest finishing time of home j task i 48 

α CHP heat-to-power ratio 49 

δ time interval duration (hour) 50 

E  cost per unit input (maintenance) for electrical storage unit (£/kWhe) 51 

TH  cost per unit input (maintenance) for thermal storage unit (£/kWhth) 52 

η
B
 boiler efficiency 53 

η
CHP

 CHP generator electrical efficiency 54 

η
E
 electrical storage charge/discharge efficiency 55 

η
TH

 thermal storage charge/discharge efficiency 56 

B  CO2 intensity of boiler thermal output (kg CO2/kWhth) 57 

CHP  CO2 intensity of CHP electrical output (kg CO2/kWhe) 58 

G

t  CO2 intensity of grid electricity at time t (kg CO2/kWhe) 59 

  agreed electricity peak demand threshold from grid (kWe) 60 

 61 

Variables 62 

ft thermal storage discharge rate at time t (kWth) 63 

gt thermal storage charge rate at time t  (kWth) 64 

It electricity imported from the grid at time t (kWe) 65 

I
max

 maximum power demand from the grid (kWe) 66 

Rt electricity exported to the grid at time t (kWe) 67 

IES  initial state of electrical storage (kWhe) 68 

ITHS  initial state of thermal storage (kWhth) 69 

E

tS  electricity in storage at time t (kWhe) 70 
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TH

tS  heat in storage at time t (kWhth) 71 

ut electricity output from CHP generator at time t (kWe) 72 

xt heat output from boiler at time t (kWth) 73 

yt electrical storage discharge rate at time t (kWe) 74 

zt electrical storage charge rate at time t (kWe) 75 

t  extra electricity load from grid over the agreed threshold  at time t (kWe) 76 

1  daily electricity cost of a home (£) 77 

2  daily CO2 emissions (kg CO2) 78 

 79 

Binary Variables  80 

Ejit 1 if home j task i is done at time t, 0 otherwise 81 

1. Introduction 82 

Due to fossil fuels depletion and global warming, energy cost and pollution reduction are two 83 

worldwide popular issues [1]. The UK Climate Change Programming, for example, aims to 84 

cut down 80% of carbon emissions by 2050 based on Climate Change Act 2008 [2]. In 85 

particular, in UK the energy sector is responsible of the highest amount of greenhouse gases 86 

to the atmosphere (i.e. 30%) [3]. At present, electrical supply systems are mainly based on 87 

relatively few large plants using conventional fossil fuels and operating in central locations. 88 

The power is then distributed to the final user via distribution and transmission networks. 89 

Centralised systems show overall energy losses of 65% or more, including losses during 90 

electricity generation, transmission and distribution [4]. Microgrid systems are regarded as an 91 

alternative to the current centralised energy generation systems, because they can provide 92 

economic benefits through avoiding long-distance transmission. Moreover, environmental 93 



6 

 

 

 

benefits can be obtained by utilising distributed energy resources (DER) in combination with 94 

microgrids, allowing generation of lower amount of pollutants [5]. Besides renewable energy 95 

resources, combined heat and power (CHP) generators are utilised in microgrids because of 96 

their high efficiency resulting from using the waste heat for thermal energy production. The 97 

implementation of micro CHP systems in the UK might reduce emissions of CO2 by up to 2.1 98 

tons per year per household, compared to condensing boilers and electricity drawn from the 99 

grid as reported by the Department of Energy and Climate Change (DECC) [6]. Meanwhile, 100 

security and reliability can be gained from interconnection and coordinated control.  101 

Within smart grids, the interactive relationship among the grid operators, utilities and smart 102 

homes is the key element that allows smart grid technologies to function together. Energy 103 

management of buildings could play an important role in reducing both energy cost and air 104 

pollution, since 30-40% of the world’s primary energy is consumed in buildings [7]. Within 105 

this context, smart homes are seen as a promising solution because of the rapid advances in 106 

computing and communication capabilities which can promote the concept further [8]. When 107 

smart homes are connected to smart grids, detailed pricing schemes enable customers to 108 

schedule their home appliance operations in order to save energy, reduce cost or help grid 109 

operations [1, 9]. Moreover, energy consumption can be reduced by 10-30% by changing the 110 

customers’ living behaviour through a demand-side management approach aimed at matching 111 

generation values with demand, by controlling the operation of appliances from the customer 112 

side [10]. Various dynamic pricing schemes for residential customers, such as real time 113 

pricing (RTP), time-of-use (TOU), critical peak pricing (CPP) and Critical Peak Rebate 114 

(CPR), are being designed to reduce the electricity demand at peak periods through the 115 

consumers’ response by changing their behaviour [11]. DECC reviewed 30 trials of demand 116 

side response (DSR) in the domestic sector under TOU, CPP and CPR in seven countries, 117 
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including the USA, the UK, Canada, Australia, Ireland, France and Norway, it concluded that 118 

the consumers do shift electricity demand in response to economic incentives.  119 

Energy management in smart homes has been investigated in quite a few recent journal 120 

publications. Equipment operations are scheduled based on a given energy profile to obtain 121 

minimum operation costs in [12-15]. Logenthiran et al. present a multi-agent system for 122 

energy resource scheduling of power system with DERs, and there are three stages for the 123 

algorithm behind the system [12]. It targets scheduling each microgrid individually to satisfy 124 

its total demand. A dynamic model is proposed for the energy management of a household 125 

through a Model Predictive Control (MPC) by Dagdougui et al. [13], which integrates 126 

different renewable energy sources and a storage device to fulfil the energy demands of a 127 

building. A mixed integer linear programming (MILP) model is developed in [14] for 128 

scheduling in microgrids connected to the national grid by incorporating various realistic 129 

features. The profit is maximised by maintaining diversity in the production of electricity and 130 

scheduling the electricity production, storage and purchase from and sale of electricity to the 131 

national grid. Mohamed and Koivo [15] propose a Genetic Algorithm (GA) approach to 132 

determine the optimal operating strategy and cost minimisation scheme for a microgrid for 133 

residential application.  134 

Energy management involving energy tasks scheduling has also been studied besides the 135 

energy resources scheduling mentioned above. In [16], daily deferrable and non-deferrable 136 

tasks are scheduled for a typical house with a PV generation and a battery storage within the 137 

operation of an electrical demand-side management to improve the energy behaviour with 138 

regard to a standard user behaviour. Tascikaraoglu et al. [9] proposed a demand side 139 

management strategy based on forecasting residential renewable sources. In-home energy 140 

management, appliances control and power flow are investigated. In the work of Kriett and 141 
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Salani [17], the operating cost of both electrical and thermal supply and demand is minimised 142 

in a residential microgrid with a generic MILP model. An MPC scheme is proposed to 143 

iteratively produce a control sequence. Caprino et al. [18] presented an approach to schedule 144 

the household appliances to limit the peak load of power usage. The appliance loads are 145 

classified into time-triggered and event-triggered loads and the physical model of these loads 146 

are considered in the model, such as a refrigerator and a washing machine. A demand 147 

response management application with RTP is proposed to determine the optimal operation 148 

of the residential appliances of a single house in the next 5-minute time interval while 149 

considering future electricity price uncertainties [19]. The operations of the appliances are 150 

classified into flexible /non-flexible and interruptible/non-interruptible tasks. It compares the 151 

stochastic optimisation and robust optimisation approaches for the scheduling of the tasks. 152 

Baraka et al. [20] design and implement a remotely controlled and energy efficient smart 153 

home and they present a heuristic scheduling algorithm for the Resource-constraint-154 

scheduling problem using Android tablet as user interface. The tasks to be scheduled are 155 

assigned with priority numbers and they are scheduled based on the overall coat limit and 156 

power usage limit in any time slot. Rastegar et al. [21] present an optimal and automatic 157 

residential load commitment framework, which minimises household payment by 158 

determining on/off status of flexible appliances and operation of battery storage and plug-in 159 

hybrid electric vehicles. The TOU electricity tariff at three levels is considered in this work. 160 

Another appliance scheduling work for a single house is proposed by Adika and Wang [22], 161 

where the electrical appliances are clustered based on their time of use probabilities. The 162 

aggregate loads of the appliances with similar schedules are tracked for different time periods 163 

which have certain power limits. Derin and Ferrante [23] develop a model that considers 164 

domestic energy consumption tasks scheduling, where the operation time of electric vehicle 165 

batteries, a dishwasher and a washing machine is scheduled. For only those three tasks in a 166 
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time span of 7 hours, the exhaustive search takes 35 minutes which is relative slow. The 167 

computation time has been reduced to be within seconds in our previous work [24 and 25], in 168 

which we consider a group of smart homes with a common microgrid and 12 domestic tasks 169 

of each home are available to be scheduled. DER operation and electricity-consumption 170 

household appliances are scheduled based on RTP and domestic electrical task time window. 171 

Total operation cost of the smart homes is minimised in [24], while fair cost distribution 172 

among smart homes is proposed in [25].   173 

However, only economic aspects are considered in all of the works mentioned above. Within 174 

the environmental context, demand side management of a domestic dishwasher is 175 

investigated by [26] according to renewable energy generation and pricing signals. Three 176 

optimisation objectives are examined: cost minimisation, demand on wind generation 177 

maximisation and associated carbon emissions minimisation. However, these are optimised 178 

separately. In [27], good cycles and battery electric vehicles are scheduled and the impact of 179 

introducing flexibility on the demand side is investigated. A household behaviour simulation 180 

model is developed to investigate the joint influence of price and CO2 signals in a demand 181 

response programme using a weighted sum approach [28]. Plant operation, system reliability, 182 

emissions and costs are addressed individually. Environmental and economic reasons are 183 

both considered in the work of Cheong et al. [29], where optimal household appliances 184 

scheduling is proposed for one home.  185 

The literature review reported above demonstrates that whereas a wealth of academic studies 186 

have been undertaken on smart homes and microgrid systems, the majority deal with one 187 

problem at a time, which is either the optimisation of the CO2 emissions or the optimisation 188 

of the costs. Flexible energy-consuming household tasks and DERs operation can be 189 

scheduled co-ordinately among multiple homes which share a common microgrid, in order to 190 
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achieve the desired reduction of both economic costs and CO2 impact. However, the 191 

electricity tariff is not always positively correlated with CO2 intensity and they may conflict 192 

with each other. In this work, an MILP model is proposed to schedule DER operations and 193 

the energy consumption of smart homes within a common microgrid. It extends the work 194 

presented in [24], where smart homes electric tasks scheduling is provided by only 195 

minimising the total energy cost while CO2 emissions are not considered. The daily power 196 

consumption tasks are scheduled in this work by coupling environmental and economic 197 

sustainability in a multi-objective optimisation with the ε-constraint method. The two conflict 198 

objectives are to minimise the daily energy cost and CO2 emissions. DER operation and 199 

electricity-consumption household tasks are scheduled based on electricity pricing, CO2 200 

intensity and the electricity task time window. Moreover, the effects on the optimal solution 201 

of different price schemes for purchasing the electricity from the grid are evaluated. The 202 

proposed model is implemented on a smart building of 30 homes under three different price 203 

schemes. Electricity tariffs and CO2 intensity profiles of the UK are employed for the case 204 

study. The Pareto curves for cost and CO2 emissions present the trade-off between the two 205 

conflicting objectives for the three price schemes. The results indicate the possibility of cost 206 

savings and emissions’ reduction through the daily power consumption tasks scheduling and 207 

better management of DER operations. 208 

The remainder of this paper is organised as follows: in Section 2, the problem is described 209 

briefly with relevant assumptions, constraints and objective function. In Section 3, the 210 

mathematical programming model is provided. In Section 4, the proposed model is applied to 211 

a case study with electricity tariff and CO2 emission intensity profiles of the UK. The 212 

computational results are presented and discussed in Section 5. Finally, concluding remarks 213 

are given in Section 6. 214 
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2. Problem description 215 

In this paper, multiple smart homes in a smart building are considered, where a microgrid 216 

system is available as local energy provider as shown in Fig. 1. All the DERs of the 217 

microgrid are shared among all smart homes; they include a CHP generator, a boiler, a 218 

thermal and/or an electrical storage. The microgrid is connected to the conventional grid so 219 

that the full electricity demand can be fulfilled by the conventional grid when the electricity 220 

produced by the DERs is insufficient. The electricity generated by the microgrid cannot be 221 

sold back to the grid. Each smart home follows its own energy demand curve, depending on 222 

the household types, available electrical appliances and living habits. The total electricity 223 

demand of the smart building depends on the daily flexible and inflexible domestic appliance 224 

tasks in the 30 smart homes. Typical flexible tasks include dishwasher, washing machine and 225 

spin dryer while fridge and light are considered as inflexible tasks. The total electricity 226 

demand of the smart building depends on the operation time of the domestic appliances, 227 

flexible and inflexible tasks. The total heat demand of the whole building is assumed to be 228 

provided. Similar to [24] and [25], the equipment capacities are all assumed; no capital costs 229 

are included, only operation and maintenance costs are considered. It is assumed that 230 

electricity RTP and CO2 intensity are forecasted one day in advance; peak demand charge for 231 

the electricity used from the grid is also given. A multi-objective MILP approach is 232 

developed in this study to minimise the total economic cost and CO2 emissions. The trade-off 233 

between the economic and environmental objectives is then analysed with a set of Pareto-234 

optimal solutions. Moreover, three price schemes are investigated, i.e. RTP, CPP with peak 235 

demand charge price scheme, and CPP with demand charge price scheme: 236 

1. RTP, real-time price is applied.  237 
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2. CPP with peak demand charge price scheme is adpated from Ontario Energy, Canada 238 

[30], in which an agreed power demand threshold (kW) is defined. If the power 239 

demand at any time period is over the threshold, an extra tariff is charged over the 240 

amount of electricity (kWh), besides the real-time price.  241 

3. CPP with demand charge price scheme is adopted from Nation Grid, US [31], where 242 

the bill includes both charges for consumption and demand. The consumption charge 243 

is charged based on the total energy consumpion in kWh while the demand charge is 244 

charged to the highest average power demand in kW measured in a given time 245 

interval during the billing period.  246 

(Insert Fig. 1. here) 247 

The overall problem can be stated as follows: 248 

Given are (a) a time horizon split into a number of equal intervals, (b) heat demand of the 249 

whole building, (c) equipment capacities, (d) efficiencies of technologies, (e) maintenance cost 250 

of all equipment, (f) heat-to-power ratio of CHP generator, (g) charge and discharge limit rates 251 

for thermal/electrical storage, (h) gas price, real-time electricity prices from grid and peak 252 

demand charge price for the over-threshold amount, (i) peak demand threshold from grid, (j) 253 

demand charge based on the maximum power demand from the grid, (k) CO2 emission 254 

intensity, (l) earliest starting and latest finishing times, (m) task capacity profiles, (m) task 255 

duration,  256 

Determine (a) energy production plan, (b) task starting time, (c) thermal/electrical storage plan, 257 

(d) electricity bought from grid,  258 

So as to (a) find the optimum energy consumption scheduling and DER operation with 259 

minimum economic cost and environmental impact and to (b) fulfil the energy demand (both 260 

heat and electricity) of the smart homes using a microgrid. 261 
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3. Mathematical formulation 262 

The energy consumption management problem is formed as an MILP model which addresses 263 

the economic and environmental sustainability in a multi-objective optimisation model. The 264 

daily power consumption tasks are scheduled based on their given operation time window 265 

(earliest starting time and latest ending time) and daily electricity price and CO2 emissions 266 

intensity profiles. The objective is to minimise the daily power cost and CO2 emissions and 267 

shave the power consumption peak. The economic cost and CO2 emissions are minimised 268 

subject to relevant constraints, including equipment capacity constraints, energy demand 269 

constraints and electrical/thermal storage constraints. 270 

The constraints imposed on the optimisation are: 271 

1.1 Capacity constraints 272 

The output from each equipment should be limited within its designed capacity. 273 

CHP generator: 274 

tCu CHP

t   (1) 275 

Boiler: 276 

tCx B

t   (2) 277 

Electrical storage: 278 

tCS EE

t   (3) 279 

Thermal storage: 280 

tCS THTH

t   (4) 281 
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1.2 Energy storage constraints 282 

Electricity stored at time t is equal to the amount stored at t –1 plus the electricity charged 283 

minus the electricity discharged. Electricity loss during the charging and discharging process 284 

is counted by E  (turn around efficiency of electrical storage); for example, if during any 285 

period  , only t

E z  will be charged while the rest is lost. On the other hand, during the 286 

discharging process, in order to supply ty  to the customer, 
E

ty  /  of electricity is required.  287 

tyzSS E

tt

EE

t

E

t    /1  (5) 288 

It is assumed that no daily electricity accumulation is allowed. At the end of each day (the 289 

last time interval T), the electrical storage must return to its initial storage state. 290 

IEE

T

E SSS 0  (6) 291 

The rates of discharge or charge of the electricity are assumed to be within the electrical 292 

storage discharge and charge limits, according to its own designed capacity: 293 

tDy E

t   (7) 294 

tGz E

t   (8) 295 

Heat stored in the thermal storage at time t is equal to the amount stored at t – 1 plus the heat 296 

charged minus the heat discharged. The heat loss during the heat storage process is 297 

represented in the same way as shown for the electrical storage. Stored heat must return to the 298 

initial state at the end of each day, no heat is accumulated over one day. 299 

tfgSS t

TH

t

THTH

t

TH

t    /1  (9) 300 

ITHTH

T

TH SSS 0  (10) 301 
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The rates of discharge and charge of heat cannot exceed the thermal storage discharge and 302 

charge limits based on the designed capacity: 303 

tDf TH

t   (11) 304 

tGg TH

t   (12) 305 

1.3 Energy balances 306 

The electricity demand is fulfilled by the electricity generated by the CHP generator, the 307 

electricity received from the electrical storage and the grid minus the electricity sent to the 308 

electrical storage. 309 

tIzyuEC tttt

j

tjii

i

jiP

 









,

1

0

 (13) 310 

The heat demand is fulfilled by the heat generated from the CHP generator, the boiler, the 311 

heat received from the thermal storage minus heat sent to the thermal storage. 312 

tgfxuH ttttt   (14) 313 

1.4 Starting time and finishing time 314 

The operation of each task must start after the given earliest starting time and finish before the 315 

latest ending time. The binary variable Ejit indicates “task i from home j that is done at time t”. 316 

Hence, each task from each home, done between the earliest starting time and the latest 317 

finishing time minus the task processing time, has to be started within this predetermined time 318 

window. 319 

ji

F

ji

S

ji

t

jit PTtTijE  ,,1  (15) 320 
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1.5 Peak demand charge 321 

In order to avoid the need for high capacity in the macrogrid-microgrid connection, the 322 

electricity peak demand from the grid is reduced. This avoids charges to be levied by the 323 

system operator for using electricity from the macrogrid during peak times. This implemented 324 

into the model via extra constraints, see Eq.(16). For each time interval, if the electricity load 325 

from the grid, tI , is below the agreed threshold  , normal electricity prices apply. But if tI  326 

exceeds  , the amount over the threshold t  is counted and is charged at an extra rate in Eq. 327 

(18b). Since the objective function Eq. (18b) is to be minimised, the t  value needs to be 328 

minimised too, which means it should be equal to tI  if tI  is positive or equal to 0 if 329 

tI  is negative. 330 

tItt    (16) 331 

1.6 Demand Charge 332 

The maximum of power demand from the grid per day is defined as follows: 333 

tII t max  (17) 334 

1.7 Objectives 335 

The first objective is to minimise the total daily electricity cost. Under the RTP price scheme 336 

this includes: the operation and maintenance cost of the CHP generator, the electrical storage 337 

and the thermal storage; and the cost of electricity purchased from the grid. As mentioned 338 

earlier, capital costs are not considered. 339 

)]//([1 t

TH

t

EB

ttt

CHP

t

t

fyrxIbur    (18a) 
340 

When peak demand charge scheme is applied, the total daily cost is calculated as in Eq. (18b). 341 

Below the threshold, the electricity price follows the real-time electricity price while extra cost 342 

is applied when the demand is over the agreed threshold. 343 
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)]//([1 tt

TH

t

EB

ttt

CHP

t

t

pfyrxIbur    (18b) 
344 

When the demand charge is applied for the total daily cost, the penalty based on the maximum 345 

power demand from the grid is included in the objective function.  346 

max

1 )]//([ qIfyrxIbur t

TH

t

EB

ttt

CHP

t

t

 
 (18c) 

347 

The other objective is to minimise the total CO2 emissions, which includes: the CO2 emissions 348 

from the use of CHP generator and boiler, and from the conventional electricity grid.  349 

)]([2 t

B

t

G

tt

t

CHP xIu    (19) 350 

The above two objective functions are considered in a multi-objective formulation as:  351 

)}(),({ 21 xxMin
Qx




 (20) 352 

where x is the vector of decision variables and Q is the space of feasible solutions defined by 353 

the following constraints. 354 

1.8 The -constraint method with two objectives 355 

The -constraint method pre-defines a virtual grid in the objective space and solves different 356 

single-objective problems constrained to each grid cell. All Pareto-optimal solutions can be 357 

found only if this grid is fine enough such that at most one Pareto-optimal solution is 358 

constrained in each cell. Applying the -constraint to the proposed multi-objective problem 359 

)}(),({ 21 xxMin
Qx




it keeps 1  as the objective function, while 2  is considered as a constraint. 360 

A single-objective function is obtained as: 361 

)(min 1 x
Qx




 (21) 362 
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s.t. 
22 )(  x   363 

By minimising 
1  and 

2 individually, the maximum and minimum values of 
2  are obtained, 364 

which are used to define values of 
2 . For each point M+1: 




M

min

2

max

2max

22


 , where 365 

M  is the number of self-defined intervals between the maximum and minimum values of 
2  366 

and M,...,0 . 367 

4. Case study 368 

The case study analysed in this paper considers a smart building of 30 homes having the same 369 

living habits. The distributed energy resources and their capacities are assumed to be provided, 370 

while the technical parameters and the costs are taken from [32] and summarised in Table 1, 371 

the operation costs of the CHP and boiler are based on natural gas: 372 

 one CHP generator with heat to power ratio of 1.2;  373 

 one boiler; 374 

 one electrical storage unit, the charge and discharge efficiencies are assumed to be the 375 

same at 95% , and the discharge limit and charge limit are both 10kWe; 376 

 one thermal storage unit, the charge and discharge efficiencies are assumed to be the 377 

same at 98%,  and the discharge limit and charge limit are both 20kWth; 378 

 a grid connection (allowing import of electricity when operating parallel to the 379 

conventional grid).  380 

 Under the peak demand charge price scheme, when the power supplied from the 381 

conventional grid is over the agreed threshold, extra 5p/kWhe is charged to the  382 

electricity consumed extra (kWh). 383 
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 Under the demand charge price scheme, the demand charge is calculated based on the 384 

maximum power demand from the grid on the day at the rate of 19p/kWe. 385 

(Insert Table 1 here) 386 

48 time intervals of half hour each are assumed. The total heat demand profile is provided 387 

assuming a building with floor area of 2500m
2 

on a sample summer day using CHP Sizer 388 

Version 2 Software [33]. The 12 basic electrical tasks of each home are presented in Table 2. 389 

These tasks are available to be scheduled according to their given time window, between the 390 

earliest starting time and latest finishing time: their respective processing times and power 391 

requirements are based on [34]. All tasks except the dishwasher and the washing machine 392 

have constant power consumption rates as shown in Table 2. The electrical profiles for the 393 

dish washer and the washing machine are given as in Fig. 2. Finally, it is assumed that all the 394 

homes have the same living habits and every task has to be done once in a day. 395 

(Insert Table 2 here) 396 

(Insert Fig. 2. here) 397 

The electricity tariff and the CO2 intensity profiles in the UK on August 17
th

, 2013 are 398 

assumed for the case study and the CO2 intensity is based on gCO2/kWh electricity. As shown 399 

in Fig. 3, the profiles of the electricity tariff and the CO2 intensity have different peak hours in 400 

the UK and the differences between the maximum and minimum values are 53% and 27% 401 

respectively. The two profiles have different peaks and it may result from electricity 402 

generation of different energy sources over the day or even the importation of the electricity 403 

from the international market. This highlights a conflict in selecting the electricity 404 

consumption hours based on environmental and cost view points. The two profiles depend 405 

heavily on the electricity generation resources of the specific time period. In the UK, the 406 
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electricity is mainly produced from natural gas (44%), hard coal (28%) and nuclear energy 407 

(18%) [35].  408 

(Insert Fig. 3. here) 409 

The CO2 emission rates from the CHP and the boiler operation are given in Table 3, and 410 

they are assumed to be constant over the time period. The carbon footprint of the use 411 

phase for the system is assessed considering a functional unit of 1kWh of electrical output 412 

and 1kWh of thermal output, for the CHP and the boiler respectively. A boiler efficiency 413 

of 85% is assumed in this study. For the CHP, it is assumed as a fuel cell unit with 10kW 414 

capacity and 40% electrical efficiency. The “natural gas supply” impact is referred to the 415 

extraction and distribution of the natural gas up to the system and it is country specific, 416 

while the “direct emissions” impact is referred to the specific use of the system. The 417 

carbon footprint is calculated by GaBi 6.0 sustainability software [35]. One point to 418 

address here is that the carbon footprint for the CHP listed in the table is the total 419 

emissions of heat and electricity produced by the CHP based on electricity output. CHP 420 

produces heat and power simultaneously with heat to power ratio equal to 1.2. This 421 

results in 0.1714gCO2/kWh of electricity produced from the CHP. This value is much 422 

lower than the values presented in Figure 3. 423 

(Insert Table 3 here) 424 

5. Computational results 425 

Three different price schemes are applied for the case study: RTP, peak demand charge and 426 

demand charge, as described in the problem description (see section 2). Under each price 427 

scheme, the objective is to minimise the total energy cost given in Eq. (21) with their 428 

corresponding constraints. Under RTP price scheme, the constraints are Eqs. (1-15), (18a) and 429 
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(19). Under peak demand charge price scheme, the objective is subject to constraints Eqs. (1-430 

16) and (18b). While under the demand charge price scheme, the constraints include Eqs. (1-431 

15), (17), (18c) and (19). 432 

5.1 Computational environment 433 

The -constraint method is applied for the energy consumption management problem with the 434 

electricity tariff and the CO2 intensity profiles for the case study. Both DER operation and 435 

electrical tasks operating time are scheduled for one day, from 8 am to 8 am on the next day. 436 

The developed MILP model is implemented using CPLEX 12.4.0.1 in GAMS 23.9 437 

(www.gams.com) [38] on a PC with an Intel(R) Core(TM) i7-4770 CPU, 3.40 GHz CUP and 438 

16.0 GB of RAM. Under RTP price scheme, there are 1,132 equations, 17,815 continuous 439 

variables and 17,280 discrete variables and for each run it takes about 0.34s CUP time. When 440 

the peak demand price scheme is applied, there are 1,180 equations, 17,863 continuous 441 

variables and 17,280 discrete variables and for each run it takes about 0.48s CUP time. While 442 

with the demand charge price scheme, there are 1,179 equations, 17,814 continuous variables 443 

and 17,280 discrete variables and for each run it takes about 0.39s CUP time. 444 

5.2  Pareto curves of the UK profiles  445 

The three price schemes are applied for the case study and  Fig. 4 presents the Pareto curves 446 

for cost and CO2 emissions from a sample summer day. Three points from each curve in Fig. 4 447 

are selected respectively as marked with letters,  448 

1. Point As, where the costs are the minimum; 449 

2. Point Cs, where the kg CO2eq are the minimum; 450 

3. Point Bs, which represents a point with trade-off between the two conflicting 451 

objectives, they are the 15
th

 point on the curves;  452 

4. Number 1-5 represent curves RTP, κ=60kW, 30kW, 15kW and Demand charge 453 

respectively. 454 

http://www.gams.com/


22 

 

 

 

For the peak demand charge price scheme, the scheduling with each threshold value is 455 

analysed individually. All the curves follow the same trend, CO2 emissions decrease while 456 

cost increases. Under RTP price scheme, the difference between the maximum and minimum 457 

values for cost and CO2 emissions is 13% and 7% respectively. As shown, the curve 458 

represented is made of 21 points (from A1 to C1), the curve shows a steep decrease in CO2 459 

emissions over the first 15 points (up to B1) with values for the CO2 dropping from 551 to 526 460 

kg, while the cost difference is less than £0.3. After point B1, the CO2 emissions drop at a 461 

slower rate up to 515 kg (C1). All five curves shown in Fig.4 reach the same final value for 462 

the CO2 emission (see C1-C5). This is because the results are obtained by minimising the 463 

single objective CO2 emissions. However, when the single objective cost is minimised, the 464 

cost values are different (see A1-A5). The three curves under the peak demand price scheme 465 

(κ=60kW, 30kW and 15kW) are very similar and the cost increases when the threshold value 466 

decreases, as expected. When the thresholds are applied, the largest CO2 emissions obtained 467 

are about 530kg for all curves, this is much lower than that from the RTP price scheme. This is 468 

because, under the peak demand charge price scheme, the peak demand over the threshold is 469 

limited by the three sample threshold values (κ=60kW, 30kW and 15kW) individually, the 470 

model spreads the electricity demand over the day to limit the demand from the grid, rather 471 

than using the time periods when electricity is cheap but the CO2 emissions are high. When 472 

demand charge is applied, the resulting curve is similar to the curve obtained for 15kW except 473 

the first few points. Detail energy balances of the three sample points are given in the next 474 

sub-section.  475 

(Insert Fig. 4. here) 476 

5.3 Energy balances of the UK profiles 477 
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Fig 5 shows the electricity balances for the UK for points C1-5 as labeled in Fig. 4. Since the 478 

electricity balances are very similar for all points C1-5 under all price schemes, only one 479 

figure is presented for a generic Cs. The total kg CO2eq is the single objective, hence the 480 

electricity demand is scheduled based on minimizing the carbon footprint of the electricity 481 

consumption of the smart homes. In this case, the CHP operates at full capacity most of the 482 

time because of its low CO2 intensity and the remaining demand is satisfied by the electricity 483 

from the grid. Except for two peaks which appear in the early morning and in the evening 484 

where the tasks are inflexible, the electricity from the grid is bought during the time periods 485 

when the grid CO2 intensity is low (see Fig. 3), i.e. 14:00-15:30 and 21:30-0:00. The electrical 486 

storage is only charged for two time periods during the day.  487 

(Insert Fig. 5. here) 488 

Fig. 6 shows the electricity balances for points A1 and B1 presented in Fig. 4. RTP is applied 489 

for these two points. For point A1, the electricity demand is scheduled based on the electricity 490 

price profile only to minimise the total cost. As expected, the electricity demand peak hours 491 

appear in the early morning 4:00-7:00am when the electricity tariff is low as shown in Fig. 3. 492 

These peak hours move half hour early in point B1, which represents a trade-off between the 493 

two objectives. Compared with point A1, the CHP is providing constant electricity at full 494 

capacity not only during the day but also during the night time 0:00-3:30am. For these two 495 

points, the electrical storage works more frequently than Cs, but it still does not play an 496 

important role here.  497 

(Insert Fig. 6. here) 498 

Fig. 7 presents the electricity balances for the indicated points in Fig. 3 under peak demand 499 

charge price scheme, for the three different thresholds considered. For points A2-A4, the total 500 

electricity demands are scattered over the day, resulting in flatter profiles compared to point 501 
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A1, except for the time periods with inflexible tasks (lights and fridges). As threshold values 502 

are applied, the CHP generates electricity at full capacity during most of the time of the day 503 

to avoid the peak demand penalty. While for points B2-4, the peak demand hours move to the 504 

period 20:00-0:00 compared to point B1, which is a period that shows a trade-off between the 505 

two objectives, based on both the profiles of electricity price and CO2 intensity (see Figure 506 

3). The electricity demands for these points are similar except some small differences during 507 

the period 8:00-16:00. Moreover, the maximum power demands from the grid are reduced 508 

together with the total electricity demands from the grid. These are shown in Table 4 along 509 

with all other results for all sample points. 510 

(Insert Fig. 7. here) 511 

(Insert Table 4 here) 512 

Electricity balances for points A5 and B5 are presented in Fig. 8 under the demand charge 513 

scheme. As shown in the figure, for point A5, the maximum demand power from the grid is 514 

79.7kW which is relative low compared with the other points shown in Fig.6 and 7. The 515 

electricity form the grid is mainly bought during the time periods with low electricity prices. 516 

When emissions are considered in the optimisation model (point B5), the electricity demand 517 

profile is reshaped to move the electricity buying periods to the time with a trade-off between 518 

the two profiles of electricity prices and CO2 intensity. Again the maximum power demand 519 

from the grid is 79.7kW. For all the sample points, the electrical storage is charged when 520 

electricity from the grid/CHP is low and discharged when the electricity from the grid is high. 521 

However, this is not used frequently, only 2-4 time periods in the sample day. This is because 522 

heat demand is relatively low in summer, hence the electricity output from CHP is limited by 523 

this constraint, as a small amount of electricity would be stored in the electrical storage. The 524 

usage of the electricity stored also depends on the electricity price from the grid. The 525 
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electrical storage is not utilised if the price differences between the time intervals cannot 526 

cover the maintenance cost and the cost of the charge/discharge energy loss.  527 

(Insert Fig. 8. here) 528 

Fig. 9 presents the heat balance for points A1 and B1 under RTP price scheme (when current 529 

electricity prices are considered) and points A2 and B2 with 60kW threshold under peak 530 

demand charge price scheme. When the RTP price scheme is applied to a typical UK summer 531 

day, the CHP generator does not operate constantly when only cost is minimised. This is 532 

mainly because of the low heat demand during summer period, where the electricity produced 533 

from the CHP cannot provide more electricity unless the corresponding heat generated can be 534 

consumed or stored in the thermal storage. The thermal storage works here to balance the CHP 535 

generation over the day but still it cannot store heat more than its designed capacity. Thermal 536 

storage is used to balance the heat output from the CHP. During the time interval when there is 537 

high electricity demand with low heat demand, the thermal storage is charged and heat is 538 

released when the heat demand is high. In this case, the thermal storage stores the heat during 539 

the day and discharges it during the night, when the heat demand is high under both price 540 

schemes. The thermal storage works for 8 time intervals in the sample day for storing heat. 541 

But when CO2 emissions are considered, CHP operates at full capacity as much as possible to 542 

reduce the CO2 emissions. When peak demand charge price scheme and demand charge price 543 

scheme are applied, the heat balances are for point As and Bs are similar since the heat 544 

demand is given rather than the electricity demand. Only heat balances for points A2 and B2 545 

are presented here. 546 

(Insert Fig. 9. here) 547 

5.4 Total demand and peak demand  over the different price schemes 548 
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Table 4 provides the maximum power demand from the grid and the total electricity demand 549 

from the grid over the agreed demand threshold for the selected points in the illustrative 550 

example, with data profiles of the UK. As indicted from the results in the table, the peak 551 

demand price scheme (under thresholds 60kW, 30kW and 15kW) targets at minimising total 552 

demand over the given electricity threshold (kWh). On the other hand, the demand charge 553 

price scheme targets at minimising the maximum power demand from the grid (kW). 554 

Compared with the results from the RTP price scheme, when the peak demand charge price 555 

scheme is applied, the maximum power demand from the grid and the total electricity demand 556 

from the grid over the agreed demand threshold can be both reduced for most of the points. 557 

High threshold (i.e. 60kW) is good for all parameters except for cost. The maximum power 558 

demand from the grid is reduced as well as the total demand from the grid (including 559 

threshold) and so are the emissions. In this case, the stress caused by the smart homes to the 560 

grid is then reduced. When different threshold values are applied, the total costs are affected 561 

because of the penalty, while the CO2 emissions are not affected much. Under the peak 562 

demand price scheme, the total electricity amount over the threshold increases when the CO2 563 

emission constraint becomes tighter (points B and C). In this case study, the total electricity 564 

demand of all domestic tasks is 1,056kWh, which means the average electricity power demand 565 

is 44kW over the sample day. If the CHP operates at full capacity all the time, the remaining 566 

24kW electricity needs to be provided by the grid (averagely during the day). Then if the 567 

threshold is below 24kW, the demand from the grid will be charged by the penalty for sure. 568 

But there are some inflexible tasks which cannot be avoided, so penalty is even charged when 569 

the threshold is assigned as 60kW. 570 

When the demand charge price scheme is applied, i.e. the maximum power demand from the 571 

grid is minimised rather than the total demand from the grid over the threshold, the maximum 572 

power demand is reduced directly to 79.7kW for point A5, which is even 20% lower than the 573 



27 

 

 

 

maximum power obtained in point A2. By applying this price scheme, the maximum CO2 574 

emissions are similar to those obtained by applying peak demand price scheme with 575 

thresholds, which is 534.5kg. Table 5 provides the total demand over the three sample 576 

threshold under the RTP and demand charge price scheme. Compared with the values 577 

presented in Table 5, the total demand over the thresholds from the other two price schemes 578 

are higher than those from the peak demand charge price scheme individually. Under each 579 

threshold, the total demands over the thresholds of points A1, B1, and C1, A5, B5 and C5 do 580 

not follow a trend at all, B1 and B5 just happen to have the lowest values for all three points.  581 

(Insert Table 5 here) 582 

6. Concluding remarks 583 

An MILP model has been proposed to schedule the energy consumption of smart homes 584 

within a microgrid. Both environmental and economic minimisations are addressed in a 585 

multi-objective optimisation with ε-constraint method. The model has been implemented on 586 

an illustrative example of 30 smart homes with the same living habits under three price 587 

schemes. Twelve domestic electrical tasks are scheduled together with DER operation in the 588 

shared microgrid. Electricity tariff and CO2 emission intensity are assumed to be available for 589 

the optimal scheduling of the smart homes. Data profiles for a typical summer day in the UK 590 

are applied. Optimal results with trade-off between economic cost and environmental 591 

emissions are obtained. 592 

When the economic cost and environmental emissions conflict with each other, the proposed 593 

MILP optimisation model determines the Pareto-optimal curve between cost and CO2 594 

emissions, and it can provide valuable guidelines to decide demand side energy management 595 

and DER operations. Also, scheduling of the DER operations and electrical tasks depend 596 
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heavily on the energy demand patterns, which in turn are affected by seasons, the cost and 597 

CO2 intensity profiles, and the electricity price scheme. The proper scheduling of electrical 598 

appliances presented in this work shows that DERs can be utilised more efficiently in a smart 599 

building. CHP systems operate constantly under the optimisation model, meaning that 600 

installing CHP generators will be a big step towards the reduction of CO2 emissions in the 601 

energy sector. Compared with the RTP price scheme, maximum power demand from the grid 602 

and total peak demand over certain thresholds can be reduced by applying penalty price 603 

schemes, such as peak demand charge price scheme and price demand price scheme. The 604 

results show that the peak demand charge price scheme can reduce demand over the agreed 605 

threshold from the grid, which means less stress for the electricity grid. Designing the right 606 

threshold is important, and this study shows that it should be based on the average power 607 

demand from the grid over the day.  608 

The proposed methodology is general and it provides a framework for scheduling the energy 609 

consumption of smart homes by considering both economic and environment aspects. Other 610 

home energy consumption tasks can be easily added, such as air conditioners, TVs, DVDs 611 

and even swimming pool heating systems. The future work may consider more 612 

environmental impact factors besides CO2 emissions, such as acidification potential (AP) and 613 

primary energy (PE). Also renewable energy resources can be added in the model to achieve 614 

higher cost and emission reduction, including wind generator, solar panel and heat pumps.  615 
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Fig. 1. Example of a smart building 724 

  725 



34 

 

 

 

 726 

Fig. 2. Electrical capacity profiles of dish washer and washing machine 727 
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 729 

Fig. 3. Electricity tariff and CO2 intensity of the UK (Augst 17
th

, 2013) [36, 37] 730 
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 732 

Fig. 4. Pareto curves for cost and carbon footprint for the UK, August 17
th

, 2013 733 
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Fig. 5. Electricity balance for point Cs 736 
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 739 

Fig. 6. Electricity balances for points A1 and B1 under RTP price scheme 740 
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 747 

Fig. 7. Electricity balances for points A2-4 and B2-4 under peak demand charge price scheme 748 
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 751 

Fig. 8. Electricity balances for points A5 and B5 under demand charge scheme 752 
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 756 

Fig. 9. Heat balance for point A1, A2, B1 and B2  757 

  758 



41 

 

 

 

Table 1 Technical parameters and costs of the DERs in the case study [32] 759 

 

Capacity Efficiency Operation/maintenance cost 

CHP 20kWe 40% 2.7p/kWh 

Boiler 120kWth 85% 2.7p/kWh 

Electrical storage 10kWeh 95% 0.5p/kWhe 

Thermal storage 20kWthh 98% 0.1p/kWhth 

 760 

  761 
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Table 2 Electricity consumption task [34] 762 

 

Task 

Power 

(kW) 

Earliest starting 

time (hour) 

Latest finishing 

time (hour) 

Time window 

length (hour) 

Duration 

(hour) 

1 Dish 

washer - 9 17 

 

8 2 

2 Washing 

machine - 9 12 

 

3 1.5 

3 Spin dryer 2.5 13 18 5 1 

4 Cooker hob 3 8 9 1 0.5 

5 Cooker 

oven 5 18 19 

1 

0.5 

6 Microwave 1.7 8 9 1 0.5 

7 Interior 

lighting 0.84 18 24 

 

6 6 

8 Laptop 0.1 18 24 6 2 

9 Desktop 0.3 18 24 6 3 

10 Vacuum 

cleaner 1.2 9 17 

 

8 0.5 

11 Fridge 0.3 0 24 - 24 

12 Electrical 

car 3.5 18 8 

 

14 3 
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Table 3 Carbon footprint for the CHP and the boiler  765 

 Natural gas 

supply 

Direct 

emissions 

Total 

CHP (kgCO2eq/kwh electrical output) 0.0396 0.5049 0.5445 

Boiler (kgCO2 eq/kwh thermal output) 0.0186 0.2923 0.3109 
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Table 4 Peak demand from grid and total electricity demand for the three price schemes  768 

Price 

scheme 

Point Maximum power 

demand from the 

grid (kW) 

Total demand from 

grid over the 

threshold (kWh) 

Total demand 

from the grid 

(kWh) 

CO2 

emissions 

(kg) 

Total 

cost 

(£) 

RTP A1 176.2 - 744.4 551.3 58.3 

 B1 174 - 624.4 526 58.5 

 C1 164.2  635.7 515.2 66.6 

60kW A2 99.4 19.7 623.5 531 60.8 

 B2 99.4 32.9 623.8 520 64.9 

 C2 137.5 206.8 625.6 515.2 77.5 

30kW A3 129.4 70.5 623.8 530 65.1 

 B3 149.2 202.1 623.8 519.6 74 

 C3 149.2 377.2 623.5 515.2 85.8 

15kW A4 175.1 263.5 623.8 530.1 73.4 

 B4 164 324.2 623.8 520 80.8 

 C4 164.2 474 658 515.2 90.4 

Demand A5 79.7 - 623.7 534.5 74.6 

Charge B5 79.7 - 623.8 521 77.1 

 C5 119.5   515.2 89.4 
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Table 5 Total demand from the grid over the threshold for the RTP and demand charge price 771 

schemes 772 

Price 

scheme 

Point Total  demand from grid 

over 60kW (kWh) 

Total  demand from grid 

over 30kW (kWh) 

Total  demand from grid 

over 15kW (kWh) 

RTP A1 321.2 482.7 577.8 

 B1 207.5 365.6 455.6 

 C1 263.3 415.0 498.2 

Demand A5 116.8 324.0 464.9 

charge B5 59.6 288.4 436.7 

 C5 233.8 401.2 496.9 

 773 


