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ABSTRACT	

Prior	models	used	to	clarify	which	aspects	of	tissue	microstructure	mostly	affect	intracellular	

diffusion	 and	 corresponding	 diffusion-weighted	magnetic	 resonance	 (DW-MR)	 signal	 have	

focused	 on	 relatively	 simple	 geometrical	 descriptions	 of	 the	 cellular	 microenvironment	

(spheres,	 randomly	 oriented	 cylinders,	 etc...),	 neglecting	 finer	morphological	 details	which	

may	 have	 an	 important	 role.	 Some	 types	 of	 neurons	 present	 high	 density	 of	 spines;	 and	

astrocytes	and	macroglial	cells	processes	present	leaflets,	which	may	all	impact	the	diffusion	

process.	 Here,	 we	 use	 Monte-Carlo	 simulations	 of	 many	 particles	 diffusing	 in	 cylindrical	

compartments	with	secondary	structures	mimicking	spines	and	leaflets	of	neuronal	and	glial	

cell	 fibers,	 to	 investigate	 to	 what	 extent	 the	 diffusion-weighted	 signal	 of	 intracellular	

molecules	is	sensitive	to	spines/leaflets	density	and	length.	In	order	to	study	the	specificity	

of	DW-MR	signal	to	these	kinds	of	secondary	structures,	beading-like	geometry	is	simulated	

as	 "control"	 deviation	 from	 smooth	 cylinder	 too.	 Results	 suggest	 that:	 a)	 the	 estimated	

intracellular	 tortuosity	 increases	 as	 spines/leaflets	 density	 or	 length	 (beading	 amplitude)	

increase;	b)	the	tortuosity	limit	is	reached	for	diffusion	time	td>200	ms	for	metabolites	and	

td>70	 ms	 for	 water	 molecules,	 suggesting	 that	 the	 effects	 of	 these	 finer	 morphological	

details	 are	 negligible	 at	 td	 longer	 than	 these	 threshold	 values;	 c)	 fiber	 diameter	 is	

overestimated,	 while	 intracellular	 diffusivity	 is	 underestimated,	 when	 simple	 geometrical	

models	 based	 on	 hollow	 smooth	 cylinders	 are	 used;	 d)	 apparent	 surface-to-volume,	 S/V,	

ratio	estimated	by	linear	fit	of	high	frequency	OG	data	appears	to	be	an	excellent	estimation	

of	 the	 actual	 S/V	 ratio,	 even	 in	 the	 presence	 of	 secondary	 structures,	 and	 it	 increases	 as	

spines	 and	 leaflets	 density	 or	 length	 increase	 (while	 decreasing	 as	 beadings	 amplitude	

increases).	 Comparison	 between	 numerical	 simulations	 and	 multimodal	 metabolites	 DW-

MRS	experiments	in	vivo	in	mouse	brain	shows	that	these	fine	structures	may	affect	the	DW-

MRS	 signal	 and	 the	derived	diffusion	metrics	 consistently	with	 their	 expected	density	 and	

geometrical	features.		

This	work	 suggests	 that	 finer	 structures	 of	 cell	morphology	have	non-negligible	 effects	 on	

intracellular	 molecules’	 diffusion	 that	 may	 be	 measured	 by	 using	 multimodal	 DW-MRS	

approaches,	stimulating	future	developments	and	applications.		

	

Highlights:	

• Diffusion	simulations	are	carried	out	in	synthetic	fibers	with	secondary	structures	
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• Such	 structures	 (spines,	 leaflets,	 beads)	 are	 shown	 to	 affect	 NMR-measured	

diffusion	

• Combining	 different	 NMR	 diffusion	 experiments	 may	 allow	 quantifying	 these	

structures	

	

Keywords:	 brain	 microstructure,	 diffusion-weighted	 NMR,	 diffusion-weighted	 NMR	

imaging,	diffusion-weighted	NMR	spectroscopy,	metabolite	diffusion,	cell	morphology.	

	

1. INTRODUCTION	

	

Diffusion-weighted	 MR	 imaging	 (DW-MRI)	 and	 spectroscopy	 (DW-MRS)	 are	 noninvasive	

techniques	that	provide	the	unique	ability	to	characterize	the	microstructure	of	living	as	well	

as	 excised	 tissue	 (1-5).	 DW-MRS,	 in	 particular,	 allows	 quantifying	 the	 translational	

displacement	of	endogenous	metabolites	in	vivo	(6,7).	In	contrast	to	water	molecules,	which	

are	 ubiquitous	 in	 biological	 tissues,	 most	 brain	 metabolites	 are	 confined	 into	 specific	

intracellular	 space:	 N-acetyl-aspartate	 (NAA)	 and	 glutamate	 (Glu)	 reside	 essentially	 in	

neurons,	 whereas	 myo-inositol	 (Ins)	 and	 choline	 (tCho)	 are	 thought	 to	 be	 glial	 markers	

preferentially	 compartmentalized	 in	 astrocytes	 (8).	 Under	 normal	 conditions,	 brain	

metabolites	 hardly	 cross	 the	 biological	 membranes	 so	 that	 their	 diffusion	 path	 is	 mainly	

dictated	by	intracellular	features	such	as	cytosol	viscosity,	molecular	crowding,	cell	size	and	

shape.	

It	 has	 been	 recently	 shown	 that	 the	 apparent	 diffusion	 coefficient	 (ADC)	 of	 these	

intracellular	metabolites	in	the	primate	brain	and	human	gray	(GM)	and	white	matter	(WM)	

is	quite	constant	as	the	diffusion	time	td	is	increased	from	a	few	tens	of	ms	to	~1	sec	(9-10).	

This	 suggests	 that	 the	 vastest	 fraction	 of	 each	 metabolite	 pool	 is	 not	 restricted	 in	 small	

subcellular	 domains	 (cell	 bodies,	 organelles…)	 but	 is	 instead	 diffusing	 along	 cell	 fibers.	

Performing	 metabolites	 ADC	measurements	 for	 the	 same	metabolites	 at	 ultra-long	 td	(~2	

sec)	 in	vivo	 in	mouse	and	macaque	brains	and	modeling	brain	cells	as	 long	and	thin	 fibers	

with	 some	 finite	 length	 and	 number	 of	 successive	 embranchments,	we	 recently	 extracted	

brain	 cell	 morphology	 in	 agreement	 with	 histological	 data,	 thus	 consolidating	 the	

metabolites	cell-specific	compartmentalization	and	the	view	that	metabolites	are	diffusing	in	

fibers	(11).	Above	measurements	of	ADC	as	a	function	of	td	were	all	performed	at	relatively	
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low	b	 value	 (~3	ms/µm²,	 i.e.	weak	 gradient	 strength),	where	 diffusion	 attenuation	 can	be	

considered	 as	 monoexponential.	 However,	 it	 has	 been	 showed	 that,	 for	 the	 same	

metabolites,	 diffusion	 at	 very	 high	 b	 (i.e.	 strong	 gradient	 strength)	 exhibits	 a	 non-

monoexponential	behavior	 in	 the	brain	 (12-20).	We	 recently	 investigated	how	diffusion	of	

these	metabolites	measured	in	vivo	in	the	healthy	mouse	brain	up	to	very	high	q	(1	µm-1)	at	

relatively	short	td	(63.2	ms),	corresponding	to	very	high	b	=	60	ms/µm2,	can	be	explained	by	

the	 (admittedly)	 simplistic	 view	 of	 diffusion	 in	 cylinders	 (13).	 We	 modeled	 cell	 fibers	 as	

isotropically	 oriented	 cylinders	 of	 infinite	 length	 and	 finite	 diameter,	 and	 showed	 this	 can	

account	very	well	 for	measured	non-monoexponential	attenuation,	yielding	 fiber	 radii	 and	

intracellular	 metabolites	 diffusivities	in	 the	 expected	 ranges	 (0.5-1.5	 µm)	 and	 (0.30-0.45	

µm2/ms),	respectively	(13).		

Prior	models	used	to	clarify	which	aspects	of	tissue	microstructure	mostly	affect	metabolites	

DW-MRS	signal	have	generally	focused	on	relatively	simple	geometrical	descriptions	of	the	

cellular	microenvironment	 (spheres,	 randomly	 oriented	 cylinders,	 etc...)	 (9-20),	 neglecting	

finer	morphological	 details	which	may	 have	 an	 important	 role.	Neurites	may	 exhibit	 focal	

enlargements	separated	by	constrictions	(beading	or	varicosities)	which	may	slow	down	the	

diffusion	 process	 (21);	 dendrites	 of	 some	 types	 of	 neuron,	 like	 Purkinje	 cells,	 contain	

branches	with	high	density	of	spines,	which	may	 trap	and	hinder	diffusing	molecules	 (22);	

and	 astrocytic	 and	 macroglial	 processes	 present	 additional	 small	 radial	 ramifications,	 i.e.	

leaflets,	which	may	retard	the	diffusion	process	along	the	main	branch	(23,24).		

The	 beaded	morphology	was	 observed	 in	 the	 central	 nervous	 system	 after	 ischemia	 as	 a	

consequence	 of	 osmotic	 imbalance	 (21).	 Beading-induced	 changes	 in	 cell-membrane	

morphology	were	shown	(by	water	DW-MRI	experiments	and	simulation)	to	be	sufficient	to	

significantly	 hinder	 water	 mobility	 and	 thereby	 decrease	 the	 water	 measured	 apparent	

diffusion	coefficient	 (ADC)	 (21,	25).	On	the	contrary,	 there	are	no	studies	 investigating	the	

effects	of	spines	and	leaflets	morphologies	on	intracellular	diffusion	metrics	derived	by	NMR	

techniques	 such	 as	 DW-MRS.	 A	 combined	 approach,	 using	 local	 photolysis	 of	 caged	

compounds	 with	 fluorescence	 imaging,	 was	 used	 to	 visualize	 molecular	 diffusion	 within	

dendrites	of	cerebellar	Purkinje	cells	(22).	Diffusion	of	a	volume	marker,	fluorescein	dextran,	

along	 spiny	 dendrites	 was	 remarkably	 slow	 in	 comparison	 to	 its	 diffusion	 in	 smooth	

dendrites	(22),	suggesting	that	these	kinds	of	finer	cell	structures	may	have	a	non-negligible	

effect	on	the	metabolites	DW-MRS	signal	and	the	corresponding	estimated	diffusion	metrics.		
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In	 this	 study,	 by	 performing	Monte-Carlo	 (M-C)	 simulations	 of	many	 particles	 diffusing	 in	

cylindrical	compartments	with	secondary	structures	mimicking	spines,	 leaflets	and	beading	

of	neuronal	and	glial	processes,	we	investigate	to	what	extent	the	diffusion-weighted	signal	

of	 intracellular	 molecules	 is	 sensitive	 and	 specific	 to	 spines/leaflets	 density	 and	 length,	

compared	to	a	"control"	deviation	from	smooth	cylinder	like	beading	of	different	amplitude.	

Three	different	“realistic”	acquisition	schemes	are	simulated:	short-diffusion	time	oscillating	

gradients;	 intermediate-diffusion	 time	 /	 high	 b-value	 stimulated	 echo	 and	 long-diffusion	

time	/	low	b-value	stimulated	echo	experiments.	Finally,	comparison	between	numerical	and	

experimental	results	obtained	in	vivo	in	mouse	brain	suggests	that	metabolite	DW-MRS	may	

be	used	to	in	vivo	estimate	spines/leaflets	density	and	length.		

	

2. MATERIALS	AND	METHODS	

	

2.1	Synthetic	tissue	models	

	

We	 focus	 our	 analysis	 on	 two	 specific	 finer	 morphological	 characteristics	 (or	 secondary	

structures)	of	cellular	branches:	spines	and	leaflets.	Beads	are	also	considered	to	provide	a	

"control"	 deviation	 from	 smooth	 cylinders,	 thereby	 assessing	 specificity	 of	 the	 predicted	

effects	of	spines	and	leaflets.	Synthetic	substrates	mimicking	such	structures	were	generated	

using	cylinders	as	basic	geometries.	An	infinitely	long	cylinder	of	radius	a0=1.0	µm	represents	

the	 branch	 of	 a	 neuronal	 and	 glial	 cell	 process.	 Here	 only	 one	 fiber	 is	 simulated	 and	 the	

	
Figure	 1.	 Synthetic	 substrates	 mimicking	 three	 specific	 finer	 morphological	 characteristics	 (or	 secondary	

structures)	of	cellular	branches:	spines	(A),	leaflets	(B)	and	beads	(C).		
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density	 of	 fibers	 is	 irrelevant	 because	 the	 molecules	 in	 the	 simulation	 stay	 within	 the	

cylinder	and	other	 secondary	 features.	Many	 smaller	 cylinders	are	 then	connected	 to	 it	 in	

random	 radial	 directions	 to	 represent	 spines	 or	 leaflets.	 Spines	 consist	 of	 two	 concentric	

cylinders	 representing	 neck	 and	 head	 compartments	 (Figure	 1A).	 The	 size	 of	 these	

compartments	 was	 randomly	 varied	within	 the	 range	 of	 published	 values	 for	 the	 healthy	

brain	(22):	neck	diameter	in	the	range	0.1-0.3	µm;	neck	length	ranged	from	0.4-2.1	µm	and	

head	 length	was	 between	 0.4	 and	 0.7	 µm.	 Spine	 head	 diameter	 ranged	 from	0.5-0.7	 µm,	

with	a	minimum	ratio	of	head-to-neck	diameter	of	1.5.	Leaflets	are	made	of	two	concentric	

cylinders	with	different	radius	(Figure	1B):	the	cylinder	at	the	base	has	diameter	in	the	range		

0.5-0.8	µm	and	the	apical	one	has	diameter	in	the	range	0.2-0.4	µm.	The	total	length	of	the	

leaflets	was	varied	in	the	range	0.5-6.0	µm	(23,24).	The	location	of	spines	and	leaflets	along	

the	 main	 branch	 is	 random,	 according	 to	 their	 density	 Ф	 ranging	 from	 0.0	 to	 6.0	 µm-1.	

Beading-like	fiber	consists	of	cylinders,	concentric	to	the	main	one	representing	the	branch,	

with	 finite	 length	 in	 the	 range	 0.2-1.0	 µm	 and	 dimensionless	 beading	 amplitude:	 A=(rb-

a0)/(rb+a0),	 where	 rb	 is	 the	 bead	 radius,	 ranging	 from	 0.0	 to	 0.5	 (Figure	 1C)	 (21).	 We	

investigated	the	effect	of	varying	spine	and	leaflets	density	Ф	and	length	l,	and	compared	it	

with	the	effect	of	having	non-smooth	cylinder	geometry	by	varying	beading	amplitude	A	on	

the	metabolites	diffusion	process	and	corresponding	DW-NMR	signal.	Specifically:	

	

• varying	spines/leaflets	Ф	in	the	range	0.0-6.0	µm-1	with	length	uniformly	distributed	

in	the	physiological	range	0.4-3.0	µm;	

• varying	spines/leaflets	l	in	the	range	0.0-6.0	µm	with	density	Ф=1	µm-1;	

• varying	beading	amplitude	A	in	the	range	0.0-0.5	with	beads	separated	by	a	distance	

uniformly	distributed	in	the	physiological	range	2.0-4.0	µm;	

	

2.2	Monte-Carlo	data	synthesis	

	

The	M-C	modeling	 allows	 investigating	 the	 effect	 of	mechanisms	 that	 are	 not	 included	 in	

analytical	models.	The	approach	maintains	a	population	of	“spins,”	each	executing	a	random	

walk	within	a	tissue	model	of	arbitrary	complexity,	described	in	details	in	the	next	section.	In	

DW-NMR	 signal	 simulations,	 each	 spin	 has	 a	 magnetization	 that	 evolves	 depending	 on	

position	and	magnetic-field	gradient	at	each	time	step.		
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A	 total	 of	N=105	 dimensionless	 spins	 were	 randomly	 placed	 in	 the	 synthetic	 substrate.	 A	

random	walk	at	a	rate	Δt=2.5x10-2	ms	per	step,	with	bulk	diffusivity	(D0)	set	to	0.5	µm2/ms	

and	particle	step	size	Δr=(6D0Δt)1/2	was	performed	according	to	the	following	rules:	

	

1. perform	the	step	Δx	in	a	random	direction	in	the	three-dimensional	space;	

2. Check	if	the	step	crosses	a	barrier:	

• if	no	barrier	is	crossed,	the	walker	executes	the	step	and	updates	its	current	

position;	

• if	 the	 step	 would	 take	 the	 walker	 across	 the	 barrier,	 the	 barrier	 elastically	

reflects	 the	 spin	 according	 to	 the	 simple	 rejection	method	 (26).	 The	 step	 is	

rejected	and	the	position	of	the	spin	remains	unchanged.		

	

From	the	set	of	particles	trajectories	obtained	by	M-C	simulation,	 it	 is	possible	to	compute	

some	 diffusion	 basic	 metrics	 which	 describe	 the	 dynamics	 of	 the	 diffusion	 process,	

independently	 of	 NMR	 measurement.	 One	 quantity	 investigated	 here	 is	 the	 diffusion	

coefficient,	defined	as:	

! " =
$

%	'
( ∙ * +

		 [1]
	

where	 *	 is	 the	 net	 displacement	 of	 a	 random	walker	 during	 a	 diffusion	 time	 t	 in	 a	 given	

direction	(,	in	d	dimensions.	Considering	(	parallel	and	orthogonal	to	the	direction	defining	

the	 axis	 of	 the	 main	 branch	 of	 the	 synthetic	 substrate	 simulated,	 the	 axial	 and	 radial	

diffusivities,	Dax(t)	and	Drad(t),	were	computed.		

Another	 diffusion	 metrics	 of	 interest	 is	 the	 dispersive	 diffusivity	 which	 can	 be	 obtained	

exactly	from	the	Fourier	Transform	of	the	velocity	autocorrelator	(VCF):	

	

! , = -" . " .(0) 234'
5

65
	 	 [2]	

	

where	ω	 is	 the	angular	 frequency.	We	computed	789 = . " .(0) 	 as	:'+["!(")]	 and	 the	

corresponding	D(ω)	 according	 to	 Eq.	 [2].	 Considering	 the	 direction	(	 being	 radial	 or	 axial,	

VCFrad	 and	 VCFax	 were	 computed	 considering	 Drad(t)	 and	 Dax(t),	 respectively.	 Drad(ω)	 and	

Dax(ω)	 were	 then	 computed	 according	 to	 Eq.[2],	 while	 the	 isotropic	 dispersive	 diffusivity	

D(ω)	is	computed	as	[Dax(ω)+2Drad(ω)]/3.		
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A	phase	accumulation	approach	is	used	to	calculate	the	NMR	signal.	At	each	update	in	M-C	

loop	(corresponding	to	time	t),	the	j-th	diffusing	spin	undergoes	a	phase	variation	dϕj(t):		

	

-=> " = ?@(") ∙ A>(")∆"	 [3]	

	

where	 g(t)	 is	 the	 gradient	 vector	 assumed	 constant	 over	 the	 time-step,	 and	 xj(t)	 the	 j-th	

spin’s	 position	 at	 time	 t.	 The	 synthetic	 signal	 is	 generated	 by	 summing	 the	 contributions	

from	all	the	N	spins	at	the	end	of	the	sequence	(at	time	tseq):	

	

CD =
$

E
23FGE

>H$ 	 [4]	

where	=> = -=>(")
'IJK
'HL .		

Finally,	it	is	straightforward	to	compute	the	ADC	as:	

	

M!8 = −
OP	(Q/QS)

T
	 [5]	

where	S0	is	the	signal	obtained	without	any	diffusion	sensitizing	gradients	(i.e.	with	g=0)	and	

b	is	the	so	called	diffusion-weighting	factor	defined	as:		

	

U = ?+ -" @("′)-"′
'

L

+'IJK
L

	 [6]	

	

Considering	the	signal	obtained	by	applying	the	diffusion	sensitizing	gradients	along	the	axial	

and	radial	direction,	with	respect	to	the	axis	of	the	main	branch	of	the	synthetic	substrate	

simulated,	 the	 axial	 and	 radial	 ADC	 (ADCax	 and	 ADCrad)	 were	 computed	 using	 Eq.[5],	

respectively.	

Each	 numerical	 experiment	was	 repeated	 20	 times,	 generating	 a	 new	 synthetic	 substrate	

(cylinder	 +	 secondary	 structures)	 each	 time,	 and	 the	 simulated	DW-signals	were	 averaged	

across	 the	 repeated	 experiments	 to	 minimize	 the	 deviation	 from	 the	 M-C	 simulation,	 as	

suggested	in	(27).	The	relative	SD	of	the	simulated	DW-signal	was	<1x10-3.	The	simulations	

were	 implemented	 in	 MATLAB	 (The	 Mathworks)	 and	 performed	 using	 on	 a	 workstation	

equipped	with	two	multi-core	CPU	Intel	Xeon	E5-2620	64bit	at	2.10	GHz,	and	a	Nvidia	GPU	

Tesla	K20c	with	2496	CUDA	cores	at	700	MHz.	The	random	walk	and	the	phase-accumulation	
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computation	kernels	were	run	in	parallel	on	GPU,	while	the	signal	computing	kernel	was	run	

in	 parallel	 on	 CPUs.	 This	 highly	 parallelized	 approach	 allowed	 keeping	 the	 total	

computational	time	required	for	every	single	simulation	(N=105	particles	in	a	given	geometry	

for	a	given	sequence)	lower	than	1	hour.	

Simulations	 were	 used	 to	 investigate	 the	 effect	 of	 the	 presence	 of	 finer	 morphological	

details	 like	spines,	 leaflets	and	beads	on	three	different	types	of	DW-NMR	experiments,	as	

described	in	deeper	details	in	the	next	sections:	

	

• ADC	time-dependence	at	long	diffusion	times;	

• High	b	values	DW-NMR	signal	decay	dependence;	

• High	frequency	(short	diffusion	time)	dispersive	diffusivity	dependence.		

	

2.3	ADC	time-dependence	at	long	diffusion	times	

	

Brain	metabolites	ADC	dependence	at	long	diffusion	time	has	recently	been	used	to	quantify	

and	 extract	 cell	 morphology	 and	 complexity	 (11).	 Whether	 and	 how	 spines	 and	 leaflets	

affect	metabolites	ADC	time	dependence	at	long	td	is	still	an	open	issue,	which	we	want	to	

deeper	investigate	in	this	work.		

A	pulsed-gradient	stimulated	echo	(PGSTE)	sequence	with	δ=3	ms,	td=25,	60,	75,	100,	150,	

200,	 400,	 800,	 1000	ms,	 b=	 0	 and	 6.5	ms/µm2	 and	 diffusion	 sensitizing	 gradient	 oriented	

along	 1024	 different	 directions	 chosen	 to	 be	 uniformly	 distributed	 on	 the	 unit	 sphere's	

surface	was	 simulated	 to	 compute	 the	 total	 DW-NMR	 signal	 as	 the	 average	 of	 the	 signal	

along	each	direction.	For	each	 td,	 the	ADC,	ADCax	and	ADCrad	were	computed	according	 to	

Eq.[5]	using	the	average	of	the	signal	along	each	direction,	the	signal	obtained	by	applying	

the	diffusion	sensitizing	gradient	along	the	axial	direction	and	the	signal	obtained	by	using	

diffusion	sensitizing	gradient	oriented	along	the	radial	direction,	respectively.		

	

2.4	High	b	values	DW-NMR	signal	decay	simulation	

	

High	b	values	DW-NMR	experiments	have	already	been	used	to	extract	cell	branch	diameter	

from	metabolites	DW-MRS	data	(13).	Here	we	want	to	study	if	spines	and	leaflets	may	bias	

cell	branch	diameter	estimation	and	in	which	way.	
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A	PGSTE	sequence	with	δ=3	ms,	td=60	ms,	b	ranging	from	0	to	65	ms/µm2	in	steps	of	3.25	

ms/µm2	was	simulated	for	different	values	of	spines	and	leaflets	density	Ф=0.0-6.0	µm-1	and	

length	 l=0.0-6.0	µm;	and	compared	with	different	beading	amplitudes	A=0.0-0.5.	The	 total	

DW-NMR	signal	coming	from	a	large	spectroscopic	voxel	in	the	brain	is	assumed	to	represent	

the	 sum	 of	 signals	 from	 a	 large	 number	 of	 differently	 oriented	 branches.	 Thus	 diffusion	

sensitizing	 gradients	 oriented	 along	 1024	 different	 directions	 chosen	 to	 be	 uniformly	

distributed	 on	 the	 unit	 sphere's	 surface	were	 simulated	 and	 the	 total	 signal	 computed	 as	

their	average.	

In	order	to	show	the	effects	of	the	secondary	structures	investigated	in	this	work	in	case	of	

organised	cylinders,	like	in	white	matter	case,	we	have	also	investigated	the	signal	decay	as	a	

function	of	b	for	the	axial	and	radial	direction	to	the	fiber	axis,	individually.	

	

2.5	High	frequency	(short	diffusion	time)	dispersive	diffusivity	simulation	

	

It	 is	well	known	that	short	td	measurements	of	the	ADC	of	molecules	diffusing	in	restricted	

systems	can	be	used	to	extract	geometric	parameters	of	restricting	pores,	 like	the	surface-

to-volume	ratio,	S/V	(28-31).	However,	a	promising	way	to	get	into	the	short-time	limit	is	to	

apply	 the	 oscillating	 gradient	 (OG)	 method	 (28-31),	 where	 the	 diffusion	 weighting	 is	

effectively	accumulated	over	many	periods	of	oscillation.	In	this	way,	it	is	in	practice	possible	

to	measure	very	short	diffusion	times,	i.e.	less	than	milliseconds.	In	view	of	applying	the	OG	

techniques,	the	frequency	dependence	of	the	dispersive	diffusivity,	D(ω),	rather	than	the	td	

dependence	 of	 the	 ADC(td),	 is	 of	 great	 interest,	 as	 OG	measurements	 can	 ideally	 directly	

measure	D(ω).	 The	Drad(ω),	Dax(ω)	 and	D(ω)	 frequency	dependences	were	 computed	 from	

simulated	 data	 as	 described	 in	Monte-Carlo	 data	 synthesis	 section	 for	 different	 values	 of	

spines	 and	 leaflets	 density	 Ф=0.0-6.0	 µm-1	 and	 length	 l=0.0-6.0	 µm;	 and	 compared	 with	

different	beading	amplitudes	A=0.0-0.5	(as	for	the	high	b	value	simulations,	described	in	the	

previous	section).	

	

2.6	Analysis	of	simulated	data	using	analytical	models		

	

High	 b	 values	 PGSTE	 signal	 –	 randomly	 oriented	 hollow	 cylinders	 model.	 The	 synthetic	

signal	simulated	for	high	b	values	PGSTE	experiments	is	analyzed	with	the	analytical	model	
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recently	used	to	quantify	cell	branch	diameter	(13),	where	cellular	processes	are	described	in	

first	 approximation	as	a	 collection	of	 long	 cylinders	without	any	 secondary	 structure,	with	

radius	 a	 and	 intracellular	 diffusivity	 Dintra.	 We	 assume	 cylinders	 randomly	 oriented	 to	

calculate	 signal	 attenuation	 in	 the	 narrow	 pulse	 approximation.	 The	 signal	 represents	 the	

sum	of	signals	from	within	a	large	number	of	differently	oriented	fibers.	For	any	given	fiber,	

the	 axis	 makes	 a	 variable	 angle	 θ	 with	 the	 diffusion	 gradient,	 leading	 to	 two	 diffusion	

regimes:	i)	restricted	diffusion	in	the	plan	perpendicular	to	their	axis	resulting	in	an	effective	

gradient	strength	g	sin(θ)	and	ii)	free	diffusion	in	the	direction	parallel	to	their	axis	resulting	

in	an	effective	gradient	strength	g	cos(θ).	

When	the	gradient	is	separated	by	an	angle	θ	relative	to	the	axis	of	the	cylinder	of	radius	a,	

the	echo	attenuation	is	given	by	the	following	expressions	(32):	
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and	@g = @{|( } ;	@∥ = @~�{(}).	

In	the	above	equations,	Jnis	the	Bessel	function	of	integer	order	n	and	αnm	is	the	mth	positive	

root	of	 the	Bessel	equation	 J'n	 =	0.	δn0	 is	 the	Kronecker	delta	 symbol	and	Dintra	 is	 the	 free	

diffusivity,	i.e.	the	diffusivity	along	the	axis	of	the	cylinder	(often	even	called	D//).	

This	theoretical	attenuation	(Eq.[7])	is	used	to	fit	synthetic	signal	decay	as	a	function	of	b	to	

estimate	Dintra
cyl,	a	and	the	apparent	S/V	ratio	for	cylinders,	i.e.	S/Vapp=2/a,	for	the	different	

Ф,	l	and	A	values	and	investigate	the	dependence	of	model	parameters	on	them.	The	error	

on	estimated	parameters	was	evaluated	using	a	Monte	Carlo	approach	(N = 2500	draws).	For	

each	draw,	random	noise	(whose	standard	deviation	(SD)	was	estimated	from	the	difference	

between	the	best	 fit	and	the	data)	was	generated	and	added	to	 the	best	 fit	 to	generate	a	

new	data	set,	which	could	be	analyzed	using	the	model.	

Dispersive	 diffusivity	 at	 high	 frequencies	 –	Mitra	 limit.	The	 universal	 high	 frequency	 (i.e.	

short	td)	limit	of	the	dispersive	diffusivity	is	(28):	
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in	d	dimensions.	

By	 fitting	Eq.[8]	 to	 the	high	 frequency	behavior	of	D(ω)	 it	 is	 then	possible	 to	measure	 the	

apparent	 S/V	 ratio,	 S/Vapp,	 of	 the	 specific	 geometry	 confining	 the	 molecules'	 diffusion	

without	any	assumption	on	 its	 shape,	and	 the	molecules’	bulk	diffusivity,	D0.	These	values	

are	compared	with	those	estimated	by	the	hollow	cylinder	geometrical	model	described	in	

the	previous	paragraph.	The	error	on	estimated	parameters	was	evaluated	using	the	Monte	

Carlo	approach	(N = 2500	draws).	

	

3. RESULTS	

	

3.1	Effect	of	spines,	leaflets	and	beads	on	intracellular	ADC	diffusion	time	dependence	

	

Preliminary	 simulations	 showed	 that	 using	 healthy	 physiological	 conditions	 for	 spines	 and	

leaflets	geometry,	the	dynamics	of	particles	diffusing	inside	them	is	not	different	within	the	

error	 due	 to	 the	 relative	 SD	 of	 numerical	 simulations.	 In	 other	words,	we	 found	 that	 this	

configuration	of	spines	and	leaflets	produces	similar	diffusion	dynamics	and	DW-NMR	signal	

for	the	two	different	structures.	This	is	in	agreement	with	results	obtained	by	Santamaria	et	

al.	 (22)	which	 investigated	 different	 spine’s	 geometries	 by	 using	 numerical	 simulations.	 In	

fact,	 for	 spines	 geometries	 reflecting	 healthy	 physiological	 conditions,	 and	 for	 spines	

deformed	 in	 their	 shape	 in	 such	 a	way	 to	 become	 close	 to	 leaflets	 shape	 (head	 diameter	

equal	to	neck	diameter	and	total	 length	3	µm),	Santamaria	et	al.	 (22)	observed	almost	the	

same	dynamics	 (i.e.	 similar	 anomalous	diffusion	exponents	and	 tortuosity	 values).	 For	 this	

reason,	from	now	on,	we	will	refer	to	spines/leaflets	structure,	without	distinguish	between	

spines	and	leaflets.	
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Results	 of	M-C	molecular	 diffusion	 simulations	 in	 complex	 synthetic	 substrates	mimicking	

neurites	 branches	 with	 spines,	 leaflets	 and	 beads	 are	 reported	 in	 Figure	 2.	 Specifically,	

intracellular	ADC	values	as	a	function	of	td	are	reported	in	Figure	2	(left	column)	for	different	

values	 of	 spines/leaflets	 density	 Ф=0.0-6.0	 µm-1;	 spines/leaflets	 length	 l=0.0-6.0	 µm;	 and	

beading	 amplitude	 A=0.0-0.5.	 The	 expected	 asymptotic	 behavior	 of	 the	 ADC	 at	 long	 td	 is	

observed,	reaching	the	tortuosity	regime,	i.e.	not	observable	significant	changes	in	ADC	for	

td>200	 ms,	 for	 all	 spines/leaflets	 density	 or	 length	 (or	 beading	 amplitude).	 However,	 the	

asymptotic	 diffusivity	 at	 long	 td,	 ADC(td=∞),	 and	 thus	 the	 tortuosity	 τ,	 defined	 as	

ADC(td=0)/ADC(td=∞),	depends	instead	on	Ф,	l	and	A,	as	shown	in	Figure	2	(left	column)	and	

quantitatively	reported	in	Table	1.	

	
Figure	2	 Intracellular	 isotropic	ADC	(left)	as	a	function	of	td	 for	the	different	spines/leaflets	densities	(with	

0.4	≤	 l	≤	3.0	μm),	 lengths	 (with	Φ	=	1.0	μm-1)	and	beading	amplitudes	as	described	 in	the	 inset	 legend.	 In	

order	to	fully	appreciate	the	ADC	time	dependence,	axial	ADCax	(center)	and	radial	ADCrad	(right)	values	as	a	

function	of	1/t0.5	and	1/t,	respectively,	are	reported.	Dashed	black	lines	lines	in	ADCax	plots	(centre)	are	the	

fits	of	the	linear	function	ADCax(t)	=	ADC	(t=¥)	+	C/t0.5,	according	to	(33).	The	R2	of	all	the	fits	are	larger	than	

0.95,	 showing	 the	 good	 agreement	 of	 the	 simulated	 data	with	 the	 theoretical	 prediction	 (33).	 Simulated	

ADCax	as	a	function	of	1/t0.5	at	very	long	td	exhibit	a	plateau-like	behavior	due	to	intrinsic	limit	in	numerical	

precision	of	the	simulations.				
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In	Figure	2	(central	and	right	columns),	the	axial	ADC,	ADCax,	time	dependence	as	a	function	

of	 1/t0.5	 and	 radial	ADC,	ADCrad,	 as	 a	 function	of	 1/t	 are	 reported	 to	 fully	 appreciate	 their	

time	dependence.	We	decided	to	plot	ADCax	as	a	function	of	1/t0.5	to	show	the	expected	time	

dependence	 at	 long	 diffusion	 time	 for	 the	 molecular	 diffusivity	 in	 the	 presence	 of	 one-

dimensional	short	range	disorder,	 introduced	 in	the	axial	direction	by	the	randomly	placed	

spines/leaflets	 (or	 beads),	 and	 ADCrad	 as	 a	 function	 of	 1/t	 to	 show	 the	 ADC®0	 as	 t®¥	

limiting	behaviour	 for	 restricted	diffusion	 in	 the	direction	 radial	 to	 the	 fibers,	according	 to	

(33).			

	

	

	
Figure	 3.	 Simulated	 normalized	 mean	 DW-MR	 signal	 attenuations	 as	 a	 function	 of	 b	 for	 different	

spines/leaflets	 densities	 (with	 0.4	 ≤	 l	 ≤	 3.0	 μm),	 lengths	 (with	Φ	 =	 1.0	 μm-1)	 and	 beading	 amplitudes	 as	

described	 in	the	 inset	 legend	(left).	DW-MR	signal	decay	as	a	function	of	b	for	the	axial	 (centre)	and	radial	

(right)	direction	 to	 the	 fiber	axis	 are	 reported.	The	axial	DW-MR	signals	 (centre)	 exhibit	 increasingly	non-

monoexponential	 decay	 as	 a	 function	 of	 b	 as	 Ф	 and	 l	 increase	 (or	 beads	 A	 increases),	 suggesting	 that	

diffusion	along	the	axis	of	the	fiber	is	non-Gaussian	due	to	the	presence	of	the	secondary	structures.	On	the	

other	 hand,	 the	 radial	 DW-MR	 signal	 decays	 as	 a	 function	 of	 b	 (right)	 exhibit	 an	 attenuation	 compatible	

with	diffusion	in	cylindrical	geometry	with	radius	increasing	as	Ф	and	l	increase	(or	beads	A	increases).				
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3.2	 Effect	 of	 spines,	 leaflets	 and	 beads	 on	 high	 b	 values	 DW-NMR	 data	 and	 parameter	

estimates	

	

Simulated	 normalized	 mean	 DW-MR	 signal	 attenuations	 as	 a	 function	 of	 b	 for	 different	

spines/leaflets	 densities,	 lengths	 and	 beading	 amplitudes	 are	 reported	 in	 Figure	 3	 (left	

column).	It	is	possible	to	observe	a	clear	dependence	of	the	signal	attenuation	on	Ф,	l	and	A,	

which	is	different	for	each	of	the	three	morphological	parameters	investigated.	Qualitatively,	

signal	attenuation	 is	 less	pronounced	as	Ф,	 l	and	A	 increase,	suggesting	a	 reduction	of	 the	

measured	diffusivity.	Moreover,	a	change	in	the	curvature	of	the	signal	suggests	an	increase	

of	 the	 measured	 branch	 radius.	 In	 order	 to	 be	 more	 quantitative,	 these	 synthetic	 signal	

attenuations	 were	 fitted	 with	 Eq.[7]	 and	 the	 estimated	 a,	 Dintra	 and	 S/Vapp	 values	 are	

reported	in	Table	1,	as	a	function	of	Ф,	l	and	A.	We	found	that	branch	radius	is	increasingly	

overestimated	as	Ф,	l	and	A	increase	and	Dintra	is	progressively	underestimated	as	Ф,	l	and	A	

increase.	 Values	 in	 Table	 1	 show	 that,	 in	 the	 realistic	 experimental	 conditions	 simulated,	

model	 parameters	 (i.e.	 a	 and	 Dintra)	 dependence	 on	 Ф	 and	 l,	 in	 case	 of	 spines/leaflets	

presence,	is	not	negligible	for	Ф	and	l	within	physiological	ranges,	leading	to	more	than	two-

fold	 overestimation	 of	 a	 (corresponding	 to	 an	 underestimation	 of	 S/Vapp)	 and	

underestimation	of	Dintra	in	case	of	very	dense	or	very	long	secondary	structures.	Specifically,	

for	substantial	changes	in	Ф	(from	0	to	6	µm-1),	l	(from	0	to	6	µm)	and	A	(from	0.0	to	0.5),	a	is	

overestimated	up	to	~250%,	~200%	and	~250%,	respectively;	while	Dintra	 is	underestimated	

up	to	~60%,	~20%	and	~60%,	respectively.		
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Finally,	 beading	 seems	 to	 have	 the	 most	 important	 effect	 in	 biasing	 model	 parameter	

estimation	for	A>0.2	(Table	1).	However,	values	of	A>0.2	are	expected	only	 in	pathological	

conditions	 (ischemia),	while	 in	healthy	conditions	A<0.1	 is	expected	 in	 the	central	nervous	

system	 (21).	 In	 fact,	 beads	 have	 been	 described	 as	 axonal,	 hence	more	 likely	 localized	 to	

white	matter,	transient	(as	short	as	milliseconds)	structures	that	arise	as	a	consequence	of	

neurophysiological	 distress.	 This	 suggests	 that	 in	 healthy	 conditions,	 beads	 should	 affect	

model	parameter	estimation	in	a	negligible	way.			

In	order	to	show	the	effects	of	the	secondary	structures	investigated	in	this	work	in	the	case	

of	 organised	 cylinders,	 e.g.	 fiber	 bundles	 like	 in	white	matter,	we	 reported	DW-MR	 signal	

decay	as	a	function	of	b	for	the	axial	and	radial	direction	to	the	fiber	axis,	individually	(Figure	

3,	 central	 and	 left	 column).	 	 We	 observe	 that	 the	 axial	 DW-MR	 signal	 (Figure	 3,	 central	

column)	 exhibits	 increasingly	 non-monoexponential	 decay	 as	 a	 function	 of	 b	 as	

spines/leaflets	Ф	and	 l	 increase	 (or	beads	A	 increases),	 suggesting	 that	diffusion	along	 the	

	

	
Figure	4.	Isotropic	(left),	axial	(centre)	and	radial	(right)	dispersive	diffusivities,	ADC,		ADCax	and	ADCrad,	as	a	

function	 of	 frequency,	 ω,	 for	 different	 spines/leaflets	 densities,	 lengths	 and	 beading	 amplitudes	 as	

described	in	the	inset	legend	(left).	A	clear	dependence	of	the	dispersive	diffusivities’	behavior	as	a	function	

of	ω	on	Ф,	l	and	A	is	shown.	
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axis	 of	 the	 fiber	 is	 non-Gaussian	due	 to	 the	presence	of	 the	 secondary	 structures,	 in	 very	

good	agreement	with	results	and	their	interpretation	reported	by	Yablonskiy	and	Sukstanskii	

(34).	On	 the	other	hand,	 the	 radial	DW-MR	signal	decay	as	a	 function	of	b	 (Figure	3,	 right	

column)	 exhibits	 an	 attenuation	 compatible	 with	 diffusion	 in	 cylindrical	 geometry	 with	

radius	increasing	as	spines/leaflets	Ф	and	l	increase	(or	beads	A	increases),	when	measured	

with	diffusion	sensitizing	gradients	orthogonal	to	cylinder	axis	(Eq.[7]).		

	

3.3	 Spines,	 leaflets	 and	 beads	 effects	 on	 high	 frequency	 DW-NMR	 data	 and	 parameter	

estimates		

	

Isotropic,	 axial	 and	 radial	 dispersive	 diffusivities,	 ADC(ω),	 ADCax(ω)	 and	 ADCrad(ω)	 as	 a	

function	 of	 ω	 are	 reported	 in	 Figure	 4.	 Like	 for	 the	 high	 b	 values	 results	 shown	 in	 the	

previous	 section,	 it	 is	 possible	 to	
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observe	 a	 clear	 dependence	 of	 the	 dispersive	 diffusivities’	 behavior	 as	 a	 function	 of	

frequency	on	Ф,	l	and	A,	which	is	different	for	each	of	the	three	morphological	parameters	

investigated.	Qualitatively,	we	 notice	 that	 ADCax(ω)	 	 is	 not	 constant	 as	 a	 function	 of	ω	 at	

increasing	 values	 of	 Ф,	 l	 and	 A,	 consistent	 with	 an	 increase	 in	 the	 hindering	 of	 the	 axial	

diffusion	 process;	 ADCrad(ω)	 increases	 the	 slope	 of	 how	 it	 approaches	 ω=0	 at	 increasing	

values	of	Ф,	 l	and	A,	consistent	with	an	increase	in	the	size	of	the	compartment	restricting	

the	 diffusion	 in	 the	 radial	 plane.	 In	 order	 to	 be	 quantitative,	 we	 report	 the	 expected	

behavior	of	ADCrad(ω)	as	a	function	of	ω	in	the	case	of	randomly	oriented	smooth	cylinders,	

according	 to	 the	 analytical	 solution	 for	 diffusion	 in	 hollow	 cylinders	 reported	 in	 (32),	 and	

shown	in	Figure	5	as	dashed	lines.	We	found	that	the	analytical	predictions	for	diffusion	in	

	
Figure	5.	ADCrad(ω)	as	a	function	of	ω	and	ADC(ω)	as	a	function	of	ω-1/2,	for	the	smooth	cylinder	case	and	a	

representative	 case	 of	 spines/leaflets	 density	 (f=4),	 spines/leaflets	 length	 (l=4)	 and	 beading	 amplitude	

(A=0.3).	(left)	Dashed	lines	represent	the	analytical	solution	for	diffusion	in	hollow	cylinders	reported	in	(32)	

The	analytical	predictions	for	diffusion	in	smooth	cylinders	clearly	fail	in	describing	the	ADCrad(ω)	behavior	as	

a	function	of	ω	at	values	of	φ	and	l	greater	than	0,	while	 it	is	still	a	good	approximation	in	the	presence	of	

beads.	(right)	ADC(ω)	as	a	function	of	ω-1/2	shows	a	good	linear	trend	at	high	frequency	(as	expected	within	

the	Mitra	regime).	 In	fact,	dashed	lines	represent	Eq.	[8]	fitted	to	ADC(ω)	to	estimate	S/Vapp	ratio	and	Dintra	

(values	reported	in	Table	1).			
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smooth	 cylinders	 clearly	 fail	 in	 describing	 the	 ADCrad(ω)	 behavior	 as	 a	 function	 of	 ω	 at	

increasing	values	of	φ	and	l,	while	it	is	still	a	good	approximation	in	the	presence	of	beads.	

On	the	contrary,	ADC(ω)	as	a	function	of	ω-1/2	is	reported	in	Figure	5,	showing	a	good	linear	

trend	 at	 high	 frequency	 (as	 expected	 within	 the	 Mitra	 regime).	 In	 this	 case,	 Eq.	 [8]	 was	

instead	fitted	to	simulated	isotropic	dispersive	diffusivity	ADC(ω)	to	estimate	S/Vapp	ratio	and	

shown	 in	 Figure	 5	 as	 dashed	 lines,	 for	 smooth	 cylinder	 and	 a	 representative	 condition	 in	

presence	 of	 spines,	 leaflets	 and	 beads.	 The	 extracted	 values	 of	 Dintra,	 a	 and	 S/Vapp	 are	

reported	in	Table	1.			

The	actual	S/V	ratio	for	the	simulated	synthetic	substrates	can	be	exactly	computed.	For	a	

perfect	 hollow	 cylinder	 of	 internal	 radius	 a0,	 we	 have	 S/V=2/a0.	 The	 presence	 of	 spines,	

leaflets	 and	 beads	 will	 change	 the	 S/V	 ratio	 of	 cell’s	 branch,	 according	 to	 the	 new	

morphology.	 Spines	 or	 leaflets	 can	 be	 approximated	 as	 radial	 secondary	 structure	 of	

cylindrical	 shape	 with	 radius	 r	 and	 length	 l,	 attached	 to	 the	 main	 branch	 of	 radius	 a0	

according	to	their	density	φ.	In	this	approximation,	the	expected	S/V	for	spines	and	leaflets	

is	Q
Å
=

+ [SÇÉZF
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,	which	is	larger	than	2/a0	if	r<a0,	that	is	the	case	of	biological	interest.		On	the	

contrary,	beads	can	be	approximated	as	cylinders	of	length	l,	radius	rb	and	distributed	along	

the	 branch	 of	 total	 length	 L	 in	 number	 Nb	 such	 that	 Nbl	 ≤	 L.	 In	 this	 approximation,	 the	

expected	S/V	for	beads	is	Q
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,	that	is	smaller	than	2/a0	if	A<1,	which	is	the	

case	 of	 biological	 interest.	 The	 actual	 S/V	 values	 for	 the	 different	 synthetic	 structures	

simulated	are	reported	in	Table	1,	assuming	for	r	the	average	value	between	head	and	neck.	

Results	reported	 in	Table	1	show	that	the	apparent	S/V	ratio	estimated	by	fitting	Eq.[8]	to	

numerical	simulations	results	in	the	Mitra	regime	are	actually	in	perfect	agreement	with	the	

“true”	 values	 for	 the	 geometrical	 structures	 simulated,	 showing,	 for	 spines	 and	 leaflets,	

increasing	S/V	as	a	function	of	φ	and	 l	and	always	≥	2	µm-1,	which	 is	the	S/V	value	for	the	

simulated	branch	without	any	spines	or	leaflets	(i.e.	smooth	hollow	cylinder	of	radius	a0	=	1	

µm);	while,	for	beads,	decreasing	S/V	as	a	function	of	A	and	always	≤	2	µm-1.	

		

3.4	PGSTE	high	b	values	and	OG	high	frequency	results	in	in	vivo	experiments	on	mouse	brain	
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	In	 Figure	 6	 we	 report	 experimental	 data	 collected	 in	 vivo	 in	 the	mouse	 brain	 at	 11.7	 T:	

normalized	 signal	 attenuations	 as	 a	 function	 of	 b	 (up	 to	 b=60	 ms/µm2	 at	 td=63	 ms,	

corresponding	 to	 q~1	 µm-1),	 obtained	 in	 (13)	 by	 PGSTE	 experiments,	 and	 ADC	 frequency	

dependence	 at	 high	 frequencies	 (up	 to	 ~250	Hz)	 obtained	 in	 (35)	 by	OG	 experiments,	 for	

some	 brain	 metabolites	 (NAA,	 Creatine,	 Choline	 and	 Myo-inositol).	 For	 details	 on	

experimental	methods	used	to	acquire	the	data,	we	refer	the	reader	to	(13,	35).	Parameters	

extracted	from	the	fits	of	PGSTE	and	OG	experiments	are	reported	in	Table	2.	

	

4. DISCUSSION		

	

4.1	Effect	of	secondary	structures	on	measured	intracellular	diffusion	

	

Despite	 the	possibility	 to	make	high	resolution	 images	of	 the	brain,	water	based	DW-NMR	

techniques	are	expected	to	be	less	specific	and	sensitive	to	intracellular	space	changes	than	

metabolite	 DW-MRS	 methods.	 This	 is	 due	 to	 the	 fact	 that:	 1)	 metabolites	 are	 purely	

intracellular	 diffusing	 molecules,	 while	 water	 is	 ubiquitous	 in	 biological	 tissues;	 2)	

metabolites	are	cell-specific	probes,	i.e.	some	of	them	mostly	diffuse	in	specific	different	cell	

	
Figure	6.	Normalized	signal	attenuations	as	a	function	of	b	obtained	in	(13)	by	PGSTE	experiments,	and	ADC	

frequency	dependence	at	high	frequencies	(up	to	~250	Hz)	obtained	in	(35)	by	OG	experiments,	both	in	vivo	

in	mouse	 brain,	 for	 some	 of	 the	 investigated	 brain	metabolites.	 Straight	 lines	 represent	 fit	 of	 analytical	

expressions	(Eq.[7]	and	[8])	to	experimental	data.	Error	bars	denote	standard	deviation.			
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compartments:	NAA	 and	Glu	within	 neurons,	while	 tCho	 and	 Ins	within	macroglia	 (mostly	

astrocytes).	 We	 have	 recently	 proposed	 to	 use	 different	 DW-MRS	 techniques	 to	

quantitatively	extract	parameters	directly	related	to	cell	morphology:	number	of	consecutive	

embranchments	and	branch	lengths	(11)	of	neuronal	and	astrocytic	neuritic	trees,	as	well	as	

branch	 diameter	 and	 intracellular	 diffusivity	 (13).	 However,	 these	 methods	 allow	 for	 the	

extraction	 of	 the	 cell’s	 morphological	 features	 by	 making	 some	 assumptions	 on	 the	

geometry	 of	 the	 cellular	 compartments,	 i.e.	 by	modeling	 cells	 as	 a	 combination	 of	 simple	

geometries	 (branched	 sticks	 and	 cylinders).	 	 High	 magnification	 histology	 images	 clearly	

show	 that	 this	 is	 a	 quite	 simplistic	 assumption,	 because	 brain	 cells,	 like	 neurons	 and	

astrocytes,	have	very	 complex	 topologies.	 In	 fact,	while	 the	 "backbone"	of	 the	 cell	 can	be	

modeled	 using	 these	 simple	 geometries,	 secondary	 finer	 details	 like	 spines	 and	 leaflets	

(generally	 also	 called	 branchlets)	 are	 important	 structures	 which	 may	 bias	 parameter	

estimation	in	these	simple	models.	Here	we	used	M-C	simulations	to	go	one	step	further	by	

investigating	 whether	 and	 how	 these	 finer	 morphological	 details	 have	 an	 effect	 on	 the	

measured	 metabolites	 diffusion	 by	 DW-MRS	 techniques.	 To	 summarize,	 the	 simulations	

show	that:	

	

• Estimated	 intracellular	 tortuosity	 increases	 as	 spines	 and	 leaflets	 density	 or	 length	

increase,	and	it	increases	as	beading	amplitude	increases,	but	this	last	is	negligible	in	

healthy	 conditions	 (A<0.1).	 These	 results	 also	 show	 that	 the	 effects	 of	 finer	

morphological	 details	 like	 spines	 and	 leaflets	 (and	 beads)	 is	 actually	 under	 the	

practical	 sensitivity	 of	 realistic	 experimental	 conditions	 at	 long	 td	 (i.e.	 td>200	ms),	

suggesting	 that	modeling	of	 long-td	data	based	on	 solely	 long-range	morphological	

features	 should	 be	 preferentially	 done	 at	 td>200	ms.	 Numerical	 simulation	 results	

reported	in	this	work	refer	to	metabolites	diffusion.	Because	water	molecules	diffuse	

about	three	times	faster	than	metabolites,	these	results	can	be	opportunely	scaled	

to	 be	 extended	 to	 water	 diffusion	 in	 the	 intracellular	 space.	 For	 example,	 results	

reported	here	 show	 that	 the	 tortuosity	 limit	 is	 always	 reached	 for	 td>200	ms	 (and	

even	 before	 for	 low	 Ф/l/A).	 	 This	 suggests	 that,	 for	 intracellular	 water,	 tortuosity	

limit	is	reached	for	td>70	ms	(i.e.	the	effects	of	secondary	structures	are	expected	to	

affect	the	ADC	time	dependence	for	td	>70	ms	in	a	negligible	way).	
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• Although	 a	 simple	 geometrical	 model	 based	 on	 modeling	 cell’s	 branches	 like	

randomly	 oriented	 cylinders	 (Eq.[7])	 accurately	 describes	 the	 high	 b	 values	 signal	

decay,	the	estimated	model	parameters	values	are	biased	by	the	presence	of	cellular	

finer	morphological	 structures	 (Table	 1).	 In	 the	 presence	 of	 secondary	 structures,	

branch	 diameter	 is	 overestimated,	 while	 intracellular	 diffusivity	 is	 underestimated	

(although	the	bias	due	to	the	presence	of	beads	 is	negligible	 in	healthy	conditions,	

i.e.	A<0.1).	This	is	quite	intuitive:	radial	secondary	structures	hinder	the	longitudinal	

diffusion	along	the	main	branch,	while	they	offer	larger	space	for	displacement	along	

radial	direction,	effectively	mimicking	diffusion	in	a	wider	cylinder.	As	shown	here	by	

numerical	simulations,	this	 intuitive	effect	of	secondary	structures	may	significantly	

affect	 real	 DW-MRS	 experiments,	 at	 least	 those	 performed	 with	 sequence	

parameters	similar	to	those	simulated	here.	This	suggests	that	DW-NMR	signal	from	

the	 intracellular	compartment	at	high	b	values	 is	quite	sensitive	to	 fine	cell	branch	

morphology.	New	analytical	and/or	numerical	models,	which	include	finer	structures	

like	spines	and	 leaflets	 (and	beads),	are	needed	 to	properly	describe	 the	DW-NMR	

signal	from	intracellular	space	and	they	may	be	useful	to	measure	spines	and	leaflets	

density	and	morphological	properties	(e.g.	length	or	volume).	

	

• Apparent	S/V	ratio	estimated	by	linear	fit	of	high	frequency	OG	data	appears	to	be	

an	excellent	 estimation	of	 the	 actual	 S/V	 ratio,	 even	 in	 the	presence	of	 secondary	

structures.	This	ratio	increases	as	spines	and	leaflets	density	or	length	increase,	while	

it	 decreases	 as	 beadings	 amplitude	 increases,	 but	 the	 latter	 is	 negligible	 in	

physiological	conditions	(A<0.1);	In	contrast,	 intracellular	diffusivity	as	estimated	by	

linear	fit	of	high	frequency	OG	data	is	underestimated,	suggesting	that	diffusion	may	

not	strictly	be	in	the	Mitra	regime	yet,	although	S/V	is	already	well	estimated.		

	

It	is	worth	mentioning	that	axonal	meandering	or	undulation,	as	well	as	cell	fibers	branching	

and	finite	 length	would	have	an	 impact	on	the	tortuosity	at	 long	td,	as	well	as	on	the	ADC	

long	 time	dependence	and	maybe	the	high	b	values	DW-MR	signal	attenuation	behaviour.	

However,	 in	this	work	we	did	not	 investigate	that,	as	 it	had	already	been	done	before	(11,	

36,	37).	Concerning	 the	possible	effect	of	 axonal	dispersion	within	 the	 large	 spectroscopic	

voxel,	 in	 our	 recently	 published	 paper	 (13)	 we	 showed	 that	 the	 assumption	 of	 fibers	
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isotropically	 distributed	 is	 a	 good	 approximation	 for	 the	 macroscopic	 DW-MR	 signal	

measured	from	the	spectroscopic	voxel.		

	

4.2	Discrepancy	between	PGSTE	high	b	and	OG	high	frequency	results	

	

Interestingly,	 our	 numerical	 simulations	 of	 PGSTE	 high	 b	 and	 OG	 high	 frequencies	

experiments	 show	 some	 discrepancy	 between	 the	 estimated	 parameters	 (intracellular	

diffusivity	 and	apparent	 S/V	 ratio	or	 corresponding	branch	 radius)	using	 the	 two	DW-MRS	

techniques	when	secondary	structures	are	present	(Table	1).	It	is	interesting	to	compare	the	

apparent	 S/V	 ratio	 values	 obtained	 by	 OG	 experiments	 in	 the	Mitra	 regime	 (i.e.	 the	 best	

estimation	of	the	actual	S/V	ratio),	with	those	obtained	from	PGSTE	high	b	values	datasets.	It	

can	be	seen	in	Table	1	that,	when	secondary	structures	are	present,	PGSTE	and	OG	data	do	

not	yield	the	same	values	for	diffusivities	and,	most	strikingly,	for	S/Vapp.	This	difference	can	

be	quantified	by	computing	the	percentage	difference	in	diffusivity	and	S/Vapp	estimation,	ΔD	

and	ΔS/Vapp,	between	OG	and	PGSTE	data.	From	Table	1	here	are	the	conclusions	which	can	

be	drawn	about	the	comparison	between	PGSTE	and	OG	results:	

	

• Effect	of	φ	on	 the	discrepancy	between	parameters.	As	expected,	 for	φ=0.0	µm-1,	

the	two	techniques	provide	the	same	estimation	of	diffusivity	and	S/Vapp,	within	the	

5%	 of	 uncertainty	 (i.e.	 |ΔD|	 and	 |ΔS/Vapp|	 lower	 than	 5%).	 As	 φ	 increases,	 the	

intracellular	 diffusivity	 and	 S/Vapp	 are	 increasingly	 underestimated	 for	 PGSTE	 as	

compared	 to	 OG.	 In	 fact,	 ΔD	 and	 ΔS/Vapp	 can	 reach	 -50%	 and	 -70%,	 respectively,	

when	φ=6.0	µm-1.	S/Vapp	actually	appears	to	be	more	biased	than	D,	suggesting	the	

necessity	 of	 defining	 novel	 analytical	 and/or	 numerical	 models	 for	 high-b	 PGSTE	

modeling	including	finer	structures	like	spines,	leaflets	and	beads,	in	order	to	better	

determine	cell	fibers	diameter	and	intracellular	diffusivity.	

	

• Effect	 of	 l	 on	 the	 discrepancy	 between	 parameters.	 For	 φ=0.0	 µm-1,	 the	 two	

techniques	provide	the	same	estimation	of	diffusivity	and	S/Vapp,	within	the	10%	of	

uncertainty	 (i.e.	 |ΔD|	 and	 |ΔS/Vapp|	 lower	 than	 10%).	 Similarly	 to	 the	 effect	 of	 φ,	

S/Vapp	 is	 increasingly	 underestimated	 for	 PGSTE	 as	 l	 increases,	 compared	 to	 OG	

(ΔS/Vapp	 can	 reach	 -50%	 when	 l=6.0	 µm).	 In	 contrast	 to	 φ,	 the	 discrepancy	 in	
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intracellular	diffusivity	 is	much	 lower	than	 in	the	case	of	 increasing	φ	(|ΔD|	always	

lower	than	5%),	although	both	techniques	yield	underestimated	values	compared	to	

ground	truth.			

	

• Effect	of	A	on	the	discrepancy	between	parameters.	For	A=0.0,	the	two	techniques	

provide	 the	 same	estimation	of	diffusivity	 and	S/Vapp,	within	 the	5%	of	uncertainty	

(i.e.	 |ΔD|	and	|ΔS/Vapp|	 lower	 than	5%).	The	 intracellular	diffusivity	and	S/Vapp	are	

both	increasingly	underestimated	for	PGSTE	as	A	increases.	ΔD	and	ΔS/Vapp	can	reach	

-60%	and	-44%,	respectively,	when	A=0.5.	In	contrast	to	spines/leaflets,	in	the	case	of	

beading,	the	intracellular	diffusivity	seems	to	be	more	biased	than	S/Vapp	when	high	b	

value	PGSTE	experiments	are	used	instead	of	OG.		

	

To	 summarize,	 in	 our	 simulations,	 high	 spines/leaflets	 density	 results	 in	 ΔS/Vapp<<ΔD<<0,	

long	spines/leaflets	results	in	ΔS/Vapp<<ΔD~0,	and	strong	beading	results	in	ΔD<<ΔS/Vapp<<0.	

This	discrepancy	provides	a	potential	way	to	look	for	the	signature	of	secondary	structures	in	

vivo,	where	experimental	data	 collected	at	high	b	and	at	high	 frequencies	 (13,	35)	 can	be	

confronted,	as	done	in	the	next	section.	

	

4.3	Interpreting	discrepancies	between	PGSTE	high	b	values	and	OG	high	frequency	results	in	

in	vivo	experiments	using	numerical	simulation	results	

	

High	b	values	PGSTE	data	in	vivo	in	mouse	brain	were	obtained	by	using	the	same	sequence	

parameters	as	simulated	in	this	study,	and	modeled	by	using	the	simple	geometrical	model	

in	 Eq.[7]	 to	 estimate	 cell’s	 branch	 radius,	 the	 corresponding	 S/Vapp	 and	 intracellular	

diffusivity	 (13).	 These	 estimated	 values,	 for	 some	 relevant	metabolites	 (NAA,	 tCr,	 Ins	 and	

tCho)	 are	 reported	 in	 Table	 2.	 We	 compare	 these	 results	 with	 those	 we	 have	 recently	

obtained	by	performing	OG	ultra-short	diffusion	time	ADC	measurements	in	vivo	in	the	same	

mouse	brain	and	analyzed	by	using	the	Mitra	regime	asymptotic	behavior	(i.e.	Eq.[8]).	These	

data	are	published	 in	(35)	and	here	reported	 in	Figure	6	and	Table	2.	The	two	approaches	

provide	 quite	 different	 values	 for	 the	 estimated	 parameters	 (intracellular	 diffusivity	 and	

S/Vapp).	While	 for	 all	 the	 considered	metabolites,	 except	NAA,	 the	estimated	S/Vapp	 values	

with	PGSTE	technique	are	considerably	smaller	(up	to	-45%)	than	those	estimated	by	OG,	the	
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diffusivity	values	are	the	same	within	the	10%	of	uncertainty	(|ΔD|≤±10%).	When	compared	

to	 values	 obtained	 by	 fitting	 simulated	 data	 (Table	 1)	 these	 ΔD	 and	 ΔS/Vapp	 values	 are	

coherent	with	a	relatively	low	density	of	spines	or	leaflets	(φ≤1.0	μm-1)	of	moderate	length	

(l≤4.0	μm),	which	is	reasonable	according	to	histology	(14,	23,	24).	The	fact	that	in	vivo	data	

do	not	yield	largely	negative	ΔD	precludes	the	existence	of	significant	beading-like	structures	

(A≤0.1),	as	expected	in	healthy	conditions	for	the	spectroscopic	voxel	considered.	We	should	

mention	 that	 for	 NAA	 we	 find	 a	 slightly	 positive	 ΔS/Vapp,	 which	 cannot	 be	 explained	 by	

secondary	 structures	 investigated	 here.	 However,	 as	 previously	 discussed	 in	 (13),	 NAA	

represents	 a	 particular	 case.	 Indeed,	 a	 small	 fraction	 of	 NAA	 is	 supposed	 to	 be	 highly	

restricted	in	very	small	regions	(like	mitochondria	or	myelin	sheaths).	Finally,	to	be	honest,	

the	 uncertainty	 on	 S/Vapp	 estimated	 from	high	 b	 for	NAA	 is	 large,	 so	 this	 positive	 ΔS/Vapp	

might	be	artefactual.	

It	 is	 interesting	to	 look	what	 intracellular	tortuosity	to	expect,	based	on	the	spines/leaflets	

density	 and	 length	 consistent	 with	 in	 vivo	 data.	 Looking	 at	 Table	 1,	 it	 appears	 that	

intracellular	tortuosity	should	be	relatively	low,	i.e.	less	than	~1.3,	for	φ≤1.0	μm-1	and	l≤4.0	

μm.	

	

4.4	Effect	of	experimental	noise	and	SNR			

	

In	 order	 to	 invoke	 practical	 conclusions	 from	 the	 numerical	 simulations	 results	 reported	

here,	the	effect	of	different	SNR	values	on	the	estimated	microstructural	features	was	also	

considered.	Gaussian	noise	was	added	to	the	simulated	diffusion	weighted	signal	decays	at	

high	 b-values	 and	 different	 diffusion	 times	 in	 order	 to	 simulate	 three	 scenarios:	 SNR	 =	¥	

(noise	free	case);	50	(good	experimental	conditions)	and	10	(worse	experimental	conditions).	

We	 found	 that	 parameter	 estimation	 was	 not	 significantly	 biased	 by	 noise	 when	 SNR	

decreased	from	infinity	to	10,	suggesting	that	the	effects	of	secondary	structures	discussed	

so	far	are	of	practical	significance	even	in	realistic	experimental	conditions..	

	

4.5	Limitations	

	

The	main	 goal	 of	 this	 numerical	 study	 is	 to	 investigate	 if	 and	 how	 the	 presence	 of	 finer	

morphological	structures	(i.e.	spines,	leaflets	and	beads)	on	cell	fibers	can	affect	intracellular	
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diffusion	of	brain	metabolites	and	DW-MRS	derived	metrics.	Although	numerical	simulation	

results	presented	here	 can	be	helpful	 to	 interpret	experimental	data,	 this	 study	has	 some	

limitations.	 In	 particular,	 T2	 and	 T1	 relaxation	 effects	 were	 neglected.	 The	 potential	

correlation	 between	 brain	 metabolites	 diffusion	 and	 relaxation	 is	 of	 importance	 for	

interpreting	 and	 modeling	 metabolite	 diffusion	 based	 on	 pure	 geometry,	 irrespective	 of	

relaxation	 properties	 (multi-compartmental	 relaxation	 or	 surface	 relaxivity).	 For	 high	 b	

values	and	high	frequencies	simulations,	relaxation	effects	can	presumably	be	ignored,	as	we	

have	 recently	 shown	 that	 the	 correlation	 between	 relaxation	 and	 diffusion	 properties	 is	

extremely	 small	 or	 even	 nonexistent	 for	 metabolites	 in	 the	mouse	 brain	 in	 this	 range	 of	

TE/TM,	even	though	this	might	not	be	true	in	myelinated	fibers	(12).	In	long	td	experiments,	

the	potential	effect	of	T1	relaxation	during	td	is	still	an	open	issue.	Specifically,	potential	wall	

relaxivity	might	exist	and	cause	correlation	between	T1	relaxation	and	diffusion	properties,	

which	was	not	considered	here	and	is	generally	neglected	in	DW-NMR	modeling,	but	could	

be	added	in	the	simulations.	Although	being	of	interest,	this	is	far	from	the	aim	of	this	study.				

	

5. Conclusion		

	

Here	we	used	M-C	numerical	simulations	to	investigate	to	what	extent	secondary	structures	

like	spines,	leaflets	and	beads	have	an	effect	on	the	measured	metabolites	diffusion	by	DW-

MRS	techniques.	Results	suggest	that,	in	healthy	physiological	conditions,	spines	and	leaflets	

density	 and	 length	 (Ф	 and	 l)	 bias	 cell	 branch	 diameter	 (overestimated)	 and	 intracellular	

diffusivity	 (underestimated)	estimation.	Compared	with	a	 “control”	 case	of	deviation	 from	

smooth	cylinder	assumption	like	in	beading-like	structure,	we	found	that	the	effects	of	beads	

on	 cell	 branch	 diameter	 and	 intracellular	 diffusivity	 estimation	 is	 negligible,	 when	 fit	 is	

performed	 on	 high-b	 data	 with	 a	 simple	 model	 of	 cylinders.	 Moreover,	 we	 showed	 that	

intracellular	 tortuosity	as	determined	at	 long	 td	 increases	as	 spines	and	 leaflets	density	or	

length	 increases;	 and	 it	 increases	 as	 beading	 amplitude	 (A)	 increases,	 but	 this	 increase	 is	

negligible	in	healthy	physiological	conditions	(A<0.1).	The	last	result	of	this	work	is	that	S/V	

ratio	estimated	from	linear	fit	of	high-frequency	data	increases	as	spines	and	leaflets	density	

or	 length	 increase,	 while	 S/V	 ratio	 decreases	 as	 beading	 amplitude	 increases,	 but	 this	

decrease	is	negligible	in	healthy	physiological	conditions	(A<0.1).	Very	interestingly,	the	bias	

on	 estimated	 parameters	 is	 different	 depending	 on	 the	 modality	 used	 (high-b	 or	 high-
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frequency	 acquisitions).	 This	 opens	 perspectives	 to	 assess	 and	 quantify	 the	 presence	 of	

secondary	 structures	 in	 vivo,	 by	 confronting	 experimental	 data	 acquired	 with	 both	

modalities.	Despite	some	limitations,	the	results	presented	in	this	work	are	useful	to	help	for	

the	 interpretations	 of	 experimental	 data,	 and	 they	 may	 be	 of	 interest	 for	 the	 DW-NMR	

community	 by	 stimulating	 future	 developments	 and	 applications,	 including	 secondary	

structure	characterization	in	neurodegenerative	diseases.	
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Tables	

Table	 1.	Model	 parameters	 (intracellular	 diffusivity,	 Dintra,	 cell	 fiber	 radius,	 a,	 apparent	 Surface-to-volume	 ratio,	 S/Vapp,	 Intracellular	 space	 tortuosity,	 τ)	 and	 system	

properties	 (actual	 S/V	 ratio)	 estimated	 from	 the	 simulations	 of	 different	morphologies.	 The	 percentage	 difference	 in	 diffusivity	 and	 S/Vapp	 estimation,	 ΔD	 and	 ΔS/Vapp,	

between	OG	and	PGSTE	data	is	also	reported.		*	apparent	cell	fiber	radius	estimated	from	the	estimate	of	S/Vapp,	assuming	a	smooth	hollow	cylinder:	a=2/(S/Vapp).	

	

Spines/Leaflets	density		

(0.4	≤	l	≤	3.0	μm)	

From	PGSTE	high	b	values	

(Randomly	Oriented	Cylinders	model)	

From	OG	high	frequencies	

(Mitra	regime)	 Actual	S/V	

(μm-1)	

ΔD	

(%)	

ΔS/Vapp	

(%)	

From	long	td	

Φ	

(μm-1)	

Dintra	

(μm2/ms)	

a	

(μm)	

S/Vapp	

(μm-1)	

D0	

(μm2/ms)	

a*	

(μm)	

S/Vapp	

(μm-1)	
τ	

0	 0.50±0.01	 1.02±0.02	 1.96±0.05	 0.50±0.01	 0.98±0.02	 2.05±0.05	 2.00	 0.0	 -4.4	 1.00±0.05	

1	 0.37±0.01	 1.79±0.10	 1.11±0.08	 0.44±0.01	 0.91±0.04	 2.20±0.05	 2.20	 -15	 -50	 1.35±0.07	

2	 0.29±0.01	 2.19±0.10	 0.91±0.08	 0.40±0.01	 0.86±0.08	 2.32±0.08	 2.32	 -27	 -61	 1.52±0.07	

4	 0.21±0.01	 2.56±0.12	 0.78±0.08	 0.36±0.01	 0.81±0.08	 2.46±0.08	 2.48	 -41	 -68	 1.98±0.08	

6	 0.19±0.02	 2.70±0.12	 0.74±0.08	 0.37±0.01	 0.78±0.08	 2.61±0.08	 2.60	 -49	 -72	 2.17±0.09	

Spines/Leaflets	length	

(Φ	=	1.0	μm-1)	

From	PGSTE	high	b	values	

(Randomly	Oriented	Cylinders	model)	

From	OG	high	frequencies	

(Mitra	regime)	 Actual	S/V	

(μm-1)	

ΔD	

(%)	

ΔS/Vapp	

(%)	

From	long	td	

l	

(μm)	

Dintra	

(μm2/ms)	

a	

(μm)	

S/Vapp	

(μm-1)	

D0	

(μm2/ms)	

a*	

(μm)	

S/Vapp	

(μm-1)	
τ	



32	
	

0	 0.50±0.01	 1.06±0.02	 1.89±0.05	 0.50±0.01	 0.98±0.02	 2.05±0.05	 2.00	 0.0	 -7.8	 1.00±0.05	

1	 0.46±0.01	 1.29±0.10	 1.55±0.08	 0.47±0.01	 1.02±0.08	 1.96±0.08	 2.04	 -2.1	 -21	 1.05±0.05	

2	 0.43±0.01	 1.48±0.10	 1.35±0.08	 0.43±0.01	 0.99±0.08	 2.02±0.08	 2.08	 0.0	 -33	 1.11±0.05	

4	 0.38±0.01	 1.83±0.10	 1.10±0.08	 0.40±0.01	 0.91±0.08	 2.19±0.08	 2.16	 -5.0	 -50	 1.24±0.06	

6	 0.37±0.02	 1.96±0.12	 1.02±0.08	 0.37±0.01	 0.89±0.08	 2.25±0.08	 2.24	 0.0	 -55	 1.28±0.06	

Beads	

	

From	PGSTE	high	b	values	

(Randomly	Oriented	Cylinders	model)	

From	OG	high	frequencies	

(Mitra	regime)	 Actual	S/V	

(μm-1)	

ΔD	

(%)	

ΔS/Vapp	

(%)	

From	long	td	

A	
Dintra	

(μm2/ms)	

a	

(μm)	

S/Vapp	

(μm-1)	

D0	

(μm2/ms)	

a*	

(μm)	

S/Vapp	

(μm-1)	
τ	

0	 0.50±0.01	 1.02±0.02	 1.96±0.05	 0.50±0.01	 0.98±0.02	 2.05±0.05	 2.00	 0.0	 -4.4	 1.00±0.05	

0.1	 0.46±0.01	 1.11±0.08	 1.81±0.08	 0.49±0.01	 1.03±0.04	 1.94±0.05	 1.94	 -6.1	 -6.7	 1.04±0.05	

0.2	 0.40±0.01	 1.25±0.10	 1.60±0.08	 0.48±0.01	 1.10±0.04	 1.81±0.05	 1.83	 -17	 -12	 1.18±0.06	

0.3	 0.32±0.01	 1.50±0.10	 1.34±0.08	 0.47±0.01	 1.16±0.04	 1.73±0.05	 1.73	 -32	 -23	 1.43±0.07	

0.5	 0.18±0.01	 2.34±0.10	 0.85±0.08	 0.44±0.01	 1.31±0.05	 1.53±0.05	 1.52	 -59	 -44	 2.50±0.09	
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Table	 2.	Model	 parameters	 (intracellular	 diffusivity,	Dintra,	 cell	 fiber	 radius,	 a,	 apparent	 Surface-to-volume	 ratio,	 S/Vapp)	 and	 the	percentage	difference	 in	 diffusivity	 and	

S/Vapp	estimation,	ΔD	and	ΔS/Vapp,	between	OG	and	PGSTE	data.	 	
*	apparent	cell	 fiber	radius	estimated	from	the	estimate	of	S/Vapp,	assuming	a	smooth	hollow	cylinder:	

a=2/(S/Vapp).	

Experiments	

Metabolite	
From	PGSTE	high	b	values	

(Randomly	Oriented	Cylinders	model)	

From	OG	high	frequencies	

(Mitra	regime)	 ΔD	

(%)	

ΔS/Vapp	

(%)	

	

Dintra	

(μm2/ms)	

a	

(μm)	

S/Vapp	

(μm-1)	

D0	

(μm2/ms)	

a*	

(μm)	

S/Vapp	

(μm-1)	

NAA	 0.33±0.02	 0.62±0.12	 3.23±0.20	 0.30±0.01	 0.78±0.08	 2.55±0.05	 10	 26	

Creatine	 0.36±0.02	 1.43±0.09	 1.40±0.08	 0.32±0.01	 0.93±0.08	 2.16±0.05	 13	 -45	

Myoinositol	 0.32±0.02	 1.55±0.08	 1.29±0.10	 0.35±0.01	 0.81±0.08	 2.46±0.05	 -8.6	 -26	

Choline	 0.31±0.02	 1.26±0.08	 1.59±0.10	 0.30±0.01	 0.93±0.08	 2.14±0.05	 3.3	 -44	
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