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Abstract | The POLG gene encodes the mitochondrial DNA polymerase that is responsible for

replication of the mitochondrial genome. Mutations in POLG can cause early childhood

mitochondrial DNA (mtDNA) depletion syndromes or later-onset syndromes arising from

mtDNA deletions. POLG mutations are the most common cause of inherited mitochondrial

disorders, with as many as 2% of the population carrying POLG mutations. POLG-related

disorders comprise a continuum of overlapping phenotypes with onset from infancy to late

adulthood. The six leading disorders caused by POLG mutations are Alpers–Huttenlocher

syndrome, which is one of the most severe phenotypes; childhood myocerebrohepatopathy

spectrum, which presents within the first 3 years of life; myoclonic epilepsy myopathy sensory

ataxia; ataxia neuropathy spectrum; autosomal recessive progressive external

ophthalmoplegia; and Autosomal dominant progressive external ophthalmoplegia. This

Review describes the clinical features, pathophysiology, natural history and treatment of

POLG-related disorders, focusing particularly on the neurological manifestations of these

conditions.

[H1] Introduction
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The development and normal functioning of the CNS depends on a readily available supply of

ATP. In neurons, the majority of ATP is generated in the mitochondria by oxidative

phosphorylation (OXPHOS) via the electron transport chain (ETC) and ATP synthase. The ETC

is composed of complexes I–IV, which set up an electrochemical gradient that drives complex

V, the ATP synthase. Of the ~90 proteins that make up the OXPHOS system, 13 are derived

from the mitochondrial genome. In humans, the mitochondrial genome is a closed circular

DNA molecule of 16,569 bp that also encodes 22 tRNAs and 2 ribosomal RNAs that are

required for synthesis of the 13 polypeptides. The mitochondrial DNA (mtDNA) is located in

discrete nucleoids localized within the inner matrix of the mitochondrion, each of which

contains one or two copies of the mtDNA1. The mtDNA is replicated by an assembly of

proteins in a replisome consisting of core replication proteins2 DNA polymerase  (pol  the

mitochondrial single-stranded DNA binding protein, and the Twinkle mtDNA helicase, along

with topoisomerases and RNase H activities3.

Human pol is composed of POLG, a 140 kDa catalytic subunit that is encoded by POLG

at chromosomal locus 15q25, and POLG2, a 55 kDa accessory subunit that forms a dimer and

is encoded by POLG2 at chromosomal locus 17q24.14-6. POLG has DNA polymerase, 3’ to 5’

exonuclease and 5’-deoxyribose phosphate (5’-dRP) lyase activities7,8. This subunit contains

an amino-terminal exonuclease domain connected by a linker region to the carboxy-terminal

polymerase domain. POLG2 enhances polymerase processivity by increasing the affinity of

the catalytic subunit for DNA9-11.

POLG is one of several nuclear genes that are associated with mtDNA depletion or

deletion disorders (Table 1). In 2001, Van Goethem et al. published a seminal paper describing

four mutations in POLG that were associated with either autosomal dominant or autosomal

recessive progressive external ophthalmoplegia (PEO)12. Between 2003 and 2005, several
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reports identified POLG mutations in patients with ataxia13-15. Also in this timeframe, Alpers–

Huttenlocher syndrome (AHS) was found to be caused by recessive mutations in POLG16,17.

The high frequency of POLG mutations in the Norwegian and Finnish populations led to calls

to include POLG testing as a first-line diagnostic in ataxia syndromes15,18. These reports were

the first of many to identify disease-associated mutations in the POLG gene. Pathogenic

variants in POLG are now known to cause a spectrum of overlapping phenotypes, including

some that were clinically defined long before their molecular basis was known. This article

reviews these clinical disorders and symptoms associated with POLG-related disorders, with

a focus on the neurological manifestations. The natural history and molecular genetics of

POLG-related disorders are also reviewed, along with current treatment options for patients

with these conditions.

[H1] Epidemiology

Mutations in POLG represent the most prevalent single-gene cause of mitochondrial disease,

accounting for 10% of adult mitochondrial disease cases in one large Australian cohort19.

POLG mutations are the most frequent cause of mitochondrial epilepsy at all ages20, and also

account for 10–25% of PEO21 and >10% of ataxia cases22. Note that in the text that follows,

we refer to these mutations in terms of the resulting amino acid substitution.

Two independent reports identified W748S as a frequent mutation in people with

ataxia in the Norwegian population (1:100 with Q497H)18 and the Finnish population (1:125

in the general population)15. In an epidemiological study conducted in North East England,

clinically manifesting autosomal recessive POLG mutations had a population prevalence of 0.3

per 100,000 adults23. As the three most prevalent POLG mutations (A467T, W748S and G848S)

have a combined carrier frequency of >1% in Northern Europe, application of the Hardy–



4

Weinberg principle suggests that the frequency of recessive POLG disease is likely to be ~1 in

10,00024. This discrepancy could be explained by many affected individuals never being

diagnosed or dying in childhood.

[H1] Clinical presentations

Age of onset of the POLG-related disorders ranges from infancy to late adulthood. POLG

mutations are now known to account for at least six major syndromes. AHS is characterized

by childhood-onset progressive and severe encephalopathy with intractable epilepsy and

hepatic failure. Individuals with childhood myocerebrohepatopathy spectrum (MCHS)

present with developmental delay, lactic acidosis, myopathy and hepatic impairment.

Myoclonic epilepsy myopathy sensory ataxia (MEMSA) encompasses a spectrum of disorders

with epilepsy, myopathy and ataxia, typically without ophthalmoplegia, including disorders

previously described as spinocerebellar ataxia with epilepsy (SCAE); note that long-term

survivors of MEMSA can additionally develop PEO. Ataxia neuropathy spectrum (ANS)

includes mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia neuropathy

dysarthria and ophthalmoplegia (SANDO). Autosomal recessive PEO (arPEO) is characterized

by progressive weakness of the extraocular muscles resulting in ptosis and ophthalmoparesis

without associated systemic involvement. Autosomal dominant PEO (adPEO) typically

includes generalized myopathy and variable degrees of sensorineural hearing loss, axonal

neuropathy, ataxia, depression, parkinsonism, hypogonadism and cataracts (Fig. 1; Table 2).

Most patients with POLG-related disease, particularly those with adolescent-onset or

adult-onset disorders, do not present with a discrete clinical syndrome. Therefore, in this

Review, instead of describing each of the above syndromic presentations in detail, we will
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take an age-of-onset and symptom-based approach, which we hope will aid the non-

mitochondrial expert in recognizing and diagnosing POLG-related disease.

[H2] Early-onset phenotypes

[H3] Childhood myocerebrohepatopathy spectrum disorders. Myocerebrohepatopathy is the

earliest presentation of biallelic POLG mutations25. Affected infants usually present in the first

few months of life with severe hypotonia, developmental delay and signs of hepatic

impairment such as hypoglycaemia. In one study, median age at onset was 4.7 months (range

0.9–7.0 months)26. Other clinical features of MCHS include faltering growth, renal dysfunction

and cataracts leading to roving eye movements. Seizures are unusual in this group, perhaps

because these infants do not survive long enough to develop seizures; death from liver failure

typically occurs before the age of 1 year26.

[H3] Alpers–Huttenlocher syndrome. Chronologically, the next presentation of biallelic POLG

mutations is AHS, which was initially described as a triad of neurodevelopmental regression,

intractable seizures and liver failure27. In a multinational cohort, 70% of children with POLG

mutations presented with AHS26. Disease onset is typically around the end of the first year of

life, with focal motor seizures progressing to generalized status epilepticus. Onset of seizures

is frequently explosive, and most patients present with refractory convulsive status

epilepticus26,28. However, clinical presentation can occur at any time in childhood, and adult

onset has even been reported29-31. Preceding development is often normal, but some

individuals who present with AHS have a history of prior hypotonia and mild developmental

delay. A viral prodrome can sometimes be observed, which might arouse clinical suspicion of

encephalitis32, and some evidence indicates that an immunological process contributes to the
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pathology of AHS. For example, some individuals were reported to have oligoclonal bands in

their cerebrospinal fluid (CSF)33, whereas others had elevated serum levels of antibodies to

voltage gated potassium channels (S.R.) unpublished work). In one case, neuropathology

revealed features of acute disseminated encephalomyelitis (ADEM), again suggesting an

underlying immune-mediated pathology33. The disease course is characterized by recurrent

episodes of status epilepticus and epilepsia partialis continua (EPC), leading to death from

refractory status, usually in early to mid childhood26. Deficient pol γ activity in the skeletal 

muscle and liver of patients with AHS was first reported by Naviaux et al. in 199934, but POLG

mutations were not described until 200416.

[H2] Other epilepsy syndromes

Biallelic POLG mutations are also associated with a number of other epilepsy phenotypes, and

are one of the most frequent genetic causes of mitochondrial epilepsy20,35,36. POLG mutations

were the cause of epilepsy in 3 of 42 (7%) of an adult cohort with mitochondrial epilepsy35.

More than 80% of paediatric patients with POLG mutations have epilepsy at disease onset26.

A systematic review of 372 patients with POLG-related epilepsy revealed a bimodal age

distribution at presentation, with an initial large peak in early childhood and a second peak in

adolescence36. The median age at onset was 2 years, although POLG-related epilepsy can

begin at any age from the first month of life to the seventh decade36. Seizure was the initial

clinical manifestation in 50% of cases. Seizure semiology was available for 229 patients: 64%

had focal motor seizures, 58% had myoclonus, 49% had generalized status epilepticus and

34% had focal motor status. Therefore, we can conclude that status epilepticus is a frequent

occurrence in POLG-related disease. Of 37 patients with POLG-related status epilepticus
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identified in a systematic review, 13 had status epilepticus alone, 7 had only EPC and 17 had

both generalized status epilepticus and EPC36.

POLG-related epilepsies can mimic classic mitochondrial syndromes, including

myoclonic epilepsy with ragged-red fibres (MERRF)37 and mitochondrial encephalomyopathy,

lactic acidosis and stroke-like episodes (MELAS)38. MEMSA is a form of syndromic POLG-

related epilepsy and includes disorders previously referred to as SCAE. In this syndromic

presentation, epilepsy is typically associated with myoclonus, myopathy and sensory ataxia.

PEO can occur late in the disease.

[H2] Progressive external ophthalmoplegia

POLG mutations can cause adPEO or arPEO. POLG mutations contributed to ~25% of PEO

cases in a London–Oxford cohort21 and ~10% of cases in a large Italian cohort39. PEO was

present in 83% of an Italian cohort of 46 adult patients with POLG mutations and was

associated with encephalomyopathy in more than half of these cases39. In affected

individuals, progressive weakness of the extraocular muscles leads to bilateral, usually

symmetrical ptosis and limitation of gaze in all directions. The insidious onset means that

diplopia is an uncommon symptom. The muscle weakness can extend to the limb-girdle

musculature, manifesting as a proximal myopathy that can progress to a generalized

myopathy. Other associated clinical features include ataxia, parkinsonism, depression,

sensorineural hearing loss, cataracts and premature ovarian failure40,41.

[H2] Ataxia syndromes

Ataxia in POLG-related disease can be sensory or cerebellar. Associated clinical features

include dysarthria, encephalopathy with seizures, ophthalmoplegia and peripheral
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neuropathy. POLG mutations seem to be a fairly frequent cause of cerebellar ataxia,

accounting for 9 of 80 cases (11%) in a Central European cohort in whom repeat expansion

diseases had been excluded22. The umbrella term ANS includes disorders previously referred

to MIRAS and SANDO. In one cohort, 6 of 11 patients (55%) with SANDO had POLG mutations

leading to multiple mtDNA deletions42.

[H2] Disorders with prominent neuropathy

In an Italian registry of mitochondrial disease, peripheral neuropathy was a feature in 143 of

1,156 patients (12.4%)43. Within the mitochondrial neuropathy cohort, 19 patients (13%) had

POLG mutations (i.e. 13% of the mitochondrial neuropathy cohort). Across the entire cohort,

19 of 45 (42%) of patients with POLG mutations had neuropathy. In a UK–Australian cohort,

7 of 27 children (26%) with genetically confirmed mitochondrial neuropathy had POLG

mutations44. POLG mutations are usually associated with an axonal or mixed, predominantly

sensory neuropathy, although some patients have a demyelinating neuropathy43,44. More

than one-third of the Italian patients with POLG-related neuropathy had neuropathic pain,

which is an unusual feature of mitochondrial neuropathy43.

[H2] MNGIE-like disorder

Five patients with POLG mutations have been reported to have a clinical phenotype closely

resembling mitochondrial neurogastrointestinal encephalopathy (MNGIE) syndrome45-48.

These patients were aged between 7 and 50 years and had prominent symptoms of persistent

diarrhoea and cachexia related to gastrointestinal dysmotility, as well as ptosis, proximal

myopathy and sensory neuropathy. Patients with classic MNGIE caused by thymidine
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phosphorylase deficiency have striking white matter changes, but leukoencephalopathy was

notably absent in the patients with POLG-related MNGIE reported to date46.

[H2] Movement disorder syndromes

Parkinsonism is the most frequently observed extrapyramidal movement disorder in patients

with POLG mutations, and has been associated with both dominant and recessive

mutations40,41,49. In a cohort of adult patients with mitochondrial movement disorders, 5 of

42 (12%) had POLG mutations50. These five patients all had parkinsonism, and three also had

restless legs syndrome50. POLG-related parkinsonism has an earlier onset than idiopathic

Parkinson disease — typically ~40 years but as early as the third decade in some families51 —

and is associated with initially asymmetric clinical and imaging features and a good response

to levodopa50. Palatal tremor also seems to be a characteristic feature in some patients with

POLG mutations, occurring together with facial dyskinesia and progressive ataxia in the so-

called progressive ataxia palatal tremor (PAPT) syndrome52,53. Dystonia, the most frequent

movement disorder in other mitochondrial disorders such as Leigh syndrome, is rarely

observed in patients with POLG mutations54,55.

[H2] Other phenotypes

The clinical spectrum of POLG-related disease is extremely wide (Fig. 1; Table 2). Other less

frequently reported phenotypes include distal myopathy56, premature menopause40,41,57 and

cataracts40,45,56. Neuropsychiatric manifestations, including recurrent major depression, are

well known15. Prenatal onset of POLG-related disease, characterized by fatal congenital

myopathy and gastrointestinal pseudo-obstruction, has also been described58.
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[H1] Environmental triggers and toxins

Antiviral drugs that are used to treat HIV infection, such as zidovudine, didanosine,

zalcitabine, stavudine, lamivudine, carbovir and tenofovir, have long been known to cause an

induced mitochondrial toxicity, leading to peripheral neuropathy and/or myopathy due to

inhibition of pol and consequent reduction in mtDNA copy number59,60. In 1990, Dalakas et

al. first described a mitochondrial myopathy, characterized by ragged-red fibres in muscle and

reduced amounts of mtDNA, in patients receiving zidovudine, a nucleoside reverse

transcriptase inhibitor (NRTI) that inhibits the HIV life cycle61,62. NRTI-induced mitochondrial

dysfunction, also termed mitochondrial toxicity, occurs in as many as 20% of patients

undergoing NRTI therapy. This mitochondrial toxicity mimics mitochondrial genetic diseases

and induces similar clinical syndromes, including ragged-red muscle fibres, lactic acidosis,

myopathies, cardiomyopathies, hepatic steatosis, lipodystrophy and neuropathy59,60,63,64.

As highlighted below, valproic acid (VPA) is contra-indicated in all patients with POLG

mutations. VPA can precipitate liver failure in AHS, and sensitivity to this drug has been

reported in adolescent and early-adulthood patients with status epilepticus65. VPA is a histone

deacetylase inhibitor but is also known to inhibit fatty acid β-oxidation, which primarily occurs 

in the liver. In contrast to antivirals, VPA further compromises mitochondrial function in

POLG-related disease without directly inhibiting pol or acting on the DNA replication

pathway.

Patients with POLG-related disorders, similarly to those with other mitochondrial

disorders, are hypersensitive to several pharmaceuticals that are known to inhibit

mitochondrial function, including antibiotics, statins, anaesthetics and chemotherapeutics66.

These drugs do not usually cause symptoms in healthy individuals but can aggravate or trigger

disease in patients with a genetic (‘primary’) mitochondrial disorder. Thus, drugs that
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compromise mitochondrial function should be used with caution in patients with

mitochondrial disease, although treating a potentially life-threatening infection with

antibiotics clearly outweighs any theoretical risks of mitochondrial inhibition. Physical

stressors such as infection, fever, dehydration and anorexia can result in sudden deterioration

in patients with POLG-related disorders and should be avoided if possible.

In the context of mitochondrial toxins, the energetic threshold of mitochondria in

different tissues should be taken into account. When ATP production cannot serve the

respiratory demands of a certain tissue owing to a decline in mitochondrial function, resulting

from a genetic defect and/or environmental exposure, tissue death can ensue. As discussed

later in this article, some therapies can upregulate mitochondrial biogenesis and have the

potential to overcome mild genetic defects or environmental insults.

[H1] Pathophysiology

More than 300 pathogenic mutations of POLG have been reported, as presented in the

Human DNA Polymerase Gamma Mutation Database and in Fig. 2. The consequences of POLG

mutations can be divided into two broad groups: multiple mtDNA deletions and mtDNA

depletion. No direct genotype–phenotype correlations are evident for POLG mutations: the

same mutation can often lead to mtDNA deletions, mtDNA depletion or both, making it

difficult to predict the phenotype on the basis of observed mutations. For example,

homozygosity for the most common POLG mutation, A467T, has been associated with a range

of phenotypes, from childhood-onset fatal AHS to MEMSA, ANS and SANDO67,68. It has been

suggested that depletion of mtDNA in neurons is the trigger for development of epilepsy, and

preliminary data suggest a relationship between the mtDNA phenotype caused by the POLG

mutation and the clinical phenotype. For example, we observed AHS in a child with profound
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mtDNA depletion, but SANDO in a patient with multiple mtDNA deletions; both individuals

had the homozygous A467T POLG genotype68.

Modelling of mutations on the pol  structure has revealed that mutations cluster into

five distinct regions69,70,71. The AHS presentation seems to require a combination of mutations

affecting two different conserved regions, whereas ataxia phenotypes were associated with

regions affecting the intrinsic processivity domain, possibly affecting the interaction with the

accessory subunit encoded by POLG271. On the basis of these five distinct clusters, a POLG

Pathogenicity Prediction Server was generated to help predict the clinical outcomes of known

mutations72. However, the onset age and progression of POLG-related disease in patients with

the same POLG mutations can span several decades, making predictions difficult. For

example, a review of patients with T251I–P587L in trans with G848S showed that the

presentation of disease spans >70 years73, and another review revealed that disease related

to homozygosity for A467T spans at least four decades of life65,68. This enigma of presentation

suggests that other factors modify the POLG disease phenotype, including genetic modifiers

(nuclear DNA or mtDNA), immune dysfunction, and environmental effects such as viral

infection and mitochondrial toxins74,75.

In addition to mitochondrial disease, mtDNA mutations have been implicated in the

ageing process76,77, and several lines of evidence suggest that DNA polymerase errors have a

prominent role in mtDNA mutation. Mutations in mtDNA can arise through spontaneous

errors of DNA replication or through unrepaired damage to mtDNA that introduces miscoding

lesions. Owing to its high nucleotide selectivity and exonucleolytic proofreading, POLG

exhibits exceptionally high fidelity of DNA replication, with nucleotide misinsertion events

occurring only once per 500,000 nucleotides synthesized78. The intrinsic 3' to 5' exonuclease

activity that contributes to replication fidelity can be completely eliminated by substituting
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alanine for Asp198 and Glu200 in the conserved Exo I motif of POLG79. Comparison of the in

vivo mutational spectrum to the error spectrum generated by human pol  in vitro strongly

implicated biosynthetic errors by pol  as the main driver of point mutations in mtDNA80.

Furthermore, analysis of age-specific mtDNA sequences revealed mutation signatures more

consistent with polymerase errors than with the effects of oxidative damage81. Thus,

spontaneous replication errors by pol  account for the majority of base substitution

mutations in mtDNA and are likely to be responsible for the accumulation of point mutations

and deletions in mtDNA during ageing77,82-84.

No mouse model of POLG-related disease is available that recapitulates human

disease phenotypes. In the absence such a model, two independent groups created mice with

mutations that disrupted the exonuclease function of the mouse Polg protein85,86. Mice that

were homozygous for these mutations exhibited premature ageing between 6 and 9 months

of age, characterized by greying hair, loss of hair and hearing, curvature of the spine, enlarged

hearts, and decreased body weight and bone density85,86. In one of these models, the

frequency of mutations was found to be 500-fold higher in heterozygous mice and 2,500-fold

higher in homozygous mice than in aged wild-type mice87. The heterozygotes were

asymptomatic, indicating that a 500-fold increase in mutation frequency was not sufficient to

cause phenotypes associated with ageing. Further analysis demonstrated a 90-fold increase

in mtDNA deletions in homozygous Polg exonuclease-deficient mice compared with age-

matched wild-type or heterozygous mice88. Thus, the high frequency of mtDNA deletions in

the homozygous mice is thought to be the main driver of the premature ageing phenotype.

This mouse model has some relevance to humans in that accumulation of mtDNA deletions

seems to be the driving force for mitochondrial dysfunction in adult-onset POLG-related

disorders.
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[H1] Diagnosis

POLG mutations should be considered not only in patients presenting with one of the classic

POLG syndromes (MCHS, AHS, MEMSA, ANS and PEO), but also in patients with epilepsy

(especially drug-resistant seizures, myoclonus, EPC or convulsive status epilepticus), ataxia,

neuropathy, myopathy or other symptoms suggestive of an underlying mitochondrial

disorder. Full clinical assessment should encompass a multisystem evaluation, including vision

and hearing, and cardiac, hepatic, renal, gastrointestinal and respiratory function.

[H2] EEG

In patients presenting with seizures, EEG might provide a diagnostic clue. Children with AHS

usually have rhythmic high-amplitude delta with superimposed polyspikes (RHADS) on EEG

performed early in the disease course, although later EEG can be nonspecifically abnormal28.

An occipital lobe predilection for EEG abnormalities is typically observed in POLG-related

disease89. A systematic review of EEG findings in 72 patients with POLG-related epilepsy

revealed focal changes in most cases. Changes included epileptiform discharges, RHADS and

focal slowing, and involved posterior (occipital), frontal or temporal regions (61%, 6% and 2%

of cases, respectively) or were multifocal (23% of cases)36.

[H2] Neuroimaging

A systematic review of neuroimaging findings in 136 patients with POLG-related epilepsy

revealed that stroke-like lesions were the most prevalent abnormality, being present in 43%

of cases36. These lesions affected the occipital lobes in half the cases, but could also involve

the parietal, temporal or frontal lobes. Other neuroradiological abnormalities observed in
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patients with POLG mutations include thalamic (37%), basal ganglia (14%) and cerebellar

(17%) lesions, generalized brain atrophy (28%) and involvement of the cerebral white matter

(7%)36. Importantly, imaging results can be normal in some patients presenting with seizures,

so a normal brain MRI scan does not exclude POLG disease. Dopamine transporter imaging

demonstrated a bilateral nigrostriatal dopaminergic defect in patients with dominant and

recessive POLG mutations50,90. This defect seemed be universal in patients aged >25 years and

was not dependent on the presence of clinically overt parkinsonism91. Hypertrophic

degeneration of the inferior olives seems to be a characteristic feature of the PAPT

syndrome52.

[H2] Biomarkers

No blood or urine biomarkers are known to be specific for POLG-related disease, although

peripheral blood levels of lactate can be modestly elevated, and plasma alanine levels might

be increased in cases of persistent lactic acidemia. Other metabolites that have been

suggested to be biomarkers of mitochondrial disease include fibroblast growth factor 21

(FGF21)92 and growth and differentiation factor 15 (GDF15)93. FGF21, which has been widely

reported as a marker for mitochondrial disease manifesting in muscle, is rarely elevated in

patients with POLG-related disease, in whom muscle pathology is frequently mild or even

absent. Absolute levels of FGF21 have been reported in 17 patients with POLG mutations and

ranged from normal (25 pg/ml) to extremely elevated (>4000 pg/ml)92. The highest values

were seen in patients with AHS and in a patient with MIRAS and terminal status epilepticus.

The observation of normal values in several patients with POLG mutations implies that FGF21

is not a useful marker to screen for POLG disease, although its levels do seem to correlate

with disease severity. Absolute GDF15 values have not been reported in patients with POLG-
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related disease. Cerebral folate deficiency has been noted in some patients with AHS94, and

CSF oligoclonal bands have been observed in both children and adults with POLG-related

epilepsy, leading to suspicion of ADEM or multiple sclerosis33,95.

[H2] Histopathology

In patients with POLG-related disorders, muscle histology might reveal classic mitochondrial

features such as ragged-red or cytochrome c oxidase-negative fibres or nonspecific

abnormalities such as increased lipid deposition, or can be normal26. Some infants with

normal muscle biopsies had severely abnormal liver histology96. The characteristic liver

pathology of AHS, which can be triggered by VPA exposure, includes microvesicular steatosis,

bile duct proliferation, hepatocellular necrosis, bridging fibrosis or cirrhosis, and

disorganization of the normal architecture27. Macroscopic examination of the brain in AHS

shows patchy grey matter pathology in the occipital lobes, particularly the striate cortex, and

lesions have also been observed in the basal ganglia and thalamus in some cases. Histological

features include neuronal depletion, associated with spongiosis and gliosis, progressing

through the cortical layers, but affecting the calcarine cortex most severely27. ADEM-like

neuropathological changes were reported in a 4-year-old boy with recessive POLG

mutations33. Neuropathological studies in MIRAS revealed subtotal loss of large myelinated

fibres in the sural nerve, with severe axonal neuropathy; atrophy of the posterior columns of

the spinal cord, posterior spinocerebellar tracts and dentate nuclei; and patchy dropout of

cerebellar Purkinje cells97. Neuronal loss was also observed in the inferior olives, substantia

nigra and mediodorsal thalamic nuclei, with and, in addition, the parieto-occipital subcortical

white matter showed neuronal loss, gliosis and spongiosis. Distinctive neuropathology was

reported in a patient with SANDO, who had multisystem neurodegeneration (pronounced
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gliosis and neuronal loss) predominantly affecting the brainstem, cerebellum and dentate

nuclei, with less severe changes in the basal ganglia and thalamus98.

[H2] Respiratory chain enzymology

In a subset of individuals with POLG-related disease, respiratory chain enzyme (RCE) assays

demonstrate isolated deficiency of complex I or IV or combined deficiencies of multiple

enzymes. Interestingly, a review of a multinational cohort revealed normal RCE activities or

isolated deficiency of a single enzyme complex (I or IV) in children with AHS but multiple RCE

deficiencies in children with MCHS, implying a more severe POLG defect in the latter group26.

In children with normal muscle RCE activities, RCE deficiencies might be restricted to a

clinically affected tissue such as the brain or the liver.

[H2] Molecular genetics

If a diagnosis of POLG-related disease is suspected clinically, the most appropriate

investigation is direct sequence analysis of the POLG gene. Traditionally, Sanger sequencing

has been used, but POLG is increasingly being included in next-generation sequencing (NGS)

gene panels (for epilepsy, ataxia or mitochondrial disease, for example), and NGS is likely to

be the diagnostic modality of choice going forwards. In some regions where the founder

mutations A467T, W748S and G848S are particularly prevalent15,99, screening for these

common mutations could continue as a first-line investigation. Although hundreds of

different disease-causing POLG mutations have been reported, new potentially pathogenic

variants continue to be identified (Fig. 2). Determining the pathogenicity of these variants of

uncertain significance can be challenging, and a pathogenicity prediction server was recently

reported72. In some patients with a probable recessive phenotype such as AHS, only one
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mutation was identified despite an extensive search for a second mutation. Whole-genome

DNA and/or RNA sequencing might reveal deep intronic or regulatory sequence variants in

such patients in the future100,101.

The majority of POLG-related disorders have been associated with one of four

common mutations: A467T, W748S, G848S and the T251I–P587L allelic pair (Table 3). In one

study, these mutations accounted for ~50% of all mutations identified in patients with POLG-

related disease, and ~75% of patients carried at least one of these four mutations102. A467T

is considered to be the most common pathogenic variant of POLG (although its prevalence

varies by country and population group (Table 3)), and is estimated to occur in 36% of all

alleles associated with POLG-related disease25,103-106. This mutation is present in 0.2–1.0% of

asymptomatic European individuals12,18,105,107. The A467T mutation severely reduces pol γ 

activity (4% of wild-type activity) by reducing the affinity of the enzyme for deoxynucleotide

triphosphates (dNTPs) and lowering catalytic activity108. In addition, the POLG subunit

containing the A467T variant fails to associate with the POLG2 accessory subunit, which is

critical for highly processive DNA synthesis (defined as the number of nucleotides

incorporated per DNA-binding event). The combined defects lead to stalling at the replication

fork and depletion of mtDNA over time.

The second most common POLG mutation is W748S, which causes a reduction in DNA

polymerase activity, low processivity and a severe DNA-binding defect, but normal POLG2

interactions 109. W748S is nearly always found in cis with the E1143G mutation, and is a

frequent cause of ANS15. The W748S mutant protein has reduced polymerase activity and a

decreased affinity for DNA110. The E1143G substitution results from a single nucleotide

polymorphism that is found in 4% of European populations. The phenotypic effects of W748S

are modulated when in cis with E1143G, which is considered a benign variant110.
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The G848S variant is the third most common POLG mutation in the POLG mutation

database. This pathogenic variant results in <1% of normal polymerase activity and a defect

in DNA-binding function111. Gly848 is located in the thumb subdomain of the polymerase

active site in a cluster of mutations associated with AHS111. An in vitro study showed that

mutations in the most conserved sites in this cluster, including G848S, T851A, R852C and

R853Q, decreased the activity of pol γ to <1% of the wild-type level111.

The T251I and P587L amino acid substitutions, which are usually found in cis and occur

in up to 1% of the Italian population, have been implicated in PEO103. Individually, these

mutations cause a ~30% reduction in DNA polymerase activity, together they act

synergistically to functionally impair polymerase function to levels ~5% of normal owing to a

combination of loss of enzyme stability, decreased DNA-binding affinity and reduced catalytic

efficiency112.

The Y955C variant is the most common autosomal dominant mutation in POLG and

causes PEO. The symptoms can progress to include parkinsonism or premature ovarian

failure40,41. The alteration to cysteine at position 955 of POLG causes severe reduction in pol

γ (<1% of wild-type)113,114.

[H2] Differential diagnosis

In addition to POLG, mutations in many genes encoding proteins that regulate mtRNA stability

have been shown to cause conditions resembling POLG-related disease (Table 1). Mutations

in POLG2, TWNK, RRM2B, SLC25A4, MGME1, DNA2, RNASEH1, TK2, DGUOK, MPV17, SPG7

and AFG3L2 have been implicated in adPEO and/or arPEO115, and TWNK mutations can also

lead to SANDO42. A disorder closely resembling classic AHS syndrome can be caused by

mutations of TWNK, and of FARS2, NARS2 and PARS2, which encode the tRNA aminoacyl
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synthetases for phenylalanine, asparagine and proline, respectively. Mutations in the latter

three genes result in global impairment of mitochondrial translation. Other mitochondrial

epilepsies associated with mtDNA depletion have been attributed to mutations in TWNK,

RRM2B, DGUOK, TK2, SUCLA2, SUCLG1, TYMP, MPV17, ABAT and FBXL4115.

The differential diagnosis of treatment-resistant convulsive status epilepticus in

childhood includes febrile infection-related epilepsy syndrome, for which a genetic basis has

not yet been established116. Other causes of acute liver failure in infancy include mtDNA

depletion due to DGUOK and MPV17 mutations, and impaired mitochondrial translation

caused by TRMU mutations96,117. However, the differential diagnosis is wide and includes

other inborn errors of metabolism, for example, recurrent acute liver failure caused by

biallelic mutations in the NBAS gene118, and viral infections. Liver failure of later onset might

be attributable to drug toxicity.

[H1] Natural history

The epileptic phenotypes of POLG-related disease are associated with high morbidity and

mortality, especially AHS, which is usually characterized by relentless disease progression

leading to death from status epilepticus in early childhood26. One study of POLG-related

epilepsy suggested that homozygous mutations in the linker region of the enzyme were

associated with later onset and longer survival compared with compound heterozygous

mutations affecting the same domain36,65. Another study suggested that the presence of

anemia correlates with worse outcomes in POLG-related disease45. Liver failure in POLG-

related disorders is usually fatal, although one report describes a patient who recovered

spontaneously from acute liver failure and remained well 6 years later96.
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[H1] Treatment

Evidence-based therapies for POLG-related disorders are currently lacking. No randomized

controlled clinical trials have been performed for these conditions, and symptomatic

therapies are the mainstay of treatment.

[H2] Management of epilepsy

No antiepileptic drug (AED) has been shown to be particularly efficacious for POLG-related

seizures, which are frequently resistant to multiple AEDs. A systematic review revealed that

the mean number of AEDs used in POLG-related epilepsy was three, and some patients

received as many as ten drugs36. The best options for POLG-related epilepsy seem to be a

sodium channel blocker (for example, lamotrigine) together with a benzodiazepine (for

example, clobazam) and levetiracetam or topiramate as needed89,119. However, randomized

clinical trials of AEDs have not been performed in POLG-related disease, and trial design is

likely to be extremely challenging in view of the clinical heterogeneity of affected patients

and unpredictable disease course.

VPA is absolutely contra-indicated in patients with POLG-related disease as it can

precipitate liver failure (although some patients might develop liver failure without prior VPA

exposure, and VPA hepatotoxicity is occasionally reversible120). It is recommended that the

POLG gene should be sequenced before prescribing VPA to patients with status epilepticus121.

Management of status epilepticus is particularly challenging in patients with POLG

mutations. Many therapeutic modalities have been tried, including anaesthetic agents such

as ketamine122, magnesium infusion123, high-dose steroids and intravenous

immunoglobulin124, and even palliative functional hemispherectomy in one individual with

AHS125, but an effective therapeutic regimen remains elusive.
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[H2] Other supportive therapies

Other important symptomatic therapies for patients with POLG-related disease include

removal of cataracts where necessary, brow suspension surgery for PEO, levodopa for

individuals with symptoms of parkinsonism, antidepressants, and psychological support for

affected patients and their carriers. Mitochondrial ‘cocktails’ of various combinations of

vitamin supplements and/or antioxidants are frequently prescribed for patients with POLG

mutations in an attempt to support mitochondrial function, but no evidence-based rationale

exists for their use126.

[H2] Liver transplantation

Since 1992, orthotopic liver transplantation has been reported in >40 individuals with

presumed or genetically confirmed POLG-related disease, including patients with VPA-

associated acute liver failure (VPA-ALF), and has shown life-saving potential for adolescents

and adults (Table 4)25,127,128. However, in younger patients, death from progressive

neurological decline has frequently occurred within 1 year of the transplant117,129,130. This

experience has led to the suggestion that VPA-ALF is an absolute contraindication to liver

transplantation in children aged <10 years, in whom neurological progression post-transplant

seems almost inevitable, but that transplantation might be considered in carefully screened

teenagers or adults130. In patients who are not considered suitable for liver transplantation,

supportive therapy including carnitine should continue, as spontaneous resolution of VPA-

ALF has occasionally been reported in patients with confirmed POLG mutations120,131.

[H2] Experimental approaches
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The ketogenic diet — a high fat, low carbohydrate diet — has been proposed as a therapy for

various mitochondrial diseases on the basis of observations in cell and animal models132,133.

Treatment with a ketogenic or low glycemic index diet has been reported in only a handful of

patients with POLG mutations49,134,135, without clear evidence of efficacy.

Decanoic acid, a fatty acid that is elevated in the blood of individuals on a ketogenic

diet, has been implicated as an effective anticonvulsant agent. This compound seems to have

pleiotropic roles, including stimulation of mitochondrial biogenesis and inhibition of α-amino-

3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors136,137. Preliminary

preclinical data in complex I-deficient patient fibroblasts were promising138, but cells with

POLG mutations have not yet been studied.

A high-throughput drug screen in Saccharomyces cerevisiae identified clofilium

tosylate, a potassium channel blocker that functions as an anti-arrhythmic agent, as a

potential mtDNA stabilizer in POLG deficiency, although the precise mechanism of action was

unclear139. Further studies in a Caenorhabditis elegans model and fibroblasts from a single

POLG-deficient patient with MCHS showed promise139. However, additional work is needed

to assess the clinical applicability of clofilium tosylate and related compounds.

Nucleotides and nucleosides have been suggested as potential therapies for mtDNA

depletion disorders arising from deficient intramitochondrial nucleoside salvage140,141.

However as might be expected given that impaired nucleoside supply is not thought to be the

primary disease mechanism in POLG disorders, nucleotide supplementation did not correct

mtDNA depletion in POLG-deficient patient fibroblasts142. Gene therapy has been reported to

be successful in animal models of other mitochondrial disorders, including MNGIE and

ethylmalonic encephalopathy143,144, and might be a future therapeutic approach for POLG-

related disease.
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[H1] Conclusions

Mutations in POLG, which encodes the catalytic subunit of pol , are associated with

numerous clinically heterogeneous syndromes characterized by a quantitative and/or

qualitative mtDNA defect. Seizures dominate the clinical picture, not only in childhood-onset

cases, but also in POLG-related disease presenting in early adult life and in the adult ataxic

forms of the disease, indicating a poor prognosis. Other disease manifestations include ataxia,

movement disorders, PEO, myopathy and peripheral neuropathy, as well as multisystem

features such as cataracts, cardiomyopathy, premature menopause and gastrointestinal

pseudo-obstruction. Despite tremendous advances in mitochondrial disease diagnostics in

recent years, effective disease-modifying therapies are still lacking, although some promising

candidates are beginning to emerge.
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DATABASES

Human DNA Polymerase Gamma Mutation Database: https://tools.niehs.nih.gov/polg/

dbSNP rs113994098: https://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=113994098

Key points

 POLG encodes the catalytic subunit of DNA polymerase , the enzyme responsible for

replicating the mitochondrial DNA (mtDNA)

 Mutations in POLG are associated with a clinical continuum of heterogeneous

syndromes, ranging from infantile-onset epilepsies and liver failure to late-onset

ophthalmoplegia and muscle weakness

 POLG mutations are a frequent cause of mitochondrial disease, particularly

mitochondrial epilepsy, polyneuropathy, ataxia and progressive external

ophthalmoplegia

 POLG mutations can lead to depletion of the mtDNA and/or accumulation of multiple

mtDNA deletions

 To a limited extent, clinical phenotypes correlate with the mtDNA phenotype

(depletion or deletions)

 No effective disease-modifying therapies are currently available for POLG-related

disease, and symptomatic therapies are the mainstay of treatment
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Figure 1 | The clinical spectrum of POLG-related disease. Clinical spectrum of POLG-related

disease according to age of onset, and the defects (mitochondrial DNA (mtDNA) depletion or

deletions) associated with the diseases. AHS, Alpers–Huttenlocher syndrome; ANS, ataxia

neuropathy spectrum; MCHS, myocerebrohepatopathy spectrum; MELAS, mitochondrial

encephalomyopathy, lactic acidosis and stroke-like episodes; MEMSA, myoclonic epilepsy

myopathy sensory ataxia; MNGIE, mitochondrial neurogastrointestinal encephalopathy; PEO,

progressive external ophthalmoplegia; SANDO, sensory ataxia neuropathy dysarthria and

ophthalmoplegia; SCAE, spinocerebellar ataxia with epilepsy.

Figure 2 | POLG mutations. Mutation map depicting disease-associated amino acid

substitutions on the primary structure of POLG. In each panel, the top line depicts the 23

exons of the cDNA and the lower line represents the linear polypeptide with the functional

domains (exonuclease and polymerase) indicated. The polymerase active site is subdivided

into thumb, palm and fingers subdomains. A full list of disease-related substitutions can be

found in the Human DNA Polymerase Gamma Mutation Database. Asterisks indicate

mutations that have also been identified as frequent single nucleotide polymorphisms.a |

Mutations associated with Alpers–Huttenlocher syndrome and other infantile

hepatocerebral syndromes that cause mitochondrial DNA depletion. b | Mutations

associated with progressive external ophthalmoplegia (PEO). c | Other mutations linked to

POLG-related disease. ANS, ataxia neuropathy spectrum; MIRAS, mitochondrial recessive

ataxia syndrome; NRTI, nucleoside reverse transcriptase inhibitor; SANDO, sensory ataxia

neuropathy dysarthria and ophthalmoplegia; SCAE, spinocerebellar ataxia with epilepsy.
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Table 1 | Genes associated with disorders of mitochondrial DNA stability

Pathway Gene Chromosomal

locus

Protein function Disorders

mtDNA

replication

POLG 15q25 Pol  catalytic subunit Alpers–Huttenlocher

syndrome,

polyneuropathy, ataxia,

PEO12,14,16

POLG2 17q23–24 Pol  accessory

subunit

PEO146

TWNK 10q24 Mitochondrial DNA

helicase

PEO, mtDNA depletion,

IOSCA147

RNASEH1 2p25 RNA–DNA hybrid

endoribonuclease

Encephalomyopathy,

mtDNA deletions148

TFAM 10q21.1 Transcription factor mtDNA depletion149

TOP3A 17p11.2 Topoisomerase PEO, mtDNA deletions150

mtDNA repair DNA2 10q21.3–22.1 Flap endonuclease mtDNA deletions, PEO151

MGME1 20p11.23 Single-strand DNA

nuclease

PEO, mtDNA depletion152

dNTP

metabolism

SLC25A4 4q35 Adenine nucleotide

translocator

PEO153

TYMP 22q13.32 Thymidine

phosphorylase

MNGIE, mtDNA deletions

and depletion154

TK2 16q22–23.1 Mitochondrial

thymidine kinase

PEO, mtDNA depletion155

DGUOK 2p13 Deoxyguanosine

kinase

mtDNA depletion156

RRM2B 8q23.1 p53-inducible small

subunit of

ribonucleotide

reductase

PEO, mtDNA depletion157

SUCLA2 13q14.2 ATP-dependent

succinate CoA ligase

mtDNA depletion158

SUCLG1 2p11.2 GTP-dependent

succinate CoA ligase

mtDNA depletion159

MPV17 2p23.2 Mitochondrial inner

membrane protein

mtDNA deletions and

depletion160

ABAT 16p13.2 4-aminobutyrate

aminotransferase

mtDNA deletions and

depletion161

Mitochondrial

dynamics

OPA1 3q28–29 Dynamin-related

GTPase

DOA, mtDNA deletions,

ataxia162

MFN2 1p36.22 Mitofusin 2 DOA, mtDNA deletions163

FBXL4 6q16.1–3 Mitochondrial

leucine-rich repeat F-

box protein

mtDNA depletion,

encephalopathy164
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AFG3L2 18p11.21 Mitochondrial inner

membrane

metalloprotease

Spinocerebellar ataxia,

mtDNA deletions165

SPG7 16q24.3 Mitochondrial inner

membrane

metalloprotease

component

PEO, ataxia, spastic

paraplegia166

GFER 16p13.3 Protein import to the

intermembrane space

mtDNA deletions,

myopathy167

The table is adapted and updated from ref. 145. dNTP, deoxynucleotide triphosphate; DOA,
autosomal dominant optic atrophy; IOSCA, infantile-onset spinocerebellar ataxia; MNGIE,
mitochondrial neurogastrointestinal encephalopathy; mtDNA, mitochondrial DNA; PEO,
progressive external ophthalmoplegia; pol γ, DNA polymerase γ.  
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Table 2 | Common POLG-related disorders

Age of onset Syndrome Mitochondrial
DNA defect

Neonatal or Infancy Myocerebrohepatopathy spectrum (MCHS) Depletion

Infancy or childhood Alpers–Huttenlocher syndrome (AHS) Depletion

Adolescent or young
adult

Ataxia neuropathy spectrum (ANS) including mitochondrial
recessive ataxia syndrome (MIRAS) and sensory ataxia
neuropathy dysarthria and ophthalmoplegia (SANDO)

Deletions

Myoclonic epilepsy myopathy sensory ataxia (MEMSA)
including mitochondrial spinocerebellar ataxia with epilepsy
(SCAE)

Deletions

Progressive external ophthalmoplegia (PEO) with or without
sensory ataxia neuropathy dysarthria and ophthalmoplegia
(SANDO)

Deletions
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Table 3 | Common POLG pathogenic variants

POLG pathogenic
variant

Prevalence Reference

A467T

Europe: 0.17–0.69% 105

Belgium: 0.6% 12

UK: 0.69% 168

Italy: 0% 168

W748S
Finland: 0.8% 15

Italy: 0% 168

G848S 0.05–0.10%
dbSNP
rs113994098

T251I–P587L 0.05–1.00% 103
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Table 4 | Orthotopic liver transplantation: outcomes in suspected and proven POLG-related disease

Report Number of

recipients

Diagnosis Age at transplantation Outcome

Bicknese et

al. (1992)169

1 VPA-ALF

(AHS)

3 years 9 months Died from relentlessly progressive

neurological deterioration 3 months

post-transplant

Bell et al.

(1992)127

1 VPA-ALF 23 years Long-term survival reported

Thomson et

al. (2000)129

5 VPA-ALF

(AHS)

15 months, 3 years

6 months, 3 years

8 months, 3 years

11 months and 6 years

6 months

All died of progressive neurological

disease within 1 year of

transplantation (1–11 months)

Delarue et

al. (2000)170

1 VPA-ALF

(AHS)

3 years Seizures recurred immediately after

transplantation and patient died from

neurological progression 4.5 months

post-transplant

Kayihan et

al. (2000)171

1 VPA-ALF

(AHS)

12 years Rapid neurological deterioration

(severe ataxia, tremor and

generalized epilepsy) 6 weeks after

transplantation; died 6 months post-

transplant

Tzoulis et al.

(2006)65

2 POLG-

related

disease

20 and 28 years One died immediately after

transplantation; second alive 5 years

post-transplant

Wolf et al.

(2009)28

1 POLG-

related

disease

(AHS)

6 years 9 months Progressive neurological deterioration

leading to death 10 months post-

transplant

Wong et al.

(2008)25

1 POLG-

related

disease

19 years Alive 9 years post-transplant

Saneto et al.

(2010)121

1 POLG-

related

disease

21 years Died 2 days post-transplant

Mindikoglu

et al.

(2011)131

17 VPA-ALF 1–16 years

(15 cases <8 years)

14 died within 1 year of

transplantation (median survival for

whole group: 2.8 months post-

transplant); no long-term survivors

Hynynen et

al. (2014)128

4 POLG-

related

disease

20 , 21, 14 and

36 years

All had only occasional seizures post-

transplant; three long-term survivors

(4, 4 and 19 years); fourth patient

(aged 36 years at transplantation)

died suddenly 2 years post-transplant

Parikh et al.

(2016)172

6 POLG-

related

disease

Not specified Direct worsening of mitochondrial

disease symptoms post-transplant in

three patients, with two dying shortly

after transplantation; two patients
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with POLG-related AHS had no

complications or symptom

progression (ages not given)

AHS, Alpers–Huttenlocher syndrome (clinical and/or neuropathological diagnosis); VPA-ALF valproic acid-
associated acute liver failure.
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