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ABSTRACT
Uncertainty quantification is a critical missing component in radio interferometric imaging
that will only become increasingly important as the big-data era of radio interferometry
emerges. Since radio interferometric imaging requires solving a high-dimensional, ill-posed
inverse problem, uncertainty quantification is difficult but also critical to the accurate scientific
interpretation of radio observations. Statistical sampling approaches to perform Bayesian
inference, like Markov chain Monte Carlo (MCMC) sampling, can in principle recover the full
posterior distribution of the image, from which uncertainties can then be quantified. However,
traditional high-dimensional sampling methods are generally limited to smooth (e.g. Gaussian)
priors and cannot be used with sparsity-promoting priors. Sparse priors, motivated by the theory
of compressive sensing, have been shown to be highly effective for radio interferometric
imaging. In this article proximal MCMC methods are developed for radio interferometric
imaging, leveraging proximal calculus to support non-differential priors, such as sparse priors,
in a Bayesian framework. Furthermore, three strategies to quantify uncertainties using the
recovered posterior distribution are developed: (i) local (pixel-wise) credible intervals to
provide error bars for each individual pixel; (ii) highest posterior density credible regions;
and (iii) hypothesis testing of image structure. These forms of uncertainty quantification
provide rich information for analysing radio interferometric observations in a statistically
robust manner.

Key words: methods: data analysis – methods: numerical – methods: statistical – techniques:
image processing – techniques: interferometric.

1 IN T RO D U C T I O N

Radio interferometric (RI) telescopes provide a wealth of valuable
information for astrophysics and cosmology (Ryle & Vonberg 1946;
Ryle & Hewish 1960; Thompson, Moran & Swenson 2017) since
they allow observation of the radio emission of the sky with high an-
gular resolution and sensitivity. The measured visibilities acquired
by the telescope relate to Fourier measurements of the sky image of
interest (the Fourier model may be modified to account for, e.g. wide
fields of view, co-planer baselines, and other directional dependent
effects). Imaging observations made by radio telescopes requires
solving an ill-posed linear inverse problem (Thompson et al. 2017),
which is an important first step in many subsequent scientific anal-
yses. Since the inverse problem is ill-posed (sometimes seriously),
uncertainty information regarding reconstructed images (e.g. error
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estimates) is critical. Nevertheless, uncertainty information is cur-
rently lacking in all RI imaging techniques used in practice.

Classical imaging techniques were developed in the field to solve
the RI reconstruction problem, such as CLEAN and its multiscale vari-
ants (Högbom 1974; Bhatnagar & Corwnell 2004; Cornwell 2008;
Stewart, Fenech & Muxlow 2011). In particular, CLEAN builds a
model image by iteratively removing point source components from
the residuals of the acquired data (at each iteration). CLEAN-based
algorithms, however, are typically slow (generally requiring com-
putationally demanding major cycles; cf. Clark CLEAN), requiring
fine-tuning and supervision, while providing suboptimal imaging
quality (see e.g. Li, Cornwell & de Hoog 2011a; Carrillo, McEwen
& Wiaux 2012). Another classical technique is the maximum en-
tropy method (MEM) (Ables 1974; Gull & Daniell 1978), extended
to RI imaging by Cornwell & Evans (1985). The MEM approach
of Cornwell & Evans (1985) developed for RI imaging consid-
ers a regularization problem consisting of a relative entropic prior,
a (Gaussian) likelihood term and an additional flux constraint. In
principle, MEM requires less fine-tuning and supervision compared
to CLEAN and can therefore alleviate part of the shortcomings of
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CLEAN-based algorithms. However, an optimal metric – expressed
as an entropy functional – is not known in advance and therefore
needs to be chosen individually (Starck et al. 2001; Maisinger, Hob-
son & Lasenby 2004). Indeed, it is widely known that MEM fails
to reconstruct sharp and smooth image features simultaneously.
Recently, the theory of compressed sensing (CS) has suggested
the use of sparse representation and regularization approaches for
the recovery of sparse signals from incomplete linear measure-
ments (Donoho 2006; Candes & Wakin 2008; Candes et al. 2010),
which has shown great success. CS techniques based on sparse reg-
ularization were ushered into RI imaging for image reconstruction
(Suksmono 2009; Wiaux et al. 2009a,b; Wenger et al. 2010; Li et al.
2011a,b; McEwen & Wiaux 2011; Carrillo et al. 2012; Wolz et al.
2013; Carrillo, McEwen & Wiaux 2014; Dabbech et al. 2015; Gars-
den et al. 2015; Onose et al. 2016; Dabbech et al. 2017; Kartik et al.
2017; Onose, Dabbech & Wiaux 2017; Pratley et al. 2018) and have
shown promising results and improvements compared to traditional
approaches such as CLEAN-based methods and MEM. In general,
such approaches can recover sharp and smooth image features si-
multaneously (e.g. Carrillo et al. 2012). While sparse approaches
have been shown to be highly effective, the best approach to image
different sources remains an open question. Algorithms have been
developed to scale sparse approaches to big-data (Carrillo et al.
2014; Onose et al. 2016; Cai, Pratley & McEwen 2017a; Kartik
et al. 2017; Onose et al. 2017), such as that anticipated from the
Square Kilometre Array (SKA1). However, CLEAN-based methods,
MEM, and CS-based methods, unfortunately, do not provide any
uncertainty quantification about the accuracy of recovered images.

Statistical sampling methods to perform Bayesian inference, like
Markov chain Monte Carlo (MCMC) methods, which sample the
full posterior distribution, have the ability to provide uncertainty
information. However, this comes at a considerable computational
cost. A proof of concept application of MCMC sampling to RI
imaging was performed by Sutter et al. (2014), using Gibbs sam-
pling with Gaussian process priors. Uncertainty information in the
form of the posterior image variance was considered. However,
an idealized telescope model was adopted and the technique has
yet to be applied to real observational data. In general MCMC
sampling techniques that scale to high-dimensional settings (like
RI imaging), place restrictions on the priors that can be consid-
ered. Gibbs sampling, for example, requires the ability to draw
from conditional distributions. Two of the most effective classes
of MCMC methods for high-dimensional settings include Hamilto-
nian Monte Carlo (HMC) (Neal 2012) and the unadjusted Langevin
algorithm (ULA) (Roberts & Tweedie 1996). When a Metropolis–
Hasting (MH) accept–reject step is added to ULA, one obtains
the Metropolis-adjusted Langevin algorithm (MALA) (Robert &
Casella 2004). HMC, ULA, and MALA exploit gradients to cap-
ture local properties of the target density in order to explore high-
dimensional parameter spaces efficiently. However, a significant
limitation of HMC, MALA, and ULA is that the priors considered
must be smooth, which prohibits their use for priors that promote
sparseness. An alternative Bayesian approach to RI imaging using
Information Field Theory (Enßlin, Frommert & Kitaura 2009) has
been presented in the form of the RESOLVE algorithm (Junklewitz
et al. 2016; Greiner et al. 2017). This approach assumes a log-
normal prior and recovers a maximum a posteriori (MAP) estimate,
proving uncertainty information in the form of an approximate pos-

1http://www.skatelescope.org/

terior covariance. However, the method remains computationally
demanding.

Uncertainty quantification is an important missing component in
RI imaging for quantitative imaging, scientific inquiry, and decision-
making. Moreover, since the RI imaging problem is often (severely)
ill-posed, uncertainty quantification becomes increasingly impor-
tant. No existing RI imaging techniques that are used in practice
provide uncertainty quantification. Also, those approaches that do
provide some form of uncertainty quantification in RI imaging can-
not scale to big-data. Moreover, such approaches only support re-
strictive classes of priors (typically Gaussian or log-normal, which
lead to poor reconstruction results relative to sparse priors). In sum-
mary, no existing approach can support the sparse priors that have
been shown in practice to be highly effective for RI imaging (e.g.
Pratley et al. 2018), while also providing uncertainty quantification,
in a manner that can scale to big-data. We present new techniques
that fulfil precisely these criteria.

In two companion articles, we present novel RI imaging tech-
niques that support the sparsity-promoting priors that have been
shown to be highly effective in practice, provide various forms of
uncertainty quantification, and that scale to big-data. In the current
article we show how to support uncertainty quantification for sparse
priors via proximal MCMC methods. In the companion article (Cai,
Pereyra & McEwen 2017b), we show how to scale uncertainty quan-
tification with sparse priors to big-data.

In this article, two proximal MCMC methods, Moreau-Yosida
ULA (MYULA) (Durmus, Moulines & Pereyra 2018) and proximal
MALA (Px-MALA) (Pereyra 2016b), are introduced for RI imag-
ing. These algorithms are direct extensions of ULA and MALA
that exploit proximity mappings Moreau-Yosida envelopes, and
Moreau approximations. Most importantly, due to the versatility
of proximity mappings, these two algorithms are able to sample
high-dimensional distributions with a variety of different types of
priors, including the non-differentiable sparse priors that have been
widely used in RI imaging but yet cannot be tackled by standard
MCMC methods. Specifically, Px-MALA can sample the poste-
rior distribution with high accuracy (formally, it is guaranteed to
converge to the target distribution), but the MH accept–reject step
embedded in it induces a high computation overhead. MYULA, on
the other hand, eliminates the MH accept-reject step by introducing
well-controlled approximations (formally, the bias introduced by
such approximations can be made arbitrarily small), and thus has a
lower computational overhead.

The uncertainty quantification strategy considered in this article
proceeds as follows. First, using Bayesian inference, two uncon-
strained inverse models – analysis and synthesis forms – with sparse
priors are presented to address the RI imaging problem. Then, full
posterior distributed samples corresponding to these two uncon-
strained models are generated by the sampling methods Px-MALA
and MYULA. After that, three ways of quantifying uncertainty
information for RI imaging are constructed, including: (i) local
(pixel-wise) credible intervals (cf. error bars) computed from the
generated posterior samples; (ii) highest posterior density (HPD)
credible regions computed using the generated posterior samples;
and (iii) hypothesis testing of image structure using the HPD cred-
ible regions. Moreover, comparisons between the performance of
Px-MALA and MYULA, and between the analysis and synthesis
models are presented.

The remainder of this article is organized as follows. In Section 2
we introduce the RI imaging problem, the Bayesian inference ap-
proach to imaging, and the regularization approach to imaging,
elaborating the relationship between various approaches and var-
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ious algorithms (e.g. CLEAN and MEM). In Section 3 we discuss
Bayesian inference for sparse priors by proximal MCMC methods
and in Section 4 derive the detailed implementation of the proximal
MCMC methods for RI imaging problems. Uncertainty quantifica-
tion for RI imaging is formulated in Section 5. Numerical results
evaluating the performance of our uncertainty quantification meth-
ods are reported in Section 6. Finally, we conclude in Section 7
with a brief description of the main contributions, a discussion of
planned extensions of this work, and elucidate connections with the
companion article (Cai et al. 2017b).

2 RADIO INTERFERO METRIC IMAG ING

To start, we first recall the RI imaging problem and then review
sparse representations, which are often exploited in modern ap-
proaches to solve this problem. We model the RI imaging problem
from the perspective of Bayesian inference and, finally, elaborate
the relationship between Bayesian inference and regularization on
which CLEAN, MEM, and CS approaches are based.

2.1 Radio interferometry

The sky intensity can be imaged by RI telescopes that measure the
radio emission of the sky using an array of spatially separated an-
tennas. When the baselines in an array are co-planar and the field of
view is narrow, the visibility y can be measured by correlating the
signals from pairs of antennas, separated by the baseline compo-
nents . The general RI equation for obtaining y reads as (Thompson
et al. 2017)

y(u) =
∫

A(l)x(l)e−2πiu·l d2l, (1)

where x represents the sky brightness distribution, described in
coordinates l = (l, m) (the coordinates of the plane of the sky, cen-
tred on the pointing direction of the telescope), and represents the
primary beam of the telescope. While not considered further in
this article, wide fields and other direction dependent effects can
be incorporated (see e.g. Bhatnagar et al. 2008; Cornwell, Golap
& Bhatnagar 2008; McEwen & Scaife 2008; Wiaux et al. 2009b;
McEwen & Wiaux 2011; Wolz et al. 2013; Offringa et al. 2014;
Dabbech et al. 2017)

In RI imaging, the goal is to recover the sky intensity signal x
from the measured visibilities y acquired according to (1). Pre-
cisely, we consider the estimation of a vector x ∈ RN representing
a sampled image on a discrete grid of N points in real space, from a
measurement vector y ∈ CM gathering the M visibilities observed
in a complex vector space, related to x by the linear observation
model

y = �x + n, (2)

where � ∈ CM×N is a linear measurement operator modelling the
realistic acquisition of the sky brightness components and n ∈ CM

is the instrumental noise. Without loss of generality, we assume
independent and identically distributed (i.i.d.) Gaussian noise. The
estimation of x is therefore a linear inverse problem, which is chal-
lenging because the operator � is ill-posed and ill-conditioned, and
because of the high dimensionality involved (Rau et al. 2009).

2.2 Sparse representation

RI imaging methods typically use prior knowledge about x to regu-
larize the estimation problem and deliver more accurate estimation

results. In particular, many new methods use the fact that natural
signals and images in general, and RI images in particular, often
exhibit a sparse representation in some bases (e.g. a point source
basis or a multiscale basis such as wavelets). Let

x = �a =
∑

i

� iai , (3)

where � ∈ CN×L is a dictionary (e.g. a wavelet basis or an overcom-
plete frame) and a = (a1, · · · , aL)� is the vector of the synthesis
coefficients of x under �. Then x is said to be sparse if a contains
only K non-zero coefficients, i.e. ‖a‖0 = K (recall ‖a‖0 gives the
number of non-zero components of a), where K � N. Similarly, x
is called compressible under � if many coefficients of a are nearly
zero, i.e. its sorted coefficients ai satisfy a power-law decay. In prac-
tice, it is ubiquitous that natural signals and images x are sparse or
compressible.

2.3 Bayesian inference

The inverse problem presented in (2) can be addressed elegantly in
the Bayesian statistical inference framework, which in addition to
allowing one to derive estimates of x also provides tools to analyse
and quantify the uncertainty in the solutions obtained. Let p( y|x)
be the likelihood function of the statistical model associated with
(2). In the case of i.i.d. Gaussian noise the likelihood function reads

p( y|x) ∝ exp
(−‖ y − �x‖2

2/2σ 2
)
, (4)

where σ represents the standard deviation of the noise level.
As mentioned previously, recovering x solely from y is not pos-

sible because the problem is not well posed. Bayesian methods
address this difficulty by exploiting prior knowledge – represented
by a prior distribution p(x) – to regularize the problem, reduce
uncertainty, and improve estimation results. Typically priors of the
form p(x) ∝ exp (−φ(Bx)) are considered, for some linear operator
B and potential function φ. Various forms for φ can be considered,
for example: Tikhonov regularization (Golub, Hansen & O’Leary
1999; Cai, Chan & Zeng 2013), used to promote smoothness, corre-
sponds to the Gaussian prior of p(x) ∝ exp(−μ‖x‖2

2); the entropic
prior of p(x) ∝ exp(−μx†logx) (Ables 1974; Gull & Daniell 1978;
Cornwell & Evans 1985); and the �p norm with 0 ≤ p ≤ 1 used as a
regularizer to promote sparseness (Donoho 2006; Candes & Wakin
2008; Wiaux et al. 2009a,b; McEwen & Wiaux 2011; Cai et al.
2015; Chen, Shen & Suter 2016). Here μ > 0 is a regularization
parameter. We refer to such priors as analysis priors because they
operate on the canonical coordinate system of x. Alternatively, it is
also possible to adopt a so-called synthesis approach and use (3) to
express the prior knowledge for x via a prior distribution p(a) on
the synthesis coefficients a.

In this article we consider both analysis and synthesis formula-
tions because they are both widely used in RI imaging. For analysis
models we consider Laplace-type priors of the form

p(x) ∝ exp(−μ‖�†x‖1), (5)

where �† denotes the adjoint of �, μ > 0 is a regularization
parameter, and ‖ · ‖1 is the �1 norm; while for synthesis models we
consider the Laplace prior

p(a) ∝ exp(−μ‖a‖1). (6)

Observe that both formulations are equivalent when � is an or-
thogonal basis. However, for redundant dictionaries the approaches
have very different properties. Further discussions about the anal-
ysis and synthesis forms can be found, for example, in Maisinger
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et al. (2004), Elad, Milanfar & Rubinstein (2007), and Cleju, Jafari
& Plumbley (2012).

Prior and observed information can then be combined by using
Bayes’ theorem to obtain the posterior distribution. For analysis
formulations the posterior is given by

p(x| y) = p( y|x)p(x)

pa( y)
, (7)

which models our knowledge about x after observing y, where
pa( y) = ∫

RN p( y|x)p(x) dx is the marginal likelihood (or Bayesian
evidence) of the analysis model. Similarly, for synthesis models the
posterior reads

p(a| y) = p( y|a)p(a)

ps( y)
, (8)

with p( y|a) = p( y|x) for x = �a, where ps( y) =∫
RN p( y|a)p(a) da is the model’s marginal likelihood.

Note that the denominators pa( y) in (7) and ps( y) in (8), i.e. the
marginal likelihoods, are unrelated to x and a, respectively, and
therefore constants with respect to (w.r.t.) parameter inference. It
follows that the unnormalized posterior distributions for the analysis
and synthesis formulations read

p(x| y) ∝ exp
{

−
(
μ‖�†x‖1 + ‖ y − �x‖2

2/2σ 2
)}

(9)

and

p(a| y) ∝ exp
{− (

μ‖a‖1 + ‖ y − ��a‖2
2/2σ 2

)}
, (10)

respectively, where the first terms (i.e. the �1 norm terms) in the
exponentials of each equation correspond to the prior and the second
(i.e. the �2 norm terms) correspond to the likelihood.

Drawing conclusions directly from p(x| y) or p(a| y) can be diffi-
cult because of the high dimensionality involved. Instead, Bayesian
methods often derive solutions by computing estimators that sum-
marize or p(a| y). In particular, it is often common practice to com-
pute MAP estimators given by

x̂map = argmax
x

p(x| y)

= argmin
x

{
μ‖�†x‖1 + ‖ y − �x‖2

2/2σ 2
}

, (11)

for the analysis model, and

âmap = argmax
a

p(a| y)

= argmin
a

{
μ‖a‖1 + ‖ y − ��a‖2

2/2σ 2
}

, (12)

which is then mapped to canonical coordinates by using (3), for
the synthesis model. A main computational advantage of the MAP
estimators (11) and (12) is that they can be formulated as a convex
optimization problem that can be solved very efficiently, even in
high dimensions, by using modern convex optimization techniques
(Green et al. 2015). Also, there is abundant empirical evidence that
these estimators deliver accurate reconstruction results, and that
they promote solutions that are sparse under � in agreement with
our prior knowledge about x. See Pereyra (2016a) for a theoretical
analysis of MAP estimation.

The regularization parameter μ appearing in the analysis and syn-
thesis formulations controls the balance between the likelihood and
the prior information, and plays an important role in terms of im-
age reconstruction quality. Typically, setting μ is performed by vi-
sual cross-validation. However, there exist more advanced Bayesian

strategies to address the problem of unknown μ. For example, hier-
archical Bayesian strategies allow estimating μ jointly with x (or α)
from , or removing μ from the model by marginalization followed
by inference with the marginal model (see Pereyra, Bioucas-Dias
& Figueiredo 2015 for details). Alternatively, empirical Bayesian
approaches set regularization parameters by marginal maximum
likelihood estimation (Junklewitz et al. 2016; Fernandez Vidal &
Pereyra 2018) or by MCMC sampling (Sutter et al. 2014). The se-
lection of a regularization parameter was also studied by Skilling &
Gull (1991) in the context of MEMs, where the marginal distribution
of the regularization parameter is again maximized.

To compute other Bayesian estimators or quantifies of inter-
est beyond MAP estimators it is typically necessary to use more
advanced Bayesian computation tools, such as MCMC sampling
methods. These methods compute probabilities and expectations
w.r.t. p(x| y) or p(a| y) and can be used to calculate moments and
Bayesian confidence regions useful for uncertainty quantification.
This is the main purpose of this article and thus will be detailed
subsequently.

2.4 Connections with alternative approaches

It is worth noticing that many RI imaging techniques can be seen
as regularization techniques and many of them can be viewed as
MAP estimation for appropriate priors. While this interpretation
is not always precise, the resulting approximate unifying Bayesian
framework is useful to aid intuition.

2.4.1 Compressive sensing and �1-regularized regression

The theory of CS (compressive sensing) led to an important break-
through in the recovery of sparse signals from incomplete linear
measurements (Donoho 2006; Candes & Wakin 2008; Candes et al.
2010). CS goes beyond the traditional Nyquist sampling paradigm,
where its acquisition approaches can save a huge amount of time and
memory thanks to the fact that natural signals often exhibit a sparse
representation in multiscale bases. CS can be implemented for sig-
nal reconstruction by regularizing the resulting ill-posed inverse
problem through a sparsity-promoting prior, resulting in a convex
optimization problem that can be solved by leveraging techniques
from the field of convex optimization. Briefly speaking, the theo-
retical framework of CS motivates sparse regularization approaches
such as the ones used in (11) and (12). In fact, the MAP estimators
(11) and (12) are equivalent to the �1 regularized least-squares esti-
mators used extensively in CS. In the literature and henceforth, the
discussion of CS-based methods for RI imaging typically refers to
sparse regularization approaches, even though RI imaging models
such as (11) and (12) may not satisfy the idealized CS setting.

2.4.2 CLEAN

CLEAN, the most well-known and standard RI image reconstruction
algorithm, is a non-linear deconvolution method based on local iter-
ative beam removal. In general, it can be operated iteratively in two
steps, i.e. major and minor cycles. Let χ2 = ‖ y − �x‖2

2 and denote
the gradient of χ2 at iteration t by r (t) = �†( y − �x(t)). The major
cycle of CLEAN computes the residual image r (t), followed by the
minor cycle of deconvolving the brightest sources in , represented
by T(r (t)), yielding the iterative form

x(t+1) = x(t) + T (r (t)) (13)
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to reconstruct an image x.
Extensions of CLEAN have also been considered to achieve better

reconstruction. For example, multiscale versions of CLEAN: MS-CLEAN

(Cornwell 2008) and ASP-CLEAN (Bhatnagar & Corwnell 2004). For
further variants of CLEAN, please refer to Rau et al. (2009) and
references therein.

CLEAN implicitly involves a sparse prior on the original signal in
real space. Moreover, a close connection has been shown between
CLEAN and the well-known Matching Pursuit algorithm in the CS
literature (Cornwell 1988; Rau et al. 2009; Wiaux et al. 2009a);
in other words, CLEAN is essentially �0 regularization with a point
source basis. The performance of CLEAN, however, is empirically
found to be similar to �1 regularization with a point source basis
(Wiaux et al. 2009a). As a proxy for CLEAN, �1 regularization with
a point source basis is equivalent to MAP estimation involving a
Laplace prior.

2.4.3 Maximum entropy method

Another important method for RI imaging is MEM, which is, mildly
speaking, a special case of the MAP method. The MEM approach for
RI imaging (Cornwell & Evans 1985) differs to the original MEM
formulation (Ables 1974; Gull & Daniell 1978), in that not only does
the regularization problem considered consist of a relative entropic
prior and a (Gaussian) likelihood, but an additional flux constraint is
also incorporated. In particular, an entropic prior, exp(−μx†logx),
on the image is adopted.

2.4.4 Constrained regularization

In addition to the unconstrained optimization problems of (11) and
(12), many CS-based approaches consider constrained forms of the
analysis and synthesis models, which are, respectively, given by

min
x

‖�†x‖1, s.t. ‖ y − �x‖2
2 ≤ ε (14)

and

min
a

‖a‖1, s.t. ‖ y − ��a‖2
2 ≤ ε, (15)

where ε is an upper-bound related to the noise level present in . CS
approaches based on constrained optimization problems, solved via
convex optimization techniques, have been applied broadly in RI
imaging (Wiaux et al. 2009a,b; McEwen & Wiaux 2011; Li et al.
2011a,b; Carrillo et al. 2012, 2014; Onose et al. 2016; Pratley et al.
2018). These techniques have shown promising results, with im-
provements in terms of image fidelity and flexibility compared to
traditional approaches such as CLEAN-based methods and MEM. For
these constrained regularization approaches, parallel implementa-
tion structures have also been explored (Carrillo et al. 2014; Onose
et al. 2016). Compared with the unconstrained analysis and synthe-
sis models, constrained approaches are parametrized by ε (related
to noise level) which controls the error of the reconstruction explic-
itly; in contrast, unconstrained models use regularization parameter
μ to impose a tradeoff between the prior and data fidelity. The con-
strained approach therefore avoids the problem of unknown regular-
ization parameter μ, replacing it with the problem of estimating the
noise bound ε. The latter can be performed in a principled manner
by noting that for Gaussian noise the �2 norm data fidelity term fol-
lows a χ2 distribution with 2M degrees of freedom (see e.g. Carrillo
et al. 2012). While constrained problems do not afford a straight-
forward Bayesian interpretation, the constrained and unconstrained
models are closely related (Nikolova 2016).

3 BAY ESIAN INFERENCE WITH SPARSE
PRI ORS BY PROX I MAL MCMC SAMPLI NG

Sparse regularization, motivated by CS, has been shown to be a
powerful framework for solving inverse problems and has been
used to deal with the recovery of sparse signals from incomplete
linear measurements (e.g. Donoho 2006). It has been demonstrated
that sparse signals can be recovered accurately from incomplete
data under some conditions. Sparse priors have also been ushered
into RI imaging for image reconstruction (e.g. Wiaux et al. 2009a;
McEwen & Wiaux 2011), and have shown promising results on real
RI data (Pratley et al. 2018). Unfortunately, CS-based techniques
do not provide any uncertainty information regarding their point
estimates. This is also a limitation of CLEAN-based methods and
MEM.

From an inferential viewpoint, the lack of uncertainty quantifica-
tion is problematic, particularly because RI problems are ill-posed
and hence solutions have significant intrinsic uncertainty. As ex-
plained previously, in this article we apply recent developments
in Bayesian methodologies to analyse uncertainty in RI imaging.
Precisely, we use new MCMC Bayesian computation algorithms to
compute probabilities and expectations w.r.t. the posterior distribu-
tion of interest, i.e. p(x| y) or p(a| y) given by (7) and (8), depending
on whether an analysis or a synthesis formulation is used. This in-
volves constructing a Markov chain that generates samples from the
distribution of interest, and then using the samples to approximate
probabilities and expectations by Monte Carlo integration (Robert
& Casella 2004). Computing such Markov chains in large-scale set-
tings is computationally challenging, and we address this difficulty
by using state-of-the-art MCMC methods tailored for these types
of problems (Durmus et al. 2018; Pereyra 2016b). In this section
we introduce these MCMC algorithms. To ease presentation, all
symbols and dimensions specified here corresponds to the analysis
model (11), however these can be straightforwardly adapted to the
synthesis model (12).

3.1 Preliminaries

A function g : CN → (−∞,∞] is said to be lower semicontinuous
(l.s.c.) if for all M ∈ R, {g < M} is a closed subset of CN . Let
C1(CN ) be the class of continuously differentiable functions on CN .
If g ∈ C1(CN ), denote by ∇g the gradient of g. Also, ∇g is said to
be Lipchitz continuous with constant βLip ∈ (0, ∞) if

‖∇g( ẑ) − ∇g( z̄)‖ ≤ βLip‖ ẑ − z̄‖, ∀( ẑ, z̄) ∈ CN × CN . (16)

Moreover, let h : CN → (−∞, ∞] be a convex l.s.c. function and
λ > 0. The λ-Moreau-Yosida envelope of h is a carefully regularized
approximation of h given by

hλ(z) ≡ min
u∈RN

{
h(u) + ‖u − z‖2/2λ

}
. (17)

The approximation hλ can be made arbitrarily close to h by adjusting
λ, i.e. (see Parikh & Boyd 2014). Also, by construction hλ ∈ C1,
with λ-Lipchitz gradient given by

∇hλ(z) = (
z − proxλ

h(z)
)
/λ, (18)

where is the proximity operator of h at z defined as

proxλ
h(z) ≡ argmin

u∈RN

{
h(u) + ‖u − z‖2/2λ

}
. (19)

It can be verified easily that proxλ
h(z) = proxλh(z). For simplicity,

we represent prox1
h(z) by proxh(z). This operator generalizes the
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Uncertainty quantification for RI imaging – I 4159

projection operator defined as

PC(z) ≡ argmin
u∈RN

{
ιC(u) + ‖u − z‖2/2

}
, (20)

where ιC is the characteristic function for the convex set C defined
by ιC(u) = ∞ if and 0 otherwise.

3.2 Langevin MCMC

Let π be a probability density (or a user-specified target density),
such as the posteriors p(x| y) or p(a| y). When π is defined on Cn

and assume π ∈ C1 with Lipchitz gradient, the Langevin diffusion
on Cn associated with π is a stochastic process defined as

dL(t) = 1

2
∇ log π [L(t)]dt + dW(t) , (21)

where W is the Brownian motion on Cn. This process converges to
π as t increases, and is therefore useful for generating samples from
π . Unfortunately, simulating L(t) in continuous time is generally
not possible, so instead we use discrete-time approximations. In par-
ticular, ULA is based on a forward Euler–Maruyama approximation
with step-size δ > 0, resulting in the Markov chain

l (m+1) = l (m) + δ

2
∇ log π [l (m)] +

√
δw(m+1), (22)

where w(m+1) ∼ N(0,1N ) (an N-sequence of standard Gaussian
random variables). Under appropriate regularity conditions, the
chain generated by ULA converges to an ergodic measure which is
close to π . In MALA (Metropolis-adjusted Langevin Algorithm),
this approximation error is corrected by complementing ULA with
an MH accept-reject step targeting π , which removes the asymp-
totic bias due to the discretization at the expense of some additional
estimation variance (Roberts & Tweedie 1996). Theoretical and em-
pirical results show that ULA and MALA scale very efficiently to
high dimensions.

However, a main limitation of ULA and MALA (and generally
MCMC methods based on gradients) is the requirement that log π

is continuously differentiable with Lipchitz gradient, otherwise the
Markov chain (22) fails to converge. As explained previously, this
prohibits their application to image processing models with non-
smooth densities, e.g. involving the term φ(·) = ‖ · ‖1. In Pereyra
(2016b), this limitation of ULA and MALA is addressed by using
the Moreau-Yosida envelope of log π to regularize the diffusion
process to handle non-smoothness, e.g. sparse priors.

3.3 Moreau-Yosida regularized ULA (MYULA)

We consider models of the form , where f /∈ C1 is l.s.c. convex
with operator proxλ

f (z) tractable ∀z ∈ CN , and is l.s.c. convex with
∇g and βLip-Lipchitz continuous. Typically f corresponds to the
log-prior and g to the log-likelihood.

We wish to use the Langevin diffusion (21) to generate samples
from π but this is not directly possible since f is not smooth, i.e.
f /∈ C1. The key idea underpinning proximal ULA and MALA
is to carefully regularize f to guarantee that (21) and its discrete-
time approximation (22) have good convergence properties (Pereyra
2016b). This is achieved by defining an approximation

πλ(x) = exp {−f λ(x) − g(x)}∫
exp {−f λ(x) − g(x)} dx

, (23)

where the non-smooth term f is replaced by its Moreau-Yosida
envelope fλ. Since ∇log πλ = −∇fλ − ∇g is Lipchitz continuous,
the Langevin diffusion associated with πλ is well posed and leads to

a Markov chain (22) with good convergence properties. Precisely,
the MYULA chain is defined by

l (m+1) =
(

1 − δ

λ

)
l (m) + δ

λ
proxλ

f (l (m)) − δ∇g(l (m)) +
√

2δw(m),

(24)

where we have noted that ∇f λ(z) = (
z − proxλ

f (z)
)
/λ.

The MYULA chain (24) scales well in high dimensions and effi-
ciently delivers samples that are approximately distributed accord-
ing to π . The approximation error involved can be made arbitrarily
small by reducing the value of λ and by increasing the number of
iterations (Durmus et al. 2018).

Finally, in our experiments we implement (24) with f (x) =
μ‖�†x‖1, g(x) = ‖ y − �x‖2

2/2σ 2 for the analysis model (11) [the
setting for the synthesis model (12) is analogous], and by setting λ

= 2/βLip and δ ∈ [1/5βLip, 1/2βLip], as suggested by Durmus et al.
(2018).

3.4 Proximal MALA (Px-MALA)

In a manner akin to MALA, the Px-MALA combines MYULA with
an MH step targeting the desired density π which is not differen-
tiable (Pereyra 2016b). At each iteration of the algorithm a new
candidate is generated by using one MYULA iteration as proposal
mechanism. The candidate is then accepted with probability

ρ = min

{
1,

q(l (m)|l∗)π (l∗)

q(l∗|l (m))π (l (m))

}
, (25)

where q(· | ·) is the MYULA transition kernel defined by (Pereyra
et al. 2016)

q(l∗|l (m)) ∼ exp

(
−
(
l∗ − l (m) − δ

2 ∇ log π
(
l (m)))2

2δ

)
. (26)

Regarding computational efficiency, for the models considered here
Px-MALA inherits the good convergence properties of MYULA
and scales efficiently in high dimensions. However, note that the MH
correction removes the asymptotic estimation bias at the expense
of increasing the correlation of the Markov chain and hence the
estimation variance (this is observed clearly in the experiments
reported in Section 6). Also note that Px-MALA iterations are more
expensive than MYULA iterations because of the computational
overhead associated with the MH step.

Finally, in our experiments, following the setting in
Pereyra (2016b), we implement Px-MALA with f (x) = ‖ y −
�x‖2

2/2σ 2 + μ‖�†x‖1, g(x) = 0 for the analysis model (11) [the
setting for the synthesis model (12) is analogous], and by setting λ

= 2/βLip and adjusting δ for an acceptance probability of approxi-
mately 0.5. Other settings w.r.t. the definitions of f and g, e.g. as used
in MYULA, could also be considered. Also note that the efficient
computation of proxλ

f often involves some approximations, which
we also correct with the MH step. We discuss such approximations
for the analysis and synthesis models in Section 4.

4 PROX I M A L MC M C ME T H O D S FO R R I
I MAG I NG

This section presents the implementation details of MYULA and
Px-MALA for the analysis model (11) and the synthesis model
(12). We first consider the computation of the proximity operator
of f, for different forms of f. Computing the proximity operator of f
requires solving an optimization problem, which must be performed
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4160 X. Cai, M. Pereyra, and J. D. McEwen

efficiently since it needs to be computed to generate each sample
by (24). We then summarize the sampling procedures for the two
proximal MCMC methods. Note that computing the gradient of
g in (24) is straightforward since it is differentiable. For clarity,
we henceforth use the label ¯ for symbols related to the analysis
model, and ˆ for symbols related to the synthesis model. Although
not essential, we also assume �†� = I (where I is the identity
matrix), unless otherwise stated.

4.1 Computing proximity operators

Algorithm 1: Sample generation by Px-MALA

1 Input: visibility y ∈ CM , x(0) ∈ RN , a(0) ∈ CL, K , Kgap, Kburn,
Ptype ∈ {analysis, synthesis}, and m = 0, j = 1

2 Output: K samples {x(j )}K
j=1 or {�a(j )}K

j=1

3 do
4 if Ptype == analysis

5 compute x(m+1) = proxδ/2
f̄

(x(m)) + √
δw̄(m)

6 set z = x(m+1), z′ = x(j−1)

7 elseif Ptype == synthesis

8 compute a(m+1) = proxδ/2
f̂

(a(m)) + √
δŵ(m)

9 set z = a(m+1), z′ = a(j−1)

10 endif
11 if m satisfies (??)
12 if MH

(
z, z′) == 1 // Metropolis-Hasting step

13 if Ptype == analysis
14 set x(j ) = z
15 elseif Ptype == synthesis
16 set a(j ) = z
17 endif
18 j = j + 1
19 endif
20 endif
21 m = m + 1
22 while j ≤ K;

23 function MH
(
l∗, l

)
24 Compute the acceptance probability

25 ρ = min
{

1,
q(l|l∗)π(l∗)
q(l∗|l)π(l)

}
26 Generate a threshold u ∼ U(0, 1)
27 if u ≤ ρ

28 return 1 // Accept the candidate
29 elseif
30 return 0 // Reject the candidate
31 endif
32 end function

Before considering the computation of various proximity oper-
ators for the analysis and synthesis forms, define, ∀z ∈ RL, the
soft-thresholding operator with threshold β th as

softβth (z) = (
softβth (z1), · · · , softβth (zL)

)
, (27)

where for i = 1, . . . , L,

softβth (zi) =
{

0, if |zi | ≤ βth,

zi(|zi | − βth)/|zi |, otherwise.
(28)

4.1.1 Analysis form: MYULA

To implement MYULA for the analysis model (11), we set f̄ (x) =
μ‖�†x‖1 and ḡ(x) = ‖ y − �x‖2

2/2σ 2. Then, to compute the iter-
ation (24) it is necessary to evaluate proxλ

f̄
(x) and ∇ḡ(x).

To evaluate proxλ
f̄

(x) we use the closed-form representation (
Combettes & Pesquet 2010, see Table 1),

proxλ
f̄

(x) = argmin
u∈RN

λμ‖�†u‖1 + ‖u − x‖2/2

= x + �
(

proxλ
μ‖·‖1

(�†x) − �†x
)

= x + �
(

softλμ(�†x) − �†x
)

. (29)

Moreover,

∇ḡ(x) = ∇ (‖ y − �x‖2
2/2σ 2

) = �†(�x − y)/σ 2. (30)

REMARK 4.1 If �†� �= I, the case where � is overcomplete,
proxλ

f̄
(x) can be computed in an iterative manner: see Tablewhere

u
(

t+ 1
2

)
= λ

(t)
ite

(
1 − proxλ

‖·‖1/λ
(t)
ite

)⎛
⎝u

(
t− 1

2

)

λ
(t)
ite

+ �†u(t)

⎞
⎠ , (31)

u(t+1) = x − �u
(

t+ 1
2

)
, (32)

where λ
(t)
ite ∈ (0, 2/βPar) (βPar is a constant satisfying ‖� z‖2 ≤

βPar‖z‖2,∀z ∈ RL) is a predefined step size and u(t) → proxλ
f̄

(x);
refer to Fadili & Starck (2009) and Jacques, Hammond & Fadili
(2011) for details.

4.1.2 Analysis form: Px-MALA

To implement Px-MALA for the analysis model (11), we set
f̄ (x) = ‖ y − �x‖2

2/2σ 2 + μ‖�†x‖1 and ḡ(x) = 0. Therefore, at
each iteration of the algorithm it is necessary to evaluate

proxλ
f̄

(x) = argmin
u∈RN

{
μ‖�†u‖1+ ‖ y − �u‖2

2

2σ 2
+ ‖u − x‖2

2

2λ

}
.

(33)

By the Taylor expansion of ‖ y − �u‖2
2 at point x,

‖ y − �u‖2
2 ≈ ‖ y − �x‖2

2 + (u − x)�∇(‖ y − �x‖2
2

)
= ‖ y − �x‖2

2 + 2(u − x)��†(�x − y), (34)

and we obtain the following approximation of proxλ
f̄

(x),

argmin
u∈RN

{
μ‖�†u‖1 + ‖u − x‖2

2

2λ
+ ‖ y − �x‖2

2

2σ 2

+(u − x)��†(�x − y)/σ 2
}

≈ argmin
u∈RN

{
μ‖�†u‖1+ ‖u − x + δ�†(�x − y)/2σ 2‖2

2

2λ

}

= proxλ
μ‖�†·‖1

(
x − λ�†(�x − y)/σ 2

)
. (35)

Let v̄ = x − λ�†(�x − y)/σ 2, using (29), we have

proxλ
f̄

(x) ≈ v̄ + �(softμλ(�†v̄) − �†v̄)). (36)
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Uncertainty quantification for RI imaging – I 4161

Note that proxλ
f̄

(x) here can be computed in the same manner as the

one mentioned in Remark 4.1 if �†� �= I.

REMARK 4.2 The approximation shown in (36) can be regarded
as one iteration of the forward–backward algorithm (Combettes &
Pesquet 2010) minimizing objective function f̄ + ḡ. The Taylor ap-
proximation performed above makes the assumptions in performing
a single forward–backward iteration explicit.

4.1.3 Synthesis form: MYULA

To implement MYULA for the synthesis model (12), we set
f̂ (a) = μ‖a‖1 and ĝ(a) = ‖ y − ��a‖2

2/2σ 2. Then, to compute
the iteration (24) it is necessary to evaluate

proxλ
μ‖·‖1

(a) = argmin
u∈RL

{
μ‖u‖1 + ‖u − a‖2/2λ

}
,

= softλμ(a), (37)

and

∇ĝ(a) = ∇ (‖ y − ��a‖2
2/2σ 2

) = �†�†(��a − y)/σ 2. (38)

4.1.4 Synthesis form: Px-MALA

To implement Px-MALA for the synthesis model (12), we set
f̂ (a) = ‖ y − ��a‖2

2/2σ 2 + μ‖a‖1 and ĝ(a) = 0. Therefore, at
each iteration of the algorithm it is necessary to evaluate

proxλ

f̂
(a) = argmin

u∈RL

{μ‖u‖1+ ‖ y − ��u‖2
2

2σ 2
+ ‖u − a‖2

2

2λ
}. (39)

By proceeding similarly to (36) we obtain

proxλ

f̂
(a) ≈ proxλ

μ‖·‖1
(a − λ�†�†(��a − y)/σ 2)

≈ softμλ(a − λ�†�†(��a − y)/σ 2), (40)

where the first line of (40) follows by (37).

REMARK 4.3 Similar to Remark 4.2, the approximation shown
in (40) can be regarded as one iteration of the forward–backward
algorithm (Combettes & Pesquet 2010) minimizing f̂ + ĝ. Again,
the above derivations make the corresponding assumptions explicit.

4.2 Sampling by proximal MCMC methods

Using formulas (30) and (38) which compute gradient operators,
formulas (29) and (37) which compute proximity operators accord-
ing to sparse regularizations, and the MYULA iterative formula
(24), a set of full posterior samples for the analysis model (11) and
synthesis model (12) can be generated by

x(m+1) = x(m) + δ

λ
�
(

softλμ/2

(
�†x(m)

)
− �†x(m))

)

− δ�†(�x(m) − y)/2σ 2 +
√

δw̄(m) (41)

and

a(m+1) =
(

1 − δ

λ

)
a(m) + δ

λ
softλμ/2(a(m))

− δ�†�†(��a − y)/2σ 2 +
√

δŵ(m), (42)

respectively, where w̄(m) ∈ RN ∼ N(0,1N ) and .

Analogously, using formulas (36) and (40), the Px-MALA it-
erative forms generating samples as to the analysis and synthesis
models can be written as

x(m+1) = proxδ/2
f̄

(x(m)) +
√

δw̄(m), (43)

and

a(m+1) = proxδ/2
f̂

(a(m)) +
√

δŵ(m), (44)

respectively. After a proper candidate generated by (43) or (44),
Px-MALA includes an MH accept–reject step with an acceptance
probability ρ, specified by (25), to ensure the sequence converges
to the target distribution.

To generate K samples using the proximal MCMC methods pro-
posed, two parameters controlling sample candidates should be as-
signed: (i) the number of initial or burn-in iterations, Kburn ∈ Z
(denotes the previous number of iterations that are discarded); and
(ii) the chain’s thinning factor or number of intermediate iterations
between samples, Kgap ∈ Z (denotes the intermediate number of
iterations that are discarded; used to reduce correlations between
samples and the algorithm’s memory footprint). Because of mem-
ory limitations we do not store all samples (generated by 41, 42, 43,
or 44), and only store 1-in-Kgap samples if

m > Kburn and mod(m − Kburn,Kgap) = 0, (45)

where mod(·, ·) represents the modulus after division.
We conclude this section by summarizing the MYULA and Px-

MALA implementations for RI imaging in Algorithms 1 and 2, re-
spectively. Note that symbol Ptype ∈ {analysis, synthesis}
specifies the problem type considered. Moreover, after obtaining the
sets of samples corresponding to the analysis and synthesis models
using Algorithms 1 and 2, the posterior mean (or median) of each
set of samples can be computed as a point estimator to represent
the recovered sky image of interest and thus address the original
ill-posed reconstruction problem.

5 BAY ESI AN UNCERTAI NTY
QUANTI FI CATI ON: PROX I MAL MCMC
M E T H O D S

In this section we describe a range of uncertainty quantification
analyses that are of interest for RI imaging. The analyses require
calculating summary statistics w.r.t. the posterior p(x| y), which we
compute using the samples {x(j )}K

j=1 generated by MYULA or Px-
MALA (in the case of synthesis we generate samples {a(j )}K

j=1 from
p(a| y) and map them to the image space by using �).

The diagram in Fig. 1 shows the main components of our pro-
posed uncertainty quantification methodology based on (proximal)
MCMC methods. As is shown, firstly, the full posterior distribu-
tion of the image is sampled by MCMC methods, such as MYULA
and Px-MALA as adopted in this article. Then, various forms of
uncertainty quantification are performed. First, pixel-wise credi-
ble intervals are computed using the posterior samples. After that,
global Bayesian credible regions are computed, and are then used
to perform hypothesis testing of image structure to test whether a
structure of interest is either physical or an artefact.

5.1 Pixel-wise credible intervals

The first analysis we consider is the set of marginal credible intervals
of each image pixel, denoted by [ξ i −, ξ i +] for pixel xi. These
intervals specify the range of values that the image pixels take with
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4162 X. Cai, M. Pereyra, and J. D. McEwen

Figure 1. Our proposed uncertainty quantification procedure for RI imag-
ing based on proximal MCMC sampling. The light green areas on the right
show the types of uncertainty quantification developed. First, the full pos-
terior distribution of the image is sampled by MCMC methods, such as
MYULA and Px-MALA. Then, various forms of uncertainty quantification
are performed. Pixel-wise credible intervals (cf. error bars) are computed
using the posterior samples. Global Bayesian credible regions are computed,
again using the posterior samples, and are then used to perform hypothesis
testing of image structure to test whether a structure of interest is either
physical or an artefact.

probability (1 − α), i.e.

p(xi ∈ [ξi−, ξi+]| y) = 1 − α , i = 1, . . . , N. (46)

Pixel-wise intervals are useful for analysing local information rel-
evant to small image structures and for identifying regions of the
image with high uncertainty. For example, these can be conve-
niently visualized by constructing an image with the quantities
{ξi+ − ξi−}N

i=1 related to the length of the intervals.
To compute the marginal credible interval we simply calculate

(ξ̄i−, ξ̄i+) = quantile
({

xi
(j )
}K

j=1
,
{α

2
, 1 − α

2

})
, (47)

(ξ̂i−, ξ̂i+) = quantile
({

(�a(j ))i
}K

j=1
,
{α

2
, 1 − α

2

})
, (48)

depending on whether an analysis or a synthesis formulation is used,
respectively; we have used the fact that samples can be marginalized
implicitly by projection.

REMARK 5.1 Function quantile(·, ·) is a standard function
built into many programming languages, which, e.g. in (47) com-
putes the quantile thresholds ξ̄i− and ξ̄i+ at probabilities α/2 and
(1 − α/2), respectively. In detail, ξ̄i− and ξ̄i+ can be computed
respectively from the following definitions: visualised :

ξ̄i− = inf {ξi− : p(zi ≤ ξi−| y) ≥ α/2} ,

ξ̄i+ = inf {ξi+ : p(zi ≤ ξi+| y) ≥ 1 − α/2} , (49)

where zi denotes i-th image pixel in the canonical coordinate system.
Refer to, e.g. Koenker & Bassett (1978) for more details about
computing quantile thresholds.

5.2 Highest posterior density credibility regions

Pixel-wise intervals are useful for analysing local image structures.
To perform more sophisticated analyses it is more convenient to
compute credible regions that operate at an image level. Precisely,
in Bayesian decision theory, a set Cα ⊂ RN with α ∈ (0, 1) is a
posterior credible region with confidence level 100(1 − α) per cent

if

p(x ∈ Cα| y) =
∫
RN

p(x| y)1Cα
(x)dx = 1 − α, (50)

where 1C is the indicator function for the set C defined by 1C(u) = 1
if u ∈ C and 0 otherwise.

There are infinitely many regions Cα that satisfy the above prop-
erty. The optimal region, in the sense of compactness, is the so-called
HPD region

Cα = {x : f (x) + g(x) ≤ γα}, (51)

where the threshold γ α is set such that (50) holds, and we recall
that p(x| y) ∝ exp{−f (x) − g(x)}. The threshold γ α defines an
isocontour or level-set of the log-posterior. This region is decision-
theoretically optimal in the sense of minimum volume (Robert
2007).

The value of γ α such that (50) and (51) hold is easily estimated
from the MCMC samples. Precisely, let C̄α and Ĉα represent the
HPD regions associated with the set of samples {x(j )}K

j=1 and gen-
erated with MYULA or Px-MALA for the analysis and synthesis
models, respectively. To calculate the thresholds γ̄α and γ̂α we use
the estimators:

γ̄α = quantile
({

(f̄ + ḡ)(x(j ))
}K

j=1
, 1 − α

)
,

γ̂α = quantile
({

(f̂ + ĝ)(a(j ))
}K

j=1
, 1 − α

)
. (52)

Notice that Cα is a joint credible region operating at the image
level (as opposed to the pixel level), and therefore we use it to
analyse larger image structures. In addition, we use Cα for posterior
checks to analyse the degree of confidence in specific structure
observed in reconstructions, as discussed in the following section.

5.3 Hypothesis testing of image structure

We now describe a knock-out posterior check to assess specific areas
or structures of interest in reconstructed images. The rationale for
this test is that if the data support a specific feature that we observe
in a reconstructed image, e.g. xmap, then removing this feature from
the image is likely to lead to a point that is outside the HPD credible
region. Precisely, we use a segmentation–inpainting procedure to
carefully replace the feature of interest with background informa-
tion (although alternative procedures can certainly be considered).
If the segmented–inpainted image lies outside of the HPD region
this indicates that the likelihood strongly disagrees with the mod-
ification, and hence that the data support the feature or structure
under consideration. Conversely, if the segmented–inpainted image
is within the HPD region, this suggests that the likelihood is not
too sensitive to the modification, and therefore that the data do not
strongly support the feature or structure being scrutinized.

Algorithmically, the first step of this two-step procedure is to
generate a meaningful surrogate test image x∗,sgt. We achieve
this by taking a point estimator x∗ (e.g. the posterior mean
x̄∗ = ∑K

j=1 x(j )/K , or x̂∗ = ∑K

j=1 �a(j )/K if a synthesis model
is used) and masking out the structure of interest. This region of
the image is then filled by inpainting with background information.
Here we use a classical inpaiting approach (Cai, Chan & Shen 2008)
based on a recursive wavelet filter

x(m+1),sgt = x∗1�−�D
+ �†softλth (�x(m),sgt)1�D

, (53)

where � is the image domain, �D is the masked region, � is a
wavelet filter operator, λth is a prefixed threshold, and x(m+1),sgt is
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Uncertainty quantification for RI imaging – I 4163

Figure 2. A randomly generated visibility coverage (10 per cent of Fourier
coefficients) with size of 256 × 256.A randomly generated visibility cover-
age (10 per cent of Fourier coefficients) with size of 256 × 256. HI

the inpainted result obtained at iteration m (generally 100 iterations
suffice to achieve convergence). The second step of the procedure
is simply to check if by using (51) and (52), i.e. by evaluating
f̄ (x̄∗,sgt) + ḡ(x̄∗,sgt) and comparing to γ̄α (or to check if x̂∗,sgt /∈ Ĉα

in the synthesis setting).
Finally, note that if the test involves a large structure then the

choice of the point estimator used to construct x∗,sgt is usually not
important. However, for small structures we recommend using the
posterior median as it is closer to the boundaries of Cα than the
posterior mean and the MAP estimates.

6 EXPER IMEN TA L R ESULTS

In this section we demonstrate MYULA and Px-MALA on a range
of experiments with simulated RI observations. The generated sam-
ples are then used to compute Bayesian point estimators and to
perform various forms of uncertainty quantification.

6.1 Simulations

The following four images are used in our experiments: the H I re-
gion of the M31 galaxy (size 256 × 256 pixels) shown in Fig. 3(a);
the Cygnus A radio galaxy (size 256 × 512 pixels) shown in Fig. 4(a,
top); the W28 supernova remnant (size 256 × 256 pixels) shown in
Fig. 4(a, middle); and the 3C 288 radio galaxy (size 256 × 256 pix-
els) shown in Fig. 4(a, bottom). The hardware used to perform these
simulations and subsequent numerical experiments is a workstation
with 24 CPU cores, x86 64 architecture, and 256 GB memory. All
the codes are run on MATLAB R2015b.

To generate visibilities, a uv-coverage is generated randomly
through the variable density sampling profile (Puy, Vandergheynst
& Wiaux 2011) in half the Fourier plane with 10 per cent of Fourier
coefficients of each ground truth image; see Fig. 2 for an example of
the sampling profile. The visibilities are then corrupted by zero mean
complex Gaussian noise with standard deviation σ computed by σ

= ‖f‖∞10−SNR/20, where ‖ · ‖∞ is the infinity norm (the maximum
absolute value of components of f), and SNR (signal-to-noise ratio)
is set to 30 dB for all simulations.

The dictionary � in the analysis and synthesis models (11) and
(12) is set to Daubechies eight wavelets (therefore, we do not expect
appreciable difference between the results of the analysis and syn-
thesis models), which is implemented by using the MATLAB built-in
function wavedec2; complex wavelets or their hybrids, such as

those with overcomplete bases, are suggested for better reconstruc-
tion. The �1 regularization parameter μ in the analysis and synthesis
models is fixed to 104 by visual cross-validation. Note that, in prac-
tice, parameter μ generally needs to be selected carefully either
manually or automatically according to some appropriate criterion
(see the discussion in Section 2.3). This is beyond the scope of the
current article but application of the hierarchical Bayesian strate-
gies developed by Pereyra et al. (2015) will be considered in future
work.

In all experiments MYULA and Px-MALA are implemented us-
ing the same algorithm parameters. Precisely, we use each algorithm
to generate 103 samples from the posterior distributions (7) and (8),
with 105 burn-in iterations (these iterations correspond to the chains’
transient period and are discarded), and a thinning factor of 103 it-
erations between samples (with these settings each algorithm runs
for 1.1 × 106 iterations to produce 103 samples). We have used
these settings to simplify comparisons between MYULA and Px-
MALA, however in all our experiments MYULA converged very
quickly and could have been implemented with a significantly lower
numbers of iterations. The other parameters are set as follows: the
maximum iteration number used in (53) for segmented-inpainting
is set to 200; the range of values of α in (50) is fixed to [0.01, 0.99];
the credible intervals (47) are computed at level 95 per cent with
α = 0.05; and α is set to 0.01 (corresponding to the 99 per cent
confidence level) in (52) for hypothesis testing.

6.2 Image reconstruction

In our first experiment we apply MYULA and Px-MALA to the
M31 data and use the samples generated to compute the posterior
mean for the synthesis and the analysis models. For comparison,
we also report the dirty reconstruction obtained directly via inverse
Fourier transform of the visibilities y. The dirty image is shown in
Fig. 3(b) and compares poorly with the ground truth in Fig. 3(a).
The posterior means associated with the models (7) and (8) obtained
with MYULA and Px-MALA are displayed in panels (c)–(f). All
of these results demonstrate accurate and similar reconstruction
performance. In detail, MYULA provides slightly superior recon-
struction quality. Moreover, as we can see from Fig. 3, the difference
between the results with respect to the analysis and synthesis mod-
els is negligible (due to an orthogonal basis � being used). Fig. 4
shows the results obtained for the Cygnus A, W28, and 3C 288 data
with the analysis model, observing that these results support the
conclusions obtained from the M31 data presented in Fig. 3 (results
for the synthesis model are not reported here to avoid redundancy
because the results are very similar to those of the analysis model).

In summary, both MYULA and Px-MALA perform well for im-
age reconstruction and produce accurate point estimation results.
MYULA provides slightly superior reconstruction performance.
This is related to the fact that while Px-MALA has more accu-
rate asymptotic properties than MYULA, the superior convergence
properties of MYULA mean that it performs better in practice for a
fixed number of samples. Furthermore, to generate the same number
of samples, MYULA requires approximately half the computation
time of Px-MALA; see Table 1 for the CPU time cost in detail.

6.3 Pixel-wise credible intervals

Fig. 5 reports the length of the pixel-wise credible intervals (47) for
the M31, Cygnus A, W28, and 3C 288 data, computed with MYULA
and Px-MALA, and for the analysis and the synthesis models (7)
and (8). We observe that in this case MYULA delivers significantly
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4164 X. Cai, M. Pereyra, and J. D. McEwen

Figure 3. Image reconstructions for M31 (size 256 × 256). All images are shown in log10 scale (i.e. the numeric labels on the colour bar are the logarithms
of the image intensity). Panel (a): ground truth; (b): dirty image (reconstructed by inverse Fourier transform); (c) and (d): point estimators recovered from the
mean of the samples generated by MYULA and Px-MALA for the analysis model (11), respectively; (e) and (f): the same as (c) and (d) but for the synthesis
model (12). Clearly, consistent results between MYULA and Px-MALA, and between the analysis and synthesis models, are obtained. See further discussion
in the main text.

Figure 4. Image reconstructions for Cygnus A (size 256 × 512), W28 (size 256 × 256), and 3C 288 (size 256 × 256) (first to third rows). All images are
shown in log10 scale. First column: (a) ground truth. Second to fourth columns: (b) dirty images, (c) and (d) point estimators for the analysis model (11) using
samples generated by MYULA and Px-MALA, respectively. Clearly, consistent results between MYULA and Px-MALA are obtained. See further discussion
in the main text.
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Uncertainty quantification for RI imaging – I 4165

Figure 5. Length of pixel-wise credible intervals (95 per cent credible level). First to fourth rows are results for the images M31, Cygnus A, W28, and 3C 288,
respectively. Columns (a) and (b) are results obtained with samples generated by MYULA using the analysis and synthesis models (11) and (12), respectively;
columns (c) and (d) correspond to results obtained with Px-MALA. The results show that MYULA produces wider and smoother credible intervals, compared
to those recovered by Px-MALA. See further discussion in the main text.

better results than Px-MALA; the difference in the estimates illus-
trates clearly the bias-variance tradeoff related to the MH step in
Px-MALA. Precisely, MYULA produces stable smooth estimates
with low estimation variance, but which suffer from some estima-
tion bias and overestimates uncertainties as a result. If necessary,
this bias can be reduced by decreasing the value of λ. Conversely,
the estimates obtained with Px-MALA are unstable and suffer from
high estimation variance; however, they do not exhibit a noticeable
bias as this is corrected by the MH step. Note that the amount of bias
and variance observed are not universal properties of the MYULA
and Px-MALA chains. They depend on the quantities that are esti-
mated, and this is why they are visible in the marginal quantiles but
not on the posterior means reported in Fig. 4.

Furthermore, by inspecting Fig. 5 we observe that the pixels
close to object boundaries have wider credible intervals than the
pixels in homogenous regions. This is related to the fact that there
is uncertainty about the high-frequency components of the image
because of the sampling profile (see Fig. 2). Similarly, we observe
regular oscillations related to frequencies that are not measured by

the sampling profile. Finally, as expected, we note that the analysis
and synthesis models produce similar results.

6.4 HPD credibility regions

Fig. 6 shows the values of the HPD isocontour threshold γ α (α
∈ [0.01, 0.99]), defined in (51), computed with MYULA and Px-
MALA using (52) for the synthesis and analysis models (red and
blue colours are used to represent the results of the analysis and
synthesis models, respectively). We observe that the MYULA and
Px-MALA estimates are in agreement with each other. Similarly, the
analysis and the synthesis models produce similar results. The minor
differences in the estimates are again related to the bias–variance
tradeoff of Px-MALA (MYULA produces estimates that are larger
than Px-MALA but which are also more consistent, whereas Px-
MALA estimates have less bias but are also less consistent because
of a higher estimation variance).
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4166 X. Cai, M. Pereyra, and J. D. McEwen

Figure 6. HPD credible region isocontour levels γ α , computed by MYULA (first row) and Px-MALA (second row), for test images (a) M31, (b) Cygnus A,
(c) W28, and (d) 3C 288, for the analysis and synthesis models. Clearly, consistent results between Px-MALA and MYULA, and between the analysis and
synthesis models, are obtained. Minor differences are discussed in the main text.

Table 1. CPU time in minutes for MYULA and Px-MALA, for the M31,
Cygnus A, W28, and 3C 288 experiments, with respect to the analysis and
synthesis models (11) and (12). The results show that MYULA is much more
economical than Px-MALA, requiring approximately half the computation
time of Px-MALA. However, by including an MH accept–reject step Px-
MALA removes asymptotic bias.

Images Methods CPU time (min)
Analysis Synthesis

M31 (Fig. 3) MYULA 618 581
Px-MALA 1307 944

Cygnus A (Fig. 4) MYULA 1056 942
Px-MALA 2274 1762

W28 (Fig. 4) MYULA 646 598
Px-MALA 1122 879

3C 288 (Fig. 4) MYULA 607 538
Px-MALA 1144 881

In the following section we use the HDP regions related to Fig. 6
to perform uncertainty quantification analyses and posterior checks
for specific image structures.

6.5 Hypothesis testing of image structure

We now illustrate our methodology for testing structure in recon-
structed images. We consider the five structures depicted in yellow
in the first column of Fig. 7. All of these structures are physical (i.e.
present in the ground truth images), while for structure 2 in 3C 288
is a reconstruction artefact.

Recall that the methodology proceeds as follows. First, we con-
struct a surrogate test image x∗,sgt by modifying a point estimator
(e.g. the sample mean or sample media image) by removing the
structure of interest via segmentation–inpaiting (e.g. by using 53,
but results are generally not sensitive to the exact method used).
Secondly, we check if x∗,sgt /∈ Cα to determine whether there is
strong evidence in favour of the structure considered. Conclusions

are generally not highly sensitive to the exact value of α; here we
report results for α = 0.01 related to a 99 per cent credible level.

The results of these experiments are summarized in Tables 2
and 3, which have been computed by using the posterior mean and
the posterior median, respectively, to reconstruct x̂∗,sgt. We observe
that the same overall conclusions are largely obtained no matter
which sampling method is used (MYULA or Px-MALA) or what
model is applied (analysis model or synthesis model), indicating that
the procedure is robust. Moreover, we observe that the three large
physical structures are correctly classified and the reconstruction
artefact is correctly highlighted as a structure for which there is lack
of evidence. The structure in Cygnus A (see Fig. 7) is very small,
containing only a few bright pixels that can easily be confused as
noise, and it is typically highlighted as potentially non-physical. The
only difference between Tables 2 and 3 is the result of MYULA for
the structure of Cygnus A, where the structure is correctly classified
as physical when using the posterior median. This is due to the
fact that the posterior median is closer to the boundary of Cα and
has better sensitivity to small structures as a result. Therefore, we
recommend using the median sample for testing. In summary, the
proposed methodology, coupled with efficient MCMC sampling
by MYULA, provides a powerful framework to perform detailed
uncertainty analyses.

To conclude, we emphasize again that the standard methods for
RI imaging, such as CLEAN-based methods, MEM, and CS-based
methods, cannot provide error margins for their solutions, let alone
support the detailed uncertainty quantification analyses presented
in this article, which includes the calculation of local (pixel-wise)
credible intervals, global HPD credible regions, and tests for image
structure.

7 C O N C L U S I O N S

Uncertainty quantification is an important missing component in
RI imaging that will only become increasingly important as the
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Uncertainty quantification for RI imaging – I 4167

Figure 7. Hypothesis testing for M31, Cygnus A, W28, and 3C 288. The
five structures depicted in yellow are considered, all of which are physical
(i.e. present in the ground truth images), except for structure 2 in 3C 288,
which is a reconstruction artefact. First column (a): point estimators obtained
by MYULA for the analysis model (11) (shown in log10 scale). Second
column (b): segmented–inpainted surrogate test images with information in
the yellow rectangular areas removed and replaced by inpainted background
(shown in log10 scale). Hypothesis testing is then performed to test whether
the structure considered is physical by checking whether the surrogate test
images shown in (b) fall outside of the HPD credible regions. Results of
these hypothesis tests are specified in Tables 2 and 3. Note that for the
case shown in the last row the structures within areas 1 and 2 are tested
independently.

big-data era of radio interferometry emerges. No existing RI imag-
ing techniques that are used in practice (e.g. CLEAN, MEM, or CS
approaches) provide uncertainty quantification. Recent techniques
that do provide some form of uncertainty information only support
restrictive classes of priors (typically Gaussian or lognormal) and do
not scale to big-data. While sparsity-promoting priors have shown
a great deal of promise for RI imaging (e.g. Pratley et al. 2018) and
are receiving a great deal of attention, it has not previously been
possible to quantify uncertainty information when adopting sparse
priors. Traditional MCMC sampling approaches that provide un-
certainty information and scale to high-dimensional settings, such
as RI imaging, often exploit gradient information and cannot sup-
port non-differentiable sparse priors. In the current article we solve
precisely this problem.

We formulate the RI imaging problem in a Bayesian frame-
work and consider two image models – the analysis and synthe-
sis models – where sparse priors in a suitable signal representa-
tion (e.g. wavelet basis) are adopted. To perform Bayesian infer-
ence for models with sparse priors we consider two innovative
MCMC sampling techniques, MYULA and Px-MALA, to sample
the full, high-dimensional posterior image distribution. These so-
called proximal MCMC techniques exploit proximal calculus to
handle non-differentiable prior distributions in high dimensional
settings.

Once the full posterior distribution is recovered, a single image
is obtained from a point estimator and a variety of methods are
presented to perform different types of uncertainty quantification.
Pixel-wise credible intervals are computed from the posterior dis-
tribution to provide, essentially, error bars for each individual pixel
of the recovered image. HPD credible regions are determined for
the entire reconstruction, which are then used to perform hypoth-
esis tests of image structure to determine whether the structure is
physical or an artefact.

We evaluated our methods on several test images that are repre-
sentative in RI imaging. Simple simulations of RI observations were
performed and Px-MALA and MYULA were used to sample the
full image posterior distribution, from which the uncertainty quan-
tification techniques outlined above were applied. Accurate point
estimates of recovered images and meaningful uncertainty informa-
tion were obtained. While Px-MALA is guaranteed to converge to
the target distribution, MYULA exhibits an asymptotic bias that can
be made arbitrarily small. MYULA, however, does not involve an
MH accept-reject step which slows convergence considerably for
Px-MALA.

In summary, we develop proximal MCMC techniques to sample
the full image posterior distribution for RI imaging for the sparse
priors that have been shown in practice to be highly effective. From
the posterior distribution a point estimate of the image can be com-
puted and uncertainty information regarding the accuracy of the
reconstructed image can be quantified in a variety of ways. These
forms of uncertainty quantification provide rich information for
analysing RI observations in a statistically robust manner.

In future work the techniques presented here will be extended
to consider more complex models, for example with overcomplete
dictionaries and for �p priors with 0 ≤ p < 1, which can provide a
stronger sparsity constraint than the �1 prior. Furthermore, we will
investigate optimal techniques for setting the regularization param-
eter in a hierarchical Bayesian framework, applying the strategies
developed by Pereyra et al. (2015). A more realistic measurement
operator that better models real radio interferometry telescopes can
be easily incorporated in our framework simply by replacing the
measure operator � adopted.

We have so far considered the telescope calibration parameters
to be estimated a priori and then fixed. Similarly to μ, one can also
consider hierarchical and empirical Bayesian approaches to fix or
marginalize calibration parameters. In terms of uncertainty quantifi-
cation, marginalization has the advantage of integrating the uncer-
tainty w.r.t. calibration parameters in the analyses, whereas methods
that fix calibration parameters neglect this source of uncertainty. We
emphasize at this point that performing RI imaging and calibration
jointly is a challenging problem because of the dimensionality in-
volved, and this difficulty also extends to uncertainty quantification.
Consequently, we leave this problem for future consideration.

For massive data sizes, e.g. big-data, like those anticipated from
the SKA, it will be difficult if not impossible to apply any MCMC
technique due to its inherent computational cost. In the compan-
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Table 2. Hypothesis test results for test structures shown in Fig. 7 for M31, Cygnus A, W28, and 3C 288. Note that γ α represents the isocontour defining the
HPD credible region at credible level (1 − α), where here α = 0.01, x∗,sgt represents the surrogate of point estimator x∗ (sample mean), and (f + g)(·) represents
the objective function; symbols with labels¯andˆare related to the analysis model (11) and the synthesis model (12), respectively. Symbol � indicates that the
test area is artificial (and no strong statistical statement can be made as to the area), while � indicates that the test area is physical. All values are in units 106.
Clearly, MYULA and Px-MALA give convincing and consistent hypothesis test results.

Images Test Ground Method (f̄ + ḡ)(x̄∗,sgt) Isocontour (f̂ + ĝ)(�† x̂∗,sgt) Isocontour Hypothesis
areas truth γ̄0.01 γ̂0.01 test

M31 (Fig. 7) 1 � MYULA 2.20 2.34 2.20 2.34 �
Px-MALA 2.44 2.34 2.43 2.34 �

Cygnus A (Fig. 7) 1 � MYULA 1.09 1.59 1.09 1.59 �

Px-MALA 1.17 1.26 1.18 1.27 �

W28 (Fig. 7) 1 � MYULA 3.43 1.96 3.43 1.96 �
Px-MALA 3.38 1.84 3.37 1.85 �

3C 288 (Fig. 7) 1 � MYULA 3.02 2.03 3.02 2.03 �
Px-MALA 3.27 2.02 3.25 2.01 �

2 � MYULA 1.752 2.032 1.752 2.031 �

Px-MALA 1.971 2.027 1.954 2.010 �

Table 3. Same as Table 2 but based on the sample median instead of the sample mean (the mean is considered for Table 2). This table shows that hypothesis
tests based on the median, when using MYULA to generate samples, are able to detect very small structure, such as the test region of Cygnus A.

Images Test Ground Method (f̄ + ḡ)(x̄∗,sgt) Isocontour (f̂ + ĝ)(�† x̂∗,sgt) Isocontour Hypothesis
areas truth γ̄0.01 γ̂0.01 test

M31 (Fig. 7) 1 � MYULA 2.47 2.34 2.48 2.34 �
Px-MALA 2.46 2.34 2.46 2.34 �

Cygnus A (Fig. 7) 1 � MYULA 1.597 1.586 1.595 1.586 �
Px-MALA 1.205 1.262 1.216 1.274 �

W28 (Fig. 7) 1 � MYULA 3.67 1.96 3.67 1.96 �
Px-MALA 3.41 1.84 3.39 1.85 �

3C 288 (Fig. 7) 1 � MYULA 3.30 2.03 3.30 2.03 �
Px-MALA 3.29 2.02 3.27 2.01 �

2 � MYULA 2.026 2.032 2.027 2.031 �

Px-MALA 1.994 2.027 1.977 2.010 �

ion article (Cai et al. 2017b) we show how to scale the uncertainty
quantification techniques presented in this article to big-data, ex-
ploiting recent developments in probability theory and again sup-
porting the sparse priors that have been shown to be so effective in
practice.
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