Supplementary material for Kinetic energy choice in Hamiltonian/hybrid Monte Carlo

A. Proofs of propositions

Proof of proposition 1. (i) In Lemma B1 we show that $\int e^{\gamma\|x\|-U(x)} d x=\infty$ for any $\gamma>0$, and in Lemma B2 that for any $\eta>0$ there is an $r<\infty$ such that $P\left\{x, B_{r}(x)\right\}>1-\eta$. Theorem 2.2 of Jarner \& Tweedie (2003) establishes that if these two conditions hold then the resulting Markov chain cannot be geometrically ergodic.
(ii) Lemmas B4, B5 and B6 show that when (7)-(12) hold, with probability one $\lim _{\left\|x_{0}\right\| \rightarrow \infty} \triangle\left(x_{0}, p_{0}\right)=\infty, \quad$ where $\quad \triangle\left(x_{0}, p_{0}\right)=\left(\left\|x_{L \varepsilon}\right\|+\left\|p_{L \varepsilon}\right\|\right)-\left(\left\|x_{0}\right\|+\left\|p_{0}\right\|\right) . \quad$ Under \quad (9) this implies that with probability one $\lim _{\left\|x_{0}\right\| \rightarrow \infty} \triangle H\left(x_{0}, p_{0}\right)=\infty$, where $\triangle H\left(x_{0}, p_{0}\right)=$ $H\left(x_{L \varepsilon}, p_{L \varepsilon}\right)-H\left(x_{0}, p_{0}\right)$. This in turn implies that with probability one $\lim _{\left\|x_{0}\right\| \rightarrow \infty} \alpha\left(x_{0}, x_{L \varepsilon}\right)=0$, which, using Proposition 5.1 of Roberts \& Tweedie (1996), establishes the result.

Proof of proposition 2. For the first part, note that the assumptions imply

$$
\|\nabla K \circ \nabla U(x)\| \leq C\left(A\|x\|^{q}+B\right)^{1 / q}+D
$$

which implies $\lim \sup _{\|x\| \rightarrow \infty}\|\nabla K \circ \nabla U(x)\| /\|x\|<\infty$ as required. We prove the second part by induction. Precisely, we show that assuming $\left\|p_{i \varepsilon}\right\| \leq E_{i}\left\|x_{i \varepsilon}\right\|^{q}+F_{i}$ for some $E_{i}, F_{i}<\infty$ implies $\left\|p_{(i+1) \varepsilon}\right\| \leq$ $E_{i+1}\left\|x_{i \varepsilon}\right\|^{q}+F_{i+1}$ and $\left\|x_{(i+1) \varepsilon}\right\| \leq G_{i}\left\|x_{i \varepsilon}\right\|+H_{i}$ for $E_{i+1}, F_{i+1}, G_{i}, H_{i}<\infty$. These in turn imply the result. First note that

$$
\begin{aligned}
\left\|x_{(i+1) \varepsilon}-x_{i \varepsilon}\right\| & =\varepsilon\left\|\nabla K\left\{p_{i \varepsilon}-\frac{\varepsilon}{2} \nabla U\left(x_{i \varepsilon}\right)\right\}\right\| \\
& \leq \varepsilon C\left\|p_{i \varepsilon}-\frac{\varepsilon}{2} \nabla U\left(x_{i \varepsilon}\right)\right\|^{1 / q}+\varepsilon D \\
& \leq \varepsilon C\left\{\left\|p_{i \varepsilon}\right\|+\frac{\varepsilon}{2}\left\|\nabla U\left(x_{i \varepsilon}\right)\right\|\right\}^{1 / q}+\varepsilon D .
\end{aligned}
$$

Using $\left\|\nabla U\left(x_{i \varepsilon}\right)\right\| \leq A\left\|x_{i \varepsilon}\right\|^{q}+B$ gives

$$
\left\|x_{(i+1) \varepsilon}\right\| \leq\left\|x_{i \varepsilon}\right\|+\varepsilon C\left\{\left(E_{i}+\varepsilon A / 2\right)\left\|x_{i \varepsilon}\right\|^{q}+\varepsilon B / 2\right\}^{1 / q}+\varepsilon D
$$

Given this we can choose $G_{i}=\varepsilon C\left(E_{i}+\varepsilon A / 2+\varepsilon B / 2\right)^{1 / q}+1$ and $H_{i}=\varepsilon C\left(E_{i}+\varepsilon A / 2+\right.$ $\varepsilon B / 2)^{1 / q}+\varepsilon D$ to see that

$$
\left\|x_{(i+1) \varepsilon}\right\| \leq G_{i}\left\|x_{i \varepsilon}\right\|+H_{i}
$$

Iterating gives

$$
\left\|x_{(i+1) \varepsilon}\right\| \leq \mathbf{G}_{L}\left\|x_{0}\right\|+\mathbf{H}_{L}
$$

where $\quad \mathbf{G}_{L}=G_{L-1} G_{L-2} \ldots G_{0} \quad$ and $\quad \mathbf{H}_{L}=H_{L-1}+G_{L-1} H_{L-2}+G_{L-1} G_{L-2} H_{L-3}+\ldots+$ $G_{L-1} \ldots G_{1} H_{0}$. Next recall that

$$
\begin{aligned}
\left\|p_{(i+1) \varepsilon}-p_{i \varepsilon}\right\| & =\frac{\varepsilon}{2}\left\|\nabla U\left(x_{i \varepsilon}\right)+\nabla U\left(x_{(i+1) \varepsilon}\right)\right\| \\
& \leq \frac{\varepsilon}{2}\left\{\left\|\nabla U\left(x_{i \varepsilon}\right)\right\|+\left\|\nabla U\left(x_{(i+1) \varepsilon}\right)\right\|\right\} \\
& \leq \frac{\varepsilon}{2}\left(A\left\|x_{i \varepsilon}\right\|^{q}+A\left\|x_{(i+1) \varepsilon}\right\|^{q}+2 B\right) \\
& \leq \frac{\varepsilon}{2}\left\{A\left\|x_{i \varepsilon}\right\|^{q}+A\left(G_{i}\left\|x_{i \varepsilon}\right\|+H_{i}\right)^{q}+2 B\right\} \\
& \leq \frac{\varepsilon}{2}\left[A\left\{1+\left(G_{i}+H_{i}\right)^{q}\right\}\left\|x_{i \varepsilon}\right\|^{q}+A\left(G_{i}+H_{i}\right)^{q}+2 B\right]
\end{aligned}
$$

Combining with the assumption that $\left\|p_{i \varepsilon}\right\| \leq E_{i}\left\|x_{i \varepsilon}\right\|^{q}+F_{i}$, gives

$$
\left\|p_{(i+1) \varepsilon}\right\| \leq\left[E_{i}+\frac{\varepsilon}{2} A\left\{1+\left(G_{i}+H_{i}\right)^{q}\right\}\right]\left\|x_{i \varepsilon}\right\|^{q}+\frac{\varepsilon}{2}\left\{A\left(G_{i}+H_{i}\right)^{q}+2 B\right\}+F_{i}
$$

Setting $E_{i+1}=\left[E_{i}+\varepsilon A\left\{1+\left(G_{i}+H_{i}\right)^{q} / 2\right\}\right]$ and $F_{i+1}=\varepsilon\left\{A\left(G_{i}+H_{i}\right)^{q}+2 B\right\} / 2+F_{i}$ then gives $\left\|p_{(i+1) \varepsilon}\right\| \leq E_{i+1}\left\|x_{i \varepsilon}\right\|^{q}+F_{i+1}$. Iterating then gives $\left\|p_{L \varepsilon}\right\| \leq E_{L}\left\|x_{0}\right\|^{q}+F_{L}$. Recalling that $\left\|p_{0}\right\| \leq$ $E_{0}\left\|x_{0}\right\|^{q}+F_{0}$ by assumption completes the proof.

Proof of proposition 3. Consider the event $B=\left\{4\left\|p_{0}\right\| \leq \varepsilon\left\|\nabla U\left(x_{0}\right)\right\|\right\}$, and note that $\lim _{\|x\| \rightarrow \infty} \operatorname{pr}(B)=1$. We use the facts that $\left\|x_{L \varepsilon}-x_{0}\right\| \leq \sum_{i=1}^{L-1}\left\|x_{(i+1) \varepsilon}-x_{i \varepsilon}\right\|$, and that for
any $i \in\{0, \ldots, L-1\}$

$$
\begin{equation*}
\left\|x_{(i+1) \varepsilon}-x_{i \varepsilon}\right\|=\varepsilon\left\|\nabla K\left(p_{\frac{2 i+1}{2} \varepsilon}\right)\right\| . \tag{A1}
\end{equation*}
$$

Taking $i=0$ gives

$$
\left\|x_{\varepsilon}-x_{0}\right\|=\varepsilon\left\|\nabla K\left\{p_{0}-\varepsilon \nabla U\left(x_{0}\right) / 2\right\}\right\| .
$$

Since $4\left\|p_{0}-\varepsilon \nabla U\left(x_{0}\right) / 2\right\| \geq \varepsilon\left\|\nabla U\left(x_{0}\right)\right\|$ under B, it follows from the fact that $\pi(\cdot)$ is light-tailed and $\nu(\cdot)$ heavy-tailed that for every $\delta>0$ there is an $M<\infty$ such that whenever $\left\|x_{0}\right\|>M$ then $\left\|\nabla K\left(p_{\varepsilon / 2}\right)\right\|<\delta / \varepsilon$. Thus $\left\|x_{\varepsilon}-x_{0}\right\|$ can be made arbitrarily small by choosing an x_{0} with large enough norm.

Recall that $\nabla U(x)$ is continuous by assumption. It follows from the preceding argument that for any $\gamma_{1}>0$ we can choose an x_{0} with large enough norm that $\left\|\nabla U\left(x_{\varepsilon}\right)-\nabla U\left(x_{0}\right)\right\|<\gamma_{1}$ under B.

To complete the proof we show that if $\sum_{j=1}^{i}\left\|x_{j \varepsilon}-x_{(j-1) \varepsilon}\right\|<\delta / 2$ then $\left\|x_{(i+1) \varepsilon}-x_{i \varepsilon}\right\| \leq \delta / 2$ under B. Combining this with the previous paragraphs establishes that for any $\delta>0$ then there is an x_{0} with large enough norm that $\left\|x_{L \varepsilon}-x_{0}\right\|<\delta$ if event B holds, establishing the result.

From equation (A1) the key factor in controlling $\left\|x_{(i+1) \varepsilon}-x_{i \varepsilon}\right\|$ is $\left\|p_{(i+1 / 2) \varepsilon}\right\|$, which can be lower bounded using

$$
\begin{equation*}
\left\|p_{(i+1 / 2) \varepsilon}\right\| \geq \frac{2 i+1}{2} \varepsilon\left\|\nabla U\left(x_{0}\right)\right\|+\varepsilon \sum_{j=1}^{i}\left\|\nabla U\left(x_{j \varepsilon}\right)-\nabla U\left(x_{0}\right)\right\|-\left\|p_{0}\right\| \tag{A2}
\end{equation*}
$$

If for any $\delta>0$ we can choose an x_{0} with large enough norm that $\sum_{j=1}^{i}\left\|x_{j \varepsilon}-x_{(j-1) \varepsilon}\right\|<\delta / 2$ then $\sum_{j=1}^{i}\left\|\nabla U\left(x_{j \varepsilon}\right)-\nabla U\left(x_{0}\right)\right\|$ can be made arbitrarily small through the same continuity argument made above. Thus, under B it holds that $\left\|p_{(i+1 / 2) \varepsilon}\right\| \geq i \varepsilon\left\|\nabla U\left(x_{0}\right)\right\|$, from which it follows that $\left\|x_{(i+1) \varepsilon}-x_{i \varepsilon}\right\|$ can be made arbitrarily small by choosing $\left\|x_{0}\right\|$ large enough.

Proof of proposition 4. It is shown in chapter 16 of Meyn \& Tweedie (1993) that a geometric convergence bound is equivalent to the drift condition $\int V(y) P(x, d y) \leq \lambda V(x)$ whenever x is outside some small set C, where $\lambda<1$. Lemma B7 establishes that if (14) holds then any small set must be bounded.

Hence if a geometric bound holds here then

$$
\begin{equation*}
\limsup _{\|x\| \rightarrow \infty} \frac{\int V(y) P(x, d y)}{V(x)}<1 \tag{A3}
\end{equation*}
$$

For any $\delta>0$ we can write

$$
\begin{aligned}
\int V(y) P(x, d y) & =\int_{B_{\delta}(x)} V(y) P(x, d y)+\int_{B_{\delta}^{c}(x)} V(y) P(x, d y) \\
& \geq \int_{B_{\delta}(x)} V(y) P(x, d y)+\epsilon
\end{aligned}
$$

where $\epsilon=P\left\{x, B_{\delta}^{c}(x)\right\}$. If (i) holds then we can choose a $\delta<\delta^{\prime}$, so that

$$
\int_{\mathcal{B}_{\delta}(x)} e^{\log V(y)-\log V(x)} P(x, d y)+\epsilon \geq \int_{\mathcal{B}_{\delta}(x)} e^{-\epsilon^{\prime}} P(x, d y)+\epsilon=e^{-\epsilon^{\prime}}(1-\epsilon)+\epsilon
$$

Noting that both ϵ and ϵ^{\prime} can be made arbitrarily small as $\|x\| \rightarrow \infty$, this expression tends to 1 in the same limit, proving the result. If (ii) holds, note that $\liminf _{\|x\| \rightarrow \infty} V(x) e^{-s\|x\|}=c$ implies that $\forall \epsilon^{\prime}>0$ there is an $M<\infty$ such that $V(x) e^{-s\|x\|} \geq c-\epsilon^{\prime}$ whenever $\|x\| \geq M$. This means that when $\|x\|>M$

$$
\int_{\mathcal{B}_{\delta}(x)} V(y) P(x, d y)+\epsilon \geq\left(c-\epsilon^{\prime}\right) \int_{\mathcal{B}_{\delta}(x)} e^{-s\|y\|} P(x, d y)+\epsilon .
$$

Condition (ii) also implies that for all $\epsilon^{\prime}>0$, there is a sequence $\left\{x_{i}\right\}_{i \geq 1}$ for which $\left\|x_{i}\right\| \rightarrow \infty$ as $i \rightarrow \infty$ such that whenever $i \geq N$ for some $N<\infty$ then $\left\|x_{i}\right\|>M$ and the condition $V\left(x_{i}\right) e^{-s\left\|x_{i}\right\|} \leq c+\epsilon^{\prime}$ holds. Combining gives that for all $i \geq N$

$$
\int \frac{V(y)}{V\left(x_{i}\right)} P\left(x_{i}, d y\right) \geq \frac{\left(c-\epsilon^{\prime}\right)}{\left(c+\epsilon^{\prime}\right)} e^{-s \delta}(1-\epsilon)+\frac{\epsilon}{V\left(x_{i}\right)} .
$$

Since $\epsilon, \epsilon^{\prime}$ and δ can all be made arbitrarily small and $V\left(x_{i}\right) \rightarrow \infty$ as $\left\|x_{i}\right\| \rightarrow \infty$, then this proves the result.

Proof of proposition 5. Assume $H\left(x_{0}, p_{0}\right)=E$ and $x_{0}=0, p_{0}=(\beta E)^{\frac{1}{\beta}}$. Take $4 T$ to be the period length, and note that by the symmetry of the Hamiltonian in question this implies that $p_{T}=0$ and $x_{T}=$ $(\alpha E)^{\frac{1}{\alpha}}$. Then

$$
\mathcal{P}(E)=4 \int_{0}^{T} d t=4 \int_{0}^{x_{T}} \frac{d t}{d x_{t}} d x_{t}=4 \int_{0}^{x_{T}} p_{t}^{1-\beta} d x_{t}
$$

Setting $b=(1-\beta) / \beta, c_{\beta}=\beta^{b}$ and noting that $p_{t}^{1-\beta}=c_{\beta}\left(E-\alpha^{-1} x_{t}^{\alpha}\right)^{b}$ for $t \in[0, T]$, then the expression can be written

$$
\mathcal{P}(E)=4 c_{\beta} \int_{0}^{x_{T}}\left(E-\alpha^{-1} x_{t}^{\alpha}\right)^{b} d x_{t}
$$

Applying the change of variables $y_{t}=(\alpha E)^{-1 / \alpha} x_{t}$ and setting $c_{\alpha}=\alpha^{1 / \alpha}$ gives

$$
P(E)=4 c_{\beta} c_{\alpha} E^{b+1 / \alpha} \int_{0}^{1}\left(1-y_{t}^{\alpha}\right)^{b} d y_{t}
$$

where. Now, we have that $\mathcal{P}(E)=f\left(E^{\eta}\right)$, for some function f, where

$$
\eta=\frac{1-\beta}{\beta}+\frac{1}{\alpha}=\frac{1-(\beta-1)(\alpha-1)}{\alpha \beta} .
$$

Setting $\alpha=1+\gamma$ and $\beta=1+\gamma^{-1}$ for some $\gamma>0$ gives

$$
\eta=\frac{1-\gamma \gamma^{-1}}{(1+\gamma)\left(1+\gamma^{-1}\right)}=0
$$

as required.

Proof of proposition 6. Set $\gamma(x)=\min \left[\frac{\varepsilon}{4}\|\nabla U(x)\|,\left\|\nabla^{2} K\left\{\frac{\varepsilon}{4} \nabla U(x)\right\}\right\|^{-1 / 2}\right]$, and note that $\lim _{\|x\| \rightarrow \infty} \operatorname{pr}_{\nu}\{\|p\| \leq \gamma(x)\}=1$. For $\|p\| \leq \gamma(x)$, as a direct consequence of the mean value inequality (Dieudonné, 1961)

$$
\left\|\nabla K\left\{\frac{\varepsilon}{2} \nabla U(x)-p\right\}-\nabla K\left\{\frac{\varepsilon}{2} \nabla U(x)\right\}\right\| \leq M(x)\|p\|,
$$

where $M(x)=\sup _{\{4\|p\| \geq \varepsilon\|\nabla U(x)\|\}}\left\|\nabla^{2} K(p)\right\|$. As the right-hand side tends to 0 as $\|x\| \rightarrow \infty$, then the result follows.

B. Technical results

Lemma B 1. If $\pi(\cdot)$ is heavy-tailed then for every $\gamma>0$

$$
\int e^{\gamma\|x\|-U(x)} d x=\infty
$$

Proof. Choose $\delta<\gamma$. Let B be a Euclidean ball centred at the origin such that $\|\nabla U(x)\| \leq \delta$ whenever $x \notin B$. By continuity of $U(x)$, there is an $M<\infty$ such that $U(x) \leq M$ for all $x \in \partial B$. Then for
all $x \notin B$ the integrand is bounded below by $e^{(\gamma-\delta)\|x\|-M}$, which diverges uniformly and hence is not integrable.

Lemma B2. If $\pi(x)$ is heavy-tailed then for any $\eta>0$ there is an $r<\infty$ such that

$$
P\left\{x, B_{r}(x)\right\}>1-\eta
$$

Proof. We need to show that $Q\left\{x, B_{r}(x)\right\}>1-\eta$, for any x. After one leapfrog step we have

$$
\begin{aligned}
& x_{\varepsilon}=x_{0}+\varepsilon \nabla K\left\{p_{0}-\frac{\varepsilon}{2} \nabla U\left(x_{0}\right)\right\} \\
& p_{\varepsilon}=p_{0}-\frac{\varepsilon}{2} \nabla U\left(x_{0}\right)-\frac{\varepsilon}{2} \nabla U\left(x_{\varepsilon}\right)
\end{aligned}
$$

Write $\|x\|_{\infty}$ for the supremum norm, and note that by equivalence of norms in finite dimensions we can write $\|x\|_{\infty} \leq C\|x\|$ for all x, for some $C<\infty$. We have that $\nabla U(x) \in C_{0}\left(\mathbb{R}^{d}\right)$, which implies $\|\nabla U(x)\|<M / C$ for some $M<\infty$ which does not depend on x, so that $\|\nabla U(x)\|_{\infty}<M$. The class of distributions for $\left\{p_{0}-\varepsilon \nabla U\left(x_{0}\right) / 2\right\}$ is therefore tight. Now recall that if f is a locally bounded function, and \mathcal{F} a tight family of probability measures, then the resulting family of probability measures induced by pushing forward each element of \mathcal{F} through f is also tight. So since ∇K is continuous and hence locally bounded, the result follows.

Lemma B3. If (7) and (10) hold then

$$
\begin{equation*}
\lim _{\|x\| \rightarrow \infty} \frac{\left\|\nabla K\left\{\frac{\varepsilon}{4} \nabla U(x)\right\}\right\|}{\|x\|}=\infty \tag{B1}
\end{equation*}
$$

Proof. First we re-write the expression

$$
\lim _{\|x\| \rightarrow \infty} \frac{\left\|\nabla K\left\{\frac{\varepsilon}{4} \nabla U(x)\right\}\right\|}{\|x\|}=\lim _{\|x\| \rightarrow \infty} \frac{\left\|\nabla K\left\{\frac{\varepsilon}{4} \nabla U(x)\right\}\right\|\|\nabla K \circ \nabla U(x)\|}{\|\nabla K \circ \nabla U(x)\|} \frac{\|x\|}{\|}
$$

Now, (10) implies that the first term will be bounded below by a finite positive constant, while (7) ensures that the second will have an infinite limit, proving the result.

Lemma B4. If $\pi(\cdot)$ is light-tailed, (7) and either of (11) or (12) hold and $\left\|p_{0}\right\| \leq$ $\frac{\varepsilon}{4} \min \left\{\left\|\nabla U\left(x_{0}\right)\right\|,\left\|\nabla U\left(x_{0}\right)\right\|_{\infty}\right\}$ then there is a $\gamma_{M}<\infty$ such that, provided $\left\|x_{0}\right\| \geq \gamma_{M}$, it holds that $\left\|x_{\varepsilon}\right\| \geq M\left\|x_{0}\right\|$, for any $M<\infty$.

Proof. Note

$$
\left\|x_{\varepsilon}\right\|=\left\|x_{0}+\varepsilon \nabla K\left\{p_{0}-\frac{\varepsilon}{2} \nabla U\left(x_{0}\right)\right\}\right\| \geq \varepsilon\left\|\nabla K\left\{p_{0}-\frac{\varepsilon}{2} \nabla U\left(x_{0}\right)\right\}\right\|-\left\|x_{0}\right\|
$$

It is therefore sufficient to show that for any $M<\infty$ we can choose an $\left\|x_{0}\right\|$ large enough that

$$
\left\|\nabla K\left\{p_{0}-\frac{\varepsilon}{2} \nabla U\left(x_{0}\right)\right\}\right\| \geq \frac{(M+1)}{\varepsilon}\left\|x_{0}\right\|
$$

Under (11), note that

$$
\left\|p_{0}-\frac{\varepsilon}{2} \nabla U\left(x_{0}\right)\right\| \geq \frac{\varepsilon}{2}\left\|\nabla U\left(x_{0}\right)\right\|-\left\|p_{0}\right\| \geq \frac{\varepsilon}{4}\left\|\nabla U\left(x_{0}\right)\right\|,
$$

which implies

$$
\left\|\nabla K\left\{p_{0}-\frac{\varepsilon}{2} \nabla U\left(x_{0}\right)\right\}\right\| \geq\left\|\nabla K\left\{\frac{\varepsilon}{4} \nabla U\left(x_{0}\right)\right\}\right\|
$$

By (B1), therefore, if $\left\|x_{0}\right\|$ is chosen to be large enough then this can be made $\geq(M+1)\left\|x_{0}\right\| / \varepsilon$, for any finite M, proving the result.

Under (12), recall that there exists global constants $C, c>0$ such that $C\|\nabla U(x)\| \geq\|\nabla U(x)\|_{\infty} \geq$ $c\|\nabla U(x)\|$ for all $x \in \mathbb{R}^{d}$. It suffices in this setting therefore to show that we can choose an $\left\|x_{0}\right\|$ large enough that

$$
\left\|\nabla K\left\{p_{0}-\frac{\varepsilon}{2} \nabla U\left(x_{0}\right)\right\}\right\|_{\infty} \geq \frac{C(M+1)}{\varepsilon}\left\|x_{0}\right\|
$$

We have

$$
\left\|\nabla K\left\{p_{0}-\frac{\varepsilon}{2} \nabla U\left(x_{0}\right)\right\}\right\|_{\infty}=\max _{j}\left|k^{\prime}\left\{p_{0}(j)-\partial_{j} U\left(x_{0}\right)\right\}\right| .
$$

Write i^{*} and j^{*} to denote the indices for which $\left\|p_{0}-\nabla U\left(x_{0}\right)\right\|_{\infty}=\left|p_{0}\left(i^{*}\right)-\partial_{i^{*}} U\left(x_{0}\right)\right|$ and $\left\|\nabla U\left(x_{0}\right)\right\|_{\infty}=\left|\partial_{j^{*}} U\left(x_{0}\right)\right|$. We have:

$$
\begin{aligned}
\left\|p_{0}-\frac{\varepsilon}{2} \nabla U\left(x_{0}\right)\right\|_{\infty} & =\left|p_{0}\left(i^{*}\right)-\partial_{i^{*}} U\left(x_{0}\right)\right| \\
& \geq\left|p_{0}\left(j^{*}\right)-\partial_{j^{*}} U\left(x_{0}\right)\right| \\
& \geq \frac{\varepsilon}{2}\left|\partial_{j^{*}} U\left(x_{0}\right)\right|-\left|p_{0}\left(j^{*}\right)\right| \\
& \geq \frac{\varepsilon}{4}\left|\partial_{j^{*}} U\left(x_{0}\right)\right|
\end{aligned}
$$

Now, $\left|p_{0}\left(i^{*}\right)-(\varepsilon / 2) \partial_{i^{*}} U\left(x_{0}\right)\right| \geq(\varepsilon / 4)\left|\partial_{j^{*}} U\left(x_{0}\right)\right|$ implies that $\left|k^{\prime}\left\{p_{0}\left(i^{*}\right)-(\varepsilon / 2) \partial_{i^{*}} U\left(x_{0}\right)\right\}\right| \geq$ $\left|k^{\prime}\left\{(\varepsilon / 4) \partial_{j^{*}} U\left(x_{0}\right)\right\}\right|=\left\|\nabla K\left\{(\varepsilon / 4) \nabla U\left(x_{0}\right)\right\}\right\|_{\infty}$. Using the global bounds then we see that for any $M<\infty$ we can choose an $\left\|x_{0}\right\|$ large enough that

$$
\frac{\left\|\nabla K\left\{(\varepsilon / 4) \nabla U\left(x_{0}\right)\right\}\right\|_{\infty}}{\left\|x_{0}\right\|} \geq \frac{C(M+1)}{\varepsilon}
$$

establishing the result.

Lemma B5. If $\pi(\cdot)$ is light-tailed and (7)-(10) and one of (11) and (12) hold, and provided that for any fixed $i \geq 0$
(i) $\left\|x_{0}\right\| \geq \gamma_{M}$ for some $\gamma_{M}<\infty$,
(ii) $\left\|p_{0}\right\| \leq(\varepsilon / 4) \min \left\{\left\|\nabla U\left(x_{0}\right)\right\|,\left\|\nabla U\left(x_{0}\right)\right\|_{\infty}\right\}$,
(iii) M is large enough that $\phi(M) \geq 7 / 3$ with ϕ as in (8),
(iv) $\left\|x_{j \varepsilon}\right\| \geq M\left\|x_{(j-1) \varepsilon}\right\|$ for all $j \leq i$,
it holds for any finite $M<\infty$ that $\left\|x_{(i+1) \varepsilon}\right\| \geq M\left\|x_{i \varepsilon}\right\|$.

Proof. We first show

$$
\begin{equation*}
\left\|p_{\left(i+\frac{1}{2}\right) \varepsilon}\right\| \geq \frac{\varepsilon}{4}\left\|\nabla U\left(x_{i \varepsilon}\right)\right\| . \tag{B2}
\end{equation*}
$$

To show (B2), first note by iterating (4) and noting $p_{(i+1 / 2) \varepsilon}=p_{i \varepsilon}-\varepsilon \nabla U\left(x_{i \varepsilon}\right) / 2$ that

$$
\begin{aligned}
\left\|p_{\left(i+\frac{1}{2}\right) \varepsilon}\right\| & =\left\|p_{0}-\frac{\varepsilon}{2} \nabla U\left(x_{0}\right)-\varepsilon \sum_{j=1}^{i} \nabla U\left(x_{j \varepsilon}\right)\right\| \\
& \geq \varepsilon\left\|\nabla U\left(x_{i \varepsilon}\right)\right\|-\frac{\varepsilon}{2}\left\|\nabla U\left(x_{0}\right)\right\|-\varepsilon \sum_{j=1}^{i-1}\left\|\nabla U\left(x_{j \varepsilon}\right)\right\|-\left\|p_{0}\right\| .
\end{aligned}
$$

Using the stated assumption that $\left\|p_{0}\right\| \leq(\varepsilon / 4)\left\|\nabla U\left(x_{0}\right)\right\|$ then gives

$$
\left\|p_{\left(i+\frac{1}{2}\right) \varepsilon}\right\| \geq \varepsilon\left\{\left\|\nabla U\left(x_{i \varepsilon}\right)\right\|-\sum_{j=0}^{i-1}\left\|\nabla U\left(x_{j \varepsilon}\right)\right\|\right\} .
$$

Now, (8) implies that if $\left\|x_{(j-1) \varepsilon}\right\| \leq M^{-1}\left\|x_{j \varepsilon}\right\|,\left\|\nabla U\left(x_{(j-1) \varepsilon}\right)\right\| \leq \phi(M)^{-1}\left\|\nabla U\left(x_{j \varepsilon}\right)\right\|$. Substituting into the above expression gives

$$
\left\|p_{\left(i+\frac{1}{2}\right) \varepsilon}\right\| \geq \varepsilon\left\{1-\sum_{j=0}^{i-1} \phi(M)^{j-i}\right\}\left\|\nabla U\left(x_{i \varepsilon}\right)\right\|
$$

To finish the argument we need to therefore show that $\left\{1-\sum_{j=0}^{i-1} \phi(M)^{j-i}\right\} \geq 1 / 4$. First note that

$$
\sum_{j=0}^{i-1} \phi(M)^{j-i}=\phi(M)^{-i}+\phi(M)^{-(i-1)}+\ldots+\phi(M)^{-1}=\sum_{j=1}^{i} \phi(M)^{-j}
$$

Using simple geometric series identities gives

$$
\begin{aligned}
\sum_{j=1}^{i} \phi(M)^{-j} & =\frac{1-\phi(M)^{-(i+1)}}{1-\phi(M)^{-1}}-1 \\
& =\frac{\phi(M)-\phi(M)^{-i}}{\phi(M)-1}-\frac{\phi(M)-1}{\phi(M)-1} \\
& =\frac{1-\phi(M)^{-i}}{\phi(M)-1}
\end{aligned}
$$

Hence $\left\{1-\sum_{j=0}^{i-1} \phi(M)^{j-i}\right\} \geq 1 / 4$ if

$$
1-\frac{1-\phi(M)^{-i}}{\phi(M)-1} \geq 1 / 4
$$

which will hold if $\phi(M) \geq 7 / 3$ for any $i \geq 1$. The stated assumption that $\phi(M) \geq 7 / 3$ therefore establishes (B2).

If (11) holds, then (B2) can be combined with (B1) directly to show that for any $M<\infty$ and $\varepsilon \in$ $(0, \infty)$, if $\left\|x_{i \varepsilon}\right\| \geq \gamma_{M}$ for some suitably chosen $\gamma_{M}<\infty$ it will hold that

$$
\left\|\nabla K\left\{p_{\left(i+\frac{1}{2}\right) \varepsilon}\right\}\right\| \geq\left\|\nabla K\left\{\frac{\varepsilon}{4} \nabla U\left(x_{i \varepsilon}\right)\right\}\right\| \geq \frac{(M+1)}{\varepsilon}\left\|x_{i \varepsilon}\right\|
$$

If (12) holds instead of (11), then the same result can be established using a similar argument to that given in the last paragraph of the proof of Lemma B4. Hence, provided that $\left\|x_{0}\right\| \geq \gamma_{M}$, for all $i \geq 0$ it holds that

$$
\begin{aligned}
\left\|x_{(i+1) \varepsilon}\right\| & =\left\|x_{i \varepsilon}+\varepsilon \nabla K\left\{p_{\left(i+\frac{1}{2}\right) \varepsilon}\right\}\right\| \\
& \geq \varepsilon\left\|\nabla K\left\{p_{\left(i+\frac{1}{2}\right) \varepsilon}\right\}\right\|-\left\|x_{i \varepsilon}\right\| \\
& \geq M\left\|x_{i \varepsilon}\right\|,
\end{aligned}
$$

which proves the result.

Lemma B6. Under the same conditions as Lemma B5 and provided M is such that $\phi(M) \geq 5$, then $\left\|p_{L \varepsilon}\right\| \geq\left\|p_{0}\right\|$ for any $L \geq 1$.

Proof. We have

$$
\begin{aligned}
\left\|p_{L \varepsilon}\right\| & =\left\|p_{0}-\frac{\varepsilon}{2}\left\{\nabla U\left(x_{0}\right)+\nabla U\left(x_{L \varepsilon}\right)\right\}-\varepsilon \sum_{i=1}^{L-1} \nabla U\left(x_{i \varepsilon}\right)\right\| \\
& \geq \frac{\varepsilon}{2}\left\{\left\|\nabla U\left(x_{L \varepsilon}\right)\right\|-2 \sum_{i=0}^{L-1}\left\|\nabla U\left(x_{i \varepsilon}\right)\right\|\right\}
\end{aligned}
$$

by recalling that as in Lemma B5 $\left\|p_{0}\right\| \leq(\varepsilon / 4)\left\|\nabla U\left(x_{0}\right)\right\|$. Using (8) and the stated assumptions we have for any $i \leq L$ that

$$
\left\|\nabla U\left(x_{i \varepsilon}\right)\right\| \leq \phi(M)^{i-L}\left\|\nabla U\left(x_{L \varepsilon}\right)\right\|,
$$

which implies

$$
\left\|p_{L \varepsilon}\right\| \geq \frac{\varepsilon}{2}\left\{1-2 \sum_{i=0}^{L-1} \phi(M)^{i-L}\right\}\left\|\nabla U\left(x_{L \varepsilon}\right)\right\|
$$

The stated assumptions $\left\|p_{0}\right\| \leq(\varepsilon / 4)\left\|\nabla U\left(x_{0}\right)\right\|$ and $\phi(M)^{L}\left\|\nabla U\left(x_{0}\right)\right\| \leq\left\|\nabla U\left(x_{L \varepsilon}\right)\right\|$ lead to the bound

$$
\left\|\nabla U\left(x_{L \varepsilon}\right)\right\| \geq \phi(M)^{L} \frac{4}{\varepsilon}\left\|p_{0}\right\|
$$

which, when combined with the above inequality, give

$$
\left\|p_{L \varepsilon}\right\| \geq 2\left\{1-2 \sum_{i=0}^{L-1} \phi(M)^{i-L}\right\} \phi(M)^{L}\left\|p_{0}\right\|
$$

As shown in the proof of Lemma B5 $\sum_{i=0}^{L-1} \phi(M)^{i-L}=\left\{1-\phi(M)^{-L}\right\} /\{\phi(M)-1\}$. Hence the result is proven if

$$
2\left\{1-2 \frac{1-\phi(M)^{-L}}{\phi(M)-1}\right\} \phi(M)^{L} \geq 1
$$

which will indeed be true under the stated assumption that $\phi(M)>5$.

LEmMA B7. If (14) holds for a Hamiltonian Monte Carlo method then any small set must be bounded.

Proof. Since $\nabla K(p)$ and $\nabla U(x)$ are continuous and $\nabla K \circ \nabla U(x)$ is vanishing at infinity, then $\nabla K \circ$ $\nabla U(x)$ is also bounded, implying that the collection of Hamiltonian Monte Carlo increments $\{P(x, \cdot)-$ $x\}$ is uniformly tight, using a similar argument to that employed in the proof of Lemma B2. Hence, any small set must be bounded, following Lemma 2.2 of Jarner \& Hansen (2000).

Fig. 1. Empirical expected squared jump distance versus step-size for the relativistic kinetic energy, denoted by orange crosses, and quadratic kinetic energy, denoted by blue dots.

C. NUMERICAL EXAMPLE OF THE EFFICIENCY-ROBUSTNESS TRADE-OFF

We consider the distribution $\pi(x) \propto \exp \left(-\beta^{-1}|x|^{\beta}\right)$ with $\beta=1.5$, and compare the quadratic and relativistic kinetic energy choices. We test 80 evenly spaced choices of step-size ε spanning from 0.1 to 5, and in each case begin the sampler at equilibrium and compute the empirical expected squared jump distance from a chain of length 200,000, with the number of leapfrog steps randomly selected uniformly between 1 and 5 at each iteration. The results are shown in Figure 1. As can be seen, the quadratic choice leads to a higher optimal value, but when step-sizes are chosen to be too large the jump distance drops quickly. The relativistic choice, by comparison, exhibits a larger degree of robustness to bigger step-sizes.

References

Dieudonné, J. (1961). Foundations of modern analysis. Academic Press New York.
Jarner, S. F. \& Hansen, E. (2000). Geometric ergodicity of Metropolis algorithms. Stochastic processes and their applications 85, 341-361.

JaRNER, S. F. \& TwEedie, R. L. (2003). Necessary conditions for geometric and polynomial ergodicity of random-walk-type Markov chains. Bernoulli 9, 559-578.

Meyn, S. P. \& Tweedie, R. L. (1993). Markov chains and stochastic stability. London: Springer-Verlag.

Roberts, G. O. \& Tweedie, R. L. (1996). Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. Biometrika, 95-110.

