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Supplementary material for Kinetic energy choice in

Hamiltonian/hybrid Monte Carlo

A. PROOFS OF PROPOSITIONS

Proof of proposition 1. (i) In Lemma B1 we show that [ e Iz1=U(*) g = oo for any v > 0, and in
Lemma B2 that for any 1 > 0 there is an r < oo such that P{z, B,(z)} > 1 — 5. Theorem 2.2 of Jarner
& Tweedie (2003) establishes that if these two conditions hold then the resulting Markov chain cannot be
geometrically ergodic.

(ii)) Lemmas B4, B5 and B6 show that when (7)-(12) hold, with probability one
g |00 A0, p0) = 00,  where  A(zo,po) = ([|wLell + [|pLell) — (lzoll + [[poll).  Under (9)
this implies that with probability one lim|,,|—oc AH (20, po) = 00, where AH(xg,po) =
H(wre,pre) — H(zo,po). This in turn implies that with probability one lim, o0 a(z0, 1) = 0,

which, using Proposition 5.1 of Roberts & Tweedie (1996), establishes the result. Il
Proof of proposition 2. For the first part, note that the assumptions imply
IVK o VU(2)|| < C(Allz|* + B)/9 + D,

which implies lim sup| ;o [|VE o VU (z)||/||z]| < oo as required. We prove the second part by induc-
tion. Precisely, we show that assuming ||pic || < Ej||z||? + F; for some E;, F; < oo implies ||p(;11)c| <
Eip1||zicl|? + Fiprand ||241)c || < Gill@ic || + Hi for Eiy 1, Fiy1, Gy, H; < oo. These in turn imply the

result. First note that

19
(4 1)e —@iell = el VE{pie = S VU (zie) |
19
< eC|lpic — §VU(J:¢5)H1/‘1 +eD

15 1/q
< eC{lIpicll + SIVU @I} +eD.
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Using [|VU (z;e)|| < A||wic]|? + B gives
Iz nell < il +C{(Es +eA/2)l|ie || + eB/2}"7 + eD.

Given this we can choose G; =cC(FE;+cA/2+eB/2)Y/%+1 and H; =cC(E; +cA/2+

eB/2)"% + £D to see that

[z @rell < Gillwic| + Hi.
Iterating gives

[z @4nell < Grllzoll + He,

where G =G _1Gr_5...Gy and H, =H;, 1 +Gr_1H, o+ G,_1Gr_oHp_ 3+ ..+

G _1...G1Hy. Next recall that

&
P41y — Picll = EHVU(%) + VU (24 1)e) |l

IN

(VU@ + VU ()}

IN

(Allzicll” + Allz(i41)e1? + 2B)

IN
[ NI oM

{Allzie|” + A(Gillzic || + Hi)* + 2B}

Combining with the assumption that ||p;c|| < E;||wic||? + F;, gives
5 £
IPG+1)ell < |:Ei + 5A {1+ (G; + Hi)q}} |2 |7 + 5 {A(G; + H;)? 4+ 2B} + F;.

Setting E; 1 = [E; + eA{1+ (G; + H;)?/2}] and F;11 = ¢ {A(G; + H;)? 4+ 2B} /2 + F; then gives
Hp(H_l)EH < Eiy1l||wic]|? + Fit1. Iterating then gives ||prc|| < EL||zo||? + FL. Recalling that ||po| <

Ep||lzol|? + Fo by assumption completes the proof. O

Proof of proposition 3. Consider the event B = {4||po| <e||[VU(z0)||}, and note that

lim||,|—oo pr(B) = 1. We use the facts that [|xr. — ol < Zf:_ll |7 (i4+1)e — Tic||, and that for
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anyi € {0,...,L — 1}

[€641)e = Tie || = el VE (p2iga ). (al)
Taking 7 = 0 gives
[z — ol = e[| VK {po — eVU(x0)/2} |-

Since 4||po — eVU(x0)/2|| > ¢||VU(x0)|| under B, it follows from the fact that 7(-) is light-tailed
and v(-) heavy-tailed that for every § > 0 there is an M < oo such that whenever ||zo| > M then
VK (pe2)|| < 0/e. Thus ||z — 20| can be made arbitrarily small by choosing an x¢ with large enough
norm.

Recall that VU (x) is continuous by assumption. It follows from the preceding argument that for any
~1 > 0 we can choose an x( with large enough norm that |[VU (z.) — VU (xg)|| < 71 under B.

To complete the proof we show that ifZ;:l lzje — x(j—1)cll < d/2then [|2(11)e — 2ic|| < 0/2under
B. Combining this with the previous paragraphs establishes that for any § > 0 then there is an xy with
large enough norm that || . — x¢|| < d if event B holds, establishing the result.

From equation (A1) the key factor in controlling ||z (;41). — @icl| is ||[P(i+1/2)[l, which can be lower

bounded using

2 +1 :
1PGt1/2)ell 2 ==l VU (o) + e IVU(xje) = VU (o)l — [Ipoll (A2)

j=1

If for any § > 0 we can choose an x with large enough norm that Z;Zl l2je — x(j—1)c|| < /2 then
Z;Zl IVU(z.) — VU (z0)|| can be made arbitrarily small through the same continuity argument made
above. Thus, under B it holds that [|p(; 11 /2)c || > i€||VU (z0)]|, from which it follows that ||z (;4.1) — ]

can be made arbitrarily small by choosing ||x¢|| large enough. O

Proof of proposition 4. 1t is shown in chapter 16 of Meyn & Tweedie (1993) that a geometric conver-
gence bound is equivalent to the drift condition [ V' (y)P(z,dy) < AV (z) whenever z is outside some

small set C', where A < 1. Lemma B7 establishes that if (14) holds then any small set must be bounded.
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Hence if a geometric bound holds here then

Jim sup JV(y)P(x,dy)

oS V(z) < 1. (A3)

For any § > 0 we can write

[vorea = [ vereds+ [ vereda),
Bs () B§(x)
2/ V(y)P(x,dy) + ¢,
B; ()
where € = P{z, B§(x)}. If (i) holds then we can choose a § < ¢, so that

/ o8 VW) =loe V@) Pz dy) 4 € > / e_elP(gc7 dy) +e= e_s/(l —€) te
Bs(x) Bs(x)

Noting that both € and ¢’ can be made arbitrarily small as ||| — oo, this expression tends to 1 in the same
limit, proving the result. If (ii) holds, note that lim inf) ;| V(z)e=*I#ll = ¢ implies that Ve’ > 0 there

is an M < oo such that V' (z)e~*I*l > ¢ — ¢ whenever ||| > M. This means that when ||z|| > M

/ V(y)P(a,dy) + € > (c - ¢) / e WIP(x, dy) + c.
Bs(x) Bs(x)

Condition (ii) also implies that for all ¢’ > 0, there is a sequence {x; };>1 for which ||z;|| = coasi — o0
such that whenever i > N for some N < oo then ||2;|| > M and the condition V' (z;)e =il < ¢4 ¢

holds. Combining gives that for all 7 > N

V() o (c—¢) _
/V(xi)P(x“dy) = exe)

Since €, ¢’ and § can all be made arbitrarily small and V' (x;) — oo as ||z;|| — oo, then this proves the

result. O

Proof of proposition 5. Assume H (xg,po) = E and zg =0, pg = (ﬁE)%. Take 47 to be the period
length, and note that by the symmetry of the Hamiltonian in question this implies that pr = 0 and z1 =

(aF) . Then



Biometrika style 5
Setting b = (1 — 8)/f. cs = B° and noting that p; * = cg(E — o ta) fort € [0, 77, then the expres-

sion can be written

P(E) = 4cﬂ/ (E - a_lac?)b day.
0

Applying the change of variables y; = (ozE)*l/o‘zt and setting ¢, = '/ gives
1
P(E) = 4clgcaEb+1/”‘/ (1 —y™)bdys,
0
where . Now, we have that P(E) = f(E"), for some function f, where
1— 1 1-B-1)(a—-1
,_l=8 1 1-(B-Da-1
g o of
Setting v = 1+ and 8 = 1 + v~ for some v > 0 gives
Q+y)A+y1
as required. ([

Proof of proposition 6. Set ~y(z) = min [%HVU(:E)H, | V2K {%VU(x)Hrl/Q} , and note that
limy ;o0 pr, {[[Pl| < v(2x)} = 1. For [|p|| < ~(x), as a direct consequence of the mean value inequality

(Dieudonné, 1961)
|vr {5vu@) —p} - VE {SVU@}| < M@)p.

where M (z) = sup ) >c|vuy V2K (p)]]. As the right-hand side tends to 0 as ||| — oo, then the

result follows. O

B. TECHNICAL RESULTS

LEMMA B1. If 7(-) is heavy-tailed then for every v > 0
/ew\\z\\ft}(z)dx -~ .

Proof. Choose § < . Let B be a Euclidean ball centred at the origin such that | VU (x)|| < ¢ when-

ever x ¢ B. By continuity of U(z), there is an M < oo such that U(z) < M for all z € B. Then for
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all = ¢ B the integrand is bounded below by e(?=9lIzll=M ‘which diverges uniformly and hence is not

integrable. 0
LEMMA B2. If n(x) is heavy-tailed then for any n > 0 there is an r < oo such that
P{z,B,(z)} >1—n.
Proof. We need to show that Q{x, B.(z)} > 1 — ), for any x. After one leapfrog step we have

T, =209+ VK {po — %VU(.Z‘o)} ,

€ €
Pe = Po — §VU(.Z‘0) - §VU(J:8).

Write ||z]|s for the supremum norm, and note that by equivalence of norms in finite dimensions we
can write ||z]|oo < C||z|| for all x, for some C' < co. We have that VU (z) € Co(R?), which implies
IVU (z)|| < M/C for some M < oo which does not depend on z, so that || VU ()]|c < M. The class of
distributions for {py — eVU (z¢)/2} is therefore tight. Now recall that if f is a locally bounded function,
and F a tight family of probability measures, then the resulting family of probability measures induced by
pushing forward each element of F through f is also tight. So since VK is continuous and hence locally

bounded, the result follows. O

LEMMA B3. If (7) and (10) hold then

IVE{GVU @)} _

]| —o0 [|]]

B

Proof. First we re-write the expression

O IVEGYUGY | IVEGEVU@)] VK 0 VU ()]
l|2||— o0 Il lz]|—oo ||[VE o VU ()] ||l ’

Now, (10) implies that the first term will be bounded below by a finite positive constant, while (7) ensures

that the second will have an infinite limit, proving the result. 0

LEMMA B4. If «(-) is light-tailed, (7) and either of (11) or (12) hold and |po| <
$min{[|VU (zo)l], |VU (20)||oc } then there is a yar < oo such that, provided |zo| > ~ar, it holds that

[[zell = Mo

, for any M < oo.
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Proof. Note

g g
el = llwo +eVE {po = =VU(x0) } | = VK {po = 5VU (o) } I| = o]l

It is therefore sufficient to show that for any M < oo we can choose an ||z]| large enough that

(M+1)

9
IV {p0— SV @) } || > ol

Under (11), note that
£ £ €
llpo — §VU($0)|| > §||VU($0)H = llpoll > ZHVU(I'O)”v
which implies
g 3
_t > - .
IVE {po = 5VU(0) } | = |V { VU o) } |

By (B1), therefore, if ||2q]| is chosen to be large enough then this can be made > (M + 1)||xq|| /¢, for any
finite M, proving the result.

Under (12), recall that there exists global constants C, ¢ > 0 such that C||VU (2)|| > ||VU(x)/cc >
|| VU ()| for all x € R?. Tt suffices in this setting therefore to show that we can choose an ||z¢]| large
enough that

O(M +1)

9
IVE {po — SVU(0) } Il > ol

We have
IVE {po — 5 VU (o) } oo = max K {po() — 85U (o)),
Write ¢* and j* to denote the indices for which ||po — VU (z0)|lco = |po(¢*) — 93+ U(xo)| and
VU (z0)||loe = |0j+U (z0)|. We have:
Ipo = 5 VU (o) o = [poi*) — 00U o))
2 |po(j*) — 9;-U (o)

g -
> §|5j*U(9U0)| — [po(47)]

19
1 |5j* U($0)|-
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Now, |po(i*) — (€/2)0;=U (z0)| > (¢/4)|0j+U(xo)| implies that |k'{po(i*) — (£/2)0U(x0)}| >
|E'{(£/4)0;+U(z0)}| = |[VE{(¢/4)VU (20)}||cc- Using the global bounds then we see that for any
M < oo we can choose an ||zo|| large enough that

[VE{(e/4)VU (o)} o CM +1)
l[zoll €

establishing the result. U

LEMMA B5. If 7(+) is light-tailed and (7)-(10) and one of (11) and (12) hold, and provided that for
any fixedi > 0
(i) [|[wol| = v for some yar < oo,
(ii) [|poll < (¢/4) min{[[VU (zo)[|, [ VU (20)lloc }.
(iii) M is large enough that $(M) > 7/3 with ¢ as in (8),
() |zjel| > M|z j-1)ell forall j <,

it holds for any finite M < oo that ||z ;11| > M||2ic]|.
Proof. We first show
IPGeell = ZIVU @ie)]l. (B2)
To show (B2), first note by iterating (4) and noting p(;11/2)e = pic — VU (2c)/2 that

c 7
1P(it 1yell = llpo = §VU(ZE0) - EZVU(sz)”

j=1
i—1
€
2 e VU (zie)ll = 5[IVU (zo)ll e VU @) = llpoll-
j=1

Using the stated assumption that ||po]| < (¢/4)||VU (z0)]| then gives

i—1

1P pyell 2 € LIV @ie)| = D IVU (@)

§=0
Now, (8) implies that if [|z(;_1)c|| < M|z, [VU(x(j_1)e)|| < ¢(M)"H|VU (2jc)|. Substituting

into the above expression gives

i—1

IP(isgyel = e q1 =D (MY~ b VU (e
§=0
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To finish the argument we need to therefore show that {1 — Z;;B #(M)7=%} > 1/4. First note that

i—1

S GMY = (M) T 4 ¢(M)TTD 4 (M) =D (M)
Jj=0 j=1

Using simple geometric series identities gives
~ i Lo o)
M)y =—m———r———— -1

M) —p(M)™" (M) —1

o0 —1 o) —1
1 o(M)”
o) —1

Hence {1 — 3\~ p(M)I '} > 1/4if

1—¢M)~
- ¢(M)—1 21/47

1
which will hold if ¢(M) > 7/3 for any ¢ > 1. The stated assumption that ¢(M ) > 7/3 therefore estab-
lishes (B2).

If (11) holds, then (B2) can be combined with (B1) directly to show that for any M < oo and € €
(0, 00), if ||a;c]| > ~yar for some suitably chosen vy, < oo it will hold that

il

€ (M+1)
IVE {pre I 2 195 {SVUG@) ) 2 =

If (12) holds instead of (11), then the same result can be established using a similar argument to that given
in the last paragraph of the proof of Lemma B4. Hence, provided that ||xq|| > ~yas, for all ¢ > 0 it holds

that

lzrell = |7 +€VK{I’(Z'+§)5}||
2 e VE{pgy 1) — licll

> M|z,

which proves the result.

LEMMA B6. Under the same conditions as Lemma B5 and provided M is such that $(M) > 5, then

lpzell = llpoll for any L > 1.



10 S. LIVINGSTONE, M. F. FAULKNER AND G. O. ROBERTS
Proof. We have

[prell = llpo = 5 (VU @0) + VU (1)} = & 3 VU aic)|
L-1
> 2 {WU(zLE)n -2y |vv<zig>|} ,
=0

by recalling that as in Lemma B5 ||pg|| < (£/4)||VU (z0)||. Using (8) and the stated assumptions we have

for any ¢ < L that
IVU (ie)l| < ¢(M)'™H[VU (zLe)

which implies

- L—1

lprell = 5 {1 -2y ¢(M)1_L} VU (zLe)
i=0
The stated assumptions ||po|| < (£/4)||VU (z0)|| and ¢(M)E||VU (20)|| < ||VU (2 L.)|| lead to the bound
4
IVU (o)l = (M) lpoll,

which, when combined with the above inequality, give

IpLell = 2 {1 —2 z_: ¢(M)iL} S(M)" [Ipo]|-
=0

As shown in the proof of Lemma B5 Zf;ol d(M) =L = {1 — ¢(M)~L}/{#(M) — 1}. Hence the result

is proven if

1— M)t
2{1 - 2L} ¢(M)* > 1,
¢(M) =1
which will indeed be true under the stated assumption that ¢(M) > 5. O

LEMMA B7. If (14) holds for a Hamiltonian Monte Carlo method then any small set must be bounded.

Proof. Since VK (p) and VU () are continuous and VK o VU (x) is vanishing at infinity, then VK o
VU (z) is also bounded, implying that the collection of Hamiltonian Monte Carlo increments { P(z, -) —
a} is uniformly tight, using a similar argument to that employed in the proof of Lemma B2. Hence, any

small set must be bounded, following Lemma 2.2 of Jarner & Hansen (2000). O
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Fig. 1. Empirical expected squared jump distance versus step-size for the
relativistic kinetic energy, denoted by orange crosses, and quadratic kinetic

energy, denoted by blue dots.

C. NUMERICAL EXAMPLE OF THE EFFICIENCY-ROBUSTNESS TRADE-OFF

We consider the distribution 7(z) o exp (—87!|2|?) with 8 = 1.5, and compare the quadratic and
relativistic kinetic energy choices. We test 80 evenly spaced choices of step-size € spanning from 0.1 to
5, and in each case begin the sampler at equilibrium and compute the empirical expected squared jump
distance from a chain of length 200,000, with the number of leapfrog steps randomly selected uniformly
between 1 and 5 at each iteration. The results are shown in Figure 1. As can be seen, the quadratic choice
leads to a higher optimal value, but when step-sizes are chosen to be too large the jump distance drops

quickly. The relativistic choice, by comparison, exhibits a larger degree of robustness to bigger step-sizes.
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