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Supplementary material for Kinetic energy choice in

Hamiltonian/hybrid Monte Carlo

A. PROOFS OF PROPOSITIONS

Proof of proposition 1. (i) In Lemma B1 we show that
∫

eγ‖x‖−U(x)dx = ∞ for any γ > 0, and in

Lemma B2 that for any η > 0 there is an r < ∞ such that P{x,Br(x)} > 1− η. Theorem 2.2 of Jarner

& Tweedie (2003) establishes that if these two conditions hold then the resulting Markov chain cannot be

geometrically ergodic.

(ii) Lemmas B4, B5 and B6 show that when (7)-(12) hold, with probability one

lim‖x0‖→∞ △(x0, p0) = ∞, where △(x0,p0) = (‖xLε‖+ ‖pLε‖)− (‖x0‖+ ‖p0‖). Under (9)

this implies that with probability one lim‖x0‖→∞ △H(x0, p0) = ∞, where △H(x0, p0) =

H(xLε, pLε)−H(x0, p0). This in turn implies that with probability one lim‖x0‖→∞ α(x0, xLε) = 0,

which, using Proposition 5.1 of Roberts & Tweedie (1996), establishes the result. �

Proof of proposition 2. For the first part, note that the assumptions imply

‖∇K ◦ ∇U(x)‖ ≤ C(A‖x‖q +B)1/q +D,

which implies lim sup‖x‖→∞ ‖∇K ◦ ∇U(x)‖/‖x‖ < ∞ as required. We prove the second part by induc-

tion. Precisely, we show that assuming ‖piε‖ ≤ Ei‖xiε‖
q + Fi for some Ei, Fi < ∞ implies ‖p(i+1)ε‖ ≤

Ei+1‖xiε‖
q + Fi+1 and ‖x(i+1)ε‖ ≤ Gi‖xiε‖+Hi forEi+1, Fi+1, Gi, Hi < ∞. These in turn imply the

result. First note that

‖x(i+1)ε − xiε‖ = ε‖∇K{piε −
ε

2
∇U(xiε)}‖

≤ εC‖piε −
ε

2
∇U(xiε)‖

1/q + εD

≤ εC
{

‖piε‖+
ε

2
‖∇U(xiε)‖

}1/q

+ εD.
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Using ‖∇U(xiε)‖ ≤ A‖xiε‖
q +B gives

‖x(i+1)ε‖ ≤ ‖xiε‖+ εC {(Ei + εA/2)‖xiε‖
q + εB/2}1/q + εD.

Given this we can choose Gi = εC(Ei + εA/2 + εB/2)1/q + 1 and Hi = εC(Ei + εA/2 +

εB/2)1/q + εD to see that

‖x(i+1)ε‖ ≤ Gi‖xiε‖+Hi.

Iterating gives

‖x(i+1)ε‖ ≤ GL‖x0‖+HL,

where GL = GL−1GL−2...G0 and HL = HL−1 +GL−1HL−2 +GL−1GL−2HL−3 + ...+

GL−1...G1H0. Next recall that

‖p(i+1)ε − piε‖ =
ε

2
‖∇U(xiε) +∇U(x(i+1)ε)‖

≤
ε

2

{

‖∇U(xiε)‖+ ‖∇U(x(i+1)ε)‖
}

≤
ε

2

(

A‖xiε‖
q +A‖x(i+1)ε‖

q + 2B
)

≤
ε

2
{A‖xiε‖

q +A(Gi‖xiε‖+Hi)
q + 2B}

≤
ε

2
[A {1 + (Gi +Hi)

q} ‖xiε‖
q +A(Gi +Hi)

q + 2B] .

Combining with the assumption that ‖piε‖ ≤ Ei‖xiε‖
q + Fi, gives

‖p(i+1)ε‖ ≤
[

Ei +
ε

2
A {1 + (Gi +Hi)

q}
]

‖xiε‖
q +

ε

2
{A(Gi +Hi)

q + 2B}+ Fi.

Setting Ei+1 = [Ei + εA {1 + (Gi +Hi)
q/2}] and Fi+1 = ε {A(Gi +Hi)

q + 2B} /2 + Fi then gives

‖p(i+1)ε‖ ≤ Ei+1‖xiε‖
q + Fi+1. Iterating then gives ‖pLε‖ ≤ EL‖x0‖

q + FL. Recalling that ‖p0‖ ≤

E0‖x0‖
q + F0 by assumption completes the proof. �

Proof of proposition 3. Consider the event B = {4‖p0‖ ≤ ε‖∇U(x0)‖}, and note that

lim‖x‖→∞ pr(B) = 1. We use the facts that ‖xLε − x0‖ ≤
∑L−1

i=1 ‖x(i+1)ε − xiε‖, and that for



Biometrika style 3

any i ∈ {0, ..., L− 1}

‖x(i+1)ε − xiε‖ = ε‖∇K(p 2i+1

2
ε)‖. (A1)

Taking i = 0 gives

‖xε − x0‖ = ε‖∇K {p0 − ε∇U(x0)/2} ‖.

Since 4‖p0 − ε∇U(x0)/2‖ ≥ ε‖∇U(x0)‖ under B, it follows from the fact that π(·) is light-tailed

and ν(·) heavy-tailed that for every δ > 0 there is an M < ∞ such that whenever ‖x0‖ > M then

‖∇K(pε/2)‖ < δ/ε. Thus ‖xε − x0‖ can be made arbitrarily small by choosing an x0 with large enough

norm.

Recall that ∇U(x) is continuous by assumption. It follows from the preceding argument that for any

γ1 > 0 we can choose an x0 with large enough norm that ‖∇U(xε)−∇U(x0)‖ < γ1 under B.

To complete the proof we show that if
∑i

j=1 ‖xjε − x(j−1)ε‖ < δ/2 then ‖x(i+1)ε − xiε‖ ≤ δ/2 under

B. Combining this with the previous paragraphs establishes that for any δ > 0 then there is an x0 with

large enough norm that ‖xLε − x0‖ < δ if event B holds, establishing the result.

From equation (A1) the key factor in controlling ‖x(i+1)ε − xiε‖ is ‖p(i+1/2)ε‖, which can be lower

bounded using

‖p(i+1/2)ε‖ ≥
2i+ 1

2
ε‖∇U(x0)‖+ ε

i
∑

j=1

‖∇U(xjε)−∇U(x0)‖ − ‖p0‖ (A2)

If for any δ > 0 we can choose an x0 with large enough norm that
∑i

j=1 ‖xjε − x(j−1)ε‖ < δ/2 then

∑i
j=1 ‖∇U(xjε)−∇U(x0)‖ can be made arbitrarily small through the same continuity argument made

above. Thus, underB it holds that ‖p(i+1/2)ε‖ ≥ iε‖∇U(x0)‖, from which it follows that ‖x(i+1)ε − xiε‖

can be made arbitrarily small by choosing ‖x0‖ large enough. �

Proof of proposition 4. It is shown in chapter 16 of Meyn & Tweedie (1993) that a geometric conver-

gence bound is equivalent to the drift condition
∫

V (y)P (x, dy) ≤ λV (x) whenever x is outside some

small set C, where λ < 1. Lemma B7 establishes that if (14) holds then any small set must be bounded.
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Hence if a geometric bound holds here then

lim sup
‖x‖→∞

∫

V (y)P (x, dy)

V (x)
< 1. (A3)

For any δ > 0 we can write

∫

V (y)P (x, dy) =

∫

Bδ(x)

V (y)P (x, dy) +

∫

Bc
δ
(x)

V (y)P (x, dy),

≥

∫

Bδ(x)

V (y)P (x, dy) + ǫ,

where ǫ = P{x,Bc
δ(x)}. If (i) holds then we can choose a δ < δ′, so that

∫

Bδ(x)

elog V (y)−log V (x)P (x, dy) + ǫ ≥

∫

Bδ(x)

e−ǫ′P (x, dy) + ǫ = e−ǫ′(1− ǫ) + ǫ.

Noting that both ǫ and ǫ′ can be made arbitrarily small as ‖x‖ → ∞, this expression tends to 1 in the same

limit, proving the result. If (ii) holds, note that lim inf‖x‖→∞ V (x)e−s‖x‖ = c implies that ∀ǫ′ > 0 there

is an M < ∞ such that V (x)e−s‖x‖ ≥ c− ǫ′ whenever ‖x‖ ≥ M . This means that when ‖x‖ > M

∫

Bδ(x)

V (y)P (x, dy) + ǫ ≥ (c− ǫ′)

∫

Bδ(x)

e−s‖y‖P (x, dy) + ǫ.

Condition (ii) also implies that for all ǫ′ > 0, there is a sequence {xi}i≥1 for which ‖xi‖ → ∞ as i → ∞

such that whenever i ≥ N for some N < ∞ then ‖xi‖ > M and the condition V (xi)e
−s‖xi‖ ≤ c+ ǫ′

holds. Combining gives that for all i ≥ N

∫

V (y)

V (xi)
P (xi, dy) ≥

(c− ǫ′)

(c+ ǫ′)
e−sδ(1 − ǫ) +

ǫ

V (xi)
.

Since ǫ, ǫ′ and δ can all be made arbitrarily small and V (xi) → ∞ as ‖xi‖ → ∞, then this proves the

result. �

Proof of proposition 5. Assume H(x0, p0) = E and x0 = 0, p0 = (βE)
1
β . Take 4T to be the period

length, and note that by the symmetry of the Hamiltonian in question this implies that pT = 0 and xT =

(αE)
1
α . Then

P(E) = 4

∫ T

0

dt = 4

∫ xT

0

dt

dxt
dxt = 4

∫ xT

0

p1−β
t dxt.
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Setting b = (1− β)/β, cβ = βb and noting that p1−β
t = cβ(E − α−1xα

t )
b for t ∈ [0, T ], then the expres-

sion can be written

P(E) = 4cβ

∫ xT

0

(

E − α−1xα
t

)b
dxt.

Applying the change of variables yt = (αE)−1/αxt and setting cα = α1/α gives

P (E) = 4cβcαE
b+1/α

∫ 1

0

(1− yαt )
bdyt,

where . Now, we have that P(E) = f(Eη), for some function f , where

η =
1− β

β
+

1

α
=

1− (β − 1)(α− 1)

αβ
.

Setting α = 1 + γ and β = 1 + γ−1 for some γ > 0 gives

η =
1− γγ−1

(1 + γ)(1 + γ−1)
= 0,

as required. �

Proof of proposition 6. Set γ(x) = min
[

ε
4‖∇U(x)‖,

∥

∥∇2K
{

ε
4∇U(x)

}
∥

∥

−1/2
]

, and note that

lim‖x‖→∞ prν {‖p‖ ≤ γ(x)} = 1. For ‖p‖ ≤ γ(x), as a direct consequence of the mean value inequality

(Dieudonné, 1961)

∥

∥

∥
∇K

{ ε

2
∇U(x)− p

}

−∇K
{ ε

2
∇U(x)

}
∥

∥

∥
≤ M(x)‖p‖,

where M(x) = sup{4‖p‖≥ε‖∇U(x)‖} ‖∇
2K(p)‖. As the right-hand side tends to 0 as ‖x‖ → ∞, then the

result follows. �

B. TECHNICAL RESULTS

LEMMA B1. If π(·) is heavy-tailed then for every γ > 0

∫

eγ‖x‖−U(x)dx = ∞.

Proof. Choose δ < γ. Let B be a Euclidean ball centred at the origin such that ‖∇U(x)‖ ≤ δ when-

ever x 6∈ B. By continuity of U(x), there is an M < ∞ such that U(x) ≤ M for all x ∈ ∂B. Then for
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all x 6∈ B the integrand is bounded below by e(γ−δ)‖x‖−M , which diverges uniformly and hence is not

integrable. �

LEMMA B2. If π(x) is heavy-tailed then for any η > 0 there is an r < ∞ such that

P{x,Br(x)} > 1− η.

Proof. We need to show that Q{x,Br(x)} > 1− η, for any x. After one leapfrog step we have

xε = x0 + ε∇K
{

p0 −
ε

2
∇U(x0)

}

,

pε = p0 −
ε

2
∇U(x0)−

ε

2
∇U(xε).

Write ‖x‖∞ for the supremum norm, and note that by equivalence of norms in finite dimensions we

can write ‖x‖∞ ≤ C‖x‖ for all x, for some C < ∞. We have that ∇U(x) ∈ C0(R
d), which implies

‖∇U(x)‖ < M/C for some M < ∞ which does not depend on x, so that ‖∇U(x)‖∞ < M . The class of

distributions for {p0 − ε∇U(x0)/2} is therefore tight. Now recall that if f is a locally bounded function,

and F a tight family of probability measures, then the resulting family of probability measures induced by

pushing forward each element of F through f is also tight. So since ∇K is continuous and hence locally

bounded, the result follows. �

LEMMA B3. If (7) and (10) hold then

lim
‖x‖→∞

‖∇K{ ε
4∇U(x)}‖

‖x‖
= ∞. (B1)

Proof. First we re-write the expression

lim
‖x‖→∞

‖∇K{ ε
4∇U(x)}‖

‖x‖
= lim

‖x‖→∞

‖∇K{ ε
4∇U(x)}‖

‖∇K ◦ ∇U(x)‖

‖∇K ◦ ∇U(x)‖

‖x‖
,

Now, (10) implies that the first term will be bounded below by a finite positive constant, while (7) ensures

that the second will have an infinite limit, proving the result. �

LEMMA B4. If π(·) is light-tailed, (7) and either of (11) or (12) hold and ‖p0‖ ≤

ε
4 min{‖∇U(x0)‖, ‖∇U(x0)‖∞} then there is a γM < ∞ such that, provided ‖x0‖ ≥ γM , it holds that

‖xε‖ ≥ M‖x0‖, for any M < ∞.
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Proof. Note

‖xε‖ = ‖x0 + ε∇K
{

p0 −
ε

2
∇U(x0)

}

‖ ≥ ε‖∇K
{

p0 −
ε

2
∇U(x0)

}

‖ − ‖x0‖.

It is therefore sufficient to show that for any M < ∞ we can choose an ‖x0‖ large enough that

‖∇K
{

p0 −
ε

2
∇U(x0)

}

‖ ≥
(M + 1)

ε
‖x0‖.

Under (11), note that

‖p0 −
ε

2
∇U(x0)‖ ≥

ε

2
‖∇U(x0)‖ − ‖p0‖ ≥

ε

4
‖∇U(x0)‖,

which implies

‖∇K
{

p0 −
ε

2
∇U(x0)

}

‖ ≥ ‖∇K
{ε

4
∇U(x0)

}

‖.

By (B1), therefore, if ‖x0‖ is chosen to be large enough then this can be made ≥ (M + 1)‖x0‖/ε, for any

finite M , proving the result.

Under (12), recall that there exists global constants C, c > 0 such that C‖∇U(x)‖ ≥ ‖∇U(x)‖∞ ≥

c‖∇U(x)‖ for all x ∈ R
d. It suffices in this setting therefore to show that we can choose an ‖x0‖ large

enough that

‖∇K
{

p0 −
ε

2
∇U(x0)

}

‖∞ ≥
C(M + 1)

ε
‖x0‖.

We have

‖∇K
{

p0 −
ε

2
∇U(x0)

}

‖∞ = max
j

|k′{p0(j)− ∂jU(x0)}|.

Write i∗ and j∗ to denote the indices for which ‖p0 −∇U(x0)‖∞ = |p0(i
∗)− ∂i∗U(x0)| and

‖∇U(x0)‖∞ = |∂j∗U(x0)|. We have:

‖p0 −
ε

2
∇U(x0)‖∞ = |p0(i

∗)− ∂i∗U(x0)|

≥ |p0(j
∗)− ∂j∗U(x0)|

≥
ε

2
|∂j∗U(x0)| − |p0(j

∗)|

≥
ε

4
|∂j∗U(x0)|.
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Now, |p0(i
∗)− (ε/2)∂i∗U(x0)| ≥ (ε/4)|∂j∗U(x0)| implies that |k′{p0(i

∗)− (ε/2)∂i∗U(x0)}| ≥

|k′{(ε/4)∂j∗U(x0)}| = ‖∇K{(ε/4)∇U(x0)}‖∞. Using the global bounds then we see that for any

M < ∞ we can choose an ‖x0‖ large enough that

‖∇K{(ε/4)∇U(x0)}‖∞
‖x0‖

≥
C(M + 1)

ε
,

establishing the result. �

LEMMA B5. If π(·) is light-tailed and (7)-(10) and one of (11) and (12) hold, and provided that for

any fixed i ≥ 0

(i) ‖x0‖ ≥ γM for some γM < ∞,

(ii) ‖p0‖ ≤ (ε/4)min{‖∇U(x0)‖, ‖∇U(x0)‖∞},

(iii) M is large enough that φ(M) ≥ 7/3 with φ as in (8),

(iv) ‖xjε‖ ≥ M‖x(j−1)ε‖ for all j ≤ i,

it holds for any finite M < ∞ that ‖x(i+1)ε‖ ≥ M‖xiε‖.

Proof. We first show

‖p(i+ 1
2
)ε‖ ≥

ε

4
‖∇U(xiε)‖. (B2)

To show (B2), first note by iterating (4) and noting p(i+1/2)ε = piε − ε∇U(xiε)/2 that

‖p(i+ 1
2
)ε‖ = ‖p0 −

ε

2
∇U(x0)− ε

i
∑

j=1

∇U(xjε)‖

≥ ε‖∇U(xiε)‖ −
ε

2
‖∇U(x0)‖ − ε

i−1
∑

j=1

‖∇U(xjε)‖ − ‖p0‖.

Using the stated assumption that ‖p0‖ ≤ (ε/4)‖∇U(x0)‖ then gives

‖p(i+ 1
2
)ε‖ ≥ ε







‖∇U(xiε)‖ −
i−1
∑

j=0

‖∇U(xjε)‖







.

Now, (8) implies that if ‖x(j−1)ε‖ ≤ M−1‖xjε‖, ‖∇U(x(j−1)ε)‖ ≤ φ(M)−1‖∇U(xjε)‖. Substituting

into the above expression gives

‖p(i+ 1
2
)ε‖ ≥ ε







1−

i−1
∑

j=0

φ(M)j−i







‖∇U(xiε)‖.
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To finish the argument we need to therefore show that {1−
∑i−1

j=0 φ(M)j−i} ≥ 1/4. First note that

i−1
∑

j=0

φ(M)j−i = φ(M)−i + φ(M)−(i−1) + ...+ φ(M)−1 =
i

∑

j=1

φ(M)−j .

Using simple geometric series identities gives

i
∑

j=1

φ(M)−j =
1− φ(M)−(i+1)

1− φ(M)−1
− 1

=
φ(M)− φ(M)−i

φ(M)− 1
−

φ(M)− 1

φ(M)− 1

=
1− φ(M)−i

φ(M)− 1
.

Hence {1−
∑i−1

j=0 φ(M)j−i} ≥ 1/4 if

1−
1− φ(M)−i

φ(M)− 1
≥ 1/4,

which will hold if φ(M) ≥ 7/3 for any i ≥ 1. The stated assumption that φ(M) ≥ 7/3 therefore estab-

lishes (B2).

If (11) holds, then (B2) can be combined with (B1) directly to show that for any M < ∞ and ε ∈

(0,∞), if ‖xiε‖ ≥ γM for some suitably chosen γM < ∞ it will hold that

‖∇K{p(i+ 1
2
)ε}‖ ≥ ‖∇K

{ ε

4
∇U(xiε)

}

‖ ≥
(M + 1)

ε
‖xiε‖.

If (12) holds instead of (11), then the same result can be established using a similar argument to that given

in the last paragraph of the proof of Lemma B4. Hence, provided that ‖x0‖ ≥ γM , for all i ≥ 0 it holds

that

‖x(i+1)ε‖ = ‖xiε + ε∇K{p(i+ 1
2
)ε}‖

≥ ε‖∇K{p(i+ 1
2
)ε}‖ − ‖xiε‖

≥ M‖xiε‖,

which proves the result.

LEMMA B6. Under the same conditions as Lemma B5 and provided M is such that φ(M) ≥ 5, then

‖pLε‖ ≥ ‖p0‖ for any L ≥ 1.
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Proof. We have

‖pLε‖ = ‖p0 −
ε

2
{∇U(x0) +∇U(xLε)} − ε

L−1
∑

i=1

∇U(xiε)‖

≥
ε

2

{

‖∇U(xLε)‖ − 2

L−1
∑

i=0

‖∇U(xiε)‖

}

,

by recalling that as in Lemma B5 ‖p0‖ ≤ (ε/4)‖∇U(x0)‖. Using (8) and the stated assumptions we have

for any i ≤ L that

‖∇U(xiε)‖ ≤ φ(M)i−L‖∇U(xLε)‖,

which implies

‖pLε‖ ≥
ε

2

{

1− 2

L−1
∑

i=0

φ(M)i−L

}

‖∇U(xLε)‖

The stated assumptions ‖p0‖ ≤ (ε/4)‖∇U(x0)‖ and φ(M)L‖∇U(x0)‖ ≤ ‖∇U(xLε)‖ lead to the bound

‖∇U(xLε)‖ ≥ φ(M)L
4

ε
‖p0‖,

which, when combined with the above inequality, give

‖pLε‖ ≥ 2

{

1− 2

L−1
∑

i=0

φ(M)i−L

}

φ(M)L‖p0‖.

As shown in the proof of Lemma B5
∑L−1

i=0 φ(M)i−L = {1− φ(M)−L}/{φ(M)− 1}. Hence the result

is proven if

2

{

1− 2
1− φ(M)−L

φ(M)− 1

}

φ(M)L ≥ 1,

which will indeed be true under the stated assumption that φ(M) > 5. �

LEMMA B7. If (14) holds for a Hamiltonian Monte Carlo method then any small set must be bounded.

Proof. Since ∇K(p) and ∇U(x) are continuous and ∇K ◦ ∇U(x) is vanishing at infinity, then ∇K ◦

∇U(x) is also bounded, implying that the collection of Hamiltonian Monte Carlo increments {P (x, ·)−

x} is uniformly tight, using a similar argument to that employed in the proof of Lemma B2. Hence, any

small set must be bounded, following Lemma 2.2 of Jarner & Hansen (2000). �
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Fig. 1. Empirical expected squared jump distance versus step-size for the

relativistic kinetic energy, denoted by orange crosses, and quadratic kinetic

energy, denoted by blue dots.

C. NUMERICAL EXAMPLE OF THE EFFICIENCY-ROBUSTNESS TRADE-OFF

We consider the distribution π(x) ∝ exp
(

−β−1|x|β
)

with β = 1.5, and compare the quadratic and

relativistic kinetic energy choices. We test 80 evenly spaced choices of step-size ε spanning from 0.1 to

5, and in each case begin the sampler at equilibrium and compute the empirical expected squared jump

distance from a chain of length 200,000, with the number of leapfrog steps randomly selected uniformly

between 1 and 5 at each iteration. The results are shown in Figure 1. As can be seen, the quadratic choice

leads to a higher optimal value, but when step-sizes are chosen to be too large the jump distance drops

quickly. The relativistic choice, by comparison, exhibits a larger degree of robustness to bigger step-sizes.
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