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ABSTRACT 

High spatial resolution imaging data is always considered desirable in the field of remote sensing, particularly Earth 
observation. However, given the physical constraints of the imaging instruments themselves, one needs to be able to 
trade-off spatial resolution against launch mass as well as telecommunications bandwidth for transmitting data back to 
the Earth. In this paper, we present a newly developed super-resolution restoration system, called MAGiGAN, based on 
our original GPT-SRR system combined with deep learning image networks to be able to restore up to 4x higher 
resolution enhancement using multi-angle repeat images as input. 

Keywords: Super-resolution restoration, earth observation, multi-angle, deep learning, generative adversarial network, 
MAGiGAN 

1. INTRODUCTION  
Very high spatial resolution imaging data is playing an increasing role in many commercial and scientific applications of 
Earth Observation (EO). However, this is tensioned against the realisation that as spatial resolution increases, so does 
spacecraft mass, driven by optical systems and power requirements until there comes a point at which the trade-off no 
longer works for any but the largest surveillance satellites. This suggests that even with future optical communications, 
satellite images are unlikely to be able to resolve features smaller than 25cm in the near future for any usable swath-
width. The Earth’s atmosphere also plays a significant role both in limiting the highest spatial resolution due to 
turbulence or light scattering from aerosols, particularly at large scattering angles, or clouds, which obscure most of the 
land surface most of the time. For commercial applications, whether in precision agriculture, forestry mapping, intra-
urban intelligence, maritime tracking and detection, and monitoring of key sites at very high levels of details for defence 
and security, applications are always hampered by the size of the smallest object we can resolve from an orbital probe. In 
this paper, we describe a new paradigm to use multi-angle views of a surface both to clear atmospheric obscuration on 
the basis that these are unlikely to form in the same place at a different time and use repeat multi-angle views to resolve 
much smaller objects. 

Previously within the EU FP-7 Planetary Robotics Vision Data Exploitation (PRoViDE) project (http://provide-
space.eu), we developed a novel super-resolution algorithm called GPT-SRR [1] to restore distorted features from multi-
angle observations using advanced feature and an area matcher based on least-squares correlation, Gotcha [2], and a 
segmented 4th order Partial Differential Equation (PDE) based Total Variation (TV) (Bouzari, SIViP, 2004) 
regularization approach. This technique was first demonstrated to resolve new surface information on individual rocks 
(diameter<150cm), rover tracks [3], and new evidence for the Beagle-2 lander using multi-angle repeat-pass 25cm 
NASA Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) images of the 
Martian surface [4]. 

More recently within the UK Space Agency CEOI SuperRes-EO project, we have further developed the SRR system 
using advanced machine learning algorithms. The new machine learning features are based on the Mutual shape adapted 
[5] Features from Accelerated Segment Test (O-FAST) [6] combined with Convolutional Neural Network (CNN) [7] 
feature matching, a Support Vector Machine (SVM) and Graph Cut (GC) based shadow modelling and removal [8], and 
the Generative Adversarial Network (GAN) [9] deep learning based super-resolution refinement. The new MSA-FAST-
CNN-GPT-GAN (which we dub as “MAGiGAN”) system not only retrieves subpixel information from multi-angle 
distorted features from the original GPT algorithm, but also uses the loss calculated from feature maps of the GAN 
network to replace the pixel wise difference based content loss of the original GPT algorithm to retrieve high texture 
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