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Stochastic heating refers to an increase in the average magnetic moment of charged
particles interacting with electromagnetic fluctuations whose frequencies are smaller
than the particles’ cyclotron frequencies. This type of heating arises when the
amplitude of the gyroscale fluctuations exceeds a certain threshold, causing particle
orbits in the plane perpendicular to the magnetic field to become stochastic rather
than nearly periodic. We consider the stochastic heating of protons by Alfvén-wave
(AW) and kinetic-Alfvén-wave (KAW) turbulence, which may make an important
contribution to the heating of the solar wind. Using phenomenological arguments, we
derive the stochastic-proton-heating rate in plasmas in which βp ∼ 1–30, where βp is
the ratio of the proton pressure to the magnetic pressure. (We do not consider the
βp & 30 regime, in which KAWs at the proton gyroscale become non-propagating.) We
test our formula for the stochastic-heating rate by numerically tracking test-particle
protons interacting with a spectrum of randomly phased AWs and KAWs. Previous
studies have demonstrated that at βp . 1, particles are energized primarily by
time variations in the electrostatic potential and thermal-proton gyro-orbits are
stochasticized primarily by gyroscale fluctuations in the electrostatic potential. In
contrast, at βp & 1, particles are energized primarily by the solenoidal component
of the electric field and thermal-proton gyro-orbits are stochasticized primarily by
gyroscale fluctuations in the magnetic field.

Key words: astrophysical plasmas, plasma heating, space plasma physics

1. Introduction
In the mid-twentieth century several authors published hydrodynamic models of

the solar wind that imposed a fixed temperature at the coronal base and took thermal
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2 I. W. Hoppock and others

conduction to be the only heating mechanism (e.g. Parker 1958, 1965; Hartle &
Sturrock 1968; Durney 1972). These models were unable to explain the high proton
temperatures and fast-solar-wind speeds observed at a heliocentric distance r of 1
astronomical unit (au) for realistic values of the coronal temperature and density,
indicating that the fast solar wind is heated primarily by some mechanism other than
thermal conduction. Parker (1965) and Coleman (1968) proposed that Alfvén waves
(AWs) and AW turbulence provide this additional heating. Support for this suggestion
can be found in the many spacecraft observations of AW-like turbulence in the solar
wind (see Belcher 1971; Tu & Marsch 1995; Bale et al. 2005), remote observations
of AW-like fluctuations in the solar corona (see De Pontieu et al. 2007; Tomczyk
et al. 2007) and the agreement between AW-driven solar-wind models and solar-wind
temperature, density and flow-speed profiles (Cranmer, van Ballegooijen & Edgar
2007; Verdini et al. 2010; Chandran et al. 2011; van der Holst et al. 2014).

AWs oscillate at a frequency ω = k‖vA, where k‖ (k⊥) is the component of the
wave vector k parallel (perpendicular) to the background magnetic field, B0, vA =

B0/
√

4πnpm is the Alfvén speed, np is the proton number density and m is the proton
mass.1 In AW turbulence, interactions between counter-propagating AWs cause AW
energy to cascade from larger to smaller scales. This energy cascade is anisotropic,
in the sense that the small-scale AW ‘eddies’, or wave packets, generated by the
cascade vary much more rapidly perpendicular to the magnetic field than along the
magnetic field (e.g. Shebalin, Matthaeus & Montgomery 1983; Goldreich & Sridhar
1995; Cho & Vishniac 2000; Horbury, Forman & Oughton 2008; Podesta 2013; Chen
2016). As a consequence, within the inertial range (scales larger than the thermal-
proton gyroradius ρth and smaller than the outer scale or driving scale), ω�Ω , where
Ω is the proton cyclotron frequency. At k⊥ρth ∼ 1, the AW cascade transitions to a
kinetic-Alfvén-wave (KAW) cascade (Schekochihin et al. 2009).

Studies of the dissipation of low-frequency (ω � Ω), anisotropic, AW/KAW
turbulence based on linear wave damping (e.g. Quataert 1998; Howes et al. 2008)
conclude that AW/KAW turbulence leads mostly to parallel heating of the particles
(i.e. heating that increases the speed of the thermal motions along B). On the other
hand, perpendicular ion heating is the dominant form of heating in the near-Sun solar
wind (Esser et al. 1999; Marsch 2006; Cranmer et al. 2009; Hellinger et al. 2013).
This discrepancy suggests that AW/KAW turbulence in the solar wind dissipates via
some nonlinear mechanism (e.g. Dmitruk, Matthaeus & Seenu 2004; Markovskii
et al. 2006; Lehe, Parrish & Quataert 2009; Schekochihin et al. 2009; Chandran et al.
2010; Servidio et al. 2011; Lynn et al. 2012; Xia et al. 2013; Kawazura, Barnes &
Schekochihin 2018). This suggestion is supported by studies that find a correlation
between ion temperatures and fluctuation amplitudes in solar-wind measurements and
numerical simulations (e.g. Wu et al. 2013; Grošelj et al. 2017; Hughes et al. 2017;
Vech, Klein & Kasper 2018).

In this paper, we consider one such nonlinear mechanism: stochastic heating.
In stochastic proton heating, AW/KAW fluctuations at the proton gyroscale have
sufficiently large amplitudes that they disrupt the normally smooth cyclotron motion
of the protons, leading to non-conservation of the first adiabatic invariant, the magnetic
moment (McChesney, Stern & Bellan 1987; Chen, Lin & White 2001a; Johnson &
Cheng 2001; Chaston et al. 2004a; Fiksel et al. 2009; Xia et al. 2013). Chandran
et al. (2010) used phenomenological arguments to derive an analytical formula for
the stochastic-heating rate at βp . 1, where βp is the ratio of the proton pressure

1We neglect the mass density of electrons and heavy ions.
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Stochastic proton heating by KAW turbulence 3

to the magnetic pressure (see (2.3)). In § 2 we use phenomenological arguments to
obtain an analytic formula for the proton-stochastic-heating rate in low-frequency
AW/KAW turbulence when βp ∼ 1–30. We limit our analysis to βp . 30, since
KAWs become non-propagating at k⊥ρth = 1 at larger βp values (see appendix A
and Hellinger & Matsumoto (2000), Kawazura et al. (2018), Kunz et al. (2018)). In
§ 3 we present results from simulations of test particles interacting with a spectrum
of randomly phased AWs/KAWs, which we use to test our analytic formula for
the stochastic-heating rate. Throughout this paper, we focus on perpendicular proton
heating rather than parallel proton heating. Stochastic heating can in principle to the
parallel proton heating that results from linear damping of AW/KAW turbulence at
β‖p & 1, but we leave a discussion of this possibility to future work.

2. Stochastic proton heating by AW/KAW turbulence at the proton gyroscale
A proton interacting with a uniform background magnetic field B0 and fluctuating

electric and magnetic fields δE and δB undergoes nearly periodic motion in the
plane perpendicular to B0 if δE and δB are sufficiently small or L/ρ is sufficiently
large, where L is the characteristic length scale of δE and δB, ρ = v⊥/Ω is the
proton’s gyroradius, v⊥ is the component of the proton’s velocity v perpendicular
to the magnetic field, Ω = qB0/mc is the proton gyrofrequency, m and q are the
proton mass and charge and c is the speed of light. When (i) the proton’s motion
in the plane perpendicular to B0 is nearly periodic and (ii) Ωτ � 1, where τ is the
characteristic time scale of δE and δB, the proton’s magnetic moment µ=mv2

⊥
/2B0

is almost exactly conserved (Kruskal 1962).
Perpendicular heating of protons (by which we mean a secular increase in the

average value of µ) requires that one of the above two conditions for µ conservation
be violated. For example, Alfvén/ion-cyclotron waves can cause perpendicular proton
heating via a cyclotron resonance if Ωτ ∼ 1 (Hollweg & Isenberg 2002). Alternatively,
low-frequency AW/KAW fluctuations can cause perpendicular proton heating if their
amplitudes at k⊥ρ ∼ 1 are sufficiently large that the proton motion in the plane
perpendicular to B0 becomes disordered or ‘stochastic’ (McChesney et al. 1987;
Johnson & Cheng 2001; Chen, Lin & White 2001b; Chaston et al. 2004b; Fiksel
et al. 2009).

We focus on this second type of heating, stochastic heating, and on ‘thermal’
protons, for which

v‖ ∼w‖ v⊥ ∼w⊥ ρ ∼ ρth, (2.1a−c)

where w⊥ =
√

2kBT⊥p/m and w‖ =
√

2kBT‖p/m are the perpendicular and parallel
thermal speeds, T⊥p and T‖p are the perpendicular and parallel proton temperatures, kB
is Boltzmann’s constant and ρth=w⊥/Ω is the thermal-proton gyroradius. We restrict
our attention to the contribution to the stochastic-heating rate from turbulent AW/KAW
fluctuations with

λ∼ ρth k⊥ρth ∼ 1, (2.2a,b)

where λ is the length scale of the fluctuations measured perpendicular to the
background magnetic field, and to

βp ≡
8πnkBTp

B2
0
∼ 1–30, (2.3)

where
Tp =

2T⊥p + T‖p
3

. (2.4)
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4 I. W. Hoppock and others

As mentioned above and discussed further in appendix A, KAWs at k⊥ρth= 1 become
non-propagating at significantly larger values of βp (see also Hellinger & Matsumoto
2000; Kawazura et al. 2018; Kunz et al. 2018). For simplicity, we assume that

T⊥p ∼ T‖p w⊥ ∼w‖, (2.5a,b)

which implies that

βp ∼
w2
⊥

v2
A
∼

w2
‖

v2
A
, (2.6)

and that Te ∼ Tp, where Te is the electron temperature. We also assume that

δBρ� B0, (2.7)

where δBρ is the root-mean-square (r.m.s.) amplitude of the magnetic fluctuations with
λ ∼ ρth, and that the fluctuations are in critical balance (Goldreich & Sridhar 1995),
which implies that

δvρ

ρth
∼
vA

l
, (2.8)

where l is the correlation length of the gyroscale AW/KAW fluctuations measured
parallel to the background magnetic field, and δvρ is the r.m.s. amplitude of the E×B
velocity of the AW/KAW fluctuations with λ ∼ ρth. Since the linear and nonlinear
time scales are comparable in the critical-balance model, we take the ratios of the
amplitudes of different fluctuating variables to be comparable to the ratios that arise
for linear AW/KAWs at k⊥ρth ∼ 1, which, given (2.2) and (2.3), implies that

δB‖ρ ∼ δB⊥ρ ∼ δBρ
δBρ
B0
∼
δvρ

vA
, (2.9a,b)

where δB‖ρ and δB⊥ρ are, respectively, the r.m.s. amplitudes of the components of
the fluctuating magnetic field parallel and perpendicular to B0 (TenBarge et al. 2012).
Equations (2.2) through (2.9) imply that

ω∼
vA

l
∼
δvρ

ρth
∼Ω

δvρ

w⊥
∼Ωβ−1/2

p
δvρ

vA
∼Ωβ−1/2

p
δBρ
B0
�Ω. (2.10)

2.1. Stochastic motion perpendicular to the magnetic field
To understand how gyroscale AW/KAW fluctuations modify a proton’s motion, we
cannot use the adiabatic approximation (Northrop 1963), which assumes λ � ρ.
Nevertheless, we can still define an effective guiding centre

R= r+
v× b̂
Ω

, (2.11)

where b̂=B/B. This effective guiding centre is always a distance ρ from the particle’s
position r and is, at any given time, the location about which the particle attempts
to gyrate under the influence of the Lorentz force. We find it useful to focus on R
rather than r because the motion of R largely excludes the high-frequency cyclotron
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Stochastic proton heating by KAW turbulence 5

motion of the proton. Upon taking the time derivative of (2.11) and making use of
the relations dr/dt= v and dv/dt= (q/m)(E+ v×B/c), we obtain

dR
dt
= v‖b̂+

cE×B
B2

−
v× b̂
Ω

1
B

dB
dt
+

v

Ω
×

db̂
dt
, (2.12)

where v‖ = v · b̂. The perpendicular component of dR/dt,(
dR
dt

)
⊥

=
dR
dt
− b̂

(
b̂ ·

dR
dt

)
=

(
b̂×

dR
dt

)
× b̂, (2.13)

can be found by substituting the right-hand side of (2.12) into the right-hand side
of (2.13), which yields(

dR
dt

)
⊥

=
cE×B

B2
−

v× b̂
Ω

1
B

dB
dt
+
v‖

Ω
b̂×

db̂
dt
. (2.14)

We now estimate each term on the right-hand side of (2.14). Since we are
considering only gyroscale fluctuations,2 the first term on the right-hand side of (2.14)
satisfies the relation ∣∣∣∣cE×B

B2

∣∣∣∣∼ δvρ . (2.15)

To estimate the second and third terms on the right-hand side of (2.14), we take

v⊥ ∼ |v‖| ∼w⊥ ∼w‖, (2.16)

which is satisfied by the majority of particles. The time derivative of the field strength
along the particle’s trajectory is

dB
dt
=
∂B
∂t
+ v⊥ · ∇B+ v‖b̂ · ∇B. (2.17)

As outlined above, our assumption of critical balance implies that λ� l and ω �

v⊥/ρ ∼w⊥/ρth. The second term on the right-hand side of (2.17) is thus much larger
than either the first or third terms, and

dB
dt
∼

w⊥δB‖ρ
ρth

. (2.18)

The second term on the right-hand side of (2.14) thus satisfies∣∣∣∣∣v× b̂
Ω

1
B

dB
dt

∣∣∣∣∣∼ ρth

B
dB
dt
∼

w⊥δB‖ρ
B0

, (2.19)

which is larger than the first term on the right-hand side of (2.14) by a factor of ∼β1/2
p ,

given (2.6) and (2.9).

2AW fluctuations at λ� ρth advect both the gyroscale AW/KAW eddies and the particles at the E×B
velocity of the large-scale AW fluctuations.
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6 I. W. Hoppock and others

(a) (b)

FIGURE 1. Trajectories of test-particle protons interacting with a spectrum of randomly
phased AWs and KAWs for different values of the stochasticity parameter δ defined
in (2.21).

For the moment, we assume that the second term on the right-hand side of (2.14)
is the dominant term; we discuss the third term in more detail below. If the second
term is dominant, then ∣∣∣∣(dR

dt

)
⊥

∣∣∣∣∼ w⊥δB‖ρ
B0

. (2.20)

During a single cyclotron period 2π/Ω , a proton passes through an order-unity
number of uncorrelated gyroscale AW/KAW eddies, and the values of (dR/dt)⊥
within different gyroscale eddies are uncorrelated. If (dR/dt)⊥ is small compared
to w⊥, then a proton undergoes nearly circular gyromotion. However, if |(dR/dt)⊥|
is a significant fraction of w⊥, then a proton and its guiding centre will move in an
essentially unpredictable way, and the proton’s orbit will become stochastic rather
than quasi-periodic. Given (2.9), |(dR/dt)⊥| is a significant fraction of w⊥ if the
stochasticity parameter

δ ≡
δBρ
B0

(2.21)

is a significant fraction of unity.
We illustrate how the value of δ affects a proton’s motion in figure 1. We compute

the particle trajectories shown in this figure by numerically integrating the equations
of motion for protons interacting with randomly phased AWs and KAWs. We present
the details of our numerical method and more extensive numerical results in § 3. In
the numerical calculation shown in figure 1(a), δ = 0.03, and the proton’s motion in
the plane perpendicular to B0 is quasi-periodic. In the numerical calculation shown in
figure 1(b), δ = 0.15, and the proton trajectory is more disordered or random.

We now consider the third term on the right-hand side of (2.14). The instantaneous
value of this term is comparable to the instantaneous value of the second term
given (2.9) and (2.16), but the third term is less effective at causing guiding-centre
displacements over time for the following reason. Because of (2.7), the time t‖
required for v‖ to change by a factor of order unity is � Ω−1. If we integrate the
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Stochastic proton heating by KAW turbulence 7

third term on the right-hand side of (2.14) from t= 0 to t= tf, where Ω−1
� tf� t‖,

we can treat v‖ as approximately constant in (2.14), obtaining∫ tf

0

v‖

Ω
b̂×

db̂
dt

dt=
v‖

Ω0

B0

B0
×1b̂ (2.22)

to leading order in δBρ/B0, where Ω0 = qB0/mc and 1b̂= b̂(tf)− b̂(0) is the change
in b̂. There is, however, no secular change in the value of b̂ at the proton’s location;
the magnetic-field unit vector merely undergoes small-amplitude fluctuations about
the direction of the background magnetic field. Thus, over time, the guiding-centre
displacements caused by the third term on the right-hand side of (2.14) are largely
reversible and tend to cancel out. The third term is thus less effective than the second
term at making proton orbits stochastic.

When the stochasticity parameter δ defined in (2.21) exceeds some threshold, the
motion of a thermal proton’s guiding centre in the plane perpendicular to B0 is
reasonably approximated by a random walk. To estimate the time step of this random
walk, we begin by defining the cyclotron average of (dR/dt)⊥,

vR(t)≡
Ω

2π

∫ t+π/Ω

t−π/Ω

(
dR
dt1

)
⊥

dt1. (2.23)

As stated above, during a single cyclotron period, a proton’s motion projected onto
the plane perpendicular to B0 carries the proton through an order-unity number of
uncorrelated gyroscale AW/KAW ‘eddies’. For simplicity, we take the amplitude and
direction of each vector term on the right-hand side of (2.14) to be approximately
constant within any single gyroscale eddy and the values of these vector terms within
different eddies to be uncorrelated. This makes vR approximately equal to the average
of some order-unity number of uncorrelated vectors of comparable magnitude. The
amplitude of this average is comparable to the instantaneous value of |(dR/dt)⊥|. Thus,
given (2.6), (2.9), and (2.20),

vR ∼
w⊥δB‖ρ

B0
∼ β1/2

p δvρ . (2.24)

Because we are considering the effects of just the gyroscale AW/KAW eddies, vR
decorrelates after the proton’s guiding centre has moved a distance ∼ρth in the plane
perpendicular to B0, which takes a time

1t∼
ρth

vR
. (2.25)

Thermal protons thus undergo spatial diffusion in the plane perpendicular to B0 with
a spatial diffusion coefficient

D⊥ ∼
ρ2

th

1t
∼ β1/2

p δvρρth. (2.26)

Given (2.8), (2.16) and (2.24),

1t∼
ρth

β
1/2
p δvρ

∼
l

β
1/2
p vA

∼
l
v‖
. (2.27)

The time required for a particle to wander a distance ∼ρth perpendicular to the
background magnetic field is thus comparable to the time required for the particle to
traverse the parallel dimension of a gyroscale AW/KAW eddy.
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8 I. W. Hoppock and others

2.2. Energy diffusion and heating
The total energy of a proton is given by its Hamiltonian,

H = qΦ +
1

2m

(
p−

q
c

A
)2
, (2.28)

where Φ is the electrostatic potential, p is the canonical momentum and A is the
vector potential. From Hamilton’s equations,

dH
dt
= q

∂Φ

∂t
−

qv
c
·
∂A
∂t
, (2.29)

where v=m−1(p−qA/c) is the velocity, and the electric field is E=−∇Φ− c−1∂A/∂t.
The second term on the right-hand side of (2.29) is qv · Es, where Es =−c−1∂A/∂t
is the solenoidal component of the electric field. Equation (46) of Hollweg (1999)
gives the ratio of Es to the magnitude of the irrotational component of the electric
field |∇Φ| for AWs/KAWs with k⊥ρth . 1,3

Es

|∇Φ|
∼
βpω

Ω
. (2.30)

In their treatment of stochastic heating at βp . 1, Chandran et al. (2010) neglected
the second term on the right-hand side of (2.29), because this term makes a small
contribution to the heating rate when βp is small. Here we focus on the effects of Es
and make the approximation that

dH
dt
∼ qv ·Es. (2.31)

We show in appendix B that the irrotational part of the electric field contributes less
to the heating rate than does the solenoidal part when βp & 1.

As a proton undergoes spatial diffusion in the plane perpendicular to the background
magnetic field, the electromagnetic field at its location resulting from gyroscale
AW/KAW fluctuations decorrelates on the time scale 1t given in (2.27). Within each
time interval of length ∼1t, the proton energy changes by an amount δH (which can
be positive or negative), and the values of δH are uncorrelated within successive time
intervals of length 1t. As a consequence, the proton undergoes energy diffusion.

To estimate the r.m.s. value of δH, which we denote 1H, we adopt a simple model
of a proton’s motion, in which the proton’s complicated trajectory is replaced by a
repeating two-step process. In the first step, the proton undergoes circular cyclotron
motion in the plane perpendicular to B0 for a time 1t. In the second step, the proton
is instantly translated a distance ρth in some random direction perpendicular to B0.4

In this simple model, a proton undergoes N ∼Ω1t∼ (v⊥/ρth)× (l/v‖)∼ l/ρth� 1
circular gyrations in the plane perpendicular to B0 during a time 1t. Integrating (2.31)
for a time 1t, we obtain

δH ∼ q
∫ 1t

0
v(t) ·Es(r(t), t) dt, (2.32)

3Es is nearly perpendicular to B0, as illustrated in figure 3 of Hollweg (1999).
4For simplicity, our model of proton motion neglects motion parallel to B. This approximation is to some

extent justified by (2.27), which implies that a proton is unable to escape from an eddy of length l by motion
along the magnetic field in a time shorter than 1t. However, we return to the issue of parallel motion in
§ 2.3.
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Stochastic proton heating by KAW turbulence 9

where r(t) is the proton’s position at time t. Since 1t ∼ β−1/2
p ρth/δvρ , when βp & 1,

the time 1t for a particle to diffuse across one set of gyroscale eddies is shorter
than or comparable to the linear or nonlinear time scale ρth/δvρ of those eddies. We
thus approximate the right-hand side of (2.32) by setting Es(r(t), t)= Es(r(t), 0) and
rewrite (2.32) as

δH ∼ qN
∮

Es(r, 0) · dl∼ qN
∫

S
∇×E(r, 0) · dS∼−

qN
c

∫
S

∂B
∂t
(r, 0) · dS, (2.33)

where the line integral is along the proton’s path during one complete circular gyration
in the plane perpendicular to B0, the surface integral is over the circular surface S
of radius ρth enclosed by the gyration, and we have used Faraday’s law ∇ × E =
(−1/c)∂B/∂t. The surface S is perpendicular to B0, and dS is anti-parallel to B0 (anti-
parallel rather than parallel since q > 0). The r.m.s. value of δH thus satisfies the
order-of-magnitude relation

1H ∼
qN
c
ωeffδB‖ρρ2

th, (2.34)

where
ωeff ≡

δvρ

ρth
(2.35)

is the nonlinear frequency of the gyroscale fluctuations. Upon setting q/c = Ωm/B,
N =Ω1t and ρ2

th =w2
⊥
/Ω2 in (2.34), we obtain

1H ∼
mw2
⊥

B
δvρ

ρth
δB‖ρ1t. (2.36)

Although we are in the process of estimating the rate at which µ changes over
long times, our estimate of 1H is comparable to the value that would follow
from µ conservation: 1H ∼ µ1B ∼ (mw2

⊥
/B)ωeffδB‖ρ1t, where 1B ∼ ωeffδB‖ρ1t

is the r.m.s. amplitude of the change in the magnetic flux through the proton’s
Larmor orbit, divided by πρ2, during the time 1t in which the proton is (in
our simple two-step model of proton motion) undergoing continuous, circular,
cyclotron motion. This correspondence highlights an alternative interpretation of
the stochastic-heating process at βp & 1. In the guiding-centre approximation, when
v2
⊥

increases by some factor because of Es, the field strength at the particle’s guiding
centre increases by approximately the same factor, essentially because of Faraday’s
law. This proportionality underlies µ conservation. In stochastic heating, the same
proportionality is approximately satisfied during a single time interval 1t, but the
proton is then stochastically transported to a neighbouring set of gyroscale eddies,
in which the field strength is not correlated with the field strength at the proton’s
original location. The proton thus ‘forgets’ about what happened to the field strength
at its original location and gets to keep the energy that it gained without ‘paying
the price’ of residing in a higher-field-strength location. In this way, spatial diffusion
perpendicular to B breaks the connection between changes to v2

⊥
and changes to B

that arises in the ρ/λ→ 0 limit.
In our simple model, the energy gained by a proton is in the form of perpendicular

kinetic energy,

K⊥ =
mv2
⊥

2
, (2.37)
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10 I. W. Hoppock and others

because we neglect the parallel motion of protons. (We do not preclude the
possibility of parallel stochastic heating, but we do not consider it further here.)
The perpendicular-kinetic-energy diffusion coefficient DK is thus ∼1H2/1t, or

DK ∼
m2w4

⊥

β
1/2
p

δvρ

ρth

δB2
ρ

B2
0
, (2.38)

where we have used (2.27) to estimate 1t and (2.9) to set δB‖ρ ∼ δBρ . A single proton
undergoing a random walk in energy can gain or lose energy with equal probability
during a time 1t. However, if a large number of thermal protons (e.g. with an initially
Maxwellian distribution) undergo energy diffusion, then on average more protons will
gain energy than lose energy, leading to proton heating. The heating time scale τh
is the characteristic time for the perpendicular kinetic energy of a thermal proton to
double, τh ∼ (mw2

⊥
)2/DK , and the perpendicular-heating rate per unit mass is Q⊥ ∼

K⊥/(mτh)∼DK/(mK⊥), or,

Q⊥ ∼ β1/2
p
(δvρ)

3

ρth
. (2.39)

To account for the uncertainties introduced by our numerous order-of-magnitude
estimates, we multiply the right-hand side of (2.39) by an as-yet-unknown
dimensionless constant σ1. As δvρ → 0, dµ/dt decreases faster than any power
of δvρ (Kruskal 1962). To account for this ‘exponential’ µ conservation in the
small-δvρ limit, we follow Chandran et al. (2010) by multiplying the right-hand side
of (2.39) by the factor exp(−σ2/δ),

Q⊥ = σ1
(δvρ)

3

ρth

√
βp exp

(
−
σ2

δ

)
, (2.40)

where σ2 is another as-yet-unknown dimensionless constant, and δ is defined in (2.21).
For comparison, the stochastic-heating rate per unit mass found by Chandran et al.

(2010) when βp . 1 is

Q⊥ = c1
(δvρ)

3

ρth
exp

(
−

c2

ε

)
, (2.41)

where
ε=

δvρ

w⊥
, (2.42)

and the dimensionless constants c1 and c2 serve the same purpose as those in (2.40).
As discussed by Chandran et al. (2010) for the case of c1 and c2, we expect the
constants σ1 and σ2 to depend on the nature of the fluctuations. For example, at
fixed δvρ , we expect stronger heating rates (i.e. larger σ1 and/or smaller σ2) from
intermittent turbulence than from randomly phased waves (Chandran et al. 2010;
Xia et al. 2013; Mallet et al. 2018), because, in intermittent turbulence, most of the
heating takes place near coherent structures in which the fluctuations are unusually
strong and in which the proton orbits are more stochastic than on average.

2.3. Orbit stochasticity from parallel motion
In § 2.1, we focused on proton motion perpendicular to B. However, motion along the
magnetic field can also produce stochastic motion in the plane perpendicular to B0
(see, e.g. Hauff et al. 2010). In particular, the perpendicular magnetic fluctuations at
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Stochastic proton heating by KAW turbulence 11

the scale of a proton’s gyroradius perturb the direction of b̂. These perturbations, when
fed into the first term on the right-hand side of (2.12), v‖b̂, cause the proton’s guiding
centre R to acquire a velocity perpendicular to B0 of

u⊥ ∼ v‖ ×
δB⊥ρ

B0
, (2.43)

where δB⊥ρ is the component of δB (from gyroscale fluctuations) perpendicular to B0
at the proton’s location. The value of u⊥ varies in an incoherent manner in time, with
a correlation time ∼Ω−1. If u⊥ is a significant fraction of v⊥, then u⊥ will cause a
proton’s orbit in the plane perpendicular to B0 to become stochastic. This leads to an
alternative high-βp stochasticity parameter,

δ̃ =
u⊥
v⊥
=
v‖δB⊥ρ
v⊥B0

. (2.44)

As δ̃ increases towards unity, proton orbits become stochastic. For thermal protons
with v⊥ ∼ v‖ and ρ ∼ ρth, δ̃ is equivalent to δ in (2.21), which was based upon the
parallel magnetic-field fluctuation δB‖ρ (even though we set δB‖ρ ∼ δBρ in (2.21))).
The contribution of parallel motion to orbit stochasticity thus does not change
our conclusions about the rate at which thermal protons are heated stochastically.
However, the contribution of parallel motion to orbit stochasticity should be taken into
account when considering the ability of stochastic heating to produce superthermal
tails, because in AW turbulence the perpendicular (parallel) magnetic fluctuation at
perpendicular scale λ, denoted δB⊥λ (δB‖λ), is an increasing (decreasing) function of λ
when λ is in the inertial range. Orbit stochasticity through the interaction between
parallel motion and δB⊥ρ could thus contribute to the development of superthermal
tails when βp & 1. An investigation of superthermal tails, however, lies beyond the
scope of this paper.

3. Numerical test-particle calculations
To test the phenomenological theory developed in § 2, we numerically track test-

particle protons interacting with a spectrum of low-frequency randomly phased AWs
and KAWs. The initial particle positions are random and uniformly distributed within
a cubical region of volume (100dp)

3, where dp = vA/Ω is the proton inertial length.
The initial velocity distribution is an isotropic Maxwellian with proton temperature Tp.
To trace each particle, we solve the equations of motion,

dx
dt
= v

dv

dt
=

q
m

(
E+

v×B
c

)
, (3.1)

using the Boris method (Boris 1970) with a time step of 0.01Ω−1.

3.1. Randomly phased waves
The code used to implement the AW/KAW spectrum is similar to the code used by
Chandran et al. (2010). The magnetic field is B=B0ẑ+ δB, where B0 is constant. We
take E and δB to be the sum of the electric and magnetic fields of waves at each
of 81 different wave vectors, with two waves of equal amplitude at each wave vector,
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12 I. W. Hoppock and others

one with ω/kz < 0 and the other with ω/kz > 0.5 The initial phase of each wave is
randomly chosen.

The 81 wave vectors correspond to nine evenly spaced values of the azimuthal
angle in k space (in cylindrical coordinates aligned with B0) at each of nine specific
values of k⊥i : i ∈ [0, . . . , 8]. The values of k⊥i are evenly spaced in ln(k⊥)-space,
with ln(k⊥iρth) = −4/3 + i/3. The middle three cells, in which i = 3, 4 and 5,
have a combined width of unity in ln(k⊥)-space, centred at precisely k⊥ρth = 1. We
computationally evaluate δvρ and δBρ via the r.m.s. values of the E×B velocity and
δB that result from the waves in just these middle three cells.

There is one value of k‖≡ |kz| at each k⊥i, denoted k‖i. We determine k‖4 by setting
the linear frequency at k‖4 equal to k⊥4δvρ . At other values of k⊥, we set

k‖i
k‖4
=


(

k⊥i

k⊥4

)2/3

: 0 6 i< 4(
k⊥i

k⊥4

)1/3

: 4< i 6 8.

(3.2)

The exponents 2/3 and 1/3 in (3.2) are chosen to match the scalings in the
critical-balance models of Goldreich & Sridhar (1995) and Cho & Lazarian (2004),
respectively. We take the individual wave magnetic-field amplitudes to be proportional
to k−1/3

⊥ and k−2/3
⊥ for k⊥ρth< 1 and k⊥ρth> 1, respectively, in order to match the same

two critical-balance models. (All the waves at the same value of k⊥i have the same
amplitudes.) We determine the wave frequency and relative amplitudes of the different
components of the fluctuating electric and magnetic fields using Hollweg’s (1999)
two-fluid analysis of linear KAWs, setting

Te

Tp
= 0.5

vA

c
= 0.003, (3.3a,b)

where Te and Tp are the (isotropic) electron and proton temperatures. We do not expect
the particular choices in (3.3) to have a large effect on our results, but choose those
values to facilitate a direct comparison to the previous numerical results of Chandran
et al. (2010). Since we take T⊥p = T‖p, we set

w⊥ =w‖ =w≡

√
2kBTp

m
= vA

√
βp. (3.4)

3.2. A note on the electric field
Following Lehe et al. (2009), we correct the electric field because the magnetic
field (including its fluctuations, i.e. B= B0ẑ+ δB) in the simulation is not orientated
along the z-axis. The simulation, however, equates the parallel and perpendicular
components of the electric field to the parallel and perpendicular components of the
wave electric field that would arise if the magnetic field were aligned exactly on the
z-axis. The result is a numerical addition of perpendicular electric-field terms to the
parallel electric field, which, in turn, causes non-physical parallel heating. This may
be seen in figure 2 of Chandran et al. (2010). To fix this, we replace the sum of the
individual wave electric fields described in § 3.1, which we denote Ewave, with the
modified electric field E=Ewave + b̂(ẑ ·Ewave − b̂ ·Ewave).

5This makes the cross-helicity zero. For a discussion of how cross-helicity affects the stochastic-heating
rate in the low-βp regime, see Chandran et al. (2013).
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Stochastic proton heating by KAW turbulence 13

FIGURE 2. The mean square velocity perpendicular to B0, 〈v2
⊥
〉, as a function of time

in two test-particle calculations, each of which tracks 105 protons. The value of the
stochasticity parameter δ (defined in (2.21)) is 0.15 in both calculations.

3.3. Perpendicular heating
We perform numerical test-particle calculations at five different values of βp, in
particular βp = {0.006, 0.01, 0.1, 1, 10}. For each βp value, we carry out test-particle
calculations for five different values of δ (or, equivalently, five different values of ε).
Each calculation returns the values of 〈v2

⊥
〉 and 〈v2

‖
〉 as functions of time. We show

two examples in figure 2. The slope of the best-fit line for each 〈v2
⊥
(t)〉 curve

determines the perpendicular-heating rate per unit mass Q⊥ = (1/2)(d/dt)〈v2
⊥
〉, where

〈 · · · 〉 indicates an average over the 104 or 105 particles in the simulation. (We use
more particles in simulations with smaller ε and δ because the heating rates are
smaller in these simulations, and the extra particles increase the signal-to-noise ratio.)
We fit the 〈v2

⊥
(t)〉 curves during the time interval (ti, tf), where ti = 20π/Ω and tf is

the smaller of the following two values: 104Ω−1 and the time required for 〈v2
⊥
〉 to

increase by '30 %. We do not include the first ten cyclotron periods when calculating
Q⊥, because it takes the particles a few cyclotron periods to adjust to the presence of
the waves, during which time there is typically strong transient heating. (As figure 2
shows, the test particles undergo parallel heating as well as perpendicular heating, as
was found previously by Xia et al. (2013) in simulations of test particles interacting
with reduced magnetohydrodynamic turbulence at β‖p = 1.)

The perpendicular-heating rates in our test-particle calculations are shown in
figure 3. The solid-line curves in (a,c) on the left correspond to (2.41), with

c1 = 0.77, c2 = 0.33. (3.5a,b)

These values are very similar to the values c1 = 0.75 and c2 = 0.34 obtained by
Chandran et al. (2010) at βp = 0.006. The solid-line curves in (b,d) on the right
correspond to (2.40) with

σ1 = 5.0, σ2 = 0.21. (3.6a,b)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377818001277
Downloaded from https://www.cambridge.org/core. UCL, Institute of Education, on 02 Apr 2019 at 12:29:56, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377818001277
https://www.cambridge.org/core


14 I. W. Hoppock and others

(a) (b)

(c) (d)

FIGURE 3. Numerical results for the perpendicular-heating rate per unit mass, Q⊥, for
protons interacting with randomly phased AWs and KAWs. (a) βp< 1, and Q⊥ normalized
by Ωv2

A. (b) βp > 1 and Q⊥ normalized by Ωv2
A. (c) βp < 1 and Q⊥ normalized by Ωw2,

where w is the proton thermal speed defined in (3.4); the numerical results for all three
βp values (0.006, 0.01, and 0.1) are within the bars shown. (d) βp > 1 and Q⊥ normalized
by Ωw2. In (a,c) the solid lines are plots of (2.41) for the best-fit values of c1 and c2
given in (3.5). In (b,d) the solid lines are plots of (2.40) for the best-fit values of σ1 and
σ2 in (3.6).

The agreement between our numerical results and (2.40) suggests that the
approximations used to derive this equation are reasonable.

Figure 3(c) shows that at βp < 1, Q⊥/(Ωw2) is a function of ε alone, consistent
with the fact that (2.41) can be rewritten in the form

Q⊥
Ωw2

= c1ε
3 exp

(
−

c2

ε

)
(at βp . 1). (3.7)
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Stochastic proton heating by KAW turbulence 15

Figure 3(b) shows that at βp > 1, Q⊥/(Ωv2
A) is a function of δ alone, consistent with

the fact that (2.40) can be rewritten as

Q⊥
Ωv2

A
= σ1δ

3 exp
(
−
σ2

δ

)
(at βp & 1). (3.8)

We note that in our model of randomly phased KAWs (Chandran et al. 2010),

δBρ
B0
= 0.84

δvρ

vA
, (3.9)

and thus
δ =

δBρ
B0
= 0.84

δvρ

vA
= 0.84β1/2

p
δvρ

w⊥
= 0.84β1/2

p ε. (3.10)

As a consequence, if we adopt the best-fit values of σ1, σ2, c1 and c2, then the value of
Q⊥ at βp= 1 in (2.40), which matches our test-particle calculations quite well, exceeds
the value that would follow from (2.41) at βp = 1. A similar phenomenon was found
by Xia et al. (2013) in numerical simulations of test particles interacting with strong
reduced magnetohydrodynamic turbulence.

To obtain a fitting formula that can be used to model stochastic heating at large βp,
small βp and βp' 1, we use (3.4) and (3.10) to rewrite the low-βp heating rate in (3.7)
in terms of δ and vA. We then add the low-βp heating rate to the high-βp heating rate
in (3.8), obtaining

Q⊥
Ωv2

A
= σ1δ

3 exp
(
−
σ2

δ

)
+

1.69c1δ
3

β
1/2
p

exp

(
−

0.84c2β
1/2
p

δ

)
. (3.11)

The first term on the right-hand side dominates at βp & 1 in part because σ1 ' 6.5c1.
The second term on the right-hand side dominates at βp � 1. Figure 4 shows that
(3.11) is consistent with our numerical results. This figure also illustrates how, at fixed
δBρ/B0, the stochastic-heating rate increases as βp decreases.

As mentioned above, stochastic heating becomes more effective as the fluctuations
become more intermittent (Xia et al. 2013; Mallet et al. 2018). The randomly phased
waves in our test-particle simulations are not intermittent, but gyroscale fluctuations
in space and astrophysical plasmas generally are (see, e.g. Mangeney et al. 2001;
Carbone et al. 2004; Salem et al. 2009; Chandran, Schekochihin & Mallet 2015;
Mallet, Schekochihin & Chandran 2015). Further work is needed to determine how
the best-fit constants in (3.5) and (3.6) depend upon the degree of intermittency at the
proton gyroradius scale. Until this dependency is determined, some caution should
be exercised when applying (3.11) to space and astrophysical plasmas. For reference,
Bourouaine & Chandran (2013) found that lowering c2 to '0.2 led the heating rate in
(2.41) to be consistent with the proton-heating rate and fluctuation amplitudes inferred
from measurements of the fast solar wind from the Helios spacecraft at r = 0.3 au.
However, if c2 = 0.33, then the heating rate in (2.41) is too weak to explain the
proton heating seen in the Helios measurements.

4. Summary
In this paper we use phenomenological arguments to derive an analytic formula for

the rate at which thermal protons are stochastically heated by AW/KAW turbulence at
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16 I. W. Hoppock and others

FIGURE 4. The data points reproduce the numerical results from figure 3 for βp =

0.01, 0.1, 1.0 and 10. The dotted, long-dashed, solid and short-dashed lines plot (3.11)
for, respectively, βp= 0.01, βp= 0.1, βp= 1 and βp= 10. The solid and short-dashed lines
are difficult to distinguish because they are nearly on top of each other.

k⊥ρth∼1. We focus on βp∼1−30. Smaller values of βp were considered by Chandran
et al. (2010). At larger values of βp, KAWs at k⊥ρth∼ 1 become non-propagating, and
some of the scalings we have assumed do not apply. At βp∼ 1− 30, the motion of a
proton’s effective guiding centre is dominated by the interaction between the proton
and gyroscale fluctuations in the magnetic field, whose amplitude is denoted δBρ . As
δBρ/B0 increases from infinitesimal values towards unity, the proton motion in the
plane perpendicular to B0 becomes random (stochastic), leading to spatial diffusion,
and this spatial diffusion breaks the strong correlation between changes in a proton’s
perpendicular kinetic energy and the magnetic-field strength at the proton’s location
that normally gives rise to magnetic-moment conservation. The interaction between the
proton and the electric field then becomes a Markov process that causes the proton
to diffuse in energy. This energy diffusion leads to heating. At βp ∼ 1–30, it is the
solenoidal component of the electric field that dominates the heating.

The analytic formula that we derive for the stochastic heating rate Q⊥ contains
two dimensionless constants, σ1 and σ2, whose values depend upon the nature of
the AW/KAW fluctuations with which the proton interacts (e.g. randomly phased
waves or intermittent turbulence). We numerically track test particles interacting
with randomly phased AWs and KAWs and find that our analytic formula for Q⊥
agrees well with the heating rate of these test particles for the choices σ1 = 5.0 and
σ2 = 0.21. We note that previous work has shown that for fixed r.m.s. amplitudes of
the gyroscale fluctuations, stochastic heating is more effective when protons interact
with intermittent turbulence than when protons interact with randomly phased waves
(Chandran et al. 2010; Xia et al. 2013; Mallet et al. 2018). The reason for this is
that in intermittent turbulence, most of the heating occurs near coherent structures,
in which the fluctuation amplitudes are larger than average and in which the particle
orbits are more stochastic than on average.

Our work leaves a number of interesting questions unanswered. Two such questions
are how the energy-diffusion coefficient depends on energy at βp ∼ 1 − 30 and
how the proton distribution function evolves in the presence of stochastic heating.
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(For a discussion of the low-βp case, see Klein & Chandran (2016).) We also have not
addressed the question of how stochastic heating changes as βp is increased to values
& 30 and KAWs at k⊥ρth ∼ 1 become non-propagating, or how the stochastic-heating
rate for minor ions depends upon minor-ion mass, charge and average flow speed
along B0 in the proton frame. (For a discussion of the low-βp case, see Chandran
et al. (2013).) Previous studies have compared observationally inferred heating
rates in the solar wind with the low-β‖p stochastic-heating rate in (2.41) derived by
Chandran et al. (2010), finding quantitative agreement at r= 0.3 au assuming c2' 0.2
(Bourouaine & Chandran 2013) and qualitative agreement at r = 1 au (Vech, Klein
& Kasper 2017). However, it is not yet clear whether the stochastic-heating rate
in (2.40) agrees with solar-wind measurements in the large-β‖p regime. In addition,
stochastic heating at β‖p & 1 could trigger temperature-anisotropy instabilities, which
could in turn modify the rate(s) of perpendicular (and parallel) proton heating. Future
investigations of these questions will be important for determining more accurately
the role of stochastic heating in space and astrophysical plasmas.
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Appendix A. Non-propagation of KAWs at k⊥ρth ∼ 1 at high βp

In figure 5, we compare the AW/KAW dispersion relation from the two-fluid model
of Hollweg (1999) and the PLUME hot-plasma-dispersion-relation solver (Klein &
Howes 2015) for Te/Tp = 0.5 and vA/c = 0.003 and for various values of βp. The
PLUME results shown here assume that k‖ρth= 0.001 and that the proton and electron
distributions are Maxwellian. The two-fluid dispersion relation agrees reasonably well
with the more accurate PLUME results at βp . 1. However, at βp & 1, the PLUME
results deviate from the two-fluid theory because of ion damping, which becomes
stronger as βp increases (Howes et al. 2008; Kunz et al. 2018). Starting at βp ' 30
(for Te/Tp= 0.5, vA/c= 0.003 and k‖ρp= 0.001), the real part (but not the imaginary
part) of the KAW frequency at k⊥ρth = 1 vanishes (i.e. KAWs become damped, non-
propagating modes). For larger βp values, KAWs are non-propagating throughout an
interval of k⊥ρth values centred on unity that broadens to both larger and smaller
values as βp increases (Kawazura et al. 2018).

Appendix B. Stochastic heating by the electrostatic potential at βp & 1

In § 2 we considered the r.m.s. change to a thermal proton’s energy 1H resulting
from the solenoidal component of the electric field Es during the particle residence
time 1t within one set of gyroscale eddies. We also evaluated the contribution of Es
to the stochastic heating rate Q⊥. Here, we show that the contribution to Q⊥ from Es
is larger than the contribution from the electrostatic potential Φ when βp & 1.

We assume that the r.m.s. amplitude of the potential part of the electric field
at k⊥ρth is comparable to the r.m.s. amplitude of the total gyroscale electric-field
fluctuation, δEρ , which in turn is ∼δvρB0/c. As discussed by Chandran et al. (2010),
the contribution of the time-varying electrostatic potential to 1H is

1Hpotential ∼ qωeff1Φρ1t, (B 1)
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FIGURE 5. The KAW dispersion relation from Hollweg’s (1999) two-fluid model (solid
lines) and the PLUME hot-plasma-dispersion-relation solver (Klein & Howes 2015) (dotted
lines) for Te/Tp = 0.5 and vA/c= 0.003 for various powers of βp.

where ωeff = δvρ/ρth (see (2.35)), and

q1Φρ ∼ qρthδEρ ∼ qw⊥ ×
mc
qB0
×
δvρB0

c
∼mw⊥δvρ . (B 2)

Since (2.27) gives 1t∼ β−1/2
p ρth/δvρ ,

ωeff1t∼ β−1/2
p . (B 3)

Combining (B 1) through (B 3), we obtain

1Hpotential ∼ β
−1/2
p mw⊥δvρ, (B 4)

DK,potential ∼
(1Hpotential)

2

1t
∼
β−1

p m2w2
⊥
(δvρ)

2

β
−1/2
p ρth/δvρ

∼ β−1/2
p m2w2

⊥

(δvρ)
3

ρth
, (B 5)

and

Q⊥,potential ∼
DK,potential

mK⊥
∼ β−1/2

p
(δvρ)

3

ρth
, (B 6)

which is a factor of ∼β−1
p smaller than the estimate of Q⊥ in (2.39).
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