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A B S T R A C T

To understand and design student loan systems, realistic earnings and/or income projections for current and
future graduates are crucial. In this paper, Current Population Survey (CPS) data from the US is used to de-
monstrate empirical approaches that can be exploited to simulate lifetime income and earnings profiles for
graduates which are needed to understand and design effective and sustainable student loan systems. The crucial
element in getting this analysis correct is having reliable simulations of the whole distribution of future graduate
earnings and income. Typically, in this literature, the repayment burdens (RBs) of student loans are calculated at
different quantiles of the graduate income or earnings distribution. Often, unconditional quantile regression
(UQR) is used to calculate age–earnings profiles for different quantiles of the income or earnings distribution.
The paper shows that this approach has limitations when evaluating student loans and that simple raw quantile
estimation by age with some age smoothing is preferable. This approach can also be used when income is
censored and recorded in income bands as occurs with relevant data in some countries. The paper shows a simple
way of incorporating dynamics utilizing these age–earnings profiles by quantile even when only very short panel
data is available. This involves using copula functions. Having reliable dynamic estimates turns out to be im-
portant in assessing not only the taxpayer costs of designing an income-contingent loan (ICL) but also for cor-
rectly assessing the extent of loan repayment hardship for individuals.

1. Introduction

One of the most important, and generally undiscussed, issues in
applied labor and education economics relates to the use of cross-sec-
tional data to infer the likely future earnings or income1 of individuals.
The research in this area usually assumes that point-in-time estimates
can be used as accurate projections of lifetime outcomes. Nowhere is
this inference more critical than in research motivated by the need to
understand the empirical implications of student loan policy design.

Current research into student loans focusses on two related and
separate questions. The first concerns the impact that so-called time-
based repayment loans (TBRLs) might have on the hardship of debtors
because these types of student loans require repayments of debt irre-
spective of a debtor's capacity to repay debt. This issue has motivated a
substantial literature based on calculations of so-called “repayment
burdens” (RBs), the proportion of a debtor's disposable income that
must be used to service a TBRL debt. This burden is seen, quite validly,
to be a critical aspect of TBRLs because when an individual has a high
RB it would seem to follow that repayment is a challenging experience,

leading to anxiety, hardship, the need to require family and/or friends
to assist in debt repayment and, in an extreme situation, having to
default on the loan. As discussed in the Introduction of this Special
Issue, these costs for a debtor – particularly those associated with de-
fault – are significant.

The second research and policy-related issue in the student loan
research area concerns the costs for government associated with the
adoption of an alternative student loans system, an issue also addressed
in the Introduction to this Special Issue. What matters here are the
subsidies involved when TBRLs are replaced with their only policy al-
ternative, what are known as “income-contingent loans” (ICLs), in
which repayment of a loan depends on the future income of debtors.
While the conceptual advantages of an ICL are clear and considered in
the Introduction, what matters for policy are the design parameters of
an ICL related to finding the associated taxpayer subsidies.

For both issues, it is critical to understand the strengths and
weaknesses of using cross-sectional data concerning lifetime earnings
projections. To address these issues, the paper uses the Current
Population Survey (CPS) data from the US to illustrate the importance
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of estimation approaches that go well beyond the cross-sectional
methods typically used.

There are several crucial elements to getting this analysis right, and
these and the related conclusions are as follows:

(i) While current research recognizes the need to have reliable simu-
lations of the whole distribution of current and future graduate
earnings or income in a cross-section, it is demonstrated that the
methods currently used with this approach, involving uncondi-
tional quantile regression (UQR) analysis, are generally not correct
and in some cases can lead to inaccurate - even sometimes mis-
leading - conclusions; and

(ii) Inferences based on cross-sectional analysis that necessarily re-
stricts individuals to remain in the same part of the income or
earnings distribution for life (allowing for no income or earnings
dynamics) are not credible. The paper illustrates a relatively simple
way of incorporating income and earnings dynamics using copula
functions and basic panel data that is available in almost all
countries. It demonstrates that in most cases, the estimated sub-
sidies for ICL are too high and the estimated RB problems with
TBRL are too low when earnings and income dynamics are ignored.

Section 2 discusses the best way to estimate the cross-sectional
distribution of age–earnings profiles. Unconditional quantile regression
(UQR) methods are compared with smoothed raw percentiles by age,
and the paper shows that UQR is not always appropriate and probably
should not be used in this context. The section also demonstrates how
researchers can effectively deal with earnings or income survey data
that has been banded (or partially banded) by using either interval
regression techniques or midpoints, coupled with age smoothing, to
obtain age–earnings profiles across the distribution that match the ac-
tual age–earnings profiles well. Finally, it shows how static lifetime
income and earnings projections can be estimated exploiting these
cross-sectional distributions of age–earnings profiles. Section 3 shows a
simple but sophisticated approach to estimating dynamic lifetime
earnings and income profiles when good longitudinal data is not
available, which involves a simple extension of the approach developed
in Section 2 and copula functions. Section 4 shows the implications for
RB analysis of using dynamic rather than static income simulation.
Section 5 shows the implications of incorporating earnings dynamics
for understanding the consequences of ICL design for graduates and
taxpayers. Section 6 concludes.

2. Cross-sectional distribution of age–earnings profiles

2.1. Introduction

In this section, the strengths and weaknesses of the methods used for
estimating cross-sectional age–earnings profiles by quantile of the in-
come and earnings distribution are discussed. Getting these profiles
right is essential to understanding RB problems with student loans as
well as designing student loan systems and estimating the subsidies
involved. Methods used in previous work on student loans, such as
Chapman and Lounkaew (2015), are shown to be problematic, and this
has important implications for policy work; in particular, it is highly
likely to underestimate RB problems with TBRL loans.

2.2. Data description

All the analysis in this paper uses data from the March income
supplement of the US Current Population Survey (CPS) from 2014,
2015, 2016 and 2017. CPS data was also used in Chapman and
Lounkaew (2015). From the CPS, a sample of individuals who have
completed a four-year bachelor's degree or higher degree who are aged
23 to 65 is selected. Data on individual income (from all sources) and
labor earnings is used in the analysis in the paper.

The total CPS sample across these four years consists of 142,385
observations of which 64,376 (45%) are for males and 78,009 (55%)
are for females. A panel is constructed for the subset of bachelor's de-
gree graduates who are observed in two consecutive years - i.e. March
2014 and 2015, March 2015 and 2016 or March 2016 and 2017 - re-
moving all clearly anomalous cases.2 This results in a panel of 30,917
individuals (61,834 observations) of whom 13,979 are males (45%) and
16,938 are females (55%). Summary statistics for the income and
earnings variables for the whole CPS sample and the CPS panel are
given in Table 1.

The sample sizes mean that for the panel, there are an average of
about 330 individuals per age transition for men and 400 per age
transition for women. For the CPS cross-sectional data, there are around
1,500 observations per age for men and 1,800 for women. There is of
course variation by age in both datasets, with the lowest numbers
concentrated among young male bachelor's degree graduates aged 23 to
25 and female graduates aged 60 and above.

2.3. Estimating the cross-sectional distribution of age–earnings profiles

As highlighted in the Introduction to this Special Issue, estimating
RBs across the distribution of income or earnings is essential to un-
derstanding how student loan repayments impact on graduates. To do
this, one can simply estimate the percentiles of the income and earnings
distribution at each age (the marginal distribution at each age) and plot
age–earnings profiles for different percentiles of the earnings or income
distribution. This allows researchers to look at the associated RBs at
different parts of the distribution by age.

Typically, in the repayment burden / student loan literature, these
estimates are smoothed by age; in the student loan literature, un-
conditional quantile regressions have been used to do this at different
quantiles of the income or earnings distribution (see Chapman and
Lounkaew, 2015). UQRs are important for many questions dealing with
causal impact across the distribution of outcomes, but they are not
applicable for RB analysis or student loan design. Estimation of RBs at
each age across the distribution of earnings needs information on how
the qth quantile of actual or “raw” earnings or income conditional on age,
Qq(y|A), changes by age. This is because the repayment burden is
measured as the loan repayment at age t as a proportion of actual in-
come at age t. A UQR instead identifies the impact of the population
aging by one year on the qth quantile of unconditional earnings, Qq(y),
across all ages.

When regression (mean) techniques are used then E[y|A] averages
up to the unconditional mean E[y] over the range of A because of the
law of iterated expectations, i.e. E[E[y|A ]]= E[y]. The estimated
coefficient on age (and any polynomials) gives the impact of a change
in age on both E[y] and E[y|A]. However, for quantile regression, this
does not hold. Firpo, Fortin, and Lemieux (2009) show that to obtain
the unconditional effect of the variable of interest (A) on the outcome of
interest (y), one needs to perform conditional quantile regression (CQR)
and then integrate out over all the conditioning variables to get the
unconditional effect. They show how this can be done using the re-
centered influence function (RIF). This is not needed for RB analysis:
instead, percentiles conditional on age are required.

To illustrate potential problems, the cross-sectional CPS data for
2014, 2015, 2016 and 2017 from the age of 23 until 653 is used to

2 These include a change in sex, age going up by more than two years, change
in ethnicity or change in where individual and/or parents were born.
3 Chapman and Lounkaew (2015) started their earnings profiles at the age of

22. The number of 22-year-old graduates in the CPS data is relatively small, so
in this paper the base category is 23-year-olds, and 22-year-old graduates are
recoded as being 23. Having a sufficiently large sample size is important when
calculating percentiles of the income distribution. As in Chapman and
Lounkaew (2015), military personnel are excluded but the self-employed, and
BA graduates who go on to do further postgraduate study, are retained. This
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calculate the raw percentiles of income and earnings by age, sex and
year.4 Smoothing techniques are then compared. Because zero earnings
and income are included in these quantile estimates, a regression model
with a high-order polynomial in age is generally necessary to capture
the drop-off in earnings during child-rearing ages for women but also
for earnings and income at the bottom of the distribution where fluc-
tuations are more likely. A quintic in age fits the CPS data best for both
men and women, although a locally weighted scatterplot smoothing
(lowess) approach works just as well (see Cleveland, 1979).5 The pre-
ferred approach is compared with the UQR method advocated by
Chapman and Lounkaew (2015). The UQR method turns out to be very
sensitive to the functional form used (whether log income and earnings
are used or levels and what polynomial in age is used) as well as the age
range over which the model is estimated. For low and high quantiles, it
proves to be very unstable.6

In Fig. 1, estimates from UQR and the preferred approach are
compared for the 10th percentile of the male income distribution using
2014–17 US CPS data in 2017 prices. “Raw percentile data” is the 10th
percentile of income at each age. “Exponential UQR quadratic” is the
model used by Chapman and Lounkaew (2015). “Exponential UQR
quintic” is the same model but includes a much more flexible poly-
nomial in age (quintic). “Quintic raw percentile data” is the predictions
from a linear regression of the raw percentile level data on a quintic in
age.

Fig. 1 shows that both the UQR approaches approximate the raw
10th percentile data very poorly over the full range of ages. The best fit
is given by running a regression with the raw conditional quantile data
as the dependent variable and a quintic polynomial in age as the in-
dependent variable and obtaining the prediction from this regression. A
quadratic performs equally as well in this case, as does a lowess
smoothing procedure (not shown).

In Fig. 2, the same exercise is repeated for female bachelor's degree
graduates in the 25th percentile of the income distribution.7 Again the
UQR with either a quadratic or quintic does not replicate the raw
percentile data well, and the preferred model does much better. The

importance of having a quintic specification is also evident here.
In Fig. 3, the estimates of median income (50th percentile) for male

bachelor's degree graduates in the sample are shown. While UQR with
either quadratic or quintic specification performs quite well for most
ages, it overestimates income at young ages which is crucial for RB
work. For example, at age 23 the overestimate with the quadratic UQR
approach is just over $10,000 or 45%.

In Fig. 4, the implications for high-earning graduates are considered
by looking at estimates for women in the 95th percentile of graduate
earnings. Both specifications of the UQR model overestimate earnings
up until about the age of 35, and this overestimation is substantial at
low ages (by around 60% or just over $32,000 at the age of 23 with the
quadratic UQR specification).

This process has been repeated for every percentile8 of the US

Table 1
Summary statistics for bachelor's degree graduates: CPS 2014–17.

Income ($US, 2017 prices) Earnings ($US, 2017 prices)
Whole sample Panel Whole sample Panel
Mean SD Mean SD Mean SD Mean SD

Females 54,496 62,315 54,527 50,445 48,651 60,297 48,849 48,330
Males 96,585 112,710 97,553 95,012 87,831 109,654 88,858 91,996
Observations 142,385 61,834 142,385 61,834

Fig. 1. Male bachelor's degree graduate 10th percentile of income distribution:
comparing methods.

Fig. 2. Female BA graduate 25th percentile of income distribution: comparing
methods.(footnote continued)

makes very little difference to the analysis but increases sample sizes for the
dynamic simulation methods employed later in the study.
4 For all the work, either Stata 15 or R is used. The CPS data requires

weighting, so the _pctile function in Stata with sample weights is used to cal-
culate the raw percentiles of income and earnings.
5 The optimum “lowess” procedure (Cleveland, 1979) produced age-

smoothing profiles essentially identical to the preferred regression approach
and are not reported.
6 The CPS data shows that using UQR with an incorrectly specified poly-

nomial in age performs particularly badly at low and high quantiles and is
extremely unstable. For instance, the estimates at the 5th centile for male in-
come vary hugely by CPS calendar year, with three of the four years not pro-
ducing credible estimates (predicted income way too high). With RB analysis, it
is crucial to get estimates of profiles at low quantiles correct, which is why the
observed instability in these estimates is a significant issue for UQR methods.
7 Females below the 20th percentile have a very high proportion of zero in-

comes due to being out of the labor market, so diagrams for lower percentiles
are not particularly instructive. The UQR approach is also highly unstable at the
20th percentile and produces unrealistically high predictions of smoothed in-
come. 8 To have estimates at 100 points of the earnings or income distribution at
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income and earnings distributions for bachelor's degree graduate men
and women. These profiles will be used for simulating graduate income
and earnings in Sections 2.5 and 3.4. The approach that best approx-
imates the raw percentile data, essential for RB analysis, involves
smoothing the raw percentile estimates by age using a flexible poly-
nomial in age or using “lowess” smoothing of the raw percentile data
with an appropriate bandwidth. UQR methods should not be used for
this exercise.

Does this mean that all the studies using UQR methods to calculate
RBs are wrong? The analysis undertaken using CPS data for this paper
shows that a UQR approach with a sufficiently flexible functional form
in age generally gives reasonable estimates of the quantiles of the in-
come or earnings distribution at each age (which are needed for RB
analysis and student loan design) - except at low and high percentiles of
the income and earnings distributions and at young ages.9 The

sensitivity of the UQR to model specification means that without careful
exploration of the data, estimated earnings profiles used for RB analysis
and/or student loan design is likely to be incorrect.

2.4. Dealing with banded data

The US CPS has all its income and earnings data measured without
banding, although to preserve confidentiality there is an income
swapping procedure applied to prevent the identification of individuals
with extremely low or high incomes. However, this is not true for all
countries and/or all data used for estimating age–earnings profiles
across the distribution. In Japan, for example, all Labor Force Survey
(LFS) earnings and income data is banded into around 10 to 12 bands,
and in many countries - for example, Australia - census data has banded
income (Armstrong, Dearden, Kobayashi & Nagase, 2019).

Banded data, particularly when the number of bands is small, limits
the ability to estimate accurate percentiles of the distribution at a
particular age. If there are only 10 bands, there will only be 10 unique
percentile estimates, which is problematic. The estimates at each age
will be heavily influenced by the distribution of respondents within
each band by age and RB calculations at most percentiles will be in-
accurate.

With appropriate age smoothing of raw quantile data at each age,
this problem may be ameliorated, but it is an open question. In the
Japanese LFS data and Australian census data, like the CPS data, there
are lots of rich covariates which should be able to reliably position
individuals within their known (log) income band, and this can easily
be done using interval regression (see Stewart, 1983) and then pre-
dicting income conditional on the band that the individual is in. Interval
regression can be compared with simple age smoothing of midpoint
estimates of income for the case where data does not have rich back-
ground characteristics.

The approach is tested by banding the full CPS's income data into 14
income groups.10 The income groups and the proportion of male and
female bachelor's degree graduates falling into each category are shown
in Table A1 in Appendix A. For nonzero incomes, logs of the lower and
upper bounds of each band are taken and interval regression11 is per-
formed and then the predicted log income conditional on being within the
observed band is calculated. These predictions are then converted into
income levels.12 The covariates include a cubic in age, year dummies,
dummies for grouped total family income, a quadratic in hours of work,
detailed industry and occupational dummy variables, ethnicity dummy
variables, whether the individual was US-born, whether their father
and mother were US-born, regional dummy variables and a me-
tropolitan dummy variable. These variables are highly endogenous, but
the sole purpose of this exercise is to get good predictions of earnings
and income within the known earnings and income bands, so endogeneity
is highly desirable for this exercise (unlike most applications).

From these predictions and the simple midpoint estimates, raw

Fig. 3. Male bachelor's degree graduate 50th percentile of income distribution:
comparing methods.

Fig. 4. Female bachelor's degree graduate 95th percentile of earnings dis-
tribution: comparing methods.

(footnote continued)
each age, which are needed for simulation, estimates of the 0.5th, 1.5th, 2.5th,
…, 99.5th percentile of the earnings distribution at each age have been calcu-
lated and then smoothed using a quintic polynomial in age. This is equivalent to
dividing the earnings at each age into percentiles and taking the median
earnings or income at each percentile by age. Hence what is illustrated as the
median is the 49.5th percentile rather than the median.
9 Where earnings and incomes are zero, this is not the case, but it is true for

low values of positive income or earnings and relatively high values of income
or earnings. For instance, the UQR estimates for the 20th percentile of female
income were not sensible (way too high) in all years except 2016 and just not

(footnote continued)
credible. Conditional quantile regression could be used, but occasionally there
are convergence problems when earnings or income is zero at some ages and
positive at other ages.
10 In an earlier version of this paper, earnings and income were placed in 20

groups with the maximum income group being $150,000 per year. In this
version, 14 groups are used, but the high-income group is now those earning
over $175,000 per year. This improves the approximation at the top of the male
and female earnings distributions considerably and does not change estimates
at the lower end of the distributions (where there are now half the number of
groups). These changes better replicate the situation in the Japanese LFS data
and demonstrate the robustness of the approach.
11 Stewart (1983) calls this type of estimation “grouped dependent variable

estimation”.
12 These predictions include an estimated residual; therefore one can simply

exponentiate the within-band prediction.
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percentiles by age are calculated. A quintic polynomial in age is used to
smooth these raw percentile estimates by age, gender and year using
the methodology of Section 2.3.13 Fig. 5 shows the observed uncensored
raw data alongside the smoothed quantile earnings profiles based on
the interval regression and midpoint age-smoothed predictions for men
in the 5th, 15th, 25th, 50th, 75th, 85th and 95th percentiles. Fig. 6
shows the corresponding diagram for women.

Fig. 5 shows that the age-smoothed profiles perform exceptionally
well for men at all quintiles up to the 75th percentile and reasonably
well at higher percentiles. With both the interval regression and mid-
point approach, earnings are slightly too high for the 85th percentile
from the age of 40. For the 95th percentile, they are slightly too high
below the age of 35 and slightly too low after the age of 38. The
midpoint age-smoothed estimates assume income is $250,000 if men
earned above $175,000, the top income group. The US Stafford Loan
should generally be repaid within 10 years, so for all but high earning
graduates, the estimated income profiles are accurate for the terms of
these loans and RB analysis.

Further, as Barr, Chapman, Dearden, and Dynarski (2019) show,
high-earning graduates pay off loans more quickly with an ICL than
with a Stafford Loan, so again these potential inaccuracies in profiles for
high earning graduates, will have minimal implications for ICL design
work. The problem at high percentiles arises because there is a large
proportion of men earning above $110,000 (see Table A1) and there are
only three income bands for this group covering just over 25% of male
graduates in the CPS sample. This, however, is less of a problem at
younger ages.

For women, the interval regression and midpoint procedures work
right across the distribution of female graduates. This reflects the fact
that women are more equally distributed in the constructed income
bands, as can be seen in Table A1, and the 95th centile is below the top
band, unlike the case with men.

The success or otherwise of using age-smoothed interval regression
predictions or midpoint predictions by quantile will depend crucially on
the distribution of individuals within each band and, in the case of
interval regression, the richness of the background data used in the
regressions. However, in most countries with well-distributed banded
income and earnings data, the censoring is unlikely to cause any sig-
nificant problems for RB analysis and designing student loan systems.

2.5. Static lifetime income projections

The simplest way to generate lifetime earnings projections for
graduates is to assume they remain in the same part of the graduate
earnings distribution their whole life. For example, if a graduate has
median earnings at age 23, they are assumed to stay in the 50th per-
centile of the earnings distribution their entire life. This is termed a
“static” lifetime earnings projection or simulated lifetime earnings with
no dynamics in this paper.

The first important question when doing static lifetime income or
earnings projections is how many quantiles are used to summarize the
marginal distribution at any one age. In this paper, 100 percentiles are
used as this seems to capture the distribution of earnings and income in
the CPS well. To test the reliability of this decision, the distribution of
the actual (continuous) income data is compared with the distribution
of the percentile approximation, as shown in Fig. 7. The figure shows
that the distribution of observed income is replicated closely with this
simple approximation which uses the smoothed age–earnings profiles
by percentile from Section 2.3. It performs equally well for earnings
(not illustrated).

To simulate static lifetime earnings, 10,000 males and 10,000 fe-
males are assigned into a unique percentile from 1 to 100 (100 in each

percentile) at age 23.14 They are assumed to stay in the same percentile
from the age of 23 until 65. The smoothed percentile earnings and in-
come by age for men and women are then mapped into the data to
provide the baseline earnings and income projections by gender and
age. By construction, the earnings paths of the 10,000 men and 10,000
women cannot cross. The observations are appropriately weighted to
represent the current size and gender composition of the most recent
bachelor's degree graduate population using figures from the Digest of
Education Statistics for 2015.15

3. Estimating and simulating income dynamics

3.1. Introduction

To accurately understand the implications of student loan systems
and estimate the likely taxpayer costs, it is essential to have realistic
simulations of future earnings and income over a graduate's working
life. The assumption that a person stays in the same part of the income

Fig. 5. Male bachelor's degree graduates’ earnings by quantile using age-
smoothed interval regression and midpoint predictions.

Fig. 6. Female bachelor's degree graduates’ earnings by quantile using age-
smoothed interval regression and midpoint predictions.

13 For the top band, females are assigned $220,000 and males $250,000.

14 In fact, just 100 males and 100 females could have been used as each
graduate in a set percentile at age 23 will have identical lifetime earnings and
income paths with static simulation. However, this is not true with dynamic
simulation discussed in the next section, where much larger sample sizes are
needed.
15 In 2015, 812,669 BA degrees were conferred on men and 1,082,265 on

women (see https://nces.ed.gov/programs/digest/d16/tables/dt16_301.10.
asp).
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or earnings distribution is not credible. When one follows graduates
across the lifecycle, their position in the earnings distribution at any age
is likely to change as they age, by choice (for instance taking time out to
have a child), due to luck (becoming unemployed or moving to a
higher-paying job) or for other reasons. In some countries there is lots
of mobility (e.g. the US), whereas in other countries there is not much
mobility (e.g. Japan).

In this section of the paper, a relatively simple way of simulating
dynamic income and earnings paths for graduates is developed, that
accurately captures the different income and earnings paths that
graduates are likely to face. Importantly, the method proposed for un-
dertaking dynamic simulation can be implemented in virtually all
countries with micro labor force data as these generally involve rotating
panels of individuals. Further, it also exploits the smoothed age–earn-
ings profiles by quantile discussed in Section 2.3 and used in the static
projections discussed in Section 2.5.

In general, estimating dynamics in a reliable way is very important,
and this is shown empirically in Section 4 for RB analysis and Section 5
for ICL design. The corollary of this is that if simulated earnings or
income dynamics have too much mobility, they are likely to exaggerate
RB problems and underestimate the cost of designing an ICL. This also
needs to be borne in mind.

3.2. Estimating labor market dynamics with limited data

With long panels, sophisticated methods can be used to get dy-
namics correct - for example, the approach outlined in Britton, van der
Erve, and Higgins (2019, Section 3.1). In many countries, good panel
data is not available. The sophisticated methods cannot be im-
plemented with short panels, and simple regression models are not
reliable as they assume linear dependence across the income or earn-
ings distribution, which does not accurately reflect observed transi-
tions.

With short panels, it is better to use methods that rely on estimating
rank dependence allowing dependence to vary across the income or
earnings distribution. Modeling rank dependence can also better over-
come issues with measurement error in income or earnings.

A simple way of estimating rank dependence uses copula functions.
This involves modeling the joint cumulative distribution function (CDF)
of the two marginal CDFs of income or earnings (including zeros) at
adjacent ages. This is a simplified version of the approach used by
Dearden, Fitzsimons, Goodman, and Kaplan (2008) and Bonhomme and
Robin (2009) and provides a simple parametric way of estimating

income or earnings transition matrices (of any dimension). Hence it is
related to the dynamic simulation approach used by Higgins and
Sinning (2013) with rich Australian longitudinal data.

Crucially, the approach involves the assumption that an individual's
rank in the income or earnings distribution next period only depends on
their current rank (i.e. is first-order Markov). Bonhomme and
Robin (2009) show that for French LFS data with three income ob-
servations, this assumption is reasonable and matches the observed
transitions over one and two years well, despite the first-order Markov
assumption. Armstrong et al. (2019) show this first-order Markov rank
dependence assumption replicates correlations over one, two and three
years well using Japanese panel data.

The copula function approach is so named as it defines the way two
(or indeed many) continuous univariate marginal distributions can be
“coupled together” to form their joint bivariate (or multivariate) dis-
tribution F. For the approach used in this paper, it is assumed that
earnings and income are continuous and observed for every individual
at age t (yit) and age t+1 (yit+1). These earnings and incomes are then
turned into their CDFs at each age, uit and uit+1. These, by definition,
are standard uniform. From Sklar's theorem (Sklar, 1959), if these CDFs
are continuous and have joint distribution F(ut,ut+1) and marginal
distributions F(ut) and F(ut+1), there is a unique copula function Ct such
that:

= = = …+ + +u u C u u C u u tF( , ) (F( ), F( )) ( , ), 23, 24, , 64.t t t t t t t t1 1 1

Note that in the setting of this paper, F(ut)=ut and F(ut+1)= ut+1
since ut and ut+1 are the CDFs of the income or earnings variable at
each age t and hence the marginal distributions are also standard uni-
form. More generally, the marginal distributions of income can be
modeled at each age using any distribution or mixture, but the ap-
proach used in this paper is to use the empirical marginal distribution
by age estimated in Section 2.16 In this example, Ct is a two-dimensional
copula, but the method extends to higher dimensions.17 Another

Fig. 7. Kernel density estimates of actual vs percentile approximated income (ages 23 to 65).

16 In Section 2.3, 100 percentiles of the income and earnings distribution at
each age have been estimated by gender for BA graduates and can be mapped
onto the CDF by multiplying by 100 and rounding up to the nearest percentile.
This approach has already been shown to fit the continuous data well (Figure 7)
and is explained in more detail in Section 3.4.
17 Moreover, this joint distribution can be decomposed as a function of the

copula function and the marginal densities, i.e. f(uit, uit+1)= ct(F(uit), F(uit+1))
ft(uit) ft+1(uit+1)= ct(uit, uit+1) where ct is the copula density and ft and ft+1 are
the marginal densities of the copula, which are equal to 1 as the marginal

L. Dearden Economics of Education Review 71 (2019) 49–64

54



attraction of the copula function is that it makes simulation very easy
once parameter estimates by age are obtained. This is discussed further
in Section 3.4.

Typically, parametric copula functions are used, and different co-
pula functions allow for different types of dependence (including
symmetric and nonsymmetric tail dependence - cf. regression). A
goodness-of-fit criterion, such as the Akaike information criterion
(AIC), can be used to choose the model that best fits the data.

3.3. Copula model estimates and reliability

The CPS panel of BA graduates from 2014 to 2017 is used to op-
erationalize the copula estimation. This panel was described in
Section 2.2. The basic dependence characteristics of the panel are
presented in Table 2. It shows that the rank correlation of the CDFs at
adjacent ages, measured by Kendall's tau, varies by age group in the
sample. The table also shows the correlation of income and log income.
Kendall's tau correlation is used to measure rank dependence as this can
be easily estimated from the estimated parameters of the copula model
for comparative purposes, which is not true of correlation parameters,
and is less prone to bias due to earnings or income measurement error
(see Appendix B for full details of Kendall's tau).18 It is important to
emphasize that if a person has zero earnings or income, then they are
randomly distributed at the bottom of the CDF at each age. For com-
parison, income and log income correlations for those with nonzero
income in both periods are also shown in Table 2.

What is evident from the table is that rank dependence varies by age
and there is a lot more mobility at younger ages. This will need to be
captured in the estimation and simulations. The lifecycle patterns of
correlation exhibited for men and women are also different. It is evident
that the (linear) income and log income correlations are quite different
too, though they show similar patterns by age to those of the rank
correlation. The difference between the income and log income corre-
lations strongly suggests nonlinear dependence. Hence observed de-
pendence is better captured by a rank correlation measure such as
Kendall's tau, which does not impose linearity and instead evaluates the
monotonic relationship between the ranks of two adjoining income or
earnings variables (see Appendix B for details). The copula approach
does not require linear dependence, and this flexibility is crucial with
short panels.

The estimation strategy involves finding a copula function that best
captures the dynamics between the CDFs of income or earnings at ad-
jacent ages from 23 to 65.19 For almost all ages, the t-copula provides

the best fit for the CPS data, and this is true whether modeling earnings
or income dynamics.20 Dearden et al. (2008) find that the t-copula also
works best with earnings data from the UK Labour Force Survey. The t-
copula has the dependence structure implicit in a bivariate t-distribu-
tion.21 It has two parameters – the correlation parameter, ρ, and the
degrees of freedom parameter, ν. These can be broadly interpreted as
describing the overall level of immobility in the distribution (higher ρ)
and the excess immobility in the tails of the distribution (lower v).
Kendall's tau (τ) can be directly estimated from the model estimates
and, for the t-copula, is given by τ=2v−1(arcsin(ρ)).

To take account of the observed change in dependence, the t-copula
model is estimated separately by gender as well as for every age tran-
sition from 23 to 65.22 The estimates of the two t-copula parameters rho
(ρ) and degrees of freedom (v) and the associated confidence intervals
by age, gender and for both income and earnings are shown in Figs. 8,
9, 10 and 11. Smoothed estimates by age are also shown, and it is these
smoothed estimates that are used in the simulations.

Fig. 8 shows that for males, there is much more mobility at early
ages and then, from the age of 40, mobility settles and remains rela-
tively stable. There is slightly more income mobility than earnings
mobility. Fig. 9 shows that there is much less tail dependence at both
early and late ages (higher degrees of freedom) and that tail depen-
dence is slightly stronger for earnings than for income.

Figs. 10 and 11 show the corresponding estimates for females.
Fig. 10 shows that there is high mobility again at early ages but it stops
decreasing from the age of 30. Earnings mobility then remains rela-
tively flat whereas income mobility increases slowly until the age of 65.
At all ages, there is more income mobility than earnings mobility,
which was also true for men. Fig. 11 shows that at both young and old
ages there is less tail dependence than at other ages, where tail de-
pendence is flat. These results from the t-copula model show that the
nature of the first-order rank dependence for males and females in the
US is very nuanced and help explain why the simple correlation para-
meters reported in Table 2 could not fully capture the first-order de-
pendence found in the data.

The model's performance is tested for the CPS panel by comparing
the predictions of income and earnings at age t+1 from the t-copula
model with the actual earnings and income outcomes at age t+1.

Table 2
Measures of income dependence in the CPS panel.

Age group in first year Kendall's tau Income correlation including zero incomes Income correlation for nonzero incomes Log income correlation for nonzero incomes
Males Females Males Females Males Females Males Females

All ages 0.414 0.489 0.435 0.441 0.430 0.420 0.526 0.634
< 25 0.286 0.273 0.148 0.144 0.096 0.125 0.200 0.358
25–29 0.379 0.446 0.256 0.321 0.237 0.262 0.491 0.522
30–34 0.411 0.511 0.391 0.405 0.384 0.371 0.457 0.639
35–39 0.443 0.544 0.355 0.480 0.351 0.446 0.501 0.706
40–44 0.448 0.526 0.411 0.507 0.407 0.486 0.516 0.680
45–49 0.415 0.508 0.475 0.450 0.479 0.428 0.547 0.669
50–54 0.413 0.492 0.414 0.361 0.408 0.351 0.517 0.603
55–59 0.387 0.463 0.435 0.466 0.425 0.454 0.492 0.599
60–65 0.433 0.443 0.447 0.483 0.463 0.472 0.505 0.572

(footnote continued)
distributions are standard uniform.
18 The calculations use Kendall's tau-b where ties are counted as concordant

rather than discordant; see Appendix B for more details. This makes no dif-
ference with continuous marginal CDFs but does if these are made discrete, e.g.
turned into 100 percentiles.
19 The R “Copula” and “VineCopula” packages are used to do this. Transitions

(footnote continued)
are modeled at every age, and then the goodness-of-fit tests are used to see
which copula best fits the data using “fitCopula” from the “Copula” package.
20 For example, for male income dynamics, the t-copula is best for 33 age

transitions, the Frank copula for six age transitions and BB1, BB7 and survival
BB8 for one each.
21 For detailed information on the t-copula, including a formal definition, see

Demarta and McNeil (2005).
22 This was explicitly built into the Maximum Likelihood Estimation proce-

dure in Dearden, Fitzsimons, Goodman, and Kaplan (2008), but this is not
available for the R copula packages used. Instead, separate estimates are ob-
tained for each age transition, and then these are smoothed before simulation.
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Quintile transition matrices are also compared. The simulation method
proposed involves mapping the age–earnings profiles for income and
earnings by percentile, age, year and gender to the estimated percentile
from the t-copula model. The way dependence is modeled matters
crucially for the distribution of the difference in income and earnings
between ages t and t+1. Figs. 12 and 13 show that the t-copula model
performs reasonably well for both income and earnings changes over
one year for men and women.23 The simulations do not entirely capture
very small changes in earnings or income (lower peaks) because of the

percentile approximation of income and earnings at age t+1. How-
ever, the overall rank correlation for the one-year-ahead prediction
from the t-copula model is always slightly higher than the actual rank
correlation for men, although slightly lower for women.24 The US has
more income and earnings mobility than most countries, and
Armstrong et al. (2019) show that a copula model assuming first-order
Markov rank dependence performs considerably better in countries
with less mobility, such as Japan. This means that mobility may be
overestimated in this model.

As a final check, quintile transition matrices from the t-copula
model and the observed CPS panel data are compared for income in
Table 3 for men and Table 4 for women. The model replicates the ob-
served income transitions reasonably well, although it does not get the

Fig. 8. Estimates of rho from t-copula: males.

Fig. 9. Estimates of degrees of freedom (df) from t-copula: males.

23 If the panel member was observed in March 2014 and March 2015, March
2014 income or earnings profiles by percentile are mapped to their actual
percentile observed in 2014, and March 2015 income or earnings profiles are
mapped to both their actual and predicted percentiles (from the t-copula esti-
mate) in March 2015. This is repeated for panel members observed in March
2015 and March 2016 and for those observed in March 2016 and March 2017.
Figure 12 shows the mapping of their actual income and mapped percentile
income in the base year and Figure 13 shows the mapping of their actual
earnings and mapped percentile earnings in the base year.

24 For males (females), the actual rank correlation for income is 0.419 (0.494)
and the rank correlation with the one-year-ahead prediction is 0.425 (0.490).
For earnings, the actual rank correlation for males (females) is 0.461 (0.535)
and the rank correlation with the one-year-ahead prediction is 0.468 (0.527).
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slight asymmetry observed in the female income transition matrix,
which shows higher tail dependence at lower incomes than higher in-
comes. Further, it is clear that the percentages in the diagonal of the
transition matrix are too low in the simulations, which again suggests
that the simulations may have slightly too much mobility. This will
need to be borne in mind in the analysis of RBs and ICL design below.

3.4. Dynamic lifetime income and earnings projections

With the t-copula estimates, it is easy to recursively simulate life-
time income and earnings percentiles. This is done for 10,000 males
and 10,000 females. This involves the following steps:

1 Place each man and woman in a percentile at the age of 23 (100 men
and 100 women in each percentile) using a draw from the random
uniform distribution (u23).25

2 Estimate the conditional distribution function of u24 given u23,
which is given by:

= =c u u u
u

C u u( ) F( | ) ( , )u 24 24 23
23

23 23 2423

where C23 is the t-copula with the age 23 rho (ρ23) and degrees of
freedom (v23) model estimates.

3 Generate a random standard uniform variable r with the same di-
mension as u23.

4 Generate =u c r( )u24
1

23 to get the uniformly distributed predicted
rank at age 24, which has a stochastic element due to the rank
prediction being determined by not only the rank at age 23 but also
the draw from the random uniform. This means that individuals
from the same percentile will end up in different percentiles at age

Fig. 10. Estimates of rho from t-copula: females.

Fig. 11. Estimates of degrees of freedom (df) from t-copula: females.

25 The pseudo-observations command in R is used to ensure that the random

(footnote continued)
draw is precisely uniformly distributed. This is also required for the draw from
the random uniform in step 3.

L. Dearden Economics of Education Review 71 (2019) 49–64

57



Fig. 12. Predicted difference in incomes at adjacent ages.

Fig. 13. Predicted difference in earnings at adjacent ages.

Table 3
Male income transition matrices: actual vs predicted.

Quintile at age t Actual Predicted from t-copula model
Quintile at age t+1 Quintile at age t+1
1 2 3 4 5 1 2 3 4 5

1 54.79 21.22 10.13 7.49 6.11 53.21 22.22 12.34 6.49 5.46
2 20.61 39.59 21.11 10.20 8.70 22.84 32.60 23.15 14.59 7.05
3 10.20 19.47 37.45 21.75 11.29 10.74 24.32 29.39 25.46 10.24
4 7.72 11.70 18.58 40.41 21.82 7.18 14.41 24.75 30.92 22.97
5 6.68 8.02 12.73 20.15 52.08 6.03 6.46 10.38 22.54 54.28
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24 (the extent to which this happens depends on model para-
meters).26

5 Repeat steps 2 to 4 recursively for every age.

The final simulations of lifetime earnings and income are obtained
by multiplying the predicted ranks (uniformly distributed between 0
and 1) by 100 and rounding up to get the simulated percentile by age.
The smoothed percentile earnings and income by age for men and
women are then mapped into the smoothed income and earnings
age–earnings profiles from Section 2, as was the case with the static
simulations. This provides the dynamic earnings and income projec-
tions by gender and age. It is assumed these graduates started college in
2017 and will graduate in 2021, and the simulated projections are re-
weighted by gender to reflect the latest US BA completions. This is
important when working out the budgetary implications of different ICL
systems.

Fig. 14 compares the estimates of Kendall's tau (τ) from the CPS
panel, from the actual model estimates (where τ=2v−1(arcsin(ρ)) and
from the simulated income sample (where smoothed model estimates of
ρ and v were used). It illustrates that the model estimates replicate the

raw CPS first-order rank dependence well. As a result, the dependence
structures over adjacent ages of the simulated sample, which use
smoothed parameter estimates of ρ and v, also mirror the CPS panel
rank dependence. For both males and females, rank dependence in in-
come increases until they are aged around 35 and then slowly de-
creases. However, the shape and extent of this dependence are very
different by gender. Females have much more immobility in income
than males from the age of 30 onwards, with the gender difference
largest at around age 35. This gender difference in rank dependence,
however, has almost disappeared by the age of 65.

4. Implications for estimating RBs using dynamic simulations

4.1. Introduction and conceptual issues

In this section of the paper, the implications of using dynamic rather
than static simulations of graduate income for RB analysis are assessed.
Including dynamics is essential to fully understand RBs over the loan
term of a TBRL such as the US Stafford Loan. In most cases, the more
mobility there is among student loan debtors, the more likely it is that
RB hardship with TBRLs will be underestimated in static simulations.
US data is used to demonstrate this, and it is shown that the RB problem
in the US is much larger than previous studies such as Chapman and
Lounkaew (2015) and Chapman and Dearden (2017) have suggested.

Why might this be generally true? Assume that all graduates take
out a loan and the loan amount is the same for all graduates. In this
case, if there is no mobility, then the quantile of the income and
earnings distribution a graduate finds themselves in will not change

Table 4
Female income transition matrices: actual vs predicted.

Quintile at age t Actual Predicted from t-copula model
Quintile at age t+1 Quintile at age t+1
1 2 3 4 5 1 2 3 4 5

1 65.76 18.55 6.77 4.77 4.00 58.89 22.35 9.34 5.21 4.03
2 18.14 43.33 19.85 10.81 7.92 22.55 34.39 25.33 12.69 5.19
3 7.01 19.96 40.56 22.06 10.50 8.91 25.41 30.96 25.50 10.32
4 4.76 10.22 22.71 41.90 20.58 5.62 12.31 24.45 36.04 21.77
5 4.32 7.83 10.10 20.47 57.00 4.02 5.54 9.93 21.55 58.69

Fig. 14. Comparison of Kendall's tau for income dependence from CPS sample, t-copula estimates and simulated sample.

26 For example, suppose that, based on the estimates, a person in percentile 1
had a 50% chance of being in percentile 1, a 35% chance of being in percentile
2 and a 15% chance of being in percentile 3 (and 0% probability of being in any
other percentile). Those with a draw from the uniform distribution above 0.85
would be assigned percentile 3, those between 0.50 and 0.85 percentile 2 and
the remaining individuals percentile 1.
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over their lifetime from the one they were in at the age of 23. Hence a
person who remains in the 5th percentile of the income or earnings
distribution will face RBs of over 100% for the term of a typical Stafford
Loan. Therefore, the number of individuals facing at least one high RB
will be determined entirely by those facing a high RB at the age of 23
when earnings are lowest. Suppose there is a small amount of income
mobility, say a person in the 10th percentile of the earnings distribution
moves to the 50th percentile at age 24 and the person whom they re-
place moves to the 10th percentile at age 24. Both these individuals will
now have one period of facing a high RB but also have one period with
a relatively low RB. However, the number of individuals facing at least
one period of a high RB by the age of 24 will increase by one. Hence
introducing any dynamics, in this case, cannot decrease, but can pos-
sibly increase, the number of individuals facing a high RB for at least
one period over the term of a TBRL.

In reality, not all students take out loans, and loan sizes vary, so the
above might not hold. However, in most plausible cases, the more
mobility there is in income or earnings dynamics during the term of a
TBRL, then the higher the probability that a different individual at a
point of time will experience a bad labor market outcome (and hence a
high RB at one point in time if they have a loan). This means that
generally, assuming no mobility shows a lower bound of the number of
individuals potentially facing a high RB during the term of a TBRL. This
is shown to be the case for the US in Section 4.3 using plausible as-
sumptions.

4.2. Hypothetical loan characteristics

In the illustrations, only graduates who take out loans are analyzed,
and it is assumed the future lifetime earnings paths are the same for
debtors as for those who do not take out loans.27 It is also assumed that
the average US student debtor will take out a loan of $35,000 over a
four-year BA degree, which is just under the current average of all US
student loans for 2017 graduates of $39,400.28 These loans are assumed
to be log-normally distributed and have a standard deviation of
$20,000. It is also assumed that the loan amount a BA student takes out
is positively correlated with the first 10 years of their total graduate
earnings. In these simulations, a correlation of 0.3 is assumed, but the
sensitivity of results to this assumption is tested. Papers that have access
to US administrative student loan data and tax records confirm that
there is a positive correlation between debt levels and later earnings
(see Looney and Yannelis, 2019, tables 3 and 4).

Fig. 15 shows the average repayment schedule for a Stafford student
loan of $35,000 in 2017 US prices (the average in the simulated
sample) assuming 2% inflation. Stafford Loans are TBRLs that in 2017/
18 have a nominal interest rate of 4.45% and the majority must be paid
back within 10 years. In the first year of the loan, an average student
must pay back just over $4,700 regardless of income, as shown in
Fig. 15.

4.3. Empirical results

Typically in RB analysis, the repayment burden is shown by age and
percentile. However, this implicitly assumes that all graduates stay in
the same percentile of the income distribution at each age, i.e. it as-
sumes no income dynamics. This is the approach taken in Chapman and
Lounkaew (2015) and has been followed in some of the papers in this
issue. This approach demonstrates that with most TBRLs, there is gen-
erally a significant problem at low incomes particularly at young ages.
Barr et al. (2019) show that even women in the 35th and 50th

percentiles of the income distribution in the US face high RBs at young
ages.

There is another way of looking at the RB problem which highlights
the importance of using dynamics.29 The simulations from Section 2.5
and 3.4 are used, and it is assumed that there will be 1% real income
growth per year over a graduate's lifetime.30 The loan amount is as-
signed to individuals using the baseline correlation of 0.3 with the first
10 years of the graduate's total income. Using these simulations, the
number of times over the 10-year term of the Stafford Loan an in-
dividual will face RBs of more than 18% and more than 40% is calcu-
lated (so this could be 0, 1, 2, …, 10 times).

Defining what constitutes an excessive RB is subjective and will
crucially depend on other circumstances such as whether the graduate
is married and/or has children. Salmi (2003) suggests that RBs at or
below 18% of disposable personal income should be the limit to classify
RBs as manageable, and this is the first RB examined. A relatively high
RB of 40% is also chosen to exemplify the importance of modeling
dynamics.

Males and females are pooled together using the weights con-
structed earlier, which reflect current BA graduation rates. In Table 5,
the percentage of the cohort of borrowers falling into each category is
shown. A comparison is made between the number of years of excessive
RBs when using the simulations with and without dynamics. A com-
parison is also made with the simulations based on the no dynamics
case using the quadratic UQR approach of Chapman and
Lounkaew (2015).

As pointed out at the beginning of this section, assuming no mobi-
lity is likely to underestimate the RB problem. Table 5 shows that if no
mobility is assumed, around 48% of graduates would never face RBs
greater than 18% and 70% would never face RBs greater than 40%. If
the UQR approach were used, then these estimates would be even
higher – 60% and 78% respectively. The estimates from the dynamic
model suggest that the correct figures could be as low as 15% and 32%
respectively. Further, just under 50% of graduates may face three or
more years of having RBs greater than 18%, and just under 25% could
face three or more years of having RBs greater than 40%.

This nuanced picture is not captured if income dynamics are not
included and helps explain the current default and delinquency pro-
blems with student loans in the US highlighted in Barr et al. (2019,
Table 1).

The RB hardship figures reported in Table 5 will overestimate
hardship if the simulations have too much mobility, which is likely

Fig. 15. Loan repayment schedule for Stafford Loan of $35,000.

27 If those who do not take out loans have better lifetime income projections,
then the RBs of graduates with debt will be underestimated. If the opposite is
true, then RBs will be overestimated.
28 https://studentloanhero.com/student-loan-debt-statistics/.

29 For RB work, (gross) income is used as the denominator.
30 Chapman and Lounkaew (2015) assume 1.5%.
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given the limitations of the first-order rank dependence assumption in a
country such as the US. However, assuming no dynamics gives a mis-
leading picture of RB problems. Of course, all approaches fail to ac-
count for other factors that will determine whether a person faces fi-
nancial hardship in repaying their loan. A more sophisticated RB
analysis would look at RBs by household and consider other factors that
affect the ability to pay, such as the number of children, and household
taxes and benefits. This should be addressed in future work looking at
student finance.

5. Implications for analyzing the design and cost of an ICL using
dynamic simulations

5.1. Introduction and conceptual issues

In this section, the implications of including dynamics for graduates
and taxpayers with an ICL are considered. It is assumed that all students
taking out an ICL have the same distribution of lifetime earnings as
those who do not take up the ICL. Further, it is assumed, as in the
previous section, that student loans are log-normally distributed with
an average loan of $35,000 and a standard deviation of $20,000. It is
also assumed that loan size is correlated with the first 10 years of
graduate earnings with a correlation of 0.3. The empirical work shows
that allowing for labor market dynamics significantly reduces the es-
timated costs of introducing an ICL in the US.

Why is this the case conceptually? To explain it, two extreme cases
are considered.

The first is where there is complete mobility, i.e. earnings or income
outcomes are completely random each year. This would mean that
approximately half of every graduate's time in the labor market would
involve receiving income or earnings above the median and half below
the median. With most ICLs, this would mean that every graduate
would pay off their loan in full.

Conversely, with no mobility, the same people would be in the top
half of the income or earnings distribution every year and, with most
ICLs, pay off their loan. There is no advantage to the taxpayer of them
staying above the median after the loan is repaid. Conversely, graduates
in the bottom of the income or earnings distribution will contribute
nothing towards the loan as they will earn below the repayment
threshold every year. Just one graduate moving from just below the
repayment threshold to just above the repayment threshold and being
replaced in the earnings or income distribution by a graduate who has
paid off their loan will increase government revenue. In reality, not all
students would take out ICLs, and loan amounts vary by student, so
there are cases where this may not necessarily be true, but these would
be unusual. The illustration in the next section allows for variation in
loan amounts but assumes the lifetime earnings of debtors and non-
debtors are the same.

5.2. Hypothetical ICL parameters

To illustrate the impact of including dynamics, the Stafford Loan
interest and government cost of borrowing parameters are used in
conjunction with other ICL parameters. It is assumed that there is:

(i) A first income repayment threshold of $17,000 per year and a
second threshold of $35,000 (in a policy reality, these would both
be uprated annually with inflation). The $17,000 threshold is si-
milar to that used with the income-based repayment (IBR) scheme
currently operating in the US.

(ii) A marginal 3% repayment rate on earnings above the first
threshold and 10% marginal for earnings above the second
threshold. Again, the 10% marginal rate is similar to that used with
the current IBR scheme.

(iii) A zero real interest rate while a student is at college and while a
graduate is below the first income threshold (i.e. debt increases
with inflation only); and then a real interest rate equal to the
current Stafford Loan rate, which is 4.45% nominal or 2.45% real.
With the means-tested component of the Stafford Loan, a zero real
interest rate applies while students are at college. No means testing
is used for this simulation.

(iv) An inflation rate of 2% and a government cost of borrowing of
2.4% nominal or 0.4% real.

(v) A loan write-off after 25 years.

To compare the full distributional implications of this ICL as well as
the size of the taxpayer subsidy, the earnings simulations from
Sections 2.5 and 3.4 are used. Taxpayer costs are estimated both under
the assumption of no dynamics and when dynamics are incorporated.
The taxpayer subsidy is calculated by pooling the male and female re-
sults using current BA enrolment proportions, as highlighted earlier in
the paper. All costs and repayments are discounted back to when the
student takes out the loan at age 18 and are in $US 2017 prices. The
taxpayer subsidy is calculated by comparing the net present value
(NPV) of repayments (which depends on future earnings simulations
and ICL parameters) with the NPV of providing the loans (which de-
pends on the number of loans taken out). Real earnings growth of 1%
per year is assumed for all graduates throughout their working life.
Inflation is assumed to be 2%, and the government cost of borrowing is
set to the current 10-year US bond rate. This is currently used to de-
termine the Stafford Loan interest rate, which is set at the government
cost of borrowing (currently 2.4% nominal or 0.4% real) plus 2.05
percentage points.

5.3. Empirical results

Fig. 16 shows the distributional impact of ICL repayments (by

Table 5
Measures of years of excessive RBs for average $35,000 US Stafford Loan.

Number of years of
excessive RBs

RB > 18% (percentage) RB > 40% (percentage)

No dynamics, UQR
quadratic

No dynamics, raw
smoothed quintic

Dynamics, raw
smoothed quintic

No dynamics, UQR
quadratic

No dynamics, raw
smoothed quintic

Dynamics, raw
smoothed quintic

0 60.15 47.93 14.71 78.24 69.77 31.90
1 1.70 13.08 17.93 0.85 10.14 25.72
2 2.68 5.40 17.71 1.19 2.65 17.69
3 2.33 4.12 14.68 1.14 1.96 10.30
4 2.30 3.22 11.35 1.06 1.21 6.76
5 2.03 2.39 8.55 0.79 0.90 3.62
6 1.79 1.71 6.12 0.69 0.60 1.94
7 1.62 1.36 3.87 0.65 0.49 1.25
8 1.55 1.15 2.54 0.59 0.41 0.50
9 1.33 0.77 1.48 0.51 0.32 0.22
10 22.52 18.87 1.08 14.30 11.55 0.10
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deciles of the male and female college lifetime earnings distributions31)
under the assumptions of no dynamics and of dynamics. The analysis
shows that when earnings dynamics are ignored, the estimated taxpayer
subsidy for this ICL is around 15%; when dynamics are included, the
estimated taxpayer subsidy is −7%. All graduates receive a taxpayer
subsidy in this scheme while they are at college and while they earn
below the first threshold. However, once they are above the first
threshold, they receive no subsidy as the interest rate is 2.05 percentage
points above the government cost of borrowing, so they are net con-
tributors. Those who do not repay their loan within 25 years may also
receive a subsidy due to the loan write-off. The difference in estimates
of the taxpayer subsidy is large as there is high earnings mobility in the
US for BA graduates and, with the ICL operating over 25 years rather
than the 10 years of the Stafford Loan, there is a much higher chance of
individuals making some repayments. Of course, if the earnings simu-
lations involve too much mobility (as is likely), then the taxpayer
subsidy will be underestimated. However, in the example shown above,
the mobility would have to have been massively overestimated before
the ICL would involve any taxpayer subsidy.

The extent of the difference in estimated taxpayer subsidy across the
distribution also depends on other factors such as the size of the ICL
loan and the ICL loan parameters (see Barr et al., 2019 and
Britton et al., 2019) as well as the correlation between the total student
loan taken out and future earnings. For example, if there is no corre-
lation between loan size and earnings in the first 10 years, the estimate
of the taxpayer subsidy increases to 16% (no mobility) and −6%
(mobility). If there is a perfect negative correlation between loan size
and gross earnings in the first 10 years, the taxpayer subsidy estimates
increase to 19% (no mobility) and −4% (mobility).

As shown in Barr et al. (2019) and Britton et al. (2019), this subsidy
can be reduced or increased very easily by varying the ICL parameters,
including introducing a surcharge on the loan, changing the interest
rate and/or changing other ICL parameters such as repayment thresh-
olds and repayment rates. However, given the income mobility of BA
graduates in the US, it is clear that a well-designed ICL could work (see
Barr et al. (2019) for more details) and would have considerable ad-
vantages over the current Stafford Loan system. Additional work si-
mulating the earnings dynamics of two-year college graduates and

dropouts suggests a similarly designed ICL could work beyond BA
graduates. Of course, tight regulation of loans would need to be im-
plemented, particularly with the for-profit sector, but this is also true
with the current US loan system.

6. Conclusions

This paper reviews the empirical approaches that are needed to both
evaluate and design student loan systems. An innovation of the paper is
that it has suggested relatively straightforward methods for improving
income and earnings simulation when data is poor (e.g. the data has
banded income or good panel data is not available in the country).
Another innovation is that the method proposed extends work that is
routinely, and arguably inaccurately, done in countries evaluating
student loan systems.

The paper shows that for RB analysis, it is generally better to use
raw percentile estimates of income or earnings by age and gender and
age smoothing rather than UQR methods. Having banded income data
(as is the case in countries such as Japan) does not appear to be a
significant problem for all but the highest earners, and RB analysis (or
indeed student loan design) is not affected by the grouping of income or
earnings data.

The paper shows how income and earnings dynamics can be easily
introduced even with short panels that have a minimum of two ob-
servations for the same individual. This involves using copula functions,
which better capture the complex dependence between income or
earnings over one year. With traditional dynamic panel data methods,
this is only possible to do reliably with longer panels.

Critically, the paper highlights the importance of including dy-
namics in both assessing the RBs associated with current loan systems
and designing ICLs. Ignoring dynamics will firstly underestimate the
proportion of individuals facing repayment hardship with a TBRL and
secondly result in overestimating the taxpayer costs of an ICL.

In the case of the US, the modeling shows that the typical cross-
sectional approach significantly understates the incidence of “ex-
cessive” RBs. The cross-sectional approach suggests that just under 50%
of graduates with loans will not face RBs greater than 18%, whereas the
dynamic simulations suggest that this proportion is closer to 15%.
Further, the static cross-sectional simulation approach exaggerates the
extent of the subsidies associated with ICLs by around 20 percentage
points.

From the methodology employed, both illustrations imply strongly

Fig. 16. Percentage of ICL repaid by decile of lifetime earnings: dynamics vs no dynamics
Note: Overall graduate contribution shown by horizontal lines. The subsidy is calculated by taking this amount away from 100%.

31 The lifetime earnings of all individuals from the ages of 23 to 65 are
summed without discounting and deciles are constructed from this measure.
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that the typically used empirical approaches to student loan policy
assessment and design have the potential to significantly understate the
benefits for both graduates and governments of the use of ICL compared
with TBRL. This is particularly true in countries such as the US with
high income and earnings mobility, but has pertinence for all countries
considering the introduction of ICLs.
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Appendix A

Appendix B. Kendall's tau (τ)

In the paper, all measures of rank correlation/dependence use Kendall's tau (τ). This is a measure of association based on the number of
concordant, discordant and tied pairs there are in the cumulative distribution of income at age t (ut) and t+1 (ut+1) in the CPS panel. A pair of CDFs
{(uti, ut+1i), (utj, ut+1j)} are:

• concordant if uti 〈 utj and ut+1i 〈 ut+1j or uti 〉 utj and ut+1i 〉 ut+1j; the number of concordant pairs is denoted by nc;
• discordant if uti > utj and ut+1i 〈 ut+1j or uti < utj and ut+1i 〉 ut+1j; the number of discordant pairs is denoted by nd;
• tied if uti= utj or ut+1i= ut+1j; the numbers of tied pairs are denoted by nt and +nt 1 respectively.

Kendall's tau-b rank correlation (τ), which is used in the paper, is given by:

=
+ + + + +

n n
n n n n n n( )( )

c d

c d t c d t 1

and the total number of pairs that can be constructed and compared for a sample of size T is:

=n T T/ ( 1).1 2
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