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Abstract 

 

Is there a universal hierarchy of the senses, such that some senses (e.g., vision) are more 

accessible to consciousness and linguistic description than others (e.g., smell)? The long-

standing presumption in Western thought has been that vision and audition are more 

objective than the other senses, serving as the basis of knowledge and understanding; whereas 

touch, taste, and smell are crude and of little value. This predicts that humans ought to be 

better at communicating about sight and hearing than the other senses, and decades of work 

based on English and related languages certainly suggests this is true. But how well does this 

reflect the diversity of languages and communities worldwide? In order to test whether there 

is a universal hierarchy of the senses, stimuli from the five basic senses were used to elicit 

descriptions in twenty diverse languages, including three unrelated sign languages. We found 

that languages differ fundamentally in which sensory domains they linguistically code 

systematically, and how they do so. The tendency for better coding in some domains can be 

explained in part by cultural pre-occupations. Although languages seem free to elaborate 

specific sensory domains, some general tendencies emerge: e.g., with some exceptions, smell 

is poorly coded. The surprise is that despite the gradual phylogenetic accumulation of the 

senses, and the imbalances in the neural tissue dedicated to them, no single hierarchy of the 

senses imposes itself upon language. 
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Significance Statement 

 

It has long been thought, following Aristotle, that the distal senses (vision, audition) have 

primacy over the proximal senses (touch, taste, smell): the distal ones are after all served by 

more evolutionarily advanced organs and more brain tissue, and appear more accessible to 

consciousness and precise linguistic description. But in this study of 20 diverse languages we 

show this apparent primacy is by no means universal: In many languages taste outranks 

vision for linguistic codability, auditory experience is surprisingly ineffable in many 

languages, and smell although poorly coded cross-culturally nevertheless can be linguistically 

coded. These surprising results suggest that cultures may differ fundamentally in the accent 

they put on different senses as reflected in our abilities to talk about them.  
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There are few more compelling questions in cross-cultural research than whether other people 

perceive the world the way we do. Language has the potential to offer insight on the matter, 

and a great deal of cross-linguistic research has taken as its litmus test the nature of color 

terms, which appear to vary across cultures, but within constraints (1–6). Some languages, for 

example, make a distinction between “light blue” and “dark blue”, and there are correlated 

perceptual consequences of distinct linguistic categories (7–12). Despite these effects of 

language on perception, it is clear that perception is partly independent of language: Indeed, 

language seems to have distinct limitations on coding in certain domains. For example, 

English provides terms for simple geometric shapes (circles, squares, triangles, etc.), but 

describing a face so that it can be recognized is extremely challenging; similarly colors can 

be named with relative ease, but smells seem to resist precise description.   

Since Aristotle, it has been supposed that there is a hierarchy of the senses with sight 

the dominant sense, followed by hearing, smell, touch and taste (2), opening the possibility 

that some aspects of perception are intrinsically more accessible to consciousness and thus to 

language. The position of smell has since been further demoted, based in part on insights 

regarding the evolutionary development of our senses, in which stereoscopic vision, wider 

eye orbits and increasing visual cortex have evolved at the expense of the olfactory bulb and 

olfactory epithelium (13–19). Modern re-workings of the Aristotelian hierarchy give primacy 

to sight followed by hearing, touch, and then taste and smell (20, 21). Regardless of the 

precise characterization, the distal senses of vision and audition are privileged at the expense 

of the lowly proximal senses of touch, taste, and smell (22). 

The idea that differential expressability (or conversely, ineffability) might tell us 

something specific about the innate architecture of cognition and how the different faculties 

can “talk” to language is extremely attractive. But it rests on the presumption that these 

patterns are universal, and invariant across languages and cultures. Many scholars, for 



5 

 

example, have opined that no language will have a developed lexicon for smell (23–28). This 

presumption has been challenged by cross-cultural investigations showing that while English-

speakers may indeed display the oft-touted visual dominance, other cultures show a different 

picture altogether (29). For example, the Jahai—a hunter-gatherer community residing in the 

rainforests of the Malay Peninsula—find odors just as easy to express as visual entities (30). 

This raises the question of whether the hierarchy of the senses is universally expressed across 

languages. 

To test this, we explored the coding of percepts involving different senses (vision, 

hearing, touch, taste, smell) in 20 largely unrelated languages around the world. The 

languages were sampled to reflect linguistic diversity from each of the major landmasses, 

drawn from 15 distinct language families (Figure 1, Table 1). Many of these languages are 

spoken by small ethnic groups with distinctive cultures of their own. We included three 

unrelated sign languages, allowing us to explore the influence of the modality in which 

language is expressed (vocal or gestural). Obviously for the deaf native signers the coding of 

auditory stimuli had to be omitted in this comparative study.  

We explored the 5 perceptual domains, and investigated both color and shape for 

vision. Color, of course, has a long history of cross-cultural exploration (1, 31); we added 

shape in our battery of tests in order to examine whether the predicted primacy of vision 

generalized across sub-domains. Color stimuli were sampled from Munsell color space, basic 

geometric figures explored shape distinctions, auditory stimuli varied in pitch, loudness and 

tempo, tactile stimuli focused on tactile texture distinctions (e.g., rough, smooth), the basic 

taste distinctions of sweet, salty, sour, bitter and umami were sampled, and smell was tested 

using a standard olfactory stimulus of micro-encapsulated odors depicting common scents 

(e.g., onion, smoke). It should be borne in mind that these domains have some intrinsic 

differences: for example, the psychophysical space for color is three-dimensional, but odor 
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has an unknown multitude of dimensions. Consequently, any conclusions regarding the 

absolute codability of domains have to take this fact into consideration. However, our main 

question concerns whether languages differ in their coding of the senses, specifically in the 

relative expressibility of perceptual domains. If there is variation across languages in how 

domains encode the senses, this would not be easily explained by intrinsic domain 

constraints. We return to this issue in the discussion. 

All of the language data were collected by fieldworkers committed to long-term 

documentation of these languages, or by researchers otherwise experts in the languages 

(Figure 1, Table 1) using a standardized “field manual” (8; see Methods). Collaborative field 

work meant that skilled researchers were fluent in the local languages, and because of their 

long-term engagement with communities were able to recruit participants in their local 

habitat. Testing was conducted in local languages, with fieldworkers asking participants to 

name stimuli in each of the sensory domains with the same protocol. Researchers then 

transcribed responses according to a standardized coding scheme, and identified the main 

semantic elements which expressed the perceptual domain at hand. For example, for the full 

response light moss green given to a color chip, the main contentful response was coded as 

green. The same procedure was used across modalities. The coding process was iterated 

across languages until we had standardized the procedure. This was necessary because what 

is coded as distinct words in English, for example, can be coded in a single word in another 

language with morphology. Take Tzeltal, tzajtzajtik—a single response to a red stimulus—it 

is actually morphologically complex, being made up of the root morpheme for red tzaj, 

reduplicated with the suffix tik a morpheme which maintains the adjectival status of the root 

morpheme, ‘red-red-AJ’, i.e., sort of red (33). This is another reason why a collaborative 

endeavor with expert field linguists is necessary for such a project: it optimizes both 

standardization for language comparison (i.e., making sure languages are coded in equivalent 
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ways), while doing justice to each language’s particulars without carelessly glossing over 

critical differences. Once all tricky cases had been identified and appropriately treated, a 

uniform protocol was applied and checked across all languages (SI Appendix, S1).  

 

Results 

Relative codability of the senses 

We asked whether the senses are equally expressible (or, alternatively, ineffable) in all 

languages. Earlier work in the color domain has operationalized this notion by referring to 

“codability”: Brown and Lenneberg (34) showed for example that length of response (number 

of syllables or words), reaction times, agreement across speakers and within speakers over 

time, all correlated highly, but that agreement across speakers had by far the highest factor 

loading. They also showed that codability correlated with correct recognition of colors (see 

also 13), concluding that “more nameable categories are nearer the top of the cognitive 

‘deck’” (34). Codability is thus an important measure, rolling in Zipf’s law (frequency of 

names correlates with brevity) with perceptual accessibility (36). 

Following this tradition, we took as our operational definition of codability the degree 

to which a stimulus was consistently named within a language community. A measure that 

reflects this is Simpson’s Diversity Index D (37), borrowed from ecology (where it is used to 

measure species diversity taking into account both the types and abundance of species). This 

measure has been used previously in language comparison, where naming diversity is 

calculated taking into account both the type and frequency of labels per stimulus (30, 38). For 

a given stimulus within a language, if speakers produce N description tokens, including R 

unique description types from 1 to R, each with frequencies of n1 to nR, then Simpson’s 

Diversity Index is: 

𝐷 =  
∑ 𝑛𝑖(𝑛𝑖 − 1)𝑅

𝑖=1

𝑁(𝑁 − 1)
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An index of 1 indicates high codability (and low naming diversity): all respondents produced 

the same description; whereas 0 indicates low codability (conversely high naming diversity) 

since all respondents produced different unique descriptions (note: absence of an overt 

description was treated as a unique type in the following analyses). For each stimulus in each 

domain, we calculated codability per stimulus per language community, and then compared 

these values.  

Other measures of agreement are also possible, of course; such as the Shannon 

information index (39) and the “interpersonal agreement” measure used in the classic work of 

Brown and Lenneberg (34), but these do not adjust for the number of responses from a 

particular community. In any case, in our sample the different measures were highly 

correlated (Shannon, r = -0.97; Brown~Lenneberg interpersonal agreement, r = 0.95, see SI 

Appendix, S3). 

We used mixed effects modeling in R (40, 41) to test whether there is a universal 

hierarchy of the senses or, alternatively, whether languages differed. The full model included 

random intercepts for stimulus, domain, language, and the interaction between language and 

domain. Log-likelihood comparison was used to compare the full model to a model without 

one of those intercepts (see SI Appendix, S4 for further details). The full dataset contained 

44,091 descriptions from 313 respondents in 20 languages. We found languages differed in 

codability (χ2 = 4.6, p = .03), as did perceptual domains (χ2 = 27.8, p < .001). Crucially, 

however, codability for domains differed across languages (χ2 = 700.0, p < .001), meaning 

there is no universal hierarchy of the senses (Figure 2).  

A skeptic might argue that the variation we see across languages is mere noise around 

a universal pattern. If so, a closer examination of the main effect of domain might reveal the 

pan-human hierarchy of the senses. If you seek a single hierarchy of the senses that 

generalizes over the whole language sample using a decision tree (clustering) with random 
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effects for language and stimulus type, the following order emerges (from most to least 

codable): [color, taste] > [shape, sound, touch] > smell, and a permutation test confirmed the 

same broad pattern: [color, taste] > shape > [sound, touch] > smell (SI Appendix, S4. This 

was also supported by a Skillings-Mack test on rankings; SI Appendix, S5). Whatever the 

precise position of shape in this ordering, it is nevertheless clear that this overall cross-

linguistic hierarchy is not the widely presumed Aristotelian one.  

This generalized ranking of the senses across languages does not do justice to the 

attested cross-cultural variation in the hierarchy of the senses. In fact, out of 20 languages 

there are 13 unique rankings of perceptual domain by mean codability (see Figure 3). In 

Malay, for example, shape is the most codable of the senses on average and smell is the least 

codable, but in Umpila the exact opposite pattern holds—smell is the most codable and shape 

the least. The attested unique rankings are fewer than would be expected by totally random 

sampling (permutation z = -6.5, p < 0.001), suggesting that the ranking of the senses is not 

entirely arbitrary, as also suggested by the decision tree analysis above. Across this diverse 

sample no language had a domain ranking compatible with the predicted Aristotelian order 

(sight > sound > touch > taste > smell; see Figure 3). The closest to this hierarchy was 

English, which application of Spearman’s footrule showed was closer to the predicted order 

than would be expected by chance (p = 0.01; see SI Appendix, S5). All other languages 

showed no greater fit to the Aristotelian order than would be expected by chance (SI 

Appendix, S5).  

As discussed in the introduction, the senses differ in their inherent psychophysical 

dimensionality. Color is three-dimensional, taste arguably four-dimensional (42, 43), sound 

(leaving aside timing and timbre for a moment) is two-dimensional (44, 45); whereas shape, 

touch and smell likely vary on many more dimensions. The broad regularities noted above 

cannot therefore follow directly from the dimensionality of psychophysical spaces. A 
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corollary could be that the hierarchy stems from differences in stimulus sampling (see 

Methods): perhaps presenting fewer stimuli in a domain leads to higher estimated codability 

because people can focus better on the task; or conversely presenting more stimuli leads to 

higher estimated codability because it is less likely to be skewed by an aberrant datapoint. 

But we found no relation between number of stimuli used in the experiment and the resulting 

codability attested. We sampled 80 distinct colors, but only 5 tastants; and yet exactly these 

two domains (color, taste) showed equal mean codability (collapsing across languages). An 

explicit test of whether the number of stimuli in the experiment predicted codability finds no 

support (χ2 = 1.1, p = 0.28; SI Appendix, S4). 

Our sample included both signed and spoken languages, so we can specifically 

examine whether modality of language affected codability of perceptual domains. For 

example, it is widely held that there is a trade-off between the senses, such that loss of one 

perceptual sense leads to heightened abilities in the other senses (46). This might predict that 

sign languages would show higher codability for non-auditory modalities. To assess whether 

signed languages clustered together, we used regression trees with random effects for each 

stimulus (47) to predict codability by language, domain, and modality. There were no simple 

generalizations that classified signed languages as distinct from spoken languages; i.e., 

modality of language did not predict codability (SI Appendix, S4).  

Finally, in their ground-breaking work Brown and Lenneberg (34) identified the most 

codable stimuli as those with the highest inter-speaker agreement, and also the shortest 

descriptors. In our study, more codable stimuli within each language received shorter 

descriptions on average (r = -0.18, GAM model p < 0.001, see SI Appendix, S4), though 

there was a “sweet spot”: very short responses were associated with less codable stimuli.  

This may reflect a balance between a cognitive bias for efficient communication (short 

labels), on the one hand, and a bias for informativeness (distinct labels), on the other (48, 49).  
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As with the other analyses, there were significant differences in the strength of this effect 

between languages and domains, perhaps reflecting cross-linguistic differences in the 

structure of words or in modality. 

To summarize, while vision and sound may be privileged in English, the hierarchy of 

the senses, as revealed when sampling the diversity of the world’s languages, is clearly not 

the Aristotelian one. 

 

What determines the variation in codability? 

If there is not a universal hierarchy of the senses, then what determines the variation found? 

A list of a-priori hypotheses was compiled about external factors, both demographic and 

cultural, that could influence codability in each domain. If, as Howes (50) eloquently asserts, 

the sensorium is “the most fundamental domain of cultural expression, the medium through 

which all values and practices of a society are enacted”, then we ought to see a relationship 

between specific cultural practices and codability in language (see also 26). To test this, a 

targeted ethnographic questionnaire was constructed focusing on cultural practices that might 

predict codability, focusing on each sensory modality separately. Questions included, for 

example: Does the community use traditional paints or dyes? (predicted to affect color 

naming; (2)). Is there instruction/training for musical participation (relevant for 

communicating about sounds)? Do members of the society make pottery, and if so is it 

patterned? (See SI Appendix, S2 for full set of questions.)In addition, macro-features such as 

population size, environment, etc. were also tested.  

 To test the effects of these parameters, they were added as fixed effects into the mixed 

effects model described above (SI Appendix, S6). We first tested for global effects of macro-

demographic features and overall codability across perceptual domains, and found that 

speakers of languages with a greater number of speakers (estimates from source (53)) had 
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higher agreement across all domains (for a population of 100 estimated mean codability M = 

0.14, for a population of 1 million M = 0.24; p = .03), a non-self-evident result. There was a 

marginal effect of the level of formal education available in the community too: codability 

was higher with more formal education (high formal schooling availability M = 0.48, low 

availability M = 0.29; p = .057). However, there was little evidence of a close tie between 

overall codability and macro-variables such as mode of subsistence, ecology, or environment.  

We next tested for specific associations between cultural and macro-features with 

codability of each perceptual domain. As with the macro-features, only a handful of cultural 

practices showed reliable associations with codability (Figure 4). In particular, the codability 

of shape stimuli was higher in communities that make patterned pottery (make patterned 

pottery M = 0.51, do not make patterned pottery M = 0.2; χ2 = 9.61, p = .002), and have 

higher levels of formal education (high education M = 0.51, low education M = 0.19; χ2 = 

6.78, p = .03). In addition, communities that live in square or rectangular houses have better 

codability for angular shapes than communities living in round houses (angular houses M = 

0.35; round houses M = 0.01; χ2=3.93, p = 0.04).  

Sound received higher codability in communities with specialist musicians (specialist 

musicians M = 0.27, no specialist musicians M = 0.11; χ2 = 4.10, p = .04). One final predictor 

of a linguistic codability from cultural parameters appeared in the domain of smell, where 

subsistence type was a significant predictor (χ2 = 23.7; p < 0.001): hunter-gatherers had 

higher codability (M = 0.31) than non-hunter-gatherers (M = 0.10), consistent with previous 

studies investigating smell in hunter-gatherer societies (30, 54) 

 

Types of responses 

In addition to examining agreement in naming, we can ask whether certain domains 

are more likely to have dedicated lexical resources; another measure of ineffability (55). For 
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example, the hunter-gatherer Jahai predominantly name both colors and odors with domain-

specific abstract terminology, whereas English speakers in the same paradigm use basic color 

words, but ad-hoc source-based descriptions for smells (30). So we examined the sorts of 

strategies speakers of each language used across perceptual domains.   

Once researchers had established the main contentful response for each stimulus, they 

coded whether each individual participant’s response was: Abstract, i.e., a descriptive 

response that captures the domain-property (e.g., color: red, green, blue; smell: musty, 

fragrant; texture: smooth, rough); Source-based, i.e., referred to a specific object/source (e.g., 

color: gold, silver, ash; smell: vanilla, banana; texture: fur, silk, beads; or Evaluative, i.e., 

gives a subjective response to the stimulus (e.g., nice, horrible, lovely, yummy). (See SI 

Appendix, S1.) To test differences between description types across domains, a Monte Carlo 

Markov Chain generalized multinomial linear mixed model was used on first responses only 

(56), predicting type of response by domain with random intercepts for language, stimulus, 

and respondent (SI Appendix, S7).  

Across the board, abstract descriptions were more likely to be used than source-based 

descriptions (mean percentage of types within each language: abstract M = 71%, source-

based M = 27%; p < .001), or evaluative descriptions (evaluative M = 3%; p < .001; see 

Figure 5). A mixed effects model testing whether signed languages used a distinct type of 

response strategy showed no overall effect of the modality of the language; i.e., sign 

languages were not a distinct group (see SI Appendix, S7). As expected, if a group of 

speakers were more likely to use abstract terms to refer to a domain, then the codability of 

that domain was also higher (r = 0.34, χ2 =15.0, p < 0.001, see Figure 4A). 

 Compared to color, other domains were relatively more likely to elicit evaluative 

descriptions (all p < .005), except for shapes which elicited proportionately more source-

based descriptions (all p < .01). Smell was significantly more likely to elicit evaluative 
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descriptions than other domains (p < .005), consistent with the idea that odor is 

predominantly distinguished along hedonic lines (57, 58). Only sound was more likely to 

elicit abstract descriptions than color (p < .005); but it notably departed from color and other 

perceptual domains in predominantly recruiting metaphor for expression.  

It is oft-stated that all languages use a high-low metaphor to describe variation in pitch 

(59–62), and this ubiquity of linguistic encoding reflects the fine-tuning of ear anatomy to the 

environmental statistics of auditory scenes (62). In our sample of diverse languages, however, 

the most prevalent way to talk about variation in pitch was through the equivalent of a big-

small metaphor instead (7 languages), followed by high-low (4 languages) and thin-thick (4 

languages). Variations in loudness also primarily elicited a big-small metaphor, followed by 

pairs of non-antonymic contrasts: e.g., loud-soft, sharp-soft, strong-soft, strong-small. This 

suggests that the most “natural” mapping for sound contrasts may, in fact, reside in size 

rather than spatial location. 

 

Discussion  

We conclude that the faculty of language does not constrain, due to intrinsic cognitive 

architecture, the degree to which different sensory domains are richly coded. Instead, the 

patterns we found suggest that the mapping of language onto senses is culturally relative. For 

each perceptual modality there are communities which excel at linguistic expression and 

those that seem to struggle to put them into words (see Figure 2): American Sign Language 

and English speakers showed high codability for colors, but Kata Kolok signers and Yélî 

Dnye speakers struggled, using varied ad-hoc source descriptions; Umpila and British Sign 

Language participants struggled to name tastes, whereas Farsi and Lao speakers were in total 

agreement with each other in how to name each tastant. Note also that the modality of 

language did not predict codability either: while American Sign Language and British Sign 
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Language looked alike in some ways, Kata Kolok—a village sign language—showed distinct 

linguistic coding of the senses. 

A caveat to this rampant variation is the almost uniformly poor coding of smell across 

communities (Figure 2 and Figure 3), and its heavy reliance on source-based descriptors 

(Figure 5). This could reflect the posited “weak link” between smell and language (27, 28), 

which has led scholars to call olfaction the “muted sense” (63). Main effects such as these are 

difficult to interpret, however, since low codability could be put down to poor selection of 

stimuli; although counter to this possibility, these odor stimuli have been used reliably in 

cross-cultural studies in the past (64). More generally, other studies have shown that odors 

can be as codable as colors, in particular for hunter-gatherers (30, 54). In this respect, it is 

striking to see that the hunter-gatherer Umpila from Australia also demonstrated higher 

codability for smells than colors, suggesting even within the domain of olfaction, there is 

significant cultural variation. 

Overall, we found codability was higher for larger populations, but this association is 

not straightforward to interpret. It is tempting to suggest that larger communities with a 

higher likelihood for meeting strangers have a greater need for more specific vocabulary, 

while small communities can rely more on common ground and shared personal history.  

However, in our study, population size represents the number of speakers a language has 

globally, not the size of the community that was sampled. While the two measures are the 

same for small communities like Umpila or Kata Kolok, they are very different for global 

languages like English. The variable may instead be a proxy for level of industrialization. 

Indeed, population size increases significantly with complexity of subsistence type in our 

sample (Kruskal-Wallis 2(4) = 12.0, p = 0.02).     

Population size may also be a proxy for more centralized states: Political 

centralization is more likely with larger populations who have higher rates of literacy, 
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standardized education resources, and wider access to canonical culture. In our study, we 

found evidence consistent with a link between codability and availability of formal education. 

On the one hand, explicit instruction could have a direct impact on speakers’ lexicons, 

especially for color and shape which are taught in classrooms (65). In fact, we do see a 

specific effect of education on shape (but not color) terminology. Since our stimulus-set 

focused on geometric shapes, and these have technical names, perhaps this is unsurprising. 

On the other hand, the overall pattern suggests a global association between codability scores 

across perceptual domains and population size, which is harder to explain through formal 

education, per se, because touch, taste, and smell are typically neglected in the classroom 

(66).  

The exploratory analyses found a few significant links between codability and 

specific cultural practices for specific domains, but some posited links such as those between 

color technologies and color codability (6) did not emerge reliably. This does not necessarily 

demonstrate that codability is independent from cultural influence. Given the diversity of the 

world’s languages, there were relatively few speech communities in our sample. Even though 

we attempted to sample broadly (e.g., from hunter-gatherer to post-industrial societies), there 

were few examples of each type, making it difficult to conclude definitively what the specific 

role of cultural practices might be in the linguistic expression of the senses. For example, 

there was only one hunter-gatherer community and only one community which lived in round 

houses.  Several variables were also highly clustered: for instance, all communities that had 

patterned pottery also had leatherwear. Our statistical method was designed to deal with 

exactly these sorts of facts (see SI Appendix), but the ideal dataset would have more variation 

in the combination of cultural traits in order to isolate the effect of a particular trait. 

Alternatively, focused studies comparing closely related communities that differ along one 
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critical dimension could help elucidate the specific relationships between environment, 

culture, and language (54). 

Overall, our study makes clear that there is far more diversity in the linguistic coding 

of the senses than earlier literature in philosophy and the cognitive sciences had imagined. 

This is surprising since the intrinsic structure of perceptual pathways, their cumulative 

phylogenetic history, and the sheer amount of neural tissue dedicated to each might have 

been expected to heavily imprint accessibility to consciousness and thus the nature of the 

corresponding linguistic coding. Instead, there is neither a fixed hierarchy of the senses, nor a 

uniform bifurcation between well-coded distal senses (vision, audition) and the more 

ineffable more proximal senses (olfaction, and the haptic and gustatory senses). Rather, either 

by cultural tradition or by ecological adaptation, each language has come to concentrate its 

efforts on particular sensory domains.  

 

Methods 

Sample 

We collected data from 20 geographically, typologically, and genetically diverse languages, 

shown in Figure 1; Table 1. The data come from both small-scale communities, as well as 

large urban populations. The communities are diverse in their mode of subsistence, including 

nomadic hunter-gatherers and pastoralists, as well as industrial and post-industrialist 

societies. 

 

Materials 

To assess codability for each perceptual modality a standardized set of materials was 

constructed according to established psychophysical dimensions (32). There were two 

different tasks for the visual modality. For color, 80 chromatic Munsell color chips were 
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selected; these were 20 equally spaced hues at 4 degrees of brightness at maximum 

saturation. On a separate occasion, focal colors were also elicited, using a focal color card. 

This was a single card with small circles of the same 80 chips used in the free naming laid out 

according to hue and brightness, plus 4 achromatic chips (67). Participants were also 

screened for color blindness using Ishihara plates. For shape, there were 20 black and white 

stimuli presented in a booklet, which included circles, squares and triangles: “good” forms 

according to Gestalt principles; as well as forms that would not constitute good forms, such 

as a shape that resembled a flower. Shape stimuli were presented in 2D and 3D variants. 

Some pages included more than one exemplar. The auditory stimuli consisted of 20 audio 

files that varied in perceived loudness, pitch and tempo. The stimuli were corrected for 

perceived loudness—that is, the rising tones had the same sone values, and the loudness scale 

was corrected to make pitch constant. In the tactile modality, we focused on surface touch, 

specifically tactile texture. There were 10 texture materials, pressed to a booklet, including 

materials such as felt, sandpaper, rubber and plastic. There were 5 stimuli for taste, each 

targeting a “basic” taste: 10 grams of sucrose (sweet), 7.5 grams of sodium chloride (salty), 

0.05 grams of quinine hydrochloride (bitter), 5 grams of citric acid monohydrate (sour), and 

glutamate (umami). Each tastant was dissolved in 100 ml water, except for umami which was 

presented in powder form. Finally, for smell we used the “The Brief Smell Identification 

TestTM”, a booklet with scratch-and-sniff common odorants, devised for cross-cultural use 

(68). The test itself is designed to be administered using a forced-choice format but we were 

interested in people’s free responses and so all text was covered using white tape.  

 

Procedure 

Researchers were provided with a manual describing the background, and providing the 

instructions for running each task (32). Researchers translated the instructions into the target 
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language so that the experiment was conducted in the speaker’s native language. For each 

perceptual modality, participants were asked the equivalent of What color/shape/sound/etc is 

this? In languages where there was not a superordinate term available (equivalent to color, 

for example) other formulations were used, such as How has it been dyed? How does it strike 

the eye? The final questions were always the default way of eliciting the target domain within 

the language. Researchers were instructed to audio-/video-record sessions for later 

transcription and coding.  

 For each domain, the stimulus materials were presented in a single random order 

across populations, to minimize the effects of order across languages. Researchers were 

instructed to run the tasks in the following order: color, shape, sound, touch, smell, and taste. 

On occasion it was not possible to run the experiment in a single sitting and so the 

experiment was divided into separate sessions. Comparable sound descriptions for auditory 

stimuli could not be collected for the three sign languages. There is also no data for sound 

from Yurakaré due to technical problems in the field. It was also not possible to elicit taste 

descriptions in Mian and Semai as participants did not consent to imbibe the tastants 

(primarily due to fear of witchcraft).  

 

Coding 

Researchers transcribed the data they had collected into the established orthography of the 

language. For Farsi and Cantonese, a standardized roman orthography was used for ease of 

comparison. The three sign languages were glossed into English following the usual 

conventions. Participants’ full responses were transcribed, and then for each stimulus the 

main contentful responses were coded, as well as any modifiers or hedges, using a 

standardized coding protocol (SI Appendix, S1). So, for example, for the full response light 
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moss green the main contentful response was coded as green, and light and moss were coded 

as modifiers. The same procedure was used across modalities.  
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Figure Legends 

 

Figure 1: Languages (and researchers) contributing to the study. Locations indicate fieldsites 

where data was collected. 

 

Figure 2: Boxplots of codability (measured by Simpson’s diversity index) plotted by domain 

and language (0 indicates low codability; 1 indicates high codability). English shows the 

predicted high codability for color, shape and sound, and low codability for touch taste and 

smell; but other languages exhibit different hierarchies. 

 

Figure 3: The hierarchy of the senses across languages according to the mean codability of 

each domain, with the presumed universal Aristotelian hierarchy on top. There is no universal 

hierarchy of the senses across diverse languages worldwide. 

 

Figure 4: Factors that explain codability: (A) Codability is higher for a domain if more 

abstract terms are used to refer to it (regression line from a mixed effects model).  (B) 

Codability is higher for larger populations (raw data with regression line from a mixed effects 

model), and (C) communities with formal schooling. (D) Codability of sounds is higher for 

communities with specialist musicians. (E) Codability for shape is higher for communities 

with more access to formal schooling and (F) patterned pottery. (G) Codability for angular 

shapes is higher for communities that live in angular houses. (H) Hunter-gatherers have 

higher codability for smell than other communities. 

 

Figure 5: Strategies for describing perceptual stimuli across languages. For each domain and 

language, the proportion of Abstract, Source-based, and Evaluative responses are plotted. 


