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Tissue resident lymphocytes are present within many organs, and are presumably
transferred at transplantation, but their impact on host immunity is unclear. Here, we
examine whether transferred donor natural regulatory CD4 T cells (nT-regs) inhibit
host alloimmunity and prolong allograft survival. Transfer of donor-strain lympho-
cytes was first assessed by identifying circulating donor-derived CD4 T cells in 21
consecutive human lung transplant recipients, with 3 patterns of chimerism appar-
ent: transient, intermediate, and persistent (detectable for up to 6 weeks, 6 months,
and beyond 1 year, respectively). The potential for transfer of donor nT-regs was then
confirmed by analysis of leukocyte filters recovered from ex vivo normothermic per-
fusion circuits of human kidneys retrieved for transplantation. Finally, in a murine
model of cardiac allograft vasculopathy, depletion of donor CD4 nT-regs before organ
recovery resulted in markedly accelerated heart allograft rejection and augmented
host effector antibody responses. Conversely, adoptive transfer or purified donor-
strain nT-regs inhibited host humoral immunity and prolonged allograft survival, and
more effectively so than following administration of recipient nT-regs. In summary,
following transplantation, passenger donor-strain nT-regs can inhibit host adaptive
immune responses and prolong allograft survival. Isolated donor-derived nT-regs may

hold potential as a cellular therapy to improve transplant outcomes.
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1 | INTRODUCTION

Although still considered a novel technology, ex vivo perfusion of
recovered organs from deceased donors is likely to become widely
adopted in the near future.? Ex vivo perfusion offers the potential
to assess the viability of organs before transplantation, and to ex-
tend the acceptable period between recovery and implantation. It
may also enable targeting of the isolated organs with specific thera-
pies aimed at prolonging allograft survival.® One particular focus of
such strategies is likely to be donor-derived T cell populations (naive
or memory) that are resident within the graft.*>

We have recently reported that passenger T cells are present
within human donor organs recovered for transplantation and, using
murine transplant models, have demonstrated that donor T effec-
tor cells can augment host alloimmune responses directed against
the allograft.® Thus, although seemingly counterintuitive, these pas-
senger lymphocytes contribute to rejection of the organ. Here, we
examine whether donor-derived natural regulatory CD4 T cells (nT-

regs) can, conversely, prolong allograft survival.

2 | MATERIALS AND METHODS

2.1 | ldentification of circulating donor CD4 T
lymphocytes in human lung transplant recipients

Following adult deceased-donor lung or heart plus lung transplan-
tation, blood from consenting recipients was sampled at prede-
termined time points (initially weekly for the first 2 months after
transplantation, and monthly/bimonthly thereafter) and donor CD4
T lymphocytes was identified by flow cytometry, on the basis of the
expression of MHC alloantigen. Briefly, peripheral blood mononu-
clear cells (PBMCs) were labeled with anti-CD3-FITC (fluorescein
isothiocyanate, clone HIT3a) and anti-CD4 PE (phycoerythrin, clone
RPA-T4) monoclonal antibodies (both BD Biosciences, Oxford, UK)
and with the relevant MHC class | HLA-specific biotinylated anti-
body that were selected to bind exclusively to donor (but not re-
cipient) HLA class | MHC alloantigen (see Table S1; kindly gifted
by Prof. Frans Claas, Leiden University Medical Center, Leiden,
the Netherlands). Cells were further labeled with allophycocyanin
(APC)-conjugated streptavidin (Invitrogen, Paisley, UK) and donor
cells were identified using BD FACSCantoTM flow cytometer with
BD FACSDiva software (BD Pharmingen, Berkshire UK). Pure pop-
ulations of donor and recipient CD4 T cells (obtained from donor
spleen/lymph nodes and recipient blood before transplantation, re-
spectively) were used as positive and negative controls for donor
lymphocyte identification. Positive identification of donor CD4 T
cells in test samples was based on relative intensity of staining of
control donor to recipient cells (Figure S1).

The human lung study received a favorable ethical opinion by
the Cambridgeshire 4 Research Ethics Committee and was approval
by the Health Research Authority. The study was registered with
the National Institute of Health Research (NIHR) Clinical Research

Network Portfolio.

2.2 | Characterization of lymphocyte subsets
released during ex vivo normothermic perfusion

Kidneys underwent 1 hour of normothermic machine perfu-
sion, as described previously,” with a leukocyte filter, RS1VAE
(Haemonetics, Coventry, UK), in the circuit. After 1 hour, the filter
was removed and flushed in an antegrade direction with 400 mL
of sterile phosphate-buffered saline (PBS). The filters were then
incubated with 20 mL of trypsin-ethylenediaminetetraacetic acid
(EDTA) at 37°C for 10 minutes, and cells were recovered by flush-
ing in a retrograde direction with 400 mL of sterile PBS. Cell pel-
lets were cryopreserved with 10% DMSO (dimethyl sulfoxide)
in fetal calf serum (FCS), and stored at -80°C. For flow cytom-
etry characterization, cells were quickly thawed in Dulbecco’s
Modified Eagle’s Medium (Gibco, D5030, ThermoFisher Scientific,
UK) with 2% FCS and resuspended in FACS buffer (PBS, 1%
FCS, 0.02% sodium azide). Cells were stained in FACS buffer for
30 minutes on ice with the following antibodies: PE anti-human
CD127 (clone eBioRDR5, ThermoFisher Scientific), Brilliant Blue
515 anti-human CD25 (clone 2A3, BD Pharmingen), APC Cy7
anti-human CD3 (clone SK7, BioLegend, London, UK), PE Cy7 anti-
human CD4 (clone SK3, BD Pharmingen), and dead cell exclusion
dye 7-aminoactinomycin D (BD Pharmingen). Cells were washed
twice with FACS buffer after antibody staining, and cell events
were collected on FACSCanto Il analyzers (BD Pharmingen) and
analyzed with FlowJo software (FlowJo, LLC, Ashland, OR). The
human kidney study had received favorable ethical approval from
Newcastle & North Tyneside 2 Research Ethics Committee REC
(15/NE/0408).

2.3 | Animals

C57BL/6J (H-2°; Bé) were purchased from Charles River
Laboratories (Margate, UK). Bm12 mice (B6(C)-H2-Ablbm12/
KhEgJ [H-2bm12]) and H-2° T cell receptor-deficient mice (Terbd ™~
[B6.129P2-Terb™MomTepgtmiMom /18y \yere purchased from the
Jackson Laboratory (Bar Harbor, ME).

2.4 | Heterotopic heart transplantation

Vascularized cardiac allografts were transplanted intra-abdominally
as described previously.”!° Heart graft survival was monitored by
daily abdominal palpation, with rejection defined as cessation of a
detectable beat. Grafts were excised at predetermined time points
after transplantation and stored at -80°C or fixed in 10% buffered
formalin. In certain experiments, recipient B6 mice were depleted of
CD4 T-regs by treatment with 0.5 mg of anti-CD25 mAb (PC-61, Bio
X Cell, West Lebanon, NH), i.p., on day -1 followed by 0.25 mg, i.p.,
ondays 1, 3, 5,and 7, in relation to bm12 heart graft transplantation.
Donor T-reg depletion was achieved by administering 0.5 mg of anti-
CD25 mAb (PC-61), i.p., on days -6 and -2 before recovery of heart
allograft. Pilot experiments confirmed that this treatment resulted in
depletion of typically 85%-90% of FoxP3*"¢ splenic CD4 T cells.
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2.5 | Adoptive transfer of donor/recipient-derived
nT-regs

Recipient B6 mice were adoptively transferred by tail-vein intra-
venous injection with 1 x 10° nT-regs derived from B6é or bm12
animals on the first postoperative day after bm12 cardiac trans-
plantation. nT-regs were purified from spleens of naive Bé or
bm12 animals using the CD4"CD25" Regulatory T Cell Isolation
Kit (Miltenyi Biotec, Auburn, CA) and an autoMACS separator
(Miltenyi); cell purity (typically >90% CD25"¢ CD4"¢) was ana-
lyzed by flow cytometry prior to injection.

2.6 | Quantification of humoral
autoantibody responses

Antinuclear autoantibody responses were determined by HEp-2 indirect
immunofluorescence (The Binding Site, Birmingham, UK) as described
previously,'* by incubating test sera on slides coated with HEp-2 cells
and detecting bound antibody with FITC-conjugated goat anti-mouse
1gG (STAR 70; Serotec, Oxford, UK). For each test serum, photomicro-
graphs were taken, and the intensity of staining was determined by
integrated morphometric analysis using MetaMorph software. The flu-
orescence value was then derived by comparison with a standard curve
obtained for each assay by serial dilutions of a pooled hyperimmune
serum that was assigned an arbitrary value of 1000 fluorescence units.

2.7 | Histopathology

Cardiac allograft vasculopathy was assessed on elastin van Gieson -
stained paraffin sections by morphometric analysis as described pre-
viously.** Luminal stenosis [percentage cross-sectional area luminal
stenosis = (area within internal elastic lamina - area of lumen)/area
within internal elastic lamina x 100]. All elastin-positive vessels in each

section were evaluated, with approximately 10 vessels/heart analyzed.

2.8 | Statistics

Data were presented as mean * standard deviation (SD) where ap-
propriate. Mann-Whitney tests were used for analysis of nonpara-
metric data. Two-way analysis of variance (ANOVA) was employed
for comparison of antinuclear and anti-vimentin autoantibody re-
sponses. Graft survival was depicted using Kaplan-Meier analysis
and groups compared by log-rank (Mantel-Cox) testing. Analysis was
conducted using GraphPad 4 (GraphPad Software, San Diego, CA).

Values of P < .05 were considered significant.

3 | RESULTS

3.1 | Different CD4 T cell lineages are released from
human allografts

Having previously demonstrated the presence of CD4 T effector

6,12

cells within human organs recovered for transplantation, we
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sought to determine whether donor CD4 T cells, and specifically,
donor T-regs, could potentially also be released into the recipient's
circulation following transplantation. Human lung transplant re-
cipients (n = 21) were therefore followed for the first year follow-
ing transplantation, and the presence of circulating donor-derived
CD4 T cells determined by surface expression of mismatched HLA
donor antigen (Figure S1). As shown in Figure 1, donor-derived CD4
T cells were detectable immediately following transplantation in all
patients, representing between 0.06% and 6% of the total CD4 T cell
population detectable in the recipient (mean chimerism at 1 week;
1.54 + 1.41%). Numbers of cells recovered were too small to defi-
nitely assess different T cell lineages, but real-time polymerase chain
reaction (RT-PCR) gene expression analysis of flow sorted donor
CD4 T cells (not shown) revealed profiles consistent with naive and
CD44N memory CD4 T cells, albeit samples from the same patient
varied markedly at different time points, with no consistent pheno-
type observed. Notwithstanding, 3 different patterns of chimerism
were evident (Figure 1A): transient (detectable for up to 6 weeks);
intermediate (detectable for up to 6 months); or persistent (lasting
for over a year).

The release of donor T-regs was then assessed by analysis
of leukocyte filters recovered from human kidneys that had been
obtained using standard recovery techniques, but then perfused
normothermically ex vivo using leukocyte-depleted blood.? Hence
leukocytes captured by the filter in the circuit reflect those cells
that would be released into the recipient circulation had the organ
been transplanted without first being subject to ex vivo perfusion.
CDA4 T cells were readily recovered from the filters and represented
6.57 £ 1.30% of the total lymphocyte population (Figure 1B). A
small, but consistently present, population of CD4 T cells with sur-
face T-reg phenotype (CD25P°°CD127'°; 6.74 + 4.73% of CD4 T cells)
was also recovered (Figure 1B). T cells were not evident on analy-
sis of the stored leukocyte-depleted blood used in the circuit (not
shown), suggesting that the T-reg population had been released on
reperfusion of the retrieved kidneys.

3.2 | T-regdepletion results in augmented humoral
immunity and accelerated allograft rejection

Theinfluence of donor and recipient T-regs on allograft outcomes was
then examined using an MHC class II-mismatched murine model of
chronic heart allograft rejection. Our previous work has highlighted
that chronic allograft vasculopathy (CAV) in this model is associated
with the development of effector autoantibody responses that are
triggered by graft-versus-host recognition of MHC class Il on host B
cells by passenger donor CD4 T Iymphocytes.é‘u*13 In comparison to
unmodified WT C57BL/6 recipients, depletion of the T-reg popula-
tion by administration of anti-CD25 mAb to C57BL/6 mice at, and
following, transplantation with bm12 (B6(C)-H2-Ablbm12/KhEgJ)
heart allografts resulted in much more rapid heart graft rejection,
and was associated with markedly augmented host autoantibody re-
sponses (Figure 2A,B). This accelerated rejection was nevertheless
dependent on adoptive transfer of donor CD4 T cells, because heart
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FIGURE 1 Solid organ human transplants contain passenger CD4 T lymphocyte subsets. A, Donor HLA class | mismatched antigens were
used as a target for detection of donor CD4 T cell chimerism in lung transplant recipients using flow cytometry. Three patterns of donor
CD4 T cell chimerism were observed: short-term chimerism (donor CD4 T cells detectable for up to six weeks after transplantation [patients
20,8,1,2,5,6,11, 13, 16, 17, 3, 4 and 19]); intermediate-term chimerism (donor CD4 T cells detectable up to 6 months after transplantation
[patients 9, 21 and 7]), and long-term chimerism (donor CD4 T cells detectable for longer than one year after transplantation [patients 12,
15, 18, 14 and 10]). Green dot, blood sample tested and donor CD4 T cells detected. Red dot, blood sample tested, donor CD4 T cells not
detected. Black dot, patient died. B, Representative flow cytometry plots for analysis of live CD4 T cells recovered from leukocyte filters

of human kidney organs undergoing ex vivo normothermic perfusion. Histogram depicts the proportion of CD3+ve CD4+ve T lymphocytes
that expressed cD25McD127° T regulatory cell surface phenotype (n = 3)

allografts from T cell-deficient bm12.TCR™~ donors did not trigger .
8 &8 3.3 | Donor-derived T-regs prolong allograft

host autoantibody responses and survived indefinitely, without de- . . ..
v resp Y survival more effectively than recipient T-regs

veloping CAV (Figure 2C), even following recipient T-reg depletion

(Figure 2A). This suggests that the T-regs were principally influenc- In the preceding experiments, anti-CD25 treatment of the recipi-
ing the donor T cell/host B cell axis. ent was continued after transplantation, raising the possibility that
A 800
_ —#— T-reg depleted recipient
2= bm12. TCR™ donor
3 o T-reg depleted recipient
] -~ Wild-type bm12 to B6
88
£ 8
£
<c
0 ] T T T T L] 1
0 1 2 3 4 5 6 7
Time after transplant (weeks)
B » a ]
FIGURE 2 T-regdepletion augments = 100 ——  T-reg depleted recipient
donor T cell-dependent effector § v bm12.TCR*donor
autoantibody responses and accelerates g 80 T-reg Hepleted recipient
allograft rejection. MHC-class Il 2 601 — Wildtvoe b2 to B6
mismatched cardiac allografts from WT or ":, vp
T cell-deficient (TCR™") bm12 donor mice S 40+
were transplanted into unmodified WT ";-5
C57BL/6 (B6) or T-reg-depleted recipients E 20
and effector autoantibody responses =1
(A), allograft survival (B), and allograft © o r r r r .
vasculopathy at explant on day 100 (C) 0 20 40 60 80 100
was assessed (allograft vasculopathy Time after transplant (days)
for T-reg-depleted recipients of WT
bm12 heart allografts were not analyzed *
because of rapid graft destruction). c 100+ —t—
T-reg depletion results in augmented g 80- ®
autoantibody responses (P = .04, Kruskal- P _ZE
Wallis test) and rapid allograft rejection § 60+
(*P <.0001, log-rank test), but this impact g °
is dependent on transfer of passenger 5 401
donor T cells. Representative elastin E
van Gieson staining showing allograft 3 207
vasculopathy in WT recipients compared o . S
to nondiseased vessels in (TCR”") bm12 WT bm12.TCR " donor
hearts transplanted into T-reg-depleted T-reg depleted recipient

recipients (scale bars 100 pM). *P = .03,
Mann-Whitney test. Data are expressed
as mean = SD and represents a minimum
of 4 animals per group

85U8017 SUOWILWIOD dA1IE1D) 8|qeal|dde 8y Ag peusenob a2 sajole YO '8sN JO SaInJ 10} ARIg1T8UIIUQ AB[IM UO (SUOIPUOD-PUE-SWSIALI0Y A8 |1 Ale.q Ul |Uo//:Sty) SUONIPUOD pue SwLB | 8U1 89S *[6202/20/82] Uo Ariqiauljuo A(IM 'ssoines ARiqi TON uopuo b0 AisieAluN AQ 2TZGT Ve/TTTT 0T/I0p/wod A8 | im Ake.q 1 pul|uo//stiy wouy pepeojumod 'S '6TOZ ‘SrTI009T



1376

HARPER ET AL.

AJT
10001

>

Autoantibody Level
(Fluorescence Units)

0 T 1 1 1 1 1 1

0 1 2 3 4 5 6 7
Time after transplant (weeks)

B 100 —
= |
= 80+ :
>
2 \
S 604 |
n |
= L,
g 24 |
=
3 |
c ll 1 1 1 1
0 20 40 60 80 100

Time after transplant (days)

transferred donor T-regs were also targeted. Notably, transplanta-
tion of heart allografts from donor bm12 mice that had received
anti-CD25 treatment before organ recovery also triggered markedly
augmented autoantibody responses in WT C57BL/6 recipient mice,
and heart allografts were rejected at least as rapidly as following
recipient T-reg depletion (Figure 3A,B). To test the comparative ef-
ficacy of donor versus recipient-derived T-regs in preventing allo-
graft rejection, WT C57BL/6 recipients of unmodified bm12 heart

1415 purified from

grafts were additionally transferred with nT-regs,
either the recipient or donor strains. Of interest, whereas transfer
of recipient-strain nT-regs had little discernible impact on transplant
outcome, transfer of donor-strain nT-regs was associated with abro-
gation of recipient autoantibody responses, a reduction in the sever-

ity of CAV, and prolonged allograft survival (Figure 4A-C).

4 | DISCUSSION

Our results demonstrate that following solid organ transplantation,
donor-derived CD4 T cells are released into the recipient circulation,
and, at least following lung transplantation, may persist for some
time. Within a larger population of conventional CD4 T effector
cells, smaller numbers of regulatory T cells can be identified, and our
murine studies confirm that these can inhibit host adaptive immune

responses. These findings may hold particular pertinence to ex vivo

—& - Treg depleted donor
- WT donor

results in exacerbated autoantibody
production and accelerated graft loss.
Heart allografts from unmodified (WT)
or T-reg-depleted bm12 donor mice were
transplanted into WT C57BL/6 mice and
effector autoantibody responses (A) and
allograft rejection (B) were assessed.
Compared to unmodified donor hearts,
donor T-reg depletion results in acute
allograft rejection (median survival time
[MST] 14 days vs 78 days; *P < .01, log-
rank test), with markedly augmented
recipient autoantibody responses

(**P < .001, 2-way ANOVA). Data
expressed as mean + SD, n = 4

== Treg depleted donor }A FIGURE 3 Donor T-reg depletion

== WT donor

organ perfusion strategies currently being developed; they highlight
that rather than blanket depletion, preservation of select passenger
lymphocyte subsets within the allograft may be beneficial.

It is perhaps surprising that donor-derived nT-regs were more
effective than recipient-derived nT-regs at blocking host humoral
responses. Although the precise target epitopes remain ill-de-
fined,’®Y” nT-regs are thought to recognize specific, self-restricted
peptide epitopes (typically autoantigensls). Donor-derived nT-regs
therefore presumably recognize intact host MHC class Il complexes
on recipient cells via the direct pathway,’’ and in which case, do so
with a much greater precursor frequency than for a self-restricted
response, with approximately 5% of the clonal repertoire respond-
ing.20 We have recently demonstrated that this enables naive donor
T cells to provide promiscuous, “peptide-degenerate” help to all host
B cells, with plasma cell differentiation dictated by simultaneous B
cell receptor ligation.>?! By extension, recognition of MHC class II
alloantigen on host B cells by passenger T-regs within the allograft is
likely to provide broad inhibition of host humoral immunity. Whether
this inhibition is the result of direct killing of the B cell by the T-

22-25 | 26,27
, ’

reg or delivery of inhibitory signals to the B cel or block-

ade of delivery of essential help from CD4 T effector cells is as yet
unknown and is the subject of ongoing investigation in our labora-
tory. Of particular interest, our recent work has highlighted a critical

29,30

role for germinal center autoantibody28 and alloantibody reac-

tions in the progression of allograft vasculopathy, and our ongoing
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the day after transplantation with g 20
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20

40 60 80 100

and recipient autoantibody responses 0 )

(A), allograft survival (B), and allograft Time after transplant (days)
vasculopathy (C) were assessed as

detailed in Figure 2 legend. Control f ,—ili—\
recipients received no treatment. B 100 A ®
Whereas administration of recipient- —_ A

strain nT-regs had little impact on g\c, 80 i

rejection responses or rejection kinetics, 0 _A <
administration of donor-strain nT-regs 8 60- : = %
inhibited effector autoantibody responses q:, u ®
(P=.27,*"P < 001, 2-way ANOVA), 5 ol ¥ . o
prolonged allograft survival (MST 91 vs g -1

67 days; *P = .03. log-rank test) and was E 20- —

associated with reduction in the severity 3

of allograft vasculopathy (P = .02,

1P =.38; Mann-Whitney test). Data are 0 bm12.r':l' regs Nlo B6 nTI regs

representative of 6 animals per group, and
expressed as mean £SD,n =6

investigations are examining the impact of donor-derived T-regs on
host germinal center B cell/T follicular helper cell interactions.

In addition to providing support for strategies that selectively
retain donor T-regs within the allograft, our results suggest that
donor-derived T-regs may hold potential as a cellular therapy for
prolonging allograft survival. This would differ from strategies
that are currently under evaluation clinically, and that typically
employ recipient-derived CD4 T-regs that are either polyclonal or
exhibit direct allospecificity for the donor.®! In a similar fashion
to donor effector CD4 T cells (that provide promiscuous help to
all B cells engaging target antigen), transferred donor-derived T-
regs would be expected to inhibit host B cell responses against
concurrently encountered alloantigen, even those alloantigens

that are expressed on the T-reg surface.® Thus, it seems probable

treatment

that donor-derived T-regs will be effective in transplant models
incorporating donor-recipient strain combinations that are more
MHC-mismatched; certainly, direct-pathway allorecognition of
host MHC class Il by donor-derived T-regs is likely to be at least as
robust in more mismatched strain combinations as in the bm12 to
B6 model. For the same reasoning, we would anticipate that bm12
nT-regs could be used as a cellular therapy to block host B cell al-
loresponses against a variety of different donor-strain transplants
into B6 recipients. Potency of this approach could be enhanced by
either increasing the proportion of T-regs within the transferred
population that exhibit direct-pathway allospecificity, or by first
generating memory T-regs directed against intact host MHC class
1.2 In this regard, it is notable that heart allografts that contain

memory CD4 T cells specific for host MHC class Il (by priming the
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donor with recipient alloantigen 6 weeks prior to heart donation)
are rejected much more rapidly than hearts from unmodified do-
nors, with greatly augmented autoantibody responses."’*28

Such a use of third-party T-regs to block host humoral alloim-
munity would be distinctly different from proposed strategies that
differentiate/expand T-regs with self-restricted specificity for al-
loantigen from the individual's endogenous T cell population,?>3°
and may offer a particular advantage. T cell help for alloantibody
production can only be provided by host CD4 T cells with indirect
allospecificity.>43¢ Thus, for maximum effectiveness, recipient-de-
rived T-regs would need to recognize the relevant allopeptide epi-
tope presented by host MHC class Il. Prediction of these peptides
is, however, challenging, not least because the repertoire of pre-
sented allopeptide peptides may change with time.%” In contrast,
third-party T-regs with direct allospecificity would be expected to
interact with the individual's B cells in a peptide-degenerate fashion,
and would therefore potentially block all concurrently active B cell
responses. The crucial attribute in enabling donor-derived T-regs
to inhibit host B cell responses is avoidance of recognition and kill-
ing by host Natural Killer cells.® Thus, only third-party donors that
are minimally MHC mismatched against the individual are likely to
be effective. This limitation could be overcome by transduction of
an individual's purified nT-reg population with T cell receptor (TCR)
genes,®® which encode direct-pathway reactivity to that individual's
own MHC class Il, with the relevant Tcra and Terp sequences first
established by identifying dividing clones in standard mixed leuko-
cyte reactions using third-party cells as responders against recipi-
ent stimulators.” This would generate autologous CD4 T-regs with
heightened specificity for self.

This approach may have wider uses beyond transplantation. It
could, for example, be refined as a potential treatment for humoral
autoimmunity, wherein nT-regs from a third-party donor that have
direct-pathway allospecificity for the individual's (recipient's) MHC
class Il antigens would be expected to block cognate interactions
between autoreactive B and T helper cells in the host, thereby inhib-

iting autoantibody production.
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