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Abstract
The Tree Augmented Naı̈ve Bayes classifier
is a type of probabilistic graphical model that
can represent some feature dependencies. In
this work, we propose a Hierarchical Redun-
dancy Eliminated Tree Augmented Naı̈ve Bayes
(HRE–TAN) algorithm, which considers remov-
ing the hierarchical redundancy during the classi-
fier learning process, when coping with data con-
taining hierarchically structured features. The
experiments showed that HRE–TAN obtains sig-
nificantly better predictive performance than the
conventional Tree Augmented Naı̈ve Bayes clas-
sifier, and enhanced the robustness against imbal-
anced class distributions, in aging-related gene
datasets with Gene Ontology terms used as fea-
tures.

1. Introduction

This work proposes a new type of Tree Augmented
Naı̈ve Bayes (TAN) classifier, namely the Hierarchical
Redundancy Eliminated Tree Augmented Naı̈ve Bayes
(HRE–TAN) algorithm, which is designed for coping with
features organized into a hierarchy (e.g., a tree or a DAG
– directed acyclic graph). In this paper the features are
DAG-structured Gene Ontology (GO) terms, in datasets
where instances represent genes to be classified into
pro-longevity or anti-longevity genes. However, the pro-
posed algorithm can also be applied to other classification
datasets with hierarchical features.

Tree Augmented Naı̈ve Bayes (TAN) is a type of
semi-Naı̈ve Bayes classifier that relaxes Naı̈ve Bayes’
feature independence assumption, by allowing each feature
to depend on at most one non-class variable feature. This
type of tree structure-based Bayesian classifier is able to
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represent some feature dependencies and scales to large
datasets more efficiently than other Bayesian classifiers
that represent more complex feature dependencies. In
this work, we focus on one of the most computationally
efficient TAN classifiers (Friedman et al., 1997; Keogh
& Pazzani, 1999; Jiang et al., 2005; Zhang & Ling,
2001), which essentially computes the conditional mutual
information (CMI) for each pair of features given the class
attribute and then builds a Maximum Weight Spanning
Tree (MST), where an edge’s weight is given by its CMI
(Friedman et al., 1997). Then, a randomly selected vertex
of the MST acts as the tree’s root, and the edge directions
are propagated accordingly.

2. Background

2.1. The Gene Ontology and Hierarchical Redundancy

The Gene Ontology (GO) uses unified and structured vo-
cabularies to describe gene functions (The Gene Ontology
Consortium, 2000). Most GO terms are hierarchically
structured by an “is-a” relationship, where each GO term
is a specialization of its ancestor (more generic) terms. For
example, GO:0003674 (molecular function) is the root of
the DAG for molecular function terms, and it is also the
parent of GO:0003824 (catalytic activity), which is in turn
the parent of GO:0004803 (transposase activity).

This feature hierarchy has two types of hierarchical
redundancy. First, if a GO term (feature) takes the value
“1” for a given instance (gene), this implies its ancestor
terms in the GO DAG also take the value “1” for that
instance. Conversely, if the GO term takes the value “0”
for a given instance, its descendants in the DAG also take
the value “0” for that instance. In order to cope with
those types of hierarchical redundancy, in our previous
works (Wan & Freitas, 2013; Wan et al., 2015; Wan, 2015;
2016), three types of filter hierarchical feature selection
algorithms were proposed, i.e., MR, HIP and the hybrid
HIP-MR. Those three algorithms eliminate/alleviate the
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above types of hierarchical redundancy in a data pre-
processing phase, before learning the classifier. In contrast,
the proposed HRE–TAN eliminates the hierarchical
redundancy during the classifier learning phase.

2.2. Lazy Learning

A “lazy” learning method performs the learning process in
the testing phase, building a specific classification model
for each testing instance to be classified (Aha, 1997; Pereira
et al., 2011), rather than building a general classifier for all
testing instances. The newly proposed TAN classifier in
this work is based on lazy learning, since it selects features
for each testing instance separately.

3. Hierarchical Redundancy Eliminated Tree
Augmented Näıve Bayes (HRE–TAN)

This is a new type of tree-based Bayesian classifier
based on the lazy learning approach, and it performs an
embedded hierarchical feature redundancy elimination,
rather than in a pre-processing step. As mentioned in
Section 1, a conventional TAN method builds a MST to
detect dependencies among features, but it assumes that
the features are “flat”, not hierarchical. In contrast, the
proposed method eliminates the hierarchical redundancy
between features when it builds the MST for each testing
instance. As discussed in Section 2.1, two vertices are
hierarchically redundant if one of them is an ancestor or
descendant of the other and they have the same feature
value (“1” or “0”). In essence, HRE–TAN checks the
status of each edge before adding it into the Undirected
Acyclic Graph (UDAG) that will be transformed into the
MST later. The status of an edge will be set to “Unavail-
able” if either of the vertices connected by the edge is
hierarchically redundant, with respect to the vertices that
have already been included in the UDAG. The pseudocode
of HRE–TAN is described in Algorithms 1 and 2.

In Algorithm 1, in the first part of the HRE–TAN al-
gorithm (lines 1–12), HRE–TAN firstly generates the
Directed Acyclic Graph (DAG) for the current dataset with
a corresponding set of vertices (features)X and set of edges
E. Then it generates the set of ancestor and descendant
features for each featurexi, denotedA(xi) and D(xi),
respectively. Status<E>(xi, xj), which is initialized
as “Available”, denotes the selection status of the edge
connecting verticesxi andxj . CMI<E>(xi, xj) denotes
the value of CMI (conditional mutual information) for the
edgeE(xi, xj). All edges are sorted in descending order
of their CMI value(a greater CMI value means a higher
priority of adding the edge into the UDAG). In the second
part of the HRE–TAN algorithm (lines 13–21), the tree
T will be built for each testing instance (adopting a lazy

learning approach) by calling the procedure HRE–MST()
for building the Hierarchical Redundancy Eliminated
Maximum Weight Spanning Tree (HRE–MST). Then
the TrainSet and the current testing instanceInst<w>

will be re-created with the setX
′

of the features included
in the tree, so that only those features will be used for
classifying the re-created testing instance. The re-created
TrainSet T andInst T<w> with treeT are then used
to build a lazy TAN model that classifiesInst<w> in line
17. Finally, in lines 18–20 all edges in the DAG have
their status re-assigned to “Available”, as a preparation to
process the next testing instance.

Algorithm 1 Lazy Hierarchical Redundancy Eliminated
Tree Augmented Naı̈ve Bayes (HRE–TAN)

1: InitializeDAG with all features in Dataset;

2: InitializeTrainSet;

3: InitializeTestSet;

4: for each featurexi ∈ X do

5: InitializeA(xi) in DAG;

6: InitializeD(xi) in DAG;

7: end for

8: for eachE(xi, xj) ∈ E do

9: CalculateCMI<E>(xi, xj) usingTrainSet;

10: InitializeStatus<E>(xi, xj)← “Available”;

11: end for

12: Sort allE(xi, xj) ∈ E by descending order ofCMI;

13: for each instanceInst<w> ∈TestSet do

14: T = HRE–MST(DAG, Inst<w>, A(X), D(X), E);

15: Re-createTrainSet T with feature setX
′

∈ T;

16: Re-createInst T<w> with feature setX
′

∈ T;

17: Classify by TAN(T,TrainSet T, Inst T<w>);

18: for eachE(xi, xj) ∈ E do

19: Re-assignStatus<E>(xi, xj)← “Available”;

20: end for

21: end for

Algorithm 2 shows the pseudocode for building the
HRE–MST. NR(xi, xj , Inst<w>, DAG) is a
Boolean function that returns “True” if nodesxi and
xj are non-hierarchically-redundant in the current
testing instanceInst<w>, given the feature DAG.
NoCycle(E(xi, xj),UDAG) is a Boolean function
that returns “True” if there is no cycle in theUDAG

after adding edgeE(xi, xj). If the edge satisfies all the
conditions in line 3 of Algorithm 2, it will be added
into theUDAG (line 4). Once the algorithm has added
the edgeE(xi, xj) to theUDAG, for each of the two
nodes connected by that edge, denoted asxg (line 5), the
algorithm will consider each of the nodes which is either
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Figure 1.Example of HRE–TAN operation initially with a set of features structured as a DAG

an ancestor or a descendant ofxg in the featureDAG,
denoting each such ancestor/descendant asxh (line 6).
If featurexg and its ancestor/descendant featurexh have
the same value in the current testing instanceInst<w>

(line 7), indicating a hierarchical redundancy in that pair
of features, then thefor each loop in lines 8–10 will set
to “Unavailable” the status of all edges where one of the
nodes isxh – line 8, where the symbol “∗” is a wildcard
matching any node. In other words, among the set of
hierarchically-redundant nodes (features) with the same
value, HRE–TAN selects the node included in the edge
having higher conditional mutual information (CMI), since
Algorithm 2 processes edges in descending order of CMI.

To explain how Algorithms 1 and 2 work, we use the
example DAG shown in Figure 1.a, where the left part is a
feature hierarchy consisting of three paths from a root to
a leaf node of theDAG, i.e., node F to node B; node F
to node D; and node E to node D. The right part of Figure
1.a shows the edges (for all pair of nodes) in descending
order ofCMI. HRE–TAN firstly adds edgeE(F,A) into
the UDAG, since its selection status is “Available”; nodes
F and A are not hierarchically-redundant; and there is no
cycle in theUDAG after adding edgeE(F,A). Then,
Algorithm 2 will delete all edges that contain hierarchically
redundant nodes with respect to node F or node A, in order
to minimize feature redundancy. Node C is redundant with
respect to node F, because both of them have value “1” and
are located in the same path in Figure 1.a. So, all edges
containing node C(i.e., E(C,E), E(C,D), E(F,C),
E(B,C), E(C,A)) will be unavailable to be added into
the UDAG. Also, node D is redundant with respect to
node A, because both of them have value “0” and are
located in the same path. Then, all edges containing node

D (i.e.,E(E,D), E(C,D), E(B,D), E(A,D), E(F,D))
will be unavailable to be added into theUDAG. Note
that this hierarchical redundancy elimination process
will dramatically reduce the size of the search space of
candidate TAN structures.

Algorithm 2 Hierarchical Redundancy Eliminated Maxi-
mum Weight Spanning Tree (HRE–MST)

1: Initialize an EmptyUDAG;

2: for eachE(xi, xj) ∈ E do

3: if {Status<E>(xi, xj) = “Available”} ∧

{NR(xi, xj , Inst<w>, DAG)} ∧

{NoCycle(E(xi, xj ), UDAG)} then

4: addE(xi, xj) intoUDAG;

5: for eachxg in {xi, xj} do

6: for eachxh in {A(xg) ∪ D(xg)} do

7: if V(xg, Inst<w>) = V(xh, Inst<w>) then

8: for eachE(xh, ∗) do

9: Status<E>(xh, ∗)← “Unavailable”;

10: end for

11: end if

12: end for

13: end for

14: end if

15: end for

16: ChooseRoot by Randomly selecting vertexx in UDAG;

17: Build the tree (T) by marking direction of all edges from the

Root outwards to other vertices;

18: ReturnT;
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Table 1.Sensitivity (± standard error), specificity (± standard error) and GMean values obtained by HRE–TAN and TANover 28 datasets

Caenorhabditis elegans Datasets Drosophila melanogaster Datasets

HRE-TAN TAN HRE-TAN TAN

Sens. Spec. GMean Sens. Spec. GMean Sens. Spec. GMean Sens. Spec. GMean

BP 41.1± 2.4 76.8± 2.1 56.2 34.0± 3.2 79.6± 2.3 52.0 86.8± 3.2 30.6± 10.2 51.5 92.3± 2.9 19.4± 8.4 42.3

MF 23.1± 4.8 75.3± 5.4 41.7 37.2± 5.8 61.4± 5.0 47.8 86.8± 3.4 41.2± 8.8 59.8 91.2± 3.3 20.6± 5.0 43.3

CC 24.5± 3.6 80.8± 3.0 44.5 39.8± 3.0 78.2± 2.2 55.8 75.8± 5.8 28.6± 9.7 46.6 90.3± 3.6 32.1± 11.6 53.8

BP+MF 42.3± 2.3 80.0± 2.6 58.2 35.2± 1.9 80.3± 2.2 53.2 87.0± 3.3 31.6± 6.5 52.4 92.4± 3.3 23.7± 6.9 46.8

BP+CC 44.6± 3.0 74.4± 3.6 57.6 42.7± 3.1 81.7± 2.7 59.1 84.6± 2.4 32.4± 10.6 52.4 86.8± 4.0 18.9± 7.6 40.5

MF+CC 32.4± 3.3 79.8± 3.2 50.8 40.6± 3.4 74.4± 3.6 55.0 87.1± 4.4 39.5± 5.5 58.7 90.6± 3.3 31.6± 5.0 53.5

BP+MF+CC 44.2± 3.9 79.3± 2.9 59.2 39.5± 2.8 80.1± 2.6 56.2 82.6± 3.4 47.4± 8.7 62.6 92.4± 2.4 18.4± 5.3 41.2

Mus musculus Datasets Saccharomyces cerevisiae Datasets

HRE-TAN TAN HRE-TAN TAN

Sens. Spec. GMean Sens. Spec. GMean Sens. Spec. GMean Sens. Spec. GMean

BP 86.8± 5.5 47.1± 4.7 63.9 89.7± 3.7 41.2± 4.9 60.8 20.0± 7.4 93.5± 1.7 43.2 3.3± 3.3 98.9± 1.1 18.1

MF 83.1± 3.3 42.4± 9.3 59.4 89.2± 4.0 33.3± 9.4 54.5 0.0± 0.0 96.9± 1.7 0.0 0.0± 0.0 97.7± 1.2 0.0

CC 86.4± 4.0 41.2± 9.7 59.7 75.8± 4.4 41.2± 8.3 55.9 12.5± 6.1 93.5± 2.9 34.2 16.7± 7.0 95.9± 2.1 40.0

BP+MF 83.8± 4.5 41.2± 6.8 58.8 86.8± 3.4 35.3± 5.4 55.4 26.7± 10.9 95.8± 1.5 50.6 3.3± 3.3 99.0± 0.7 18.1

BP+CC 79.4± 4.9 47.1± 9.7 61.2 88.2± 3.6 47.1± 9.7 64.5 26.7± 6.7 94.1± 2.1 50.1 10.0± 5.1 99.0± 0.7 31.5

MF+CC 89.7± 3.0 35.3± 9.6 56.3 88.2± 4.2 41.2± 10.0 60.3 10.3± 6.1 95.4± 1.9 31.3 5.0± 5.0 98.5± 0.8 22.2

BP+MF+CC 85.3± 3.7 44.1± 8.9 61.3 91.2± 3.2 41.2± 8.6 61.3 23.3± 7.1 96.2± 1.4 47.3 0.0± 0.0 99.0± 0.6 0.0

After edges with node C or D had their selection status set
to “Unavailable”, edgeE(F,B) – the next one available
in the sorted list – will be added into theUDAG, since
nodes F and B are not redundant (although both of them
are in the same path in Figure 1.a, their values are differ-
ent), and there is no cycle in theUDAG after adding that
edge. Node B is not redundant with respect to any other
node, so no edge has its status set to “Unavailable” in this
step. Then,E(B,E) will be added into theUDAG as the
next available edge in the sorted edge list, since this edge
also satisfies all conditions in line 3 of Algorithm 2. Then,
E(B,A), E(F,E) andE(E,A) will be processed in turn.
However, none of them will be added into theUDAG,
since this would create a cycle in thatUDAG. Figure
1.b shows the selection status of features after processing
all edges, while green color denotes the features were kept
and included in the UDAG, whereas red color denotes fea-
tures were removed and not included in the UDAG. Finally,
HRE–TAN randomly selects a node as the root, which is
used to mark directions of all edges in order to build the
MST. Figure 1.c shows the final tree classifier including all
selected features, with choosing feature B as the root. Af-
ter finding the HRE–MST (i.e., treeT), the training dataset
and current testing instance will be re-created, and the test-
ing instance will be classified using the built tree (line 17
in Algorithm 1). Then the selection status of all edges will
be re-assigned as “Available” in line 19 of Algorithm 1, as
a preparation for processing the next testing instance.

4. Computational Experiments

4.1. Aging-related Genes Datasets

We adopted the aging-related genes datasets used by our
previous work (Wan & Freitas, 2015). The datasets consist
of aging-related genes as instances and 7 different types of
combination of Gene Ontology terms as features, e.g., bi-
ological process (BP) terms with molecular function (MF)
terms, or molecular function (MF) terms with cellular com-
ponent (CC) terms. The aging-related genes information
was about 4 different modal organisms, i.e.,Caenorhab-
ditis elegans(CE), Drosophila melanogaster(DM), Mus
musculus(MM) and Saccharomyces cerevisiae(SC), ob-
tained from Human Ageing Genomic Resources (HAGR)
GenAge database (Tacutu et al., 2013). Therefore, in total
we have 28 different datasets (4 model organisms times 7
types of GO terms combinations).

4.2. Experimental Results and Discussion

We conducted a head-to-head comparison between the
newly proposed HRE–TAN and the conventional TAN
classifier based on their predictive accuracy. We used a
well-known 10-fold cross validation procedure to evaluate
the predictive accuracy measured by the geometric mean
(Gmean) of Sensitivity and Specificity, i.e., the square root
of the product of Sensitivity and Specificity. Sensitivity
denotes the proportion of positive (pro-longevity) genes
correctly classified as positive; whilst Specificity denotes
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the ratio of negative (anti-longevity) genes correctly
classified as negative. Table 1 displays the experimental
results of HRE–TAN and TAN on the 28 datasets. The
figures in bold denote higher GMean value among the two
algorithms in each dataset. Overall, HRE–TAN and TAN
obtained the higher GMean value in 18 and 8 datasets,
respectively, with the GMean result being a tie in the
other two datasets. According to the two-tailed Wilcoxon
signed-rank test, HRE–TAN significantly outperformed
TAN at the 0.05 significance level.

Notably, the class distribution on the datasets is im-
balanced. Hence, we evaluated the robustness of
HRE–TAN and TAN against imbalanced class distribu-
tions, by calculating the correlation coefficientr between
GMean and the degree of class imbalanceD, given by:D
(i.e., D = 1 −

#(Minor)
#(Major) , where#(Minor) denotes the

number of instances belonging to the minority class and
#(Major) denotes the number of instances belonging
to the majority class. The values ofD range from 0.234
(CE–MF dataset) to 0.856 (SC–BP+MF+CC dataset).
The linear relationship between GMean andD values
is shown in the scatter plots in Figure 2, where the red
straight lines denote the fitted linear regression models.
Obviously, HRE–TAN has better robustness against class
imbalance than TAN, since HRE–TANs GMean decreases
more slowly with an increase inD than TAN.
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Figure 2.Linear relationship betweenD and GMean Values

5. Conclusion and Future Research Directions

In this work, we proposed and evaluated a new type of
TAN classifier, i.e., HRE–TAN, which considers eliminat-
ing the hierarchical redundancy between features (hierar-
chical Gene Ontology terms) during the construction of the
tree of features that is used as part of the classifier. The ex-
periments show that HRE–TAN significantly outperforms
the conventional TAN classifier on the tasks of classify-
ing aging-related genes into pro-longevity or anti-longevity
genes. In future work, we will further evaluate the perfor-
mance of HRE–TAN in other datasets of hierarchical fea-
tures and exploit other criteria to eliminate hierarchicalre-
dundancy during the classifier learning phase.
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pro-longevity or anti-longevity effect of model organism genes
with new hierarchical feature selection methods.IEEE/ACM
Transactions on Computational Biology and Bioinformatics,
12(2):262–275, March 2015.

Zhang, H. and Ling, C. X. An improved learning algorithm for
augmented naive bayes.Advances in Knowledge Discovery
and Data Mining, 2035:581–586, April 2001.


