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Abstract — Various methods based on hyperelastic assumptions have been developed to address the 

mathematical complexities of modelling motion and deformation of continuum manipulators. Here, we 

propose a quasi-static approach for 3D modelling and real-time simulation of a pneumatically actuated soft 

continuum robotic appendage to estimate the contact forces and the overall pose. Our model can 

incorporate external load at any arbitrary point on the body and deliver positional and force propagation 

information along the entire backbone. In line with the proposed model, the effectiveness of elasticity vs. 

hyperelasticity assumptions (Neo-Hookean and Gent) are investigated and compared. Experiments are 

carried out with and without external load, and simulations are validated across a range of Young’s moduli. 

Results show best conformity with Hooke’s model for limited strains with about 6% average normalized 

error of position; and a mean absolute error of less than 0.08N for force applied at the tip and on the body; 

demonstrating high accuracy in estimating the position and the contact forces. 

1. INTRODUCTION 

Qualities such as dexterity and high deformability in biological appendages like the octopus arm have 

sparked a research trend which aims to replicate these features using intrinsically soft materials in 

continuum robotic platforms; with the promise of safely performing delicate tasks 1 2, improving 

maneuverability in confined or unstructured environments 3, achieving higher dexterity for grasping 4 5 

or for motion in dynamic biomimetic systems 6 7 such as submerged locomotion 8 9. These robots are 

also appealing for investigating morphological computation 10 and embodied intelligence 8,  providing 

a framework for bodily force sensing without the need for additional sensory hardware, in contrast to 

rigid-link robots 11. 

Yet, the inherent structural flexibility results in modelling and/or control 12 challenges. Several 

approaches have been investigated for modelling this class of manipulators. Beyond the distinction 

between planar (2D) 4 11 13 14 15 16 or spatial (3D) 17 18 19 20 21 operation, it seems plausible to identify two 

key stages which determine the modelling strategy: 

I. The “Priori” stage; to consider: 

• Taking external loading into account vs. no external loads; and, 

• Inertial (dynamic) vs. non-inertial (static/quasi-static, or kinematic) modelling. 

 

II. The “Approach” stage; to consider a mechanistic solution vs. shape function estimation (or a 

combination). While the former might entail some experimental identification, yet is based on 
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analytical derivation and solving of the mechanistic equations, with the potential to be more 

comprehensive. The latter, on the other hand, is entirely structure-specific in implementation; with 

the unknown coefficients to be determined from the manipulator’s behavior. 

The constant curvature (CC) formulation has widely been employed (e.g.13 17 22 23 24 25 26) for mapping 

the actuation space to the configuration space by formulating the backbone deformation as a planar 

curve with constant radius. In this regard, Webster and Jones 27 demonstrate two separate sub-mappings: 

a robot-specific map relating the mechanical actuation to the three arc parameters (Fig.2), and a robot-

agnostic map relating the arc parameters to the spatial kinematic configuration of the manipulator. The 

first mapping usually involves some identification of the system from experiments; e.g. as in Chen et 

al. 22, where a CC model is developed to control the manipulator’s shape via tip position control. 

However, the validity of CC depends on the mechanical and geometrical properties of the structure 

and/or the magnitude of loads. For example, torsional effects are reported to be capable of significant 

effects on the behavior and deformation of soft manipulators 28 which CC falls short of incorporating 
29; in addition to shear or internal forces 30 when resulting in deformations not conforming to a curve. 

Conversely, variable curvature (VC) methods offer more viable solutions in the presence of external 

loads, in addition to providing singularity-free kinematic maps 31 32 33. Many research works achieve 

VC from CC by modifications, such as deviations added as uncertainty 34, piecewise CC (PCC) 19 27 35 

such as a serial chain of subsegment arcs 36, PCC along with a compensating free parameter (identified 

experimentally) 37, PCC combined with general 3D paths described by B-spline curves 20, PCC with 

internal friction forces 38, or Piecewise Constant Strain (PCS) modelling based on screw theory 35. 

As an alternative approach to VC methods, approximate identification based on polynomial solutions 

for estimating the shape function have been proposed 39 40 41, where the coefficients are identified using 

experimental results to derive a structure-specific model. Godage et al. 39 use a horizontally fixed 

orientation to train the coefficient matrices to derive a solution-based model for the kinematic map and 

implement the identified solution in the Lagrange equations of motion; however this is achieved without 

considering external loads. Their model is singularity free and accurate w.r.t the training data sets, and 

the final solution is faster than beam modelling and lumped parameter methods. 

Although identification based models are relatively accurate, computationally efficient, and appropriate 

for real-time control 42, their validity is limited to their experimentally-derived conditions, presence 

and/or magnitude of external loads, input values and training data sets; and do not account for the 

structural characteristics. Results are not guaranteed when dealing with unknown conditions, and are 

not intuitive for shape interpretation 32. 

In this regard, Beam Theory 3 13 17 43 44 45 (such as Euler-Bernoulli models with small deflections in the 

absence of shear 14 37 45 47) and Cosserat rods 18 20 21 29 31 46 have been considered. Beam modelling has 

also been applied as infinitesimal elements along the body 48 similar to the infinitesimal CC elements 

to attain VC kinematics. For a tendon-driven catheter, Rucker and Webster 21 couple Cosserat string 

and Cosserat rod models for the tendons and the backbone respectively, by deriving the distributed 

loads on the backbone from the tendons and solving via numerical integration. Shear and extension are 

considered negligible hence omitted. Their model was adopted by Neumann et al. 20 in a 3D follow-the-

leader scenario with distributed loads from self-weight, and applied to their tendon-driven setup 

(assumed to be frictionless) for beam statics and dynamics. After predicting a CC path, the true response 

is optimized, yielding a solution incorporating bending, shear, and extension; resulting in a VC solution 

with a robot-specific mechanical map which is free from singularity. Godage et al. 33 implemented the 

Cosserat rod model for a multi-section continuum arm, resulting in a boundary value problem (BVP) 

with a system of non-linear equations to be solved using recursive numerical optimization; however in 

the absence of external loads. As a drawback, Sadati et al. 42 note in a comparative study that Cosserat 

rod models entail relatively cumbersome calculations which could be a hindrance.   

In the modelling approach presented in this paper, we take three key elements into consideration: 
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A. Discrete Kinematics  

Various structures for continuum manipulators have been designed to emulate continuum articulation 

along the entire body. Thus, many of the continuum manipulators are developed as serially concatenated 

multi-segment (e.g. 1 8 17 31 49 50) or as multi-section robots (e.g. 26 39 51 46 52). This type of design makes 

discrete modelling appealing 15 33 48 53. A well-known method to this end is the lumped parameter 

approach which approximates the continuum embodiment with a series of rigid-link segments 

interconnected via compliant joints 15 30 51 54 55, or in a network of spring-mass-damper 49, or in 

conjunction with other methods such as virtual power 36. For example, Godage et al. 55 implemented 

Lagrangian dynamics for a lumped model to achieve VC kinematics, yet assuming that the robot always 

deforms in a circular arc without twisting. Tatlicioglu et al. 15 employed lumped modelling to capture 

the planar behavior of the three section OctArm where the total kinetic energy is computed for an 

infinite number of rigid sections,  and the summation over the Lagrangian terms is replaced with an 

integral over the backbone handing continuum Lagrange dynamics, albeit without torsion. However, 

while lumped parameter models reduce complexity of analysis, they are considered to be less accurate 
55 and usually suffer from extensive calculations 32. 

Alternatively, discretized differential equation describing variable curvature kinematics can be used for 

forward integration of a model with finite number of elements (FEM) 56 57 58. Here, the main difference 

in modeling assumptions with the lumped system approach (also consisting of finite number of 

segments) is that the manipulator kinematics is not based on series link rigid body kinematics. Both 

models eliminate spatial integration, by considering a finite number of kinematic states associated with 

each element and result in a large and computationally expensive system of equations, usually expressed 

in vector format. FEM models, however, are overwhelmingly restricted to off-line structural analysis 

and optimization rather than system modeling for control purposes56. Real-time FEM based solutions 

for continuum manipulator mechanics and control have been extensively studied by Duriez et al., by 

utilizing mass matrix sparsity in the resulting system of equations 56 57. This sparsity is not achievable 

with series-link rigid body kinematics approach where relative states (e.g. joint angular and 

transnational position) are usually considered as the modeling states rather than element absolute states 

(e.g. element orientation and position w.r.t. the reference frame). Moreover, reports on real-time 

implementation of this method mention execution cycles of less than 40Hz 59. 

B. Quasi-static vs. Dynamic Modelling 

While many dynamic models have been proposed (e.g. 6 21 31 33 51 61 ), nonetheless with most continuum 

manipulators, inertial effects due to motion could be neglected by assuming static equilibrium and slow 

transitions in the system states 32, as they are not operated close to dynamic boundaries 51. Besides, 

silicon-based continuum manipulators present under-damped nonlinear dynamic modes with relatively 

large-value nonlinear damping and short transition time 62. While the transition time is insignificant and 

fast in most applications, capturing their exact behavior requires extensive analytical and computational 

efforts 41. 

Hence, static  18 34 37 44, quasi-static 11 16 45 47 63, and kinematic analyses 25 34 38 are deemed as reasonable 

assumptions for kinematic modelling and force sensing. Such circumstances are frequently witnessed 

in medical interventions 2 8 64 such as Minimally  Invasive Surgery 1 28 65 66, catheterization 13 17 23, 

bladder surveillance 67, colonoscopy 22,  endoscopic surgery 38, or other areas in medical training 68. The 

same is true for most proposed assistive tasks 19 69 70, for example using bionic hands 26. This assumption 

has also been employed in motion control 23 71, navigation 53 72, path following 52, leader following 20, 

manipulation 47 73 53, grasping 25 53, or realizing biomimetic systems 68. Even when developing a lumped 

model for a catheter, Jung et. al. 30 claim that the dynamics of the system is not a significant factor and 

is only considered to incorporate nonlinear friction, as they solve for the quasi-static solution. Shapiro 

et. al. 45 implement a quasi-static kinematic model using an iterative solver for a simple Euler–Bernoulli 

(EB) beam model using CC for kinematic maps in a bi-bellows manipulator. The STIFF-FLOP 

manipulator 1 74 is modelled by Fraś et al. 48 in a quasi-static approach but without shear. Tunay 60 
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developed a spatial model using quaternions for the configurational variables of the Cosserat rod model 

and solves for bending, twisting, extension, and shear via approximate series solution for static 

modeling for the weak-form integral equations in a finite element discretized form. This approach is 

accurate and comprehensive, but with a complex shape function and limitations related to the finite 

element method. Xu & Simaan 75 analyzed static equilibrium using elliptic integrals in a multi-backbone 

robot to investigate 2 DoF bending. A quasi-static EB beam analysis is employed by Alici et al. 47 to 

formulate the 2D bending behavior of an arm of a silicon gripper. 

Moreover, as force measurement and control plays a crucial role in human robot interaction, many of 

the inertia-less models have been used for force sensing 11 28 34 76; e.g., Bajo & Simaan 71 developed a 

motion/force control algorithm assuming interaction forces (applied specifically at the tip) do not 

deform the continuum manipulator beyond circular bending for the segments. A deflection based force 

sensing algorithm is presented in 46 which utilizes Kalman filtering in a probabilistic approach to 

estimate forces applied at the tip. An intrinsic force sensing method is proposed in 64 to sense the wrench 

applied at the tip of continuum robot with 2 DoF bending motion.  

C. Elasticity vs. Hyperelasticity 

Low-modulus materials are favorable candidates for the core structure as they enable reduction of 

actuation forces; which, in addition to biocompatibility 77 and safety 78, have made elastomers such as 

silicon a popular choice for the body. In this regard, silicon has been used not only with tendons (as 

actuators) 6 14 44 79, but extensively in manipulators which entail actuators operating on the principle of 

fluidic expansion in chambers reinforced with inextensible fibers 80, constituting braided extensors (e.g. 
1 22 28 65 73 81), or fiber-reinforced bending actuators 16, or hybrid actuation 49 82. Hence, hyperelastic 

modelling, using Neo-Hookean 11 16 32 31 or Yeoh 11 formulation has received attention for soft 

component modelling, e.g. braided pneumatic actuators. Trivedi et. al. 31 applied the principle of virtual 

work to derive elongation for the braided extensor assuming Neo-Hookean behavior and use a Cosserat 

rod model resulting in a boundary value problem (BVP), solving non-linear equations via numerical 

methods to achieve VC kinematics for the planar 2D motion assuming infinite shear. Sadati et al. 32 

proposed a geometry deformation model employing PCC, where the bending of a braided pneumatic 

actuator is studied along with the effect of cross-section deformation and is compared to experimental 

results, entailing a method which is mathematically intensive. 

 

Fig.1: (a) A single braided extensor; elongated due to pressurization via inlet air pipe; with the thread angle shown 

(b) Cutaway of the body with one of the braided extensors (fluidic elastomer actuators) kept intact. (c) STIFF-

FLOP manipulator; with ATI Nano17 and ATI Mini40 force sensors at the tip and base, respectively; and 

pressurized while applying force at the tip sensor. 

2. OBJECTIVES & CONTRIBUTIONS 

Following on from our earlier works 32 42, for a pneumatic soft continuum robotic appendage comprising 

braided extensors, we propose a forward kinematics (FK), quasi-static, discrete VC model for real-time 
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contact force sensing. Our approach accounts for shear, torsion, bending and extension; with its validity 

not restricted to training data. The model is spatial (3D) and computationally efficient for real-time 

simulation of position and deformation. In line with facilitating contact-force sensing, the external force 

can be applied at theoretically any arbitrary point on the body and not only at the tip, thus being 

practically beneficial for sensor-deprived environments and soft tactile sensing. Position and force 

information propagate toward the proximal base and are retrievable at any selected point along the 

backbone via discretization (based on a number of sections definable by the user). Structural 

inhomogeneity such as rigid inter-segment connective elements can be included. Our approach is 

capable of reporting back on the pressure values from actuation, which is desirable for control strategies. 

The real-time discretized approach allows us to include and exploit local information, in the form of 

internal constraints on the physical structure via the infinitesimal segments. Basically, rather than 

having "clean" equations via a closed form approach, we "open up" the system to calculate the internal 

effects - but still get the same basic shapes and movements as generated by alternative approaches such 

as those obtained from beam theory. Our approach, inherently computes internal forces/strains that, in 

canceling out between the segments, do not directly cause motion, but do contribute to the mechanical 

stress imposed on the structure, enabling real-time monitoring of the health of the system. 

The main contributions of this work are summarized as follows: 

1. Developing a model for real-time pose and contact force estimation, based on discrete VC that 

benefits from simple forward spatial integration, capable of handling external and body loads, 

and estimating contact force at the tip or on any arbitrary point on the body. 
 

2. Investigating the validity of elasticity compared to the conventionally-used hyperelastic 

approach, and analyzing whether the added complexity due to hyperelastic assumptions would 

assist the accuracy of continuum actuator models comprising braided extensors in such robotic 

platforms where only limited strains are produced. 

3. MATERIALS AND METHODS 

A. Physical Structure 

The soft robotic appendage developed in the EU FP7 project STIFF-FLOP is a cylinder of silicon 

(Ecoflex-0050, Smooth-on Inc.) with an overall length of 47mm, outer diameter of 25mm and inner 

diameter of 9mm. Embedded in the cylinder wall are three pairs of braided extensors (fiber-reinforced 

pressure chambers); aligned with the cylinder’s longitudinal axis and mutually oriented at 120° from 

each other (Fig.1). Each pair of braided extensors is pneumatically actuated via a 2mm outer diameter 

inlet air pipe; independent of the other two chamber pairs and therefore enabling the manipulator to 

bend by varying the air pressure in one chamber pair relative to the other two. Simultaneous 

pressurization of the all chamber pairs elongates the manipulator. The central lumen enables the passing 

through of necessary actuation tubes in case of serially assembling multiple segments. A rigid hollow 

attachment of 3D-printed material is affixed at the tip for sensor connection. A more detailed description 

of the STIFF-FLOP manipulator is given in 1 74. 

B. Modelling Framework 

The following assumptions are made throughout our approach: 

1- Manipulator cross-sections remain circular 13 55. 

2- Gravitational forces are ignored (verified in millimeter size continuum manipulators 11 30 64) 

with no noticeable effect on the results for the given setup and experiments. 

3- The chamber shell volume is constrained by the fiber braiding during its deformation 32. 

4- PCC assumption is used only to calculate the incremental bending component between each 

pair of neighboring infinitesimally-distanced frames. 
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B.1-  Pneumatic Braided Extensors 

The intrinsic actuation of the robotic appendage is achieved via the braided extensors, which consist of 

silicone walls reinforced with fiber threads (Fig.1(c)). Poisson’s ratio (denoted by 𝜈) is 0.499 for 

elastomers 83; which given the relation between Young’s modulus (𝐸) and the shear modulus (𝐺) as: 

𝐸 = 2𝐺(1 + 𝜈), results in 𝐸 = 3𝐺; indicating incompressible isotropic material. Hence, the principal 

engineering stresses for each braided extensor are calculated by 16: 

𝜎𝑗 =
𝜕𝑢

𝜕𝜆𝑗
− 𝑝𝜆𝑗

−1 , 𝑗 = 1,2,3 (1) 

where 𝑢 is the deformation energy density, 𝑝 is the Lagrange multiplier, and the 𝜆𝑗’s are the Cauchy-

Green principal stretches constituting the first invariant of the right Cauchy-Green deformation tensor 

as: 𝐼1 = ∑ 𝜆3
𝑗=1 𝑗

2
 . Incompressibility yields:  𝜆1𝜆2𝜆3 = 1. Alternatively, the longitudinal stress in each 

braided extensor can be expressed as a function of internal pressure 𝑃 and axial forces as: 

𝜎 = 𝑃 𝑟𝑛
2 (𝑟𝑜

2 − 𝑟𝑛
2) + 𝑓𝑧⁄  (2) 

denoting the outer and inner radii as 𝑟𝑜 and 𝑟𝑛 respectively, and the resultant boundary axial force as 𝑓𝑧 

(setting local 𝑧 axis in chamber’s axial direction). The volume of the chamber wall is: 𝑉𝑡 = 𝜋(𝑟𝑜
2 −

𝑟𝑛
2)𝑙1 , and volume of the area pressurized by air is: 𝑉𝑐ℎ = 𝜋𝑟𝑛

2𝜆2
2𝑙1𝜆1, where 𝑙2 = 𝜆1𝑙1 and 𝑟2 = 𝜆2𝑟𝑜,𝑛 

are the deformed length and radii (outer or inner), respectively. For utilizing the Principle of Virtual 

Work, it is noted that the total deformation action is calculated by: 𝑈 = 𝑢. 𝑉𝑡 . The total action of the 

actuation medium (air) is: 𝑊 = 𝑃. 𝑉𝑐ℎ . For a 3D distributed energy field in equilibrium, we can write: 

𝛿𝑊 = 𝛿𝑈 (3) 

Solving this equation results in the expression of stress as a function of the elongation, depending on 

the deformation energy density function as well as the chosen constraint for the Lagrange multiplier. 

We comparatively investigate three modelling frameworks: 

1. Hookean (H): Each extensor is assumed to elongate according to Hooke’s law, 

𝜆1 = (𝜎 𝐸) + 1⁄  (4) 

2. Neo-Hookean (NH): One of the most representative strain energy density mechanistic functions in 

this class 84 which is derived based on the underlying material structure, 

𝑢 = 𝐸(𝐼1 − 3)/6 (5) 

3. Gent (G): A hybrid empirical/mechanistic yet mathematically simple model, which captures the 

strain-stiffening at large strains observed experimentally 85, 

𝑢 = −(
𝐺

2
) 𝐽𝑚 ln[1 − (𝐼1 − 3)/𝐽𝑚] (6) 

where 𝐽𝑚 is the constant value for limiting polymeric chain extensibility 85 such that: 𝐽𝑚 + 3 = 𝜆𝑚
2 +

(2 𝜆𝑚⁄ ) 83. For Ecoflex-0050, 𝜆𝑚 = 9.8 results in: 𝐽𝑚 = 93.2. 

For the two hyperelastic models (NH and G) we investigate three types of constraints to solve Eqn.(1): 

A. Uniaxial extension (UNI); where 𝜆1 = 𝜆, 𝜆2 = 𝜆3 =
1
√𝜆
⁄  . 

B. Inextensible fiber (INF); where 𝜆1
2𝐶𝛾

2 + 𝜆2
2𝑆𝛾
2 = 1 , and  𝛾 ∈ (0, 𝜋/2) is the braiding angle 80 

(𝐶𝛾 and 𝑆𝛾 represent cos 𝛾 and sin 𝛾 respectively). 

C. No radial deformation (NR); where 𝜆1 = 𝜆, 𝜆2 = 1, 𝜆3 =
1
𝜆⁄ . It should be noted that this case 

is the simplified version of the previous case where the braiding angle is 90° which is valid for 

a dense braiding 16 32 42. 
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The Neo-Hookean (NH) model with Constraints: 

Uniaxial extension (NH-UNI): The engineering stress is calculated as: 𝜎 = 𝐺(𝜆 − 1
𝜆2⁄
). The relation 

is rearranged to: 𝜆3 − (𝜎 𝐺⁄ )𝜆2 − 1 = 0 ; and solved for 𝜆 using the cubic equation as: 

𝜆 =  [
𝜎3

27𝐺3
− (〖(

𝜎3

27𝐺3
+
1

2
)

2

 −
𝜎6

729𝐺6
)〗
1
2  +

1

2
]

1
3

+ [
𝜎3

27𝐺3
+ (〖(

𝜎3

27𝐺3
+
1

2
)

2

 −
𝜎6

729𝐺6
)〗
1
2  +

1

2
]

1
3

  +
𝜎

3𝐺
 

(7) 

Inextensible fiber (NH-INF):  The engineering stress is calculated as: 

𝜎 =

2𝐺(1 − 𝜆2) [
(1 − 2𝑆𝛾

6 + 5𝑆𝛾
4 − 4𝑆𝛾

2)𝜆6 + (7𝑆𝛾
6 − 16𝑆𝛾

4 + 11𝑆𝛾
2 − 2)𝜆4 +

(7𝑆𝛾
6 − 4𝑆𝛾

4 − 3𝑆𝛾
2 + 1)𝜆2 + 3𝑆𝛾

4
] 𝜆4(𝜆2𝐶𝛾

2 − 1)
3

⁄   
(8) 

No radial deformation (NH-NR): The engineering stress is calculated as: 𝜎 = 𝐺(𝜆2 − 1)(𝜆2 + 3) 2𝜆4⁄ . 

The relation is rearranged to: (2𝜎 𝐺⁄ − 1)𝜆4 − 2𝜆2 + 3 = 0; and solved for 𝜆 using the bi-quartic 

equation as: 

𝜆 = [−√(4 − 6𝜎/𝐺) −  1)/(2𝜎/𝐺 −  1)]0.5 (9) 

 

The Gent (G) model with Constraints: 

Uniaxial extension (G-UNI): The engineering stress is calculated as: 

𝜎 = 𝐺𝐽𝑚 (𝜆
3 − 1) [𝜆(−𝜆3 + 𝜆𝐽𝑚 + 3𝜆 − 2)]⁄  (10) 

This equation is numerically solved for 𝜆  (up to the range of  𝜆 = 2) as: 

𝜆 =  − 0.015(
𝜎

𝐺
)
3

+  0.17 (
𝜎

𝐺
)
2

+  0.31 (
𝜎

𝐺
) +  1 (11) 

Inextensible fiber (G-INF): The engineering stress as a function of elongation and the braiding angle is 

expressed in Appendix 1. 

No radial deformation (G-NR): The engineering stress is calculated as: 

𝜎 = 𝐺𝐽𝑚 [(𝜆
4 − 1)/(𝐽𝑚𝜆

4 − 𝜆6 + 2𝜆4 − 𝜆2) + (1 2𝜆2)(ln(1 − (𝜆 −
1

𝜆
)
2

/𝐽𝑚))⁄ ] (12) 

This equation is numerically solved for 𝜆 (up to the range of  𝜆 = 1.8) as: 

𝜆 =  0.9549𝑒0.5157(
𝜎
𝐺
) + (7.16 × 10−11)𝑒32.98(

𝜎
𝐺
) + (4.5 × 10−2) (13) 

 

B.2- Continuum Manipulator Model 

Considering the entire body, the manipulator model is discretized into serially-connected infinitesimal 

segments to generate a small-deflection beam 86 in each segment. We denote the initial segment length 

as 𝜉0. Starting from the distal tip to the proximal base, a Cosserat rod model can be employed to 

formulate the Newtonian force equilibrium on each infinitesimal element, where each of these local 

deflections contribute to the final configuration as a whole by integrating over volume for the quasi-

static case, eventually leading to an overall VC behavior. 



8 
 

 

Fig.2: (a) Three arc parameters: Total arc length, bending angle 𝜃 (or curvature 𝜅), and out of plane angle 𝜑. (b) 

3D simulation with actuation and external load causing bend, shear, torsion and extension – discretization and 

transfer of frames is selectively displayed.  

The incremental elongated length of the backbone in each section is calculated as the summation of all 

chambers’ new lengths divided by three: 

𝛿𝑠𝑏 = 
∑ [𝜉0,𝑖(1 + 𝜆𝑖)]
3
𝑗=1

3
 (14) 

The local bending moment vector due to internal actuation at each section w.r.t the backbone of the 

manipulator is calculated by the cross product of the distance to the center: 𝑴𝑖 = 𝒅 × ∑𝑭𝑖 where 𝑭𝑖 is 

the force due to intrinsic actuation. The local bending moment vector due to external load at each section 

is calculated by: 

𝑴𝑒  =  𝛿𝑠𝑏[0, 0,−1]
𝑇 × 𝑭𝑒 (15) 

where 𝐹𝑒 is the total boundary load at each incremental section, being transferred from the previous 

section. Therefore, the total local moment is calculated as: 𝑴𝑡𝑜𝑡 = 𝑴𝑒 +𝑴𝑖. Projecting this moment 

vector onto its local 𝑥 and 𝑦 components delivers curvature/torsion in the local frame, 𝒌𝜉𝑖 , along the 

backbone. The local strain caused by internal and external load is denoted as 𝜺𝜉𝑖. To derive the system 

differential mechanics, the curvilinear path can be considered as a concatenation of infinitesimal 

elements. The VC kinematics is expressed with the following two differential equations for the 

Cartesian position vector 𝝆(𝑠) and rotation matrix 𝑹(𝑠) of each point along the backbone w.r.t 𝜺 and 𝒌 

(The dependency of the terms on 𝑠 are omitted hereafter for brevity). Hence: 

𝝆,𝑠 = 𝑹(𝜺 + [0, 0, 1]
𝑇)𝑑𝑠 

𝑹,𝑠 = 𝑹[𝒌]× 
(16) 

Where 𝑦,𝑥 = 𝜕𝑦/𝜕𝑥 and [𝒙]× = 𝑿 is an operator creating a skew-symmetric matrix 𝑿 from a vector 𝒙. 

The set of differential equations in (16) are to be numerically integrated over the spatial domain. For 

such equations, optimization-based methods, approximate continuous solutions, and FEM are 

conventionally employed. Alternatively, by considering a fixed number of elements 𝑛𝑠 with length 𝛿𝑠 =

𝑠𝑡𝑜𝑡𝑎𝑙/𝑛𝑠, we can rewrite Eq. (16) in the discrete form as: 

𝝆(𝑖+1) = 𝝆𝑖 + 𝑹𝑖(𝜺𝑖 + [0, 0, 1]
𝑇)𝛿𝑠 

𝑹(𝑖+1) = 𝑹𝑖 + 𝑹𝑖[𝒌𝑖]×𝛿𝑠 
(17) 

The transformation matrix from one segment to the other is composed as: 

𝑻𝑖+1 = [
𝑹𝑖+1 𝝆𝑖+1
𝟎𝑇 1

] (18) 

were 𝟎 denotes the 3 × 1 zero vector. 
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Finally, the overall transformation matrix from the tip to the base is formed as a multiplication of all 

transformations: 

𝑻𝑛
0 = (∏𝑻𝑡𝑜𝑡

0

𝑛−1

)𝑻𝑛
𝑛−1 (19) 

where Π is the post-multiplication operator. The inverse of the final product, 𝑻𝑛
0−1, multiplied by the 

previously stored 3 × 𝑛 matrix of coordinates would transform all coordinates to the base-frame 

representation; i.e., the first frame becomes the base, and the last frame becomes the distal tip. An 

alternative method for forming the transformation matrices in this discretized setup is provided in 

Appendix 2. 

C. SETUP 

We demonstrate the effectiveness of the above modeling strategy via experiments. The schematic 

interconnection of the setup’s main components is depicted in Fig.3: 

 

Fig.3: The setup consists of an air compressor, 3 pressure regulators (P.R.), data acquisition board (DAQ), camera, 

visual markers, EM tracking system, and the manipulator; interconnected with necessary tubing and wiring. 

Pressurized air from the compressor (BAMBI MD Range Model 150/500) is supplied to three individual 

pressure regulators (SMC ITV0030-3BS-Q); with their outlet each separately connected to one of the 

dual chambers in the manipulator for adjusting the pressure to achieve manipulator operation, according 

to the command received from the computer (64-bit Windows 10; Intel Core i7 CPU @ 3.4GHz; 64GB 

RAM) through a DAQ board (NI USB-6411). One Aurora sensor (NDI) is placed at the fixed base, and 

one at the tip for tracking the spatial tip position. Monitoring the overall pose is made possible by 

marking additional 8 points on the body which are recorded via two cameras (Canon EOS D60) facing 

the manipulator from two directions perpendicular to each other, and the progression of the marked 

points are monitored via the open source program Tracker 4.96 (www.opensourcephysics.org). The 

diameter of the marked points averaged at 1.5mm and were tracked with ~0.5mm tolerance. An ATI 

Mini40 force sensor reads the resultant forces at the fixed base (Fig.1(c)). The data acquisition software 

is coded in C++. 

Initially we consider the deformation, both in the absence and in the presence of external loads. We 

characterize 𝐸 considering the different modelling assumptions discussed earlier. Thereafter, the 

manipulator is used for contact force estimation based on the obtained results from the previous stage. 

For tip force sensing, external force is applied at an ATI Nano17 force sensor affixed to the tip 

(Fig.1(c)). For sensing forces applied on the body, the ATI Nano17 force sensor is mounted on an 

external indenter to exert force on the body of the manipulator (Figs.8, 9, 10, 11). In both cases, the 

manipulator is actuated in various configurations, and is deformed further by applying external force. 

We record the applied force in addition to the force measured at the base (via ATI Mini40 force sensor), 

while tracking the body deformation. Both force sensors are connected to the computer via NI PCIe-

6320 I/O cards. 
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4. EXPERIMENTS AND ANALYSIS 

In the following, we empirically discretized the length of 47mm of the robotic appendage to 100 sections 

for all simulations. It was observed that decreasing the number of sections to less than 30 tends to 

demonstrate significant deviations, while above 50 sections, the results are tangentially closer to 100 

sections and deliver benign results. 

A. Elasticity vs. Hyperelasticity in Braided Extensor Model 

A closer look into the hyperelastic models reveals that as the thread angle is increased, the INF 

constraint demonstrates closer resemblance to the NR constraint in both the Neo-Hookean and Gent 

models; ultimately becoming the same in its limit at 90° (depicted in Fig.4 for the Gent model, setting 

𝐸 as a free parameter varying from 60 to 180kPa). Decreasing the thread angle less than ~70° in a 

single-braid configuration is usually not practiced, as it also undermines the primary role of 

reinforcement against radial expansion. As seen, 100% elongation (𝜆 = 2) is achieved at a higher 

internal pressure when the thread angle is smaller, compared to thread angles closer to 90°.  

 

Fig.4: Gent model with INF constraint - Plotting internal pressure (Pa) vs. stretch, showing progression of the 

enveloped area (range of 𝐸 = 60 to 180kPa) as the braiding angle is increased from 65° (a) to 90° (f). 𝑙1 and 𝑙2  

are the initial and extended length, respectively. Thread angle is shown in Fig.1(a). 

Inspection of the thread on the braided extensor in Fig.1(a) demonstrates dense braiding where the 

assumption of 90º for the thread angle is reasonable. Hence, we only examine UNI and NR constraints 

in both hyperelastic models. Moreover, the asymptotic progression in Fig.4(f) – thread angle 90° – 

shows that depending on the value of 𝐸, there exists a threshold internal pressure where the stretch (𝜆) 

perpetually increases; demonstrating how the model predicts continuous unwinding of the chain 

polymers when the radial deformation of the chamber is fully constrained. Hence using the hyperelastic 

models require caution when dealing with the NR constraint. 

B. Elasticity vs. Hyperelasticity in Soft Manipulator Model 

B.1- No External Load 

The robotic appendage is actuated in 9 stages by giving an input voltage of 1v to each pressure regulator 

in turn, then increasing to 2v, and finally to 3v. The average pressure outlet corresponding to these 

voltages are tabulated in Table 1: 
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Air Pressure Outlet (Pa × 105) 

from Each P.R.  

P.R.1 P.R.2 P.R.3 

In
p

u
t 

S
ig

n
al

 

(v
) 

1 0.45 0.35 0.45 

2 0.92 0.87 0.91 

3 1.33 1.38 1.38 

Table 1: Air pressure (Pa × 105) outlet from each pressure regulator (P.R.) resulting from the corresponding input 

signal (v). 

The tip spatial coordinates and the bending angle are recorded. In order to determine how well the 

observed results are replicated by the model, the coefficient of determination (𝑅2) for the coordinates 

and the bending angle between the simulations and experiments are depicted in Fig.5, in which we set 

𝐸 as a free parameter varying from 60 to 180kPa. 

 

Fig.5: Experiments with no load, showing 𝑅2 of tip coordinates between results from simulations and experiments 

across variations of E: (a) Hooke; (b) Neo Hookean-Uniaxial; (c) Neo Hookean-No Radial; (d) Gent-Uniaxial; (e) 

Gent-No Radial 

In all cases, the highest values of 𝑅2 (close to 1) correspond to an 𝐸 in the range of 100 to 140 kPa. As 

it can be seen, the 𝑧 coordinate displays sharper changes compared to the 𝑥, 𝑦 coordinates especially at 

lower 𝐸 values as opposed to higher values were the 𝑅2 conformity degenerates at a slower rate, 

indicating higher sensitivity at lower values of Young’s modulus. This could be attributed to the 

material constructing the robotic appendage body being more distributed along the 𝑧 axis compared to 

𝑥 and 𝑦, which hold true even in a bent configuration on average. 

Selecting 𝐸=130 kPa, we plot the test results of measured tip coordinates against the simulation using 

the Hooke relation. The absolute displacements are depicted in Fig.6(a) for each of the coordinates, 

where 𝑧 coordinates start from -47mm which is the initial length. The 𝑥 coordinate starts from -15mm 

which is the placement of the tip Aurora tracker. The absolute error for each coordinate as shown in 

subfigures (b)(c)(d). The coefficient of determination is calculated as 𝑅2𝑥=0.998, 𝑅2𝑦=0.998, 

𝑅2𝑧=0.994, 𝑅2𝜃=0.995, which indicates very high conformity between experimental measurements and 

simulations results as the robotic appendage is actuated.  
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Fig.6: Left: Tip coordinates from test “t” compared against simulation “s”. Right: the error in all three coordinates. 

Hooke model, setting 𝐸=130kPa. (No load) – 9 stages of actuation marked on the horizontal axis of (a). 

With the manipulator discretized into 100 sections, the simulation operates at an execution rate of 

170Hz in MATLB with no noticeable difference between the investigated methods.   

The normalized tip error is calculated by measuring the error vector divided by the manipulator’s initial 

length 31 32. To create a unique pressure metric, the three pressure values are treated as componenets of 

a pseudo-vector, and the norm is calculated. Fig.7 demonstrates how the tip normalized error changes 

with the norm of the pressure vector (from 0 to 1.5bar), across a variation of 𝐸 from 60 to 180kPa. 

 

Fig.7: Normalized tip error vs. pressure across variation of E: (a) Hooke (y-z view); (b) Hooke; (c) Neo-Hookean 

Uniaxial; (d) Neo-Hookean No Radial; (e) Gent Uniaxial; (f) Gent No Radial. (No load) 

As expected, the error at the tip increases at higher pressures; however, where the value of 𝐸 

corresponds to the lowest error (in the range of 100 to 140kPa), a more uniform distribution of error 

with the increase of pressure is witnessed, forming the trough in the 3D surfaces. Taking the Hookean 

model as an example, a clearer demonstration is shown in Fig.7(a) - a 2D view of the graph in Fig.7(b), 

at 𝐸 ~130kPa. These graphs also reaffirm that change of 𝐸 at its lower levels affects the error more 

severely compared to at its higher values (above ~130kPa). 
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B.2- External Load 

Tests with external load were performed with load applied in various configurations; at the tip (Fig.1), 

and on the body at the first, second, third and fourth quarter of its length (Fig’s 8,9,10,11). The ATI 

Nano17 recorded the applied force and the ATI Mini40 recorded the forces measured at the base. The 

overall pose was observed by tracking 10 points on the body. The range of external load varied in 

different configurations from 0.46N up to 1.79N based on the contact point and the deformation, with 

a more detailed report in the following section. 

 

Fig.8: Applying an external load along the body in bent configuration on the first, second, third and fourth quarters 

with the Nano17 affixed to an external indenter, along with simulation results. Images (a) and (b) show the initial 

configuration. 

 

Fig.9: Applying an external load along the body on the first, second, third and fourth quarters, in a straight 

elongated configuration, along simulation results. Images (a) and (b) show the initial configuration. 
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Fig.10: Applying an external load along the body on the first quarter of soft appendage length from the tip, in a 

bent configuration, along simulation results. Images (a) and (b) show the initial configuration. 

 

Fig.11: Applying an external load along the body on the second quarter of soft appendage length from the tip, in 

a bent configuration, along simulation results. Images (a) and (b) show the initial configuration. 

The robotic appendage was initially activated via pressurization and the overall pose was recorded. 

Applying an external force caused additional deformation. In all cases of the elastic and hyperelastic 

assumptions detailed earlier, we calculated the normalized error of all 10 points on the body which is 

averaged at each location over all tests, and depicted in Fig.12 on the vertical axis (0 to 30%), across 

the variation of 𝐸 from 60 to 180kPa, and the initial distance from tip (0 to 60mm): 
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Fig.12: Experiments with external load on the robotic appendage. Variation of normalized error of 10 points along 

the body (from tip to base) along different 𝐸’s. (a) Hooke; (b) Neo-Hookean Uniaxial; (c) Neo-Hookean No 

Radial; (d) Gent Uniaxial; (e) Gent No Radial. 

At any chosen value for 𝐸, the error increases from base to tip (which is expected), in all graphs. The 

error variations at the tip across 𝐸 lead to a convex profile. Closer inspection reveals that the curve 

minimum not only indicates the 𝐸 value yielding the least amount of error at the tip (in the range of 100 

to 140kPa for the different cases), but also across the length of the manipulator, forming a trough in the 

corresponding 3D surface. Taking the Hooke approach as an example, this could be observed around 

an 𝐸 of almost 130kPa, shown in Fig.12(a). As seen before, variation of 𝐸 at lower values (in the range 

of 60 to ~100kPa) affects the error more than at the higher 𝐸 values, demonstrating higher sensitivity 

to lower 𝐸’s. Fig.13(a, c, e, g, i) summarizes the simulation results for all categories discussed earlier. 

The normalized error is plotted for the tip (considering three cases: no external load, external load at 

tip, and external load on body) on the vertical axis; and for all tracked points on the body (with force at 

the tip and force on the body). The standard deviation of the normalized error of all recorded points are 

shown in Fig.13(b, d, f, h, j) for tip load and body load cases, which demonstrate lower values in the 

range of 100 to 140kPa for 𝐸, depending on the model. As seen, loading applied to the body tends to 

result in a sharper sensitivity to the variation of 𝐸. The results are summarized in Table 2. In all columns, 

the Young’s modulus which corresponded to the least error or least standard deviation, respectively, is 

presented. 

 External Load at Tip External Load on the Body 
No Ext. 

Load 

§ E † E ‡ E § E † E ‡ E ‡ E 

Hooke 5.3% 140 2.2 130 6.3% 130 2.7% 130 1.0 130 4.3% 130 1.8% 130 

NH 
UNI 6.6% 120 2.6 120 7.8% 110 4.1% 110 1.5 110 5.6% 110 2.6% 110 

NR 7.4% 130 2.9 120 9.8% 110 5.7% 100 2.6 95 8.9% 95 3.4% 110 

G 
UNI 6.6% 120 2.6 120 7.8% 110 4.1% 110 1.5 110 5.7% 110 2.6% 110 

NR 6.2% 120 2.4 120 7.1% 120 3.9% 110 1.4 110 4.6% 110 2.1% 120 

Table 2: (§) average normalized error across body; (†) STD of normalized error across body; (‡) average 

normalized tip error. 

In general, it can be seen that the Hooke formulation provides results with the least error compared to 

the Neo-Hookean and the Gent hyperelastic models. 

Although to the best of our knowledge, the detailed analysis on positional error was not witnessed in 

similar research works, yet comparing with some other approaches, our model shows to be the most 

accurate solution for a two-segment construction of this same manipulator, compared to a polynomial 

of order three where an average of 6% mean error is observed for the static model in 2D, and 8% in 3D 

motion using both the Ritz and Ritz-Galerkin method 41. Other methods yield errors as: 31% in CC; 

28% in principle of virtual work using CC kinematics; 6-12% in the Cosserat rod model; 11% in 

approximate solutions similar to 39 in the static case; and 22% in the lumped system model in the 

dynamic case 42. 
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C. Force Estimation 

Based on the results obtained, we select the Hooke formulation for contact force estimation.  Four 

general cases were investigated as follows. In all cases, the simulation runs at an execution rate of about 

170Hz in MATLB with the robotic appendage being discretized into 100 sections. 

 

C.1- External load applied at the tip 

For this case, the robotic appendage was actuated via the 3 pressure regulators (P.R.) in turn according 

to the 9 separate schemes in Fig.14-table(a), and force was applied at the Nano17 force sensor affixed 

at the tip. The average of the maximum applied force across the 9 schemes is 1.35N, and the total 

average of the applied force is 0.94N. The mean absolute error in each actuation scheme, plotted in 

Fig.14 (b), is calculated as: 

𝑀𝐴𝐸 =
∑ |𝑒𝑖|
𝑛
𝑖=1

𝑛
 

where 𝑒𝑖 is the error between sensor reading and model estimation at each sensor reading cycle 𝑖, during 

all 𝑛 cycles. The normalized error in each scheme is calculated by two methods: w.r.t the maximum 

force, according to: (𝑀𝐴𝐸/𝐹𝑚𝑎𝑥); and w.r.t the average amount of force, according to: (𝑀𝐴𝐸/𝐹𝑎𝑣𝑒); 

displayed in Fig.14(c). The coefficient of determination, 𝑅2, is depicted in Fig.14(d). 

 

 

Fig.14: Load at the tip: (a) The three P.R.’s are activated according to the tabulated nine schemes. (b) Mean 

absolute error. (c) 𝑀𝐴𝐸/𝐹𝑚𝑎𝑥 (red), and 𝑀𝐴𝐸/𝐹𝑎𝑣𝑒 (blue). (d) 𝑅2  of model w.r.t test. (e) Simulated activation 

schemes. 

C.2- External load applied to the body 

For this case, the pressure regulators were actuated to generate maximum bend, according to table (a) 

in Fig.15. Considering four quarters along the robotic appendage’s length, an external load was applied 

on the body within each quarter of the length in turn, from the distal end towards the base (Fig.15(e)); 

constituting four force application schemes. The average of the maximum applied force across the 4 

schemes is 1.15N, and the total average of the applied force is 0.85N. Similar to the previous case, the 

mean absolute error, normalized errors, and 𝑅2 are calculated, and displayed in Fig.15. 
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Fig.15: Load on the body: (a) In all four schemes of applying load, the three P.R.’s are activated according to the 

table for maximum bending. (b) Mean absolute error. (c) 𝑀𝐴𝐸/𝐹𝑚𝑎𝑥 (red), and 𝑀𝐴𝐸/𝐹𝑎𝑣𝑒 (blue). (d) 𝑅2 of model 

w.r.t test. (e) Activation and external load 

C.3- Stepwise Lateral External load  

To demonstrate the effectiveness of the model prediction w.r.t the out-of-plane applied load, the robotic 

appendage was actuated to maximum bending and an external load was laterally applied via an indenter, 

at the tip and on the body (in turn within the 1st and 2nd quarters of the length from the tip). The 

magnitude of the load was increased during four steps. The average of the maximum applied force 

across the 3 schemes is 1.0N, and the total average of the applied force is 0.51N. The mean absolute 

error, normalized errors, and 𝑅2 are calculated, and displayed in Fig.16. 

 

Fig.16: Stepwise load: (a) In all three schemes of applying load, the three P.R.’s are activated according to the 

table for maximum bending. (b) Mean absolute error. (c) 𝑀𝐴𝐸/𝐹𝑚𝑎𝑥 (red), and 𝑀𝐴𝐸/𝐹𝑎𝑣𝑒 (blue). (d) 𝑅2 of model 

w.r.t test. (e) External load applied in steps. 

The results of all three cases (C1, C2, C3) are summarized in Table 3. 
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C
as

e
 MAE (MAE/F𝑚𝑎𝑥) (MAE/F𝑎𝑣𝑒. ) R2 

max. ave. min. max. ave. min. max. ave. min. ave. 

C1 0.076 0.041 0.011 5.43% 3.13% 0.73% 7.58% 4.47% 1.1% 0.998 

C2 0.038 0.025 0.0168 4.61% 2.67% 1.23% 5.98% 3.58% 1.85% 0.997 

C3 0.012 0.009 0.005 0.96% 0.91% 0.85% 1.98% 1.84% 1.57% 0.999 

Table 3: Summary of MAE, normalized MAE’s, and 𝑅2 for the three cases of C1, C2, C3. 

Considering the three mentioned cases, the maximum normalized error w.r.t the averaged applied force 

is less than 8%. In all cases we witness very high values of above 0.99 for 𝑅2, demonstrating high 

accuracy of the model predicting the external load. 

C.4- Cyclic External load  

For investigating the effect of cyclic load increase/decrease, the robotic appendage was actuated to 

maximum bending (~90°), and a cyclic force was applied at the tip where the Nano17 was affixed while 

increasing and decreasing the loading in 5 cycles. The force components and the magnitude of force of 

the test and the simulation are plotted against each other in Fig.17. The average of the maximum applied 

force across is 0.46N, and the total average of the applied force is 0.17N across time. Results show a 

mean absolute error of 0.015N for the force magnitude, and an 𝑅2 of 0.99. The absolute errors are 

depicted in Fig.18. 

 

Fig.17: Comparison between force sensor readings “t”, and model estimation “s”: (a) total magnitude of forces, 

(b) Fx, (c) Fy, (d) Fz. 
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Fig.18: Absolute error between sensor reading and simulation for force magnitude, Fx, Fy, and Fz. 

5. REPEATABILITY 

Repeatability was investigated in three scenarios, by pressurizing the manipulator to its practical 

extreme configurations (bending and stretch) and applying external force at the tip to generate more 

deformation and internal stress compared to applying the force elsewhere; across three trials. The 

average of the force magnitude at the base along with the Standard Deviation in each case is reported 

in Table 4. Due to limited strain, the soft appendage demonstrated good repeatability. 

Average 

Force 

Magnitude 

at Base (N) 

2.50 

 

0.44 

 

0.53 

 

STD of 

Force 
0.025 0.034 0.011 

Table 4: Three scenarios: A) Maximum bending, external load applied at the tip in line with the soft appendage’s 

backbone; B) Maximum bending, external load at the tip laterally; C) Maximum stretch, external load at the tip 

laterally. 

6. CONCLUSIONS 

In this paper, we presented mathematically straightforward yet comprehensive approach for modelling 

and real-time simulation of a silicon-based pneumatic soft continuum robotic appendage comprising 

braided extensors in quasi-static movements. The proposed model takes into account the effects of 

internal and external forces with regards to bending, shear, torsion, and extension, and transfers these 

effects along the entire backbone leading to a 3D kinematic deformation. We comparatively 

investigated three approaches (Hooke, Neo-Hookean, and Gent) to determine the best conformity 

between the model and experiments (performed with the STIFF-FLOP manipulator). The latter two 

hyperelastic models were each separately considered with two different constraints: uni-axial 

deformation, and no-radial deformation. In each case, we derived the principal stretch as a function of 

stress for braided extensors. 

Experiments were performed without load and with load; applied at the tip and along the body on 

multiple points. In all cases, we studied the response by setting the Young’s modulus (𝐸) as a free 

parameter ranging from 60 to 180kPa, and we investigated the value with most conformity. It was seen 

that for this type of robotic appendage which experiences only limited strains, the Hookean model 

provided a marginally better estimate for position/deformation and force analysis, with a higher 

predicted value for 𝐸 compared to the two hyperelastic models investigated. We also observed that 

variations of 𝐸 at lower actuation pressure have a significantly less negative effect on the model 

prediction as opposed to higher pressures. Furthermore, the prediction from the model does not vary 
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linearly w.r.t to 𝐸, as lower values for 𝐸 result in sharper changes in error compared to higher values. 

Selecting 100 sections for the robotic appendage, the simulation is able to run at 170 Hz in MATLB on 

the computer with the specifications mentioned in section 3-C; and most likely to improve by 

implementing the modelling with a lower level language. This execution rate suffices for real-time 

applications, and as a result of the proposed approach, enables access to internal forces across (almost) 

the entire backbone, which is as an important feature for monitoring the health of the system in addition 

to facilitating embodied force perception. 

We conclude that the Hookean assumption is valid for silicone-based robotic appendages at small 

strains (about 50% in extension/compression 83). This result indicates that research works with similar 

robotic platforms may not necessarily require hyperelastic analysis. The exact range of this validity 

w.r.t. dimensional and/or actuation limits is yet to be determined, and beyond the scope of this study. 

Further examination on this is included in Appendix 3. 

The proposed model’s versatility in estimating external forces applied anywhere on the body and 

reporting the force values, empowers real-time force sensing and perception in this class of 

manipulators leading to wider range of practical applications for safe human robot interaction. This 

transformation of pose/force information from one section to the next in the discretized setting can be 

implemented for any similar platform consisting of multiple segments. In other words, the existing 

single segment can be treated as multiple virtual segments without loss of accuracy, with potential 

extension and application of the approach to multi-segment robots for future studies.  The limitation 

depends on maintaining the assumptions in section 3-A. Another interesting area for additional 

investigation would be exploring the ability to predict the location of applied force. 

Structural imperfections resulting from hand construction (especially in the braided extensors) causes 

some discrepancies in behavior which are not reflected in the model; e.g. the extension of the fluidic 

chambers when subject to pressurization was observed to not be exactly homogenous. In this regard, 

introducing compensating terms can improve the performance however at the cost of losing generality, 

and were not considered here. Finally, although the current implementation of the model could cope 

with multiple and/or distributed loads, however it would require an iterative procedure with an impact 

on computational cost, and its feasibility for force estimation to be pursued in future work.  
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A. APPENDIX 1 

Longitudinal engineering stress for a braided extensor as a function of elongation 𝜆 and braiding angle 

𝛾; for the Gent model with INF constraint: 
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B. APPENDIX 2 

An alternate approach can be formulated for constructing the transformation matrices. As the total local 

moment is calculated as: 𝑴𝑡𝑜𝑡 = 𝑴𝑒 +𝑴𝑖, projecting this moment vector onto its local 𝑥 and 𝑦 

components delivers curvature in the local frame as 𝜅𝑥 = 𝑀𝑦 𝐸𝐼⁄  and 𝜅𝑦 = 𝑀𝑥 𝐸𝐼⁄ , with: 

𝜅 = √(𝜅𝑥
2 + 𝜅𝑦

2) ; and the out of plane bending angle as: 𝜑 = 𝑎𝑡𝑎𝑛2(𝜅𝑦 𝜅𝑥⁄ ) 27. 

Observing that 𝝆 = [(1 − 𝐶𝜃)/𝜅  , 0 ,   𝑆𝜃/𝜅]
𝑇as the translational vector from the previous frame to next 

due to bending between two incrementally adjacent frames is derived as 27: 

𝑻𝑏 = [
𝑹𝑧(𝜑) 𝟎

𝟎𝑇 1
] . [
𝑹𝑦(𝜃) 𝝆

𝟎𝑇 1
] . [
𝑹𝑧(−𝜑) 𝟎

𝟎𝑇 1
] (20) 

where 𝑹3×3  is the rotational transformation matrix around the relevant local axis. 

The torsion angle is computed as: 𝛼 = 𝑀𝑧𝜉0 𝐺𝐼𝑝⁄  ,where 𝐼𝑝 is the polar moment of inertia. This could 

be represented by a local rotational transformation about the z axes by the angle 𝛼 in the following 

transformation matrix: 

𝑻𝑡𝑜𝑟,𝑧 = [
𝑹𝑧(𝛼) 𝟎

𝟎𝑇 1
] (21) 

By considering each infinitesimal segment as a beam, the shear displacement in each local frame for 

both 𝑥 and 𝑦 directions are calculated as: 

 𝛿𝑥,𝑦 = (𝑓𝑥,𝑦𝜉0 𝛽𝐴𝐺)⁄  (22) 

where 𝑓𝑥,𝑦 is the force projection of the resultant overall local force on the local 𝑥, 𝑦 plane, and 𝛽 is the 

form factor calculated by (𝐴 𝐼2⁄ )∫
𝑄

𝑡𝐴
𝑑𝐴 which is 10 9⁄  for circular cross sections. Therefore, the 

resulting shear translational vector in both the local 𝑥 and 𝑦 directions is: 𝝔𝑥,𝑦 = [−𝛿𝑥  , −𝛿𝑦 , 0 ]
𝑇
, 

forming the shear transformation matrix as: 

𝑻𝑠ℎ𝑥,𝑦 = [
𝑰3×3 𝝔𝑥,𝑦

𝟎𝑇 1
] (23) 

where 𝑰3×3 is the identity matrix. The total homogenous transformation matrix from one frame to the 

next is composed as a concatenation of all calculated homogenous matrices: 

𝑻𝑘
𝑘−1

𝑡𝑜𝑡
= 𝑻𝑏𝑻𝑠ℎ𝑻𝑡𝑜𝑟 (24) 

The relative coordinates of every following frame are the first three entries of the last column in each 

transformation matrix; which we stack successively in a separate 3 × 𝑛 matrix. 

The overall transformation matrix from the tip to the base is formed as a multiplication of all 

transformations: 

𝑻𝑛
0 = (∏𝑻𝑡𝑜𝑡

0

𝑛−1

)𝑻𝑛
𝑛−1 (25) 

By this approach, using an appropriate level of discretization, the system’s nonlinear deformation is 

captured by geometrical nonlinearity as a result of high number of segments, rather than the material 

nonlinearity by considering more complex hyperelastic assumptions. 

Comparison with the results obtained from the method described in the text shows a minor difference 

of about 2% between the two methods in the current robotics appendage with discretized in 100 sections. 
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C. APPENDIX 3 

Although rubber is capable of experiencing large elastic deformations, in practice rubber is often 

subjected to only to relatively less than about 50% in extension or compression (small strains). The 

stress can then be approximated by common elastic analysis, assuming simple linear stress-strain 

relationships, since in small strains, rubber behaves as a linearly-elastic material like all solids 83. In 

other to further investigate the validity of Hooke linear relation for the material used in the soft robot 

appendage, one chamber (braided extensor) was separated and pressurized to an elongation of almost 

over 87% more than its initial length. Results are depicted in Fig.19., showing the elongation to follow 

a nearly linear trend. 

 

Fig.19: Pressurization of a braided extensor: (a) Pressure vs. length, (b) initial configuration, (c) elongated 

extensor. 


