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Historically, craniofacial genetic research has understandably focused on identifying the
causes of craniofacial anomalies and it has only been within the last 10 years, that
there has been a drive to detail the biological basis of normal-range facial variation.
This initiative has been facilitated by the availability of low-cost hi-resolution three-
dimensional systems which have the ability to capture the facial details of thousands
of individuals quickly and accurately. Simultaneous advances in genotyping technology
have enabled the exploration of genetic influences on facial phenotypes, both in the
present day and across human history.

There are several important reasons for exploring the genetics of normal-range variation
in facial morphology.

- Disentangling the environmental factors and relative parental biological
contributions to heritable traits can help to answer the age-old question “why we
look the way that we do?”

- Understanding the etiology of craniofacial anomalies; e.g., unaffected family
members of individuals with non-syndromic cleft lip/palate (nsCL/P) have been
shown to differ in terms of normal-range facial variation to the general population
suggesting an etiological link between facial morphology and nsCL/P.

- Many factors such as ancestry, sex, eye/hair color as well as distinctive facial
features (such as, shape of the chin, cheeks, eyes, forehead, lips, and nose) can be
identified or estimated using an individual’s genetic data, with potential applications
in healthcare and forensics.

- Improved understanding of historical selection and adaptation relating to facial
phenotypes, for example, skin pigmentation and geographical latitude.

- Highlighting what is known about shared facial traits, medical conditions and
genes.

Keywords: 3D imaging, admixture, ancestry, facial variation, geometric morphometrics, facial genetics, facial
phenotyping, genetic-environmental influences
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INTRODUCTION

The facial surface is readily visible and identifiable with a
close relationship to the underlying cartilaginous and skeletal
structures (Stephan et al., 2005; Wilkinson et al., 2006;
De Greef et al., 2006; Al Ali et al., 2014b; Shrimpton
et al., 2014). Differences in relative size, shape and spatial
arrangement (vertical, horizontal and depth) between the
various facial features (e.g., eyes, nose, lips etc.) make
each individual human face unique, although closely related
individuals such as monozygotic twins have very similar facial
structures. Information on an individual’s facial morphology
can have several important clinical and forensic applications;
informing patient specific models, improving and reducing
the need for extensive surgical interventions for craniofacial
anomalies/trauma, prediction/reconstruction of the facial form
from skeletal remains, and identification of suspects from DNA
(Stephan et al., 2005; De Greef et al., 2006; Wilkinson et al., 2006;
Beldie et al., 2010; Popat et al., 2010, 2012; Richmond et al., 2012;
Al Ali et al., 2014a; Shrimpton et al., 2014; Farnell et al., 2017;
Richmond S. et al., 2018).

PRE- AND POST-NATAL FACIAL
DEVELOPMENT

The development of the face involves a coordinated complex
series of embryonic events. Recognizable features of the human
face develop around the 4th week of gestation and are closely
related to cranial neural crest cells (Marcucio et al., 2015). The
facial developmental component processes are listed (Table 1)
and the human embryonic sequence of events can be visualized
which aids understanding of the movement of the facial processes
followed by their fusion (Sharman, 2011).

The facial processes fuse at different times; maxillary –
6 weeks, upper lip – 8 weeks and palate – 12 weeks (O’Rahilly,
1972; Danescu et al., 2015). Molecular studies have shown that
the growth, structure and patternation of the facial primordia is
controlled by a series of complex interactions that involves many
factors such as fibroblast growth factors, sonic hedgehog proteins,
bone morphogenetic proteins, homeobox genes Barx1 and Msx1,
the distal-less homeobox (Dlx) genes, and local retinoic acid
gradients (Barlow et al., 1999; Hu and Helms, 1999; Lee et al.,
2001; Ashique et al., 2002; Mossey et al., 2009; Marcucio et al.,

TABLE 1 | Embryonic features that contribute to facial development.

Developmental facial
processes

Facial features

Frontonasal Forehead, upper eyelids, conjunctiva

Medial nasal Nose, upper lip/philtrum, premaxilla, upper
incisor teeth

Lateral nasal Alae and base of the nose

Maxillary Lower eyelids, cheeks, lateral parts of the upper
lip, maxilla, canine, premolar and molar teeth

Mandibular Whole lower lip, lower jaw (mandible, including
teeth)

2015; Parsons et al., 2015). The fusion between the facial processes
depends on a series of events involving cell migration, growth,
adhesion, differentiation and apoptosis. Disruptions in the fusion
of the facial processes may result in complete or partial clefts of
the face, lip and/or palate. The epithelial precursor periderm is
involved in cellular adhesions with associated genes IRF6, IKKA,
SFN, RIPK4, CRHL3 all of which are under the transcription
control of the transcription factor p63 that influences the
fusion process and differentiation of the epidermis (Hammond
et al., 2017). For detailed embryological development the reader
should read the original articles or illustrated reviews (Som and
Naidich, 2013, 2014). Post-natally, facial growth tends to follow
general somatic growth with periods of steady increments in
size interspersed with periods of rapid growth with the peak
growth occurring at puberty (Tanner et al., 1966a,b; Bhatia
et al., 1979; Kau and Richmond, 2008; Richmond et al., 2009;
Richmond S. et al., 2018). The timing, vectors and duration of
surges in facial growth tend to be different for males and females
and between populations contributing to overall facial variation
(Kau et al., 2010; Hopman et al., 2014; Richmond R.C. et al.,
2018).

ACQUIRING FACIAL SURFACE
MORPHOLOGY AND
DESCRIBING/QUANTIFYING FACIAL
SHAPE

There are many imaging systems available to capture the
external facial surface topography such as photography,
lasers, photogrammetry, magnetic resonance Imaging (MRI),
computerized tomography (CT), and cone beam computerized
tomography (CBCT). Many of these techniques have been
evaluated in terms of facial coverage, speed of capture, processing
time, accuracy, validity and cost (Kovacs et al., 2007; Heike et al.,
2010; Kuijpers et al., 2014; Tzou et al., 2014). For an individual
who can sit still with a neutral facial posture in natural head
position, the speed of capture is not critical. Even with relatively
long acquisition times for some photogrammetric, MRI, CT, and
CBCT systems, facial landmark reliability of less than 0.5 mm can
be achieved (Kau et al., 2005, 2007; Liu et al., 2012). For infants
and individuals with unpredictable facial or bodily movements
a faster acquisition time will be required although reliability of
achieving the same facial posture will be significantly reduced.
Facial surfaces that are captured in supine and prone position
often show slight differences (Munn and Stephan, 2018).

Assessment and judgment of the face and body can be traced
back to the ancient Greeks and Egyptians when mathematical
methods such as Fibonacci series and the golden proportion
(1:1.618) were applied to art and architecture as a method of
defining attractiveness and beauty (Ricketts, 1982). Facial features
can be broadly characterized in terms of the size and shape of
the whole face and/or its component parts (e.g., big/small head;
short/long and wide/thin face, prominent or retrusive chin).
Recognition of distinctive facial and lip features such as grooves,
nodules, lip demarcation lines has also been reported (Merks
et al., 2003; Wilson et al., 2013). To quantify facial features,
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landmarks have been traditionally used, taken either directly
from the face or derived from photographs or radiographs.
These landmarks are defined by identifiable/describable facial
features, e.g., nasion, inner/outer canthi, commissures that can
generate Euclidean distances, angles, and ratios (Farkas et al.,
2002, 2004, 2005). One or more facial landmarks can be used
to generate principal components, geodesic distances, geodesic
arrays, facial shells and signatures which can categorize patterns
in facial features (Hammond and Suttie, 2012; Hallgrimsson
et al., 2015; Tsagkrasoulis et al., 2017; Abbas et al., 2018). In
addition, anthropometric masks have been proposed whereby
five landmarks are used to crudely orientate the 3D facial shells
which are then non-rigidly mapped on to a template which
generates about 10,000 quasi landmarks (Claes et al., 2012).
Asymmetry is preserved in some of these techniques. However,
if the facial shell is reflected on to the opposite side any facial
asymmetry will be lost.

The various acquisition techniques (photographs, MRI, laser
and photogrammetry) have been used in different studies and all
have identified the PAX3 gene associated with the shape of the
nasal root area (Liu et al., 2012; Paternoster et al., 2012; Adhikari
et al., 2016; Shaffer et al., 2016; Claes et al., 2018). The use of
ordinal and quantitative measures has been explored reporting
good correlation with inter-alae and lower lip distances (r = 0.7)
and poor association for naso-labial angle (r = 0.16) (Adhikari
et al., 2016).

DISENTANGLING GENETIC AND
ENVIRONMENTAL FACTORS

Normal Facial Surface Morphology
Standardized clinical facial charts/tables/measures are routinely
used for newborns (e.g., head circumference, body length) and
other specialties such as, ophthalmology and orthodontics. There
are many published norms for different racial/population groups
used to identify individuals who fall within the normal range and
identify any facial dysmorphologies.

The soft tissue facial variation has been explored in a large
Caucasian population of 15-year-old children (2514 females and
2233 males) recruited from the Avon Longitudinal Study of
Parents and Children (ALSPAC). Face height (28.8%), width of
the eyes (10.4%) and prominence of the nose (6.7%) explained
46% of total facial variance (Toma et al., 2012). There were subtle
differences between males and females in relation to the relative
prominence of the lips, eyes, and nasal bridges including minor
facial asymmetries (Toma et al., 2008, 2012; Wilson et al., 2013;
Abbas et al., 2018). The dimorphic differences appear to follow
similar patterns in different ethnic groups (Farnell et al., 2017).

Heritability
Facial morphology refers to a series of many different complex
traits, each influenced by genetic and environmental factors.
In particular, the strong effects that genetic variation can have
on facial appearance are highlighted by historical portraits
of the European royal family, the Habsburgs (1438–1740).
Presumably because of frequent consanguineous marriages, later

Habsburg rulers often had extreme facial phenotypes such as
the characteristic “Habsburg” jaw (mandibular prognathism).
Indeed, the last Habsburg King of Spain, Charles II, was
reported to have had difficulties eating and speaking because
of facial deformities. The influence of genetic variation is also
evident in non-consanguineous families, where dental and facial
characteristics are common among siblings and passed on
from parents to their offspring (Hughes et al., 2014). Twin
studies have historically been employed to explore the relative
genetic and environment influence on facial shape exploiting
the genetic differences between monozygotic and dizygotic twins
(Visscher et al., 2008). Twin studies suggest that 72–81% of
the variation of height in boys and 65–86% in girls is due to
genetic differences with the environment explaining 5–23% of
the variation (Jelenkovic et al., 2011). Similar levels of genetic-
environmental contributions have been reported for some facial
features. Predominantly genetic influences have been reported
for anterior face height, relative prominence of the maxilla and
mandible, width of the face/nose, nasal root shape, naso-labial
angle, allometry and centroid size (Carels et al., 2001; Carson,
2006; Jelenkovic et al., 2010; Djordjevic et al., 2013a,b, 2016; Cole
et al., 2017; Tsagkrasoulis et al., 2017). Substantial heritability
estimates for facial attractiveness and sexual dimorphism (0.50–
0.70 and 0.40–0.50), respectively (Mitchem et al., 2014), further
demonstrate the strong genetic influences on facial phenotypes.

Contrastingly, previous estimates suggest that antero-
posterior face height, mandibular body length, ramus height,
upper vermillion height, nasal width and maxillary protrusion are
more strongly influenced by environmental factors (Jelenkovic
et al., 2010; Djordjevic et al., 2016; Sidlauskas et al., 2016; Cole
et al., 2017; Tsagkrasoulis et al., 2017). However, it is important
to note that heritability estimates for specific traits can be
inconsistent for a number of reasons including heterogeneity
across study populations, small sample sizes, research designs,
acquisition methods and the differing types of analyses employed.

Environmental Influences
From the moment of conception, the parental environment
can influence the development of the fetus. Facial development
occurs very early at a time when the mother is not always aware
that she is pregnant. The developing fetus may be subject to
adverse environments at home, in the workplace or through
lifestyle activities (smoking, alcohol and drug intake, allergens,
paint, pest/weed control, heavy metals, cleaning, body products
such as perfumes and creams). Many of these substances can
cross the placenta (Naphthalene a volatile polycyclic aromatic
hydrocarbon related to solvent emissions is present in household
products and pesticides – Mirghani et al., 2015; Nicotine –
Wickström, 2007; Drugs and alcohol – Lange et al., 2014).
There is evidence to suggest that the effects of some of these
substances can also continue post-natally through breast milk fed
to the new-born (heavy metals – Caserta et al., 2013; Dioxin –
Rivezzi et al., 2013). Some of these early factors such as nictotine
and alcohol may potentially influence on early neurological
development (Wickström, 2007). Indeed, there is evidence to
suggest that high levels of prenatal alcohol exposure can influence
facial morphology; individuals with fetal alcohol syndrome
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disorders can present with facial abnormalities (Hoyme et al.,
2016) as well as other developmental anomalies such as caudate
nucleus asymmetry and reduced mass of the brain (Suttie et al.,
2018). However, the effects of lower levels of prenatal alcohol
exposure on facial morphology are less clear (Mamluk et al.,
2017; Muggli et al., 2017; Howe et al., 2018c). Similarly, it
has been hypothesized that maternal smoking may influence
facial morphology and be a risk factor for cleft lip and palate
(Xuan et al., 2016) with DNA methylation a possible mediator
(Armstrong et al., 2016). However, to date one study has indicated
that maternal smoking may interact with the GRID2 and ELAVL2
genes resulting in cleft lip and palate (Beaty et al., 2013). However,
previous studies investigating gene-smoking interactions in the
etiology of birth defects have produced mixed results (Shi et al.,
2008). Another mechanism via which environmental influences
can affect facial traits is natural selection, where certain facial
traits may have beneficial effects on reproductive fitness. For
example, there is evidence that nose shape has been under
historical selection in certain climates (Weiner, 1954; Zaidi et al.,
2017).

Generally, most modifiable environmental factors have only
subtle effects on the face. However, it is important to note
that stochastic chance events such as facial trauma, infections,
burns, tumors, irradiation and surgical procedures can all have a
significant impact on facial development and consequently facial
morphology.

CRANIOFACIAL SHAPE GENE
DISCOVERY

The first wave of genetic studies of craniofacial Mendelian traits
were based on linkage or candidate gene studies of genetic
loci known to be involved in craniofacial development or
genetic syndromes affecting the face. Down syndrome, cleft
lip and/or palate, Prader-Willi syndrome, and Treacher Collins
syndrome can all present with facial abnormalities and genetic
loci associated with them have been studied in relation to normal
facial development (Boehringer et al., 2011; Brinkley et al., 2016).

Genome-wide association studies (GWAS) have investigated
the association between normal facial variation and millions of
single nucleotide polymorphisms (SNPs). GWAS studies coupled
with high-resolution three-dimensional imaging of the face have
enabled the study of the spatial relationship of facial landmarks
in great detail. Over the last 6 years there has been significant
progress with 9 published GWAS which have identified over
50 loci associated with facial traits (Liu et al., 2012; Paternoster
et al., 2012; Adhikari et al., 2016; Cole et al., 2016; Shaffer et al.,
2016; Lee et al., 2017; Cha et al., 2018; Claes et al., 2018; Crouch
et al., 2018). The genes and broad regional associations are shown
in Table 2 (ordered by facial feature and chromosome) and
Figure 1 (showing facial region). For detailed information on the
biological basis of individual genes, the reader should refer to
the original articles. Different facial measures have been applied
to facial images obtained from a variety of acquisition systems
(2D and 3D). Genes are likely to influence more than one facial
trait. For instance, the PAX3 gene is associated with eye to nasion

distance, prominence of the nasion and eye width, side walls of
the nose, and prominence of nose tip. Similarly, the naso-labial
angle will be associated with nose prominence and DCHS2 is
linked to both traits.

Some reported genes appear to influence different parts of
the face. PRDM16 is linked to the length and the prominence
of the nose as well as the width of the alae, SOX9 is thought
to be related to the shape of the ala and nose tip, variation in
SUPT3H is thought to influence naso-labial angle and shape of
the bridge of the nose, while centroid size (squared root of the
squared distances of all landmarks of the face from the centroid)
and allometry (relationship of size to shape) have been linked
to PDE8A and SCHIP17 genes, respectively, (Cole et al., 2016).
Eye width and ear – nasion distance and nasion -zygoma –
eyes distances are linked to C5orf50. There is some evidence
to suggest that there are additive genetic effects on nose shape
involving SOX9, DCHS2, CASC17, PAX1, RUNX2, and GL13 and
chin shape, SOX9 and ASPM. In addition, it is likely that one or
more genes influence the whole shape of the face as well as more
localized facial regions (Claes et al., 2018). A significant number
of genes are integrally involved in cranial neural crest cells and
patternation of the craniofacial complex (e.g., C5orf50, MAFB,
and PAX3).

UNDERSTANDING THE ETIOLOGY OF
CRANIOFACIAL ANOMALIES

Identifying genetic variants influencing facial phenotypes can
lead to improved etiological understanding of craniofacial
anomalies, advances in forensic prediction using DNA and
testing of evolutionary hypotheses.

Non-syndromic cleft lip/palate (nsCL/P) is a birth defect
with a complex etiology, primarily affecting the upper lip
and palate (Mossey et al., 2009; Dixon et al., 2011). Previous
studies have identified genes associated with both nsCL/P
and facial phenotypes; such as variation in MAFB which
is associated with face width in normal variation (Beaty
et al., 2010, 2013; Boehringer et al., 2011; Liu et al.,
2012; Peng et al., 2013; Shaffer et al., 2016). Furthermore,
craniofacial sub-phenotypes have been observed in nsCL/P
cases and their unaffected family members such as orbicularis
oris muscle defects and facial shape differences supporting
the existence of nsCL/P related sub-phenotypes (Stanier and
Moore, 2004; Marazita, 2007; Neiswanger et al., 2007; Menezes
and Vieira, 2008; Weinberg et al., 2009; Aspinall et al.,
2014).

The important link between facial variation and nsCL/P is
highlighted by a study comparing facial morphologies (linked to
genes) of children with nsCL/P and unaffected relatives. There
was reduced facial convexity (SNAI1), obtuse nasolabial angles,
more protrusive chins (SNAI1, IRF6, MSX1, MAFB), increased
lower facial heights (SNAI1), thinner and more retrusive lips and
more protrusive foreheads (ABCA4-ARHGAP29, MAFB) in the
nsCL/P relatives compared to controls. There was also greater
asymmetry in the nsCL/P group (LEFTY1, LEFTY2, and SNAI1)
(Miller et al., 2014).
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There is evidence that nsCL/P genetic risk variants have an
additive effect on philtrum width across the general population.
This association suggests that developmental processes relating to
normal-variation in philtrum development are also etiologically
relevant to nsCL/P, highlighting the shared genetic influences on
normal-range facial variation and a cranio-facial anomaly (Howe
et al., 2018a).

Similarly, genetic variations associated with normal-range
facial differences have been linked to genes involved in
Mendelian syndromes such as TBX15 (Cousin syndrome)
(Shaffer et al., 2017; Claes et al., 2018), PAX1 (Otofaciocervical
syndrome) (Shaffer et al., 2016) and PAX3 (Waardenburg
syndrome) (Paternoster et al., 2012). It has been hypothesized
that deleterious coding variants may directly cause congenital
anomalies while non-coding variants in the same genes influence
normal-range facial variation via gene expression pathways
(Shaffer et al., 2017; Freund et al., 2018).

Shared genetic pathways may influence both normal-range
variation in facial morphology and craniofacial anomalies.
Disentangling these shared pathways can improve understanding
of the biological processes that are important during embryonic
development.

Estimating Identity
Anthropology and Human History
Over time, facial morphology across populations has been
influenced by various factors, such as migration, mate-choice,
survival and climate, which have contributed to variation in facial
phenotypes. Genetic and facial phenotype data can be used to
improve understanding of human history.

Ancestry and Genetic Admixture
Ancestry and physical appearance are highly related; it is
often possible to infer an individual’s recent ancestry based on
physically observable features such as facial structure and skin
color. Indeed, previous studies have demonstrated that self-
perceived and genetically inferred ancestry are associated with
facial morphology, particularly with regards to the shape of the
nose (Dawei et al., 1997; Le et al., 2002; Farkas et al., 2005; Claes
et al., 2014). Facial morphological differences relating to ancestry
are well-characterized when comparing individuals from distinct
populations, but distinct differences remain even within more
ancestrally homogeneous populations.

Historical migrations, such as the European colonization
of Latin America, led to genetic admixture (breeding between
individuals from previously isolated populations) (Hellenthal
et al., 2014), which greatly influenced the facial morphology
of the Latin American population. Indeed, modern day Latin
Americans have mixed African, European and Native American
ancestry, with genetic admixture highly predictive of physical
appearance. For this reason, ancestral markers are often included
in facial prediction models (Claes et al., 2014; Ruiz-Linares et al.,
2014; Lippert et al., 2017).

Mate Choice, Sexual Dimorphism and Selection
Facial phenotypes can influence mate choice and be under
selection pressures. These factors can then affect reproductive

behavior and lead to population-level changes in facial variation
as certain facial phenotypes are favored. Previous studies have
suggested that facial features such as attractiveness (Little et al.,
2001; Fink and Penton-Voak, 2002), hair color (Wilde et al., 2014;
Adhikari et al., 2016; Field et al., 2016; Hysi et al., 2018), eye color
(Little et al., 2003; Wilde et al., 2014; Field et al., 2016) and skin
pigmentation (Jablonski and Chaplin, 2000, 2010; Wilde et al.,
2014; Field et al., 2016) may influence mate choice and/or have
been under historical selection. Features related to appearance are
also often sexually dimorphic, possibly as a result of sexual and
natural selection. For example, significantly more women self-
report having blonde and red hair while more men as self-report
as having black hair (Hysi et al., 2018).

The possible evolutionary advantages of facial phenotypes
have been discussed extensively but anthropological hypotheses
can be tested using genetic and facial phenotype data. For
example, a masculine face has been hypothesized to be a
predictor of immunocompetence (Scott et al., 2013). A previous
study tested this hypothesis using 3D facial images and
genetic variation in the major histocompatibility complex
(MHC) region and found weak evidence to support this
(Zaidi et al., 2018). Other possible benefits that have been
explored include: the fitness advantages of hair color (Adhikari
et al., 2016; Hysi et al., 2018), nasal shape and climate
adaptation (Zaidi et al., 2017) and the benefits of darker
skin pigmentation (Wilde et al., 2014; Aelion et al., 2016).
Strong levels of phenotypic and genotypic spousal assortment
have been previously demonstrated for height (Robinson et al.,
2017) and similar methods could be applied using facial
phenotypes to explore the influences of facial morphology on
mate choice.

The Use of Reverse Genetics for Forensic Prediction
of Facial Features
The premise of reverse genetics is that there is known function
of a gene or a group of genes which will create a particular
phenotype with a degree of certainty. This has been proposed as a
method to build a profile of facial features from a sample of DNA
(Claes et al., 2014) but could also be used to determine previous
health history or future health risks (Idemyor, 2014). This
approach may be appropriate for unique facial characteristics
but is more challenging when one or more genes are associated
with the variation of facial phenotype (e.g., prominence of the
nasal bridge or length of the nose, hair and eye color/tones).
The PAX3 gene is associated with the distance between the mid-
endocanthion point and surface nasion with a mean distance of
17.5 mm with differing axis values up to 6.7 mm (x), 17.7 mm (y),
and 18.9 mm (z). Although, it is known that the PAX3 influences
the prominence of the bridge of the nose it is more challenging
to know to what extent this influences adjacent facial regions in
each individual. In addition, genetic and environmental factors
will have subtle influences on the face. Although the molecular
understanding of genetic variation influencing facial morphology
is improving, the use of DNA as a prediction tool is still a
long way off. However, recent studies suggest that DNA has the
potential to identify an individual from a small group of possible
candidates (Claes et al., 2014; Biedermann et al., 2015; Kayser,
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2015). There is clearly a place in forensic science to develop a
robust diagnostic tool to determine age, ancestry, appearance,
relatedness and sex from DNA samples. One study effectively
predicted eye color (85% for brown and 70% for blue), hair
color (72% for brown, 63% for blonde, 58% for black, and 48%
for red) and ancestry (56%); which are relatively low levels and
individually could not be relied on for certain identifications
but has greater potential when used collectively (Keating et al.,
2013). The prediction of skin color from DNA has also been
reported (Chaitanya et al., 2018) and DNA methylation has been
demonstrated as a useful predictor of age. Age prediction using
methylation techniques have indicated a mean absolute deviation
of 5–8 years (Xu et al., 2015; Bocklandt et al., 2011; Hamano et al.,
2017)

The determination of facial appearance, health history and
future health risk from DNA is has great potential (Claes et al.,
2014; Kayser, 2015; Toom et al., 2016) but caution should
be expressed with respect to assumptions, interpretation and
individual confidentiality as there is a significant threat to an
individual in obtaining healthcare insurance (Hallgrimsson et al.,
2014; Idemyor, 2014; Toom et al., 2016).

Previously published studies that have identified gene-
phenotype associations which provides evidence of associations
for complex facial traits which can be integrated into prediction
models. The collective use of these techniques to identify the
various facial features will increase the robustness of linking the
DNA to a likely suspect/candidate.

SHARED INFLUENCES OF FACIAL AND
OTHER TRAITS

Table 2 highlights that genetic variants influencing facial
morphology can have pleiotropic effects on parts of the
body independent to the brain and surrounding craniofacial
structures (e.g., cardiovascular, endocrine, gastro-intestinal,
central nervous, musculo-skeletal and uro-genital systems).
The growing number of GWAS datasets has allowed
exploration of the shared genetic influences on different
phenotypes (Bulik-Sullivan B. et al., 2015; Pickrell et al.,
2016). There is the potential for relationships between
medical and facial conditions to be explored using genetic
summary data. The limited evidence for genetic correlation
between facial and other traits has been reported in
Table 3. It is important to note that the strong association
between facial morphology and ancestry means that any
correlations may be attributable to fine-scale population
substructure.

DISCUSSION

Normal facial development is dependent on Cranial Neural
Crest Cells and correctly spatially positioned and differentiated
tissues and structures that influence the shape and morphological
features of the face. The disruption of neuro-facial developmental

and maturational processes can lead to widespread and long-
lasting abnormalities in central nervous system structure
and functions and some of these disturbances will also be
accompanied with subtle differences in facial features (Hennessy
et al., 2010).

Epigenetics
Epigenetics refers to mitotically (and perhaps, controversially
meiotically) heritable changes in gene expression which are not
explained by changes to the DNA base-pair sequence. Epigenetic
processes include DNA methylation, histone modification and
chromatin remodeling, which can affect gene expression by
regulating transcription (Jaenisch and Bird, 2003; Bird, 2007;
Gibney and Nolan, 2010; Allis and Jenuwein, 2016). Epigenetic
processes are particularly relevant to craniofacial phenotypes
because of the general importance of epigenetic gene regulation
during embryonic development (Reik, 2007) and their specific
role in neural crest development (Hu et al., 2014).

Craniofacial epigenetic studies to date have largely focused
on orofacial clefts. Previous epigenome-wide association studies
(EWAS) have found evidence of differential DNA methylation
between cleft cases and controls (Alvizi et al., 2017), as well as
between the different orofacial cleft subtypes (Sharp et al., 2017)
implicating the relevance of DNA methylation in craniofacial
development. The modifiable nature of epigenetic processes has
led to much excitement that these processes may mediate the
effect of environmental exposures. The maternal environment
is thought to play an important role with regards to orofacial
clefts. Previous studies have found strong evidence supporting
associations between prenatal smoke exposure (Joubert et al.,
2016) and folate supplementation (Richmond R.C. et al., 2018)
with differential DNA methylation, but contrastingly there is
no clear evidence for an association between prenatal alcohol
exposure and DNA methylation (Sharp et al., 2018). In cleft lip
tissue, limited evidence was found for an association between
LINE-1 methylation and maternal exposures but conclusions
were limited by modest sample sizes (Khan et al., 2018). Future
work could utilize meditation techniques (Tobi et al., 2018)
or Mendelian randomization (Relton and Davey Smith, 2012)
to formally investigate the possibility that prenatal exposures
influence orofacial cleft risk via epigenetic processes.

Similarly, epigenetic processes may mediate the effects of
germline genetic variation. Many of the previously discussed
genetic variants associated with facial traits in GWAS reside
in non-protein coding regions of the genome with unclear
functional relevance. One possibility is that these variants
may influence facial phenotypes through gene regulation
pathways involving epigenetic processes. Indeed, a previous study
demonstrated that a major risk locus for non-syndromic cleft
lip/palate (nsCL/P), in a non-coding interval, is involved in the
regulation of gene expression in the developing murine face
(Uslu et al., 2014) while another study found some evidence that
nsCL/P genetic variants may influence nsCL/P risk via changes in
DNA methylation and gene expression (Howe et al., 2018b).

Despite the promise of early craniofacial epigenetic studies,
there are important caveats worth noting. First, a major
issue is that epigenetic modifications can vary across different
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TABLE 3 | Reported shared influences of medical conditions, normal facial variation with associated genes.

Phenotype Facial feature associated with medical conditions Genes identified

Asymmetry Facial asymmetry was more prevalent in 15-year-old ALSPAC children who had
experienced an ear infection compared to a control group (Pound et al., 2014).
There are numerous possible causes of mandibular asymmetry reported
(Pirttiniemi, 1994) and middle ear infection is one (Güven, 2008).
Asymmetry of the nasal root, nose tip and columella base has been associated
with fasting insulin and Low-density Lipoproteins (Djordjevic et al., 2013b).
Facial asymmetry has also been associated with neurological conditions
explained by the close relationship during embryological development
(Hennessy et al., 2004; Suttie et al., 2018).

Face height Juvenile-onset Parkinson disease.
Face height, standing height, infant head circumference, length and weight at
birth are closely related (Van der Beek et al., 1996; Mellion et al., 2013;
Bulik-Sullivan B. et al., 2015). There are strong associations with onset of
puberty, bone density, breast size, high and low-density lipoproteins (HDL, LDL)
as well as overall cholesterol and BMI (Cousminer et al., 2013, 2014;
Bulik-Sullivan B. et al., 2015; Pickrell et al., 2016). Delays in puberty will result in
shorter stature and smaller face height (Verdonck et al., 1999). A series of
case-control studies undertaken in the ALSPAC 15-year-old cohort
investigating asthma, atopy and sleep disorder breathing (Al Ali et al., 2014a,b,
2015) found relatively small mixed opposite effects on face height.

PARK2 with mid-face height.

Face width Five genes have been reported for inter-tragi and seven genes for inter-eye
distances.

Association of face width and timing of tooth eruption and height has been
reported (Fatemifar et al., 2013).

FOXA1, MAFB, MIPOL1, PAX9, SLC25A2,
ALX3, C5orf50, GSTM2, GNI13, HADC8,
PAX3, TP63, MAFB
HMGA2, AJUBA, ADK.

Nose
length/prominence

Nose prominence will be related to nose length evidenced by the reporting of
PRDM16 for both phenotypes.
Mixed findings in relation to nose length have been reported for schizophrenia
(Hennessy et al., 2010) and reported psychotic like symptoms in the
15-year-old ALSPAC cohort (Farrell, 2011).
Schizophrenia has been associated with allergies, height, Crohn’s disease,
Parkinson’s disease, HDL and near sightedness. Nose length has also been
associated with LDL, total cholesterol and triglycerides (Pickrell et al., 2016).

PRDM16, BC039327/
CAC17 DCHS2,
ZNF219, CHD8,
PRDM16, SOX9
SLC39A8
APOE

Nose width 12 genes have been reported for nose width.
SUPT3H has been associated with height in the Korean population (Kim et al.,
2010).
Inter-ala distance wider in asthmatics (Al Ali et al., 2014b).

PAX1, PRDM16, SOX9, GSTM2/GNAI3/ALX3,
DHX35, PAX1, PAX, SUPT3H/RUNX2, GLI3

Philtrum Age of menarche Associated with RAB7A RAB7A

Prominence of chin Morphology of the chin has been linked with four genes.
The mandible was less prominent in sleep disorder breathing (Al Ali et al., 2015).

ASPM, DLX6, DYNC1L1, EDAR

tissues. Previous studies have used DNA methylation in
blood as a proxy for methylation in lip and palate tissues.
Despite some evidence for positive correlation between blood
and lip tissue DNA methylation (Alvizi et al., 2017; Howe
et al., 2018b), the extent to which blood is a suitable
proxy is unknown. Furthermore, it is unclear whether the
epigenetic profile of lip and palate tissues postnatally are
comparable to the same tissues during embryonic development.
A previous orofacial cleft GWAS found no clear evidence
for enrichment of tissue-specific signals, concluding that
this may be attributable to a lack of suitable tissue types
(Leslie et al., 2017). Second, when testing causality, epigenetic
modifications can vary across the life-course, so it can be
difficult to discern the direction of effect between an epigenetic
modification and the phenotype. It is therefore important to
use causal inference techniques such as epigenetic Mendelian
randomization Relton and Davey Smith, 2012) or the Steiger
test (Hemani et al., 2017) to orientate the likely directions of

effect between phenotypes, epigenetic modifications and gene
expression.

Genome Regulatory Systems
The gene regulatory systems are complex and numerous
and detailing these regulatory mechanisms has been the goal
of the NIH Roadmap Epigenomics Project whereby next
generation sequencing technologies (e.g., ChiP seq) are employed
to map DNA methylation, histone modifications, chromatin
accessibility in a variety of research media such as, animal
models (mouse, chicken, zebrafish, frog, and primates) and
stem cells and regulated human fetal tissues (Hochheiser et al.,
2011; Roosenboom et al., 2016; Van Otterloo et al., 2016).
Enhancers have a specific role in the expression of a target
gene in different cells, anatomical regions and during different
developmental time-points (Visel et al., 2009; Attanasio et al.,
2013; Wilderman et al., 2018). The role of enhancers modifying
histones, chromatin states are key for normal range craniofacial
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FIGURE 1 | Gene association with regionalized facial features in normal populations.

development and relative position of the various craniofacial
tissues. Key transcriptional factors (activators or repressors)
have been identified indicating extensive activation during
early craniofacial development. These transcriptional factors
may be limited to detail the precise facial shape or can be
quickly activated in rapid periods of growth and development.
Craniofacial enhancers have also been identified acting between
the non-coding regions and proposed as a possible instrumental
factor in some cleft cases (Wilderman et al., 2018).

Complexity of Facial Features
The craniofacial region is made up of a series of complex
structures which contribute to overall facial shape. Twin
studies have indicated that facial shape is mainly due to genetic
influences (≈75%) although the percentage variance explained
in GWAS studies is extremely low generally explaining less
than 2% of the total variance. GWAS may be underestimating
and twin and family studies overestimating the levels of
heritability. Facial shape and features are the result of mutations,
genetic drift, recombination and natural selection. Rare
Mendelian mutations, low frequency segregating variants,
copy number variants and common variants contribute to
complex phenotypes. Genetic interactions or epistasis may
also explain the low levels of variance recorded. In addition,
there is evidence of pleiotropy, quantitative phenotypes and
Mendelian traits all influencing multiple phenotypes suggesting

a large number of loci contribute additively to facial variation.
Epigenetics focuses on the functional components of the
genes and gene activities. The genome is comprised of 3.2
billion nucleotides wrapped in octomeric units of histones
(chromatin). Modifications to chromatin through methylation,
acetylation, phosphorylation or other processes are known to
influence gene expression. Most epigenetic changes are transient
and not generally heritable. However, a small proportion
of epigenetic changes are transgenerational (Rachdaoui
and Sarkar, 2014). However, there is a limited amount of
evidence that epigenetic inheritance may carry over multiple
generations (Schmidt and Kornfeld, 2016; Gluckman et al.,
2007).

Study Design, Sample Size and Power
Increasing the sample sizes of genetic studies of facial
morphology through international collaborations, such as
the type II diabetes consortia DIAGRAM (Morris et al.,
2012), will help to improve the understanding of genetic
associations and shared influences on facial traits (Evans,
2018). The availability of summary statistics on large GWAS
studies will also enable the application of quantitative genetics
methods to further investigate the genetic architecture of facial
morphology. Polygenic risk scores, LD score regression (to
reduce confounding biases Bulik-Sullivan B.K. et al., 2015)
and Mendelian randomization can provide information on
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the genetic overlap of facial phenotypes with other genetic
traits and the possibility to causally assess the association
of risk factors with face development (Smith and Ebrahim,
2003).

Focusing on specific phenotypes and genetic variants in
families will identify additional rare variants should be followed-
up with a combination of genotyping and deep re-sequencing
of the variants or genes of interest in large numbers of
cases and controls. The analytical techniques (particularly the
bootstrapped response-based imputation modeling (BRIM) and
hierarchical spectral clustering analysis) employed by Claes
et al. (2014, 2018) provide efficient and valid analyses and
arguably more importantly, visual linkages between genetic
variants and global shape. In addition, the individual facial
traits have yielded impressive levels of significance using a
relatively small number of subjects (Evans, 2018). Permutation
testing is a valid alternative for more conservative tests
such as Bonferroni (Sham and Purcell, 2014). The use of
machine-learning and artificial intelligence approaches will
be crucial in future GWAS studies to determine patterns
and linkages in the numerous large data sets generated
and archived related to craniofacial development functional
genomics.

There have been nine GWAS studies and it is appropriate to
try and integrate their findings through a meta-analysis. Different
genetic models, genotyping and imputation techniques have
been employed and the between-study heterogeneity should be
considered.

Phenotyping
Defining facial shape can be undertaken in different ways but
it is important to appreciate that there will be associations with
not only with other facial features but also body phenotypes
and medical conditions. Visualizing and automatic detection of
facial phenotypes and determining their prevalence in population
groups will facilitate case-control evaluations to determine
genetic variants. So far, all GWAS studies have studied the
static face but capturing the face during simple facial actions
in a population (dynamic movement with or without speech)
will enable the exploration of combined neurological and
morphological features by assessing both speed and range of
movement.

Population Cohorts
Population cohort studies enables researchers to study the
environmental, disease and metabolic risk factors and genetic
interactions from pre-birth throughout the lifecourse. Ideally
facial images should be captured at birth, 5, 9, 12, 15, and
18 years of age and repeated every 10 years of age to capture
facial features. During the pubertal growth period (9–18 years)
facial images should be captured more frequently and if studying
pubertal influences facial images should be captured at least every
6 months. Acquiring as much information as possible in relation
known genetic additive effects, environmental factors and
previous medical histories of family members (Grandparents,
parents and offspring) will provide further insights into facial
relatedness.

Developing Prevention and Healthcare
Strategies
With improving knowledge of the controlling mechanisms
for normal and abnormal facial development, it is logical to
pursue healthcare strategies in the first instance to prevent
craniofacial anomalies arising, with discussion of risks with
genetic counseling, possibly future gene therapies and the follow
up with minimally invasive or non-surgical, scarless procedures
to correct craniofacial anomalies such as cleft lip and palate
and control vertical and horizontal growth particularly of the
upper and lower jaws and nose. Surgical procedures are not
always simple as often in CL/P patients there is often insufficient
tissues available (epidermis/dermis, cartilage and bone with
disrupted orientation of muscle fibers). Prevention may be
challenging (other than continually improving environmental
conditions and reducing exposure to potential epigenetic factors)
as facial development occurs very early in gestation during a
period whereby the mother is often unaware she is pregnant.
Controlling the mechanisms of normal growth in vivo or
alternatively in vitro creating similar morphological tissues with
intact innervation, blood and lymphatic systems that could be
transplanted later may become reality in the future. Future,
environmental epigenetic studies will show whether particular
chemicals map to corresponding sensitive genomic regions. It is
important to identify early life exposures (particularly conception
to birth) that may influence later life health outcomes.

CONCLUSION

The face develops very early in gestation and facial development
is closely related to the cranial neural crest cells. Disruption
in early embryological development can lead to wide-ranging
effects from subtle neurologic and facial features, which includes
asymmetry, to significant impact on facial shape as characterized
by a CL/P or in anomalies observed in craniofacial syndromes.

Heritability studies have provided insight into the possible
genetic and environmental contributions to face shape. However,
the sample sizes and inconsistencies in research design and
particularly statistical management have yielded mixed results.
Further detail is required on the heritability of facial features
with particular attention to inherited pathways of specific facial
features in homogenous populations and populations with
significant admixture.

From birth to adulthood there are significant body and facial
changes. Further work is required to explore the importance of
the various biomedical markers and medical conditions (e.g.,
fasting glucose, cholesterol, asthma, and neurological disorders
etc.) on the growth of the face, for example, remodeling of the
facial skeleton, spatial changes of the constituent parts of the
facial skeleton through sutures, condylar and nasal cartilages as
well as the soft tissues, neural and vascular networks. The GWAS
studies have provided insights into the genetic influences on
facial shape. However, large-scale population studies are needed
to identify more genetic variants not only in the context of
facial shape but general body development with particularly
attention to puberty. With any change in face shape the complex
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processes and communications at the biological and genome
levels need to be identified and explained. The sheer volume
of data collected in imaging genetics from images (hundreds of
thousands of points), omics datasets (genomics, transcriptomics
and cell-specific expression signals etc. – hundreds of millions of
sequences) as well as biomarkers for medical conditions generates
massive and complex data sets.

The size and heterogeneity of these data sets pose new
challenges to efficiently and effectively, store, simplify and analyze
the relative interactions and influences for a large number of
face shape variables. The aim will be to continually develop
and advance existing computerized tools and algorithms to solve
these complex problems and this will require a multidisciplinary
and internationally based team.

Impressions of an individual’s health are integral to social
interactions and judgments are made on the visual appearance
of skin, degree of roundness of the face and facial expression
(Henderson et al., 2016). There has been significant progress
in the first 6 years of GWAS and facial genetics. With
increased sample sizes, improved understanding of shared
genetic influences on human traits and advancement in
techniques there is likely to be significant further progress in the

next 6 years. Understanding the face will explain “why we look
the way we do” a range of normality and abnormality that will be
useful in healthcare applications and forensic science.
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