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 3 
Abstract 4 

Sumatran tigers (Panthera tigris sumatrae) are a critically endangered carnivore 5 

restricted to the island of Sumatra, and like many other large mammals on the 6 

Indonesian archipelago, they are threatened by high levels of poaching and widespread 7 

habitat degradation. Here, we conduct the first range-wide assessment of Sumatran tiger 8 

genetics using scat surveys and show that the wild population retains levels of genetic 9 

heterozygosity comparable to mainland tigers. However, the population also exhibits 10 

signs of subdivision due to the unprecedented rates of deforestation and land conversion 11 

in the last 30 – 40 years. The fact that this subspecies retains such levels of 12 

heterozygosity despite high rates of habitat loss and increasing isolation suggests a form 13 

of genetic extinction debt with an elevated risk of extinction if no action is taken within 14 

the next 30 – 100 years (see Kenney et al., 2014).  However, the inherent time delay in 15 

extinction debt provides opportunities for conservation if habitat quality can be 16 

improved and connections between existing population fragments can be made. Our 17 

study highlights the importance of genetic studies for providing baseline information to 18 

improve the population management of highly threatened carnivore species. Mitigating 19 

further habitat degradation and expansion of oil palm and other cash crops in this region 20 

would improve the viability not only of Sumatran tiger populations, but of other 21 

threatened large mammal species as well. 22 
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1. Introduction 26 

Sumatra supports a disproportionately high level of global biodiversity. There are 5 27 

bioregions on the island (freshwater swamp, lowland rainforest, montane rainforest, 28 

peat swamp, and tropical pine forest), that support up to 200 species of mammals and 29 

580 species of birds, including some that are extinct or virtually so elsewhere in 30 

Indonesia, such as the rhino, elephant, and tiger (Whitten et al., 2000; Wikramanayake 31 

et al., 2002). Much of this biodiversity is at risk due to vast areas of primary forest (up 32 

to 0.38 million hectares per year) being cleared for timber products or converted to 33 

other land uses such as agriculture (e.g. coffee, rubber), oil palm, and Acacia mangium 34 

tree plantations (Margono et al., 2012; Sodhi et al., 2004; Stibig et al., 2014).  35 

 36 

Much of the land clearance began in southern Sumatra in the 1970s when the 37 

Indonesian government introduced a transmigration scheme to relocate people from 38 

other islands in the archipelago (Imbernon, 1999). It is now home to nearly 51 million 39 

people spread across 10 provinces (BPS-Statistics Indonesia, 2016), and it is estimated 40 

that between 1969 and 1993 up to 8 million people relocated and cleared 1.7 million 41 

hectares of lowland forest for settlements and agricultural smallholdings (Barber and 42 

Schweithelm, 2000; Gaveau et al., 2009a). Much of this degraded forest was converted 43 

to industrial timber estates and oil palm plantations in the early 2000s, and with little 44 

accessible low elevation forest remaining in south Sumatra, attention has now turned to 45 

the peat swamp forests of east Sumatra (Margono et al., 2014).  46 

 47 

It is estimated that ~70% of Sumatra’s primary lowland forest has already been lost and 48 

this trend is set to continue as Indonesia aims to meet much of the global demand for 49 
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palm oil, pulp, and timber products (Geist and Lambin, 2002; Kinnaird et al., 2003; 50 

Suyadi, 2010). With net returns of up to $13 000 per hectare of tropical timber or oil 51 

palm there are many commercial barriers to conserving the remaining primary habitat 52 

(Wilcove et al., 2013). 53 

 54 

Tiger conservation, like that of rhinos and elephants, poses a difficult challenge in this 55 

context as they require a large amount of space, have a tendency towards conflict with 56 

people in secondary forest or at protected area boundaries, and are under constant threat 57 

from poaching due to their commercial value (Linkie et al., 2018). The main remaining 58 

populations of these species are therefore located in a few large protected areas of 59 

primary lowland or montane forest (Wibisono et al., 2011). 60 

 61 

Current estimates put the global tiger population at 3000 – 4000 individuals. Sumatra is 62 

one of three regions combined (including India and Russia) containing ~80% of 63 

remaining tiger habitat with a Sumatran population of ~500 tigers (Tilson et al., 1993; 64 

Linkie et al., 2008a; Goodrich et al., 2015). The Sumatran tiger (Panthera tigris 65 

sumatrae) is recognized as a distinct subspecies due to its unique location, genetics, and 66 

morphological differences (Cracraft et al., 1998; Kitchener, 1999; Hendrickson et al., 67 

2000; Luo et al., 2004; Kitchener and Yamaguchi, 2010; Wilting et al., 2015). It also 68 

represents the last remaining population of Sunda tigers since the Java and Bali 69 

subspecies are now extinct (Xue et al., 2015).  70 

 71 

Continued land conversion across the tiger’s range has created a patchwork of primary 72 

forest (lowland, montane or peat swamp), secondary forest, and human disturbance that 73 
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prompted the creation of Tiger Conservation Landscapes (TCLs), and more recently 74 

Source Sites, which overlap with the distribution of highly threatened species such as 75 

the Sumatran rhino, Asian elephant, and Sumatran orangutan (Sanderson et al., 2006; 76 

Walston et al., 2010; Wich et al., 2016). Although tigers can inhabit a broad range of 77 

forest types, abundance or occupancy rates are highest in areas of low human presence 78 

and infrastructure (Carroll and Miquelle, 2006; Johnson et al., 2006; Harihar and 79 

Pandav, 2012; Sunarto et al., 2012; Hebblewhite et al., 2014). Previous studies have 80 

shown that tigers mostly require a suitable prey base and good ground cover for hunting 81 

to persist, even in degraded forest (Linkie et al., 2008b; Smith, 2009; Sunarto et al., 82 

2012). Designation of these large conservation areas was therefore intended to protect 83 

sufficient habitat and prey, free from human threats, to maintain self-sustaining tiger 84 

populations. Sumatra holds 12 TCLs and 4 Source Sites covering up to 88 000 km2 85 

(Wibisono and Pusparini, 2010), and these largely overlap with protected area 86 

boundaries. Here we use genetic data obtained from an island-wide scat survey to 87 

explore how disruption of the once contiguous forest on Sumatra has affected this last 88 

Sunda tiger subspecies.  89 

 90 

 91 

2. Material and Methods 92 

2.1 Sample collection 93 

Fecal samples (scats) were collected from nine different field sites across Sumatra (Fig. 94 

1a, Table A1). Samples were collected during dedicated scat collection surveys or 95 

opportunistically during population monitoring studies prior to this study. Fresh samples 96 

were also obtained from a facility holding wild tigers captured following conflict with 97 
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rural communities. Scat surveys were conducted in a range of habitat types (montane, 98 

lowland, and production forests), and sampling transects followed animal trails and 99 

logging routes in high tiger density areas identified from camera trap survey data 100 

(unpublished results). Field teams covered one transect per day and each route was 101 

sampled just once with teams instructed to collect all fecal samples likely to have been 102 

deposited by a tiger based on size and appearance. Each sampling period lasted for an 103 

average of 2 weeks. We also tested the use of a detection dog in 3 sites (Way Kambas 104 

NP, Kerinci Seblat NP, and Batang Hari protection forest) using a 2-year old, male, 105 

Labrador Retriever from Bogor, West Java. The dog was trained over 3 weeks by an 106 

experienced dog handler to recognize the scent of tiger scats using samples from captive 107 

individuals. Dog surveys were conducted alongside the field teams with 20-minute work 108 

periods alternating with 10-minute rest breaks.  109 

 110 

2.2 Laboratory methods 111 

Each sample was initially preserved with silica gel beads in the field then transferred to 112 

≥ 96% ethanol once received in the laboratory. Extractions were performed using 2 - 3 113 

mm scrapings taken from the outer surface of each scat. The QIAamp DNA stool mini 114 

kit (Qiagen) was used for all extractions with some modifications (Table A2). A 115 

NanoDrop spectrophotometer (Thermo Scientific) was then used to quantify the DNA 116 

concentration for each sample. A tiger-specific Cytochrome b primer (Wetton et al., 117 

2004) was used to identify positive tiger samples. Two PCRs were performed for each 118 

sample to confirm a positive result, indicated by a single PCR product of ~165 bp. 119 

PCRs were performed in 10 μl reaction volumes containing 5 μl Qiagen Multiplex PCR 120 

mix, 0.3 μM forward and reverse primers, 0.2 μl (10 mg ml-1) BSA, and 1.2 μl fecal 121 



 6 

DNA. PCR cycling conditions were as described by Driscoll et al. (2009) and PCR 122 

products were visualized on a 2% agarose gel with 1% ethidium bromide. Sex 123 

identification was performed using a felid-specific zinc finger primer pair (Pilgrim et 124 

al., 2005). Sex was determined by a single PCR product for females (~163 bp) and 2 125 

products for males (~160 and 163 bp). PCR reactions were performed using a 10 μl 126 

reaction volume containing 5 μl Qiagen Multiplex PCR mix, 0.3 μM fluorescent 127 

labelled forward primer, 0.3 μM reverse primer, 0.5 μl (10 mg ml-1) BSA, and 3 μl fecal 128 

DNA. PCR cycling conditions were: 95 °C for 15 mins, 45 cycles of [94 °C for 30 s, 56 129 

°C for 1 min, and 72 °C for 30 s], followed by 72 °C for 10 mins. Fragment sizes were 130 

determined by capillary electrophoresis on an ABI 3130 genetic analyzer (Applied 131 

Biosystems). 132 

 133 

Genotyping was performed using 24 fluorescent labelled microsatellite loci (Luo et al., 134 

2004; Table A3). Loci were amplified in pairs in 10 μl reaction volumes containing 5 μl 135 

Qiagen Multiplex PCR master mix, 0.2 μM forward and reverse primers, 0.5 μl (10 mg 136 

ml-1) BSA, and 2 μl fecal DNA. PCR conditions were 95 °C for 15 mins, 20 cycles of 137 

[94 °C for 15 s, 55 °C for 15 s and 72 °C for 30 s], followed by 35 cycles of [89 °C for 138 

15 s, 55 °C for 15 s and 72 °C for 30 s], then a final extension step of 60 °C for 90 mins. 139 

Microsatellite allele sizes were determined with GeneMarker software (SoftGenetics 140 

LLC) and allele bins for each locus were confirmed with Tandem v1.08 (Matschiner 141 

and Salzburger, 2009). Consensus multilocus genotypes were generated using a multi-142 

tubes approach (Taberlet et al., 1996). An allele had to appear twice to be accepted as a 143 

true allele; a heterozygote genotype was provisionally accepted after 3 positive PCRs 144 

and a homozygote provisionally accepted after 7 positive PCRs. Shaza (Macbeth et al., 145 
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2011) was then used to determine the number of unique genotypes, whilst genotyping 146 

error rates and probability of identity (PISIB) were estimated with Gimlet v1.3.3, Micro-147 

checker v2.3.3, Pedant v1.0, and MicroDrop (Johnson and Haydon, 2007; Valière, 148 

2002; van Oosterhout et al., 2004; Wang et al., 2012). SHAZA uses a likelihood test to 149 

distinguish between 3 different types of genotype match: (i) false matches in which 150 

different individuals have the same genotype (shadows), (ii) false non-matches that 151 

represent the same individual with different genotypes due to genotyping error, and (iii) 152 

phantoms that are true matches rejected because of insufficient power. However, Shaza 153 

is not able to distinguish duplicated genotypes (i.e. potential recaptures of the same 154 

individual) from related individuals, so we used Colony v2.0.1.1 (Jones and Wang, 155 

2010) to estimate the pairwise probability of individuals being full- or half-sibs. 156 

 157 

2.3 Population genetics 158 

Genepop v4.0 (Raymond and Rousset, 1995) was used to test for Hardy-Weinberg 159 

equilibrium. Observed and expected heterozygosity were estimated using GenAlEx v6.4 160 

(Peakall and Smouse, 2006). Unbiased expected heterozygosity was also calculated to 161 

account for small sample sizes at each locus. Rare alleles with a frequency < 0.05 were 162 

also removed from the dataset to minimize the impact of genotyping errors and to obtain 163 

a conservative measure of diversity. Effective population size was estimated with 164 

NeEstimator v2 (Do et al., 2014) using a linkage disequilibrium method accounting for 165 

sampling error and with minimum allele frequencies set to > 0.05.  We tested for 166 

isolation-by-distance using a regression between Rousset's genetic differentiation 167 

measure a(r) and the logarithm of least cost distances ln(r) as implemented in SPAGeDi 168 

v1.3 (Hardy and Vekemans, 2002). Least cost distances were estimated between 169 
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individual sample locations using human footprint data from the Last of the Wild v2 170 

(Sanderson et al., 2002) as our landscape map. Distances were computed in ArcView 171 

3.1 with the Pathmatrix v1.1 extension (Ray, 2005). The inverse of the regression slope 172 

was then used to estimate neighborhood size, a measure of effective population size 173 

based on the distribution of individuals within a given area (Wright, 1946; Rousset, 174 

2000). We also used GenAlEx to test for spatial autocorrelation using 50 km distance 175 

classes up to a total distance of 1550 km using 9999 random permutations and 10 000 176 

bootstraps (Peakall et al., 2003).  177 

 178 

2.4 Population structure 179 

We defined four separate regions to coincide with the current designation of Tiger 180 

Conservation Landscapes and associated protected areas: 1. North - Ulu Masen/Gunung 181 

Leuser ecosystem, 2. West - Kerinci Seblat NP and Batang Hari protection forest, 3. 182 

East - Tesso Nilo NP, Bukit Tigapuluh NP, Kerumutan wildlife reserve, and Berbak NP, 183 

and 4.  South - Way Kambas NP (Fig. 1b). Regional differentiation was tested using 184 

pairwise values of θw (Weir and Cockerham, 1984) computed in Genepop and a locus-185 

by-locus AMOVA implemented in Arlequin v3.1 (Excoffier et al., 1992, 2005) using 19 186 

microsatellite loci and 16 000 permutations. We then used BayesAss v1.2 (Wilson and 187 

Rannala, 2003) to estimate recent rates of gene flow between the four defined regions 188 

(North, East, West, and South). 189 

 190 

Analysis of population structure with no a priori grouping was performed using 191 

Structure v2.3.3 (Pritchard et al., 2000), Tess v2.3.1 (François et al., 2006), and 192 

Geneland (Guillot et al., 2005) (Table A5). Structure is the most commonly used 193 
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method for population structure analysis but it can be affected by unequal sample sizes 194 

between populations and the presence of related individuals in a dataset (Anderson and 195 

Dunham, 2008; Kalinowski, 2011; Wang, 2017). Tess and Geneland are also affected 196 

by isolation by distance but can better incorporate spatial information (Safner et al., 197 

2011). Clumpp v1.1.2 (Jakobsson and Rosenberg, 2007) was then used to confirm 198 

individual membership assignments for each population cluster. Individuals with a 199 

membership coefficient of q ≥ 0.7 were assigned to a single cluster, and individuals with 200 

membership coefficients of 0.25 ≤ q ≤0.7 were considered to have shared membership 201 

between clusters. 202 

 203 

 204 

3. Results  205 

A total of 148 scats were collected over 15 months of sampling, and scat contents 206 

included hair, bone fragments, body parts (claws, quills), soil, and vegetation. Transect 207 

length varied from ~2.5 – 10 km and the number of scats encountered at each site varied 208 

due to differences in survey effort and terrain, with lowland sites yielding far more 209 

samples than submontane regions. More scats were observed on open trails and logging 210 

roads compared to forest animal trails, due to the presence of heavy leaf litter and 211 

decomposition on the forest floor. Most scats were dried or partially decomposed on 212 

collection and varied in age (judged subjectively) from > 7 days old to > 1 month old. 213 

Preliminary analysis did not reveal any significant correlation between PCR success and 214 

scat location (e.g. animal trail, road, etc) or scat contents (e.g. bones, hairs, etc), though 215 

fresher samples (< 1 month old) stored in ethanol generally performed well (data not 216 

shown). We had variable success with the detection dog, mostly due to the high 217 
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temperatures and humidity, and the logistical challenges of transporting the dog with 218 

our field teams. This combined with the ongoing cost of the dog’s husbandry meant that 219 

we found it far more effective to rely on field teams searching visually alone. 220 

 221 

DNA concentration per extract ranged from ~6 - 192 ng μl-1, but this did not correlate 222 

well with PCR success. Thirty-seven samples were positive for tiger DNA and variable 223 

results were obtained with the sex and microsatellite primers. Ten samples with very 224 

low PCR success rates across all loci (< 10%) were discarded immediately from the 225 

dataset, and we were able to determine putative sex for 15 of the 27 remaining samples 226 

(8 males and 7 females). The mean number of positive PCRs estimated with Gimlet was 227 

0.54 (range 0.25 - 0.88) across loci and 0.54 (range 0.36 - 0.77) across samples, with the 228 

proportion of missing data per locus ranging from 12 - 72%. The 24 microsatellite loci 229 

gave a PISIB value of 1.57 x 10-8. Locus Fca 161 was monomorphic, and the most 230 

informative locus was Fca 94. Average allelic dropout and false allele rates were 0.39 231 

and 0.10 as estimated by Pedant with 15 000 search steps. Microchecker identified two 232 

loci with possible stuttering (Fca 201, Fca 220), and analysis with MicroDrop 233 

highlighted two other samples with allelic dropout rates > 0.50. Dropout rates above 234 

0.50 have been shown to bias estimates of genetic diversity and population structure 235 

(Smith and Wang, 2014). These two individuals plus the three problematic loci (Fca 236 

161, 201, and 220) were therefore also removed from the dataset before subsequent 237 

analysis. Shaza suggested that all the remaining samples represented unique individuals 238 

apart from a possible match between two pairs of samples. Analysis with Colony 239 

suggested that these two pairs were most likely to be full-sibs so they were retained. The 240 

final dataset thus contained 25 individuals genotyped at 21 loci.  241 
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 242 

Overall, mean observed heterozygosity was 0.52 ± 0.03 s.e. and unbiased expected 243 

heterozygosity (UHe) was 0.66 ± 0.03 s.e. (Table 1; Table A4). The population sample 244 

did not appear to be in Hardy-Weinberg equilibrium (FIS = 0.201), which may be due to 245 

non-random mating or population subdivision. NeEstimator v2 gave an estimate of 246 

effective population size (Ne) = 22.2 (95% CI 14.9 - 37.5), comparable to that from the 247 

sibship assignment method in Colony (Ne = 18 with 95% CI 9 - 40). We also found a 248 

significant pattern of isolation by distance, which gave a neighborhood size estimate of 249 

29 individuals (95% CI 16 - 115).  250 

 251 

Overall differentiation between regions was low (θw = 0.08), with a θw value of ≤ 0.15 252 

(95% CI 0.05 - 0.18) between the southern group and the rest of the island. This agreed 253 

with the AMOVA analysis, which suggested that most of the genetic variance could be 254 

explained by grouping the regions into North-West-East and South (Table 2; Table A6). 255 

Results from BayesAss suggested that there was little migration into or out of the south 256 

region (mean migration rates ≤ 0.06). Most gene flow occurred from the west to the 257 

north, and from the west to the east (mean migration rates � 0.20).  258 

 259 

We found evidence of spatial autocorrelation with a significant relationship between 260 

genetic and geographic distance up to 850 km (Fig. A1). This is roughly equivalent to 261 

half the length of Sumatra. Analysis with Structure, Tess and Geneland suggested two 262 

to four genetic clusters with inconsistent assignment of individuals to the clusters (Fig. 263 

2; Table A7). Structure analysis inferred two main clusters – (i) Riau samples north of 264 

Tesso Nilo NP and (ii) the rest of Sumatra, including Ulu Masen, Kerinci Seblat 265 
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NP/Batang Hari, and Way Kambas NP. Structure results may have been biased by the 266 

unequal sample sizes between regions, as it has been shown to assign all the individuals 267 

from the largest sample to the same cluster (in this case the Riau samples). The output 268 

from TESS also suggested two main clusters: one large group encompassing the 269 

majority of the island, and a southern subgroup containing the Way Kambas samples. In 270 

contrast, Geneland suggested 4 clusters: (i) an admixed northern group encompassing 271 

Ulu Masen, (ii) a separate eastern group in Riau, (ii) an admixed east-west grouping 272 

including Kerinci Seblat NP/Batang Hari and Jambi province, and (iv) a southern Way 273 

Kambas group. These Geneland results infer some influence of underlying clinal 274 

variation within the Sumatran population. Thus, due to the unequal sampling and 275 

presence of isolation by distance, it was not possible to combine results from these three 276 

clustering methods to infer one pattern of population structure.  277 

 278 

4. Discussion 279 

This study represents the first genetic survey of the wild tiger population on Sumatra to 280 

include all the Tiger Conservation Landscapes and protected areas with global or long-281 

term priority. Overall, estimates of heterozygosity were higher than expected for an 282 

island subspecies, with some evidence of southern Sumatran tigers becoming 283 

genetically differentiated from the rest of the island. This is most likely due to reduced 284 

migration into and out of this region as a consequence of an expanding human 285 

population and agricultural footprint. With ongoing deforestation and land conversion 286 

also occurring in Riau province, it is likely that tigers in eastern Sumatra will eventually 287 

suffer a similar fate. 288 

 289 
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Sample collection over a period of 15 months generated 148 scats, which yielded 290 

useable DNA data from 25 different tiger individuals. The limited number of samples is 291 

in part due to the vast sampling area considered (> 140, 000 km2 of occupied forest) and 292 

the low average population density of tigers on Sumatra (~1 – 2 individuals/100 km2) 293 

(Wibisono and Pusparini, 2010). It also serves to highlight that whilst non-invasive 294 

samples such as faeces and hair are valuable sources of DNA for threatened mammal 295 

species in humid, tropical environments, the proportion of samples that can ultimately 296 

be used for genetic analysis ranges from ~25 – 75%, necessitating prolonged and 297 

repeated surveys for sample collection (e.g. Bhagavatula and Singh, 2006; Ernest et al., 298 

2000; Janečka et al., 2008; Lucchini et al., 2002).  299 

 300 

We also attempted to use a detection dog to increase sample detection during our 301 

surveys. Despite cultural sensitivities to handling dogs, the field teams adjusted well to 302 

working alongside the detection dog once introductory training had been completed. 303 

However, the high heat and humidity, hilly terrain, and changing locations challenged 304 

both the dog’s stamina and concentration, resulting in short periods of work before his 305 

motivation and focus tailed off. Therefore, for this study, we found that the field teams 306 

were more effective with consistent survey effort rather than the alternating rest and 307 

work periods required for the dog surveys.  308 

 309 

Although DNA quality has been shown to deteriorate with increasing sample age 310 

(Piggott et al., 2004; Santini et al., 2007; Panasci et al., 2011), we collected all scats 311 

during our surveys due to the expected low encounter rate for intact scats in this tropical 312 

environment. Fecal DNA is particularly prone to genotyping errors such as allelic 313 
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dropout and false alleles, but our results are similar to other non-invasive studies in 314 

carnivores (Broquet and Petit, 2004). Many different methods such as pre-amplification 315 

and sample dilution have been proposed to improve PCR success for non-invasive 316 

samples, but they had little effect in this study (data not shown). An ongoing pilot study 317 

in our research group suggests that combining an appropriate method of sample 318 

preservation (e.g. DNA/RNA Shield; Zymo Research), a DNA extraction method 319 

including homogenization (e.g. using FastPrep-24; MP Biomedicals), and amplification 320 

with inhibitor-resistant polymerases (e.g. KAPA2G Robust; KAPA Biosystems) can 321 

greatly improve data quality (data not shown). As it is difficult to obtain good quality 322 

scats in humid, tropical environments, others have explored the use of alternative 323 

sources of DNA, such as swabs taken from urine scent marks, which have much higher 324 

detection rates than scats in some sites (Caragiulo et al., 2015). For example, scent mark 325 

to scat detection ratios in Tambling Wildlife Nature Conservation, southern Sumatra, 326 

are typically between 3:1 and 4:1 (unpublished results). Tigers preferentially spray scent 327 

on overhanging trees or leaves along territory boundaries with up to 3.7 and 1.0 marks 328 

per km for males and females, respectively (Smith et al., 1989; Protas et al., 2010). 329 

Lipids contained within the urine sprays enable them to persist on the surfaces of 330 

vegetation (Andersen and Vulpius, 1999; Burger et al., 2008), and their characteristic 331 

scent is easily detected by people for up to 3 weeks after deposition.  332 

 333 

In this study, we used a subset of the microsatellite loci used by Luo et al. (2004) to 334 

show that wild Sumatran tigers retain levels of genetic variation comparable to 335 

mainland subspecies. Low heterozygosity has been shown to correlate with a high risk 336 

of extinction for many species, and threatened or island species are thought to have ~60 337 
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- 65% of the microsatellite heterozygosity of similar or related non-endangered species 338 

(Frankham and Ralls, 1998; Brook et al., 2002). Therefore, the level of genetic variation 339 

found bodes well for Sumatran tigers as it suggests that overall the population has not 340 

experienced significant genetic drift. Given that heterozygosity is expected to be lost at 341 

a rate of 1/2Ne per generation due to genetic drift alone (Hedrick, 2005; Hamilton, 342 

2009), we would expect Sumatran tigers to lose 1 - 3% of their genetic variation every 343 

generation (~ every 5 – 7 years). This is in the absence of other threats and assumes that 344 

current estimates of effective population size (Ne � 18 - 29) and generation time remain 345 

unchanged in the future. This rate could be higher for the smallest subpopulations of 346 

tigers (N < 30 individuals), which would result in a faster rate of decline and increased 347 

differentiation from other subpopulations. While genetic drift and loss of genetic 348 

variation at the subpopulation level could be counterbalanced to some extent by 349 

migration or gene flow (e.g. Vilà et al., 2003), those at the subspecies level cannot be 350 

ameliorated by migration. Hence, while maintaining or increasing connectivity is an 351 

important part of the management of low density, wide-ranging species, the 352 

fundamental management strategy should be to increase the overall population size by 353 

expanding tiger habitat and/or improving habitat quality which then may also lead to 354 

increasing connectivity. 355 

 356 

Our results may also represent a type of genetic extinction debt, in which population 357 

changes resulting from increased forest loss and poaching are subject to a time delay 358 

(Habel et al., 2015). The delay between the environmental change and a genetic effect is 359 

likely to be greater for long-lived species with low rates of population turnover 360 

(Kuussaari et al., 2009). Ultimately, if the pace of forest loss and human activity 361 
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continues at its current rate it is likely that we will start to see signs of reduced 362 

heterozygosity and greater population isolation on Sumatra (Helm et al., 2009). 363 

Increased homozygosity (and the resulting inbreeding depression) have been associated 364 

with increased extinction risk due to factors such as reduced reproductive success, a 365 

decrease in population fitness, and increased susceptibility to disease (Amos and 366 

Balmford, 2001; Spielman et al., 2004). Although these changes have been noted in 367 

some carnivore populations (e.g. Johnson et al., 2010; Fredrickson et al., 2007), for 368 

tigers there is little empirical evidence to determine at what level these changes would 369 

occur. 370 

 371 

The presence of isolation by distance suggests that Sumatran tigers are partly structured 372 

by a neighborhood mating system in which individuals are more likely to mate within a 373 

given area governed by dispersal distance. The estimated values of effective population 374 

size in this study (Ne = 18 – 29) give an Ne : Nc ratio in the range of ~0.04 - 0.06, 375 

where Nc represents the total estimated population of 500 tigers. This is in line with 376 

previous studies in Bengal and Amur tigers (Ne = 27 - 35) using genetic data and 377 

variance in reproduction (Henry et al., 2009; Smith and McDougal, 1991), and is close 378 

to the average ratio of 0.1 - 0.11 for wildlife populations (Frankham, 1995). However, it 379 

is lower than other cat species such as the leopard, cheetah, and puma in which ratios of 380 

0.25 – 0.64 have been recorded (Nowell and Jackson, 1996; Spong et al., 2000; Kelly, 381 

2001). Analysis with MRatio (Garza and Williamson, 2001) did not provide evidence 382 

for a recent population bottleneck (Smith, 2012) and thus other factors such as a 383 

polygynous mating system, in which dominant males mate with most available females, 384 

or sampling scale, may account for the low effective population size (Kaeuffer et al., 385 
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2004; Neel et al., 2013). However, restricting our analysis to the neighborhood size 386 

suggested by spatial autocorrelation (< 850 km) did not result in a significant difference 387 

in the estimates of Ne (data not shown).  388 

 389 

In the absence of gene flow, populations lose alleles under the influence of genetic drift 390 

and become increasingly differentiated (Falconer and MacKay, 1996). It was expected 391 

that geographic features such as Lake Toba and the Bukit Barisan mountain range might 392 

influence tiger population structure as they interrupt the distribution of other large 393 

mammals on Sumatra such as the tapir, orangutan, and rhino (Wich et al., 2016; 394 

Pusparini et al., 2015; Linkie et al., 2013). However, telemetry data shows that some 395 

tigers are capable of using ridgelines to cross the Bukit Barisan mountain range (Priatna 396 

et al., 2012), and our study did not find any obvious genetic discontinuity caused by 397 

these features. This is likely due to the tiger’s dispersal ability, which can reach up to 65 398 

km for males and 33 km for females (Smith, 1993; Goodrich et al., 2010), and 399 

highlights the importance of understanding differences in species’ abilities to disperse 400 

across natural and anthropogenic barriers. 401 

 402 

The high concentration of roads, settlements and plantations across parts of central 403 

Sumatra were also expected to act as dispersal barriers (Smith et al., 1998; Kerley et al., 404 

2002; Linkie et al., 2006), but again our results suggest that either tigers have been able 405 

to maintain a fairly continuous distribution using patches of ‘stepping stone’ habitat, or 406 

more likely that insufficient time has passed for measurable genetic drift to have 407 

occurred in this region. Given the tiger’s long generation time of 7 years (Seal et al., 408 

1994), it could take up to 105 years (15 generations) for a landscape barrier to produce a 409 
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detectable genetic signature (Holzhauer et al., 2006; Landguth et al., 2010). Therefore, it 410 

appears that the current Sumatran tiger population still exhibits evidence of the 411 

continuous distribution and genetic variation present within the ancestral Sunda 412 

population (Bay et al., 2014). However, given the current rates of land conversion to 413 

commercial crops such as oil palm and agroforestry, it is probable that much of the 414 

primary forest at lower elevations outside of conservation areas will be lost in the next 415 

30 - 50 years (Holmes, 2002). Repeating a genetic study such as this in the future is 416 

therefore likely to show a more extensive pattern of population isolation and a more 417 

profound loss of genetic variation (Wearn et al., 2012; With, 2004). 418 

 419 

In contrast to central Sumatra, there appears to be very little gene flow into or out of 420 

Way Kambas NP in the southern tip of Sumatra - this national park showed the highest 421 

pairwise FST and the lowest migration rates. These high FST values represent a separation 422 

from the sampled TCL populations in western and eastern Sumatra. While we 423 

acknowledge that there may be some exchange of individuals with the nearest protected 424 

areas in Berbak/Sembilang NP and Bukit Balai Ranjang NP, Way Kambas covers a 425 

relatively small area of isolated habitat (~1300 km2) and has a small population of ~30 426 

tigers with low occupancy rates (Wibisono et al., 2011; Sanderson et al., 2006). 427 

Maintaining gene flow or connectivity and the quality of the surrounding matrix is 428 

thought to be crucial to the survival of tigers within smaller protected areas 429 

(Ranganathan et al., 2008). However, the prospects for increasing connectivity in this 430 

region are bleak.  431 

 432 

Primary lowland forest has been replaced by a mosaic of agricultural crops and 433 
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plantations, (Miettinen et al., 2008; Miettinen and Liew, 2010), and a zone of 434 

urbanization surrounds the park such that there are no significant buffer zones suitable 435 

for wildlife (Nyhus and Tilson, 2004; Imbernon, 1999). Although the early stages of 436 

forest conversion may be beneficial to tigers due to the creation of secondary forest and 437 

edge habitats that support many prey species (Berry et al., 2010; Maddox et al., 2007; 438 

Barlow et al., 2007; Sunquist, 1981; Santiapillai and Ramono, 1987), many degraded or 439 

previously logged areas are quickly converted to oil palm or other agricultural 440 

plantations which are not as beneficial to tigers (Barber and Schweithelm, 2000). 441 

Frontier activities by local communities at the borders of national parks/wildlife 442 

reserves and agricultural concessions also commonly progress to more wide-scale 443 

operations or permanent rural settlements (Smith, 2009). And some habitat degradation, 444 

encroachment and hunting also occurs within park borders such that these are not the 445 

inviolate refugia their names suggest (e.g. Forrest et al., 2011; Gaveau et al., 2009b).  446 

 447 

Lowland peat swamp forest in eastern Sumatra is suffering a similar fate with land 448 

being cleared at a rate of up to 2.3% per year (Uryu et al., 2008; Hansen et al., 2009; 449 

Broich et al., 2011; Koh et al., 2011; Miettinen et al., 2012). Riau lost more than 50% of 450 

its primary lowland forest between 1990 and 2010, and focus has now shifted to 451 

primary peat swamp forest (Margono et al., 2012, 2014). This rate of deforestation is 452 

likely to continue as Indonesia plans to increase its land allocation to oil palm, paper 453 

and pulp to just under 15 million hectares by 2030 (Wilcove et al., 2013). These land 454 

use types support much lower species richness compared to primary forest (~38%), and 455 

tigers are commonly extirpated from these areas (Maddox et al., 2007; Smith, 2009; 456 

Danielsen et al., 2009; Fitzherbert et al., 2008). This combination of poaching pressure 457 



 20 

and impoverished habitat is therefore likely to result in a population decline and 458 

increased genetic differentiation between protected areas as the options for tiger 459 

movement across the agricultural matrix are reduced (Kenney et al., 1995; Linkie et al., 460 

2006; Chapron et al., 2008). 461 

 462 

Tiger populations are more likely to suffer extinction debt in areas where there is 463 

overlap with agricultural or rural development, and these could serve as priority hot 464 

spots where intervention is most likely to be effective (Helm et al., 2009; Wearn et al., 465 

2012). Despite a national government moratorium on conversion of peatland and 466 

primary forest since 2011 (Austin et al., 2014), the Ministry of Forestry has also 467 

pledged a commitment to expanding the oil palm and timber industries to support 468 

national and international demand (Karyaatmadja et al., 2011; Brockhaus et al., 2012; 469 

Harahap et al., 2017). Uncertainties around land classification and implementation of 470 

the moratorium have resulted in continued loss of primary forest on Sumatra, 471 

particularly in Riau province and around Tesso Nilo NP (Harris et al., 2017). Therefore, 472 

there needs to be greater coordination across different government policies (biofuels, 473 

climate, forestry and agriculture) to ensure adequate protection of the primary and 474 

secondary forested lands which are key to supporting the remaining tiger populations. 475 

 476 

 477 

5. Conclusions 478 

We present the first assessment of the effects of landscape change on the tigers on 479 

Sumatra. Our results show that the Sumatran tiger has retained levels of genetic 480 

diversity comparable to mainland subspecies and that there is evidence to suggest 481 
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reduced gene flow for tigers in the extreme south of Sumatra. Whilst we acknowledge 482 

the limited sample size, the distribution of sampling sites represents a good proportion 483 

of the remaining tiger habitat on Sumatra. Precise estimates of genetic variation can be 484 

made with as few as 10 individuals (Smith and Wang, 2014), and therefore, our results 485 

provide a good overview of the genetic status of the wild Sumatran tiger population. 486 

This study also demonstrates that the genetic data obtained from non-invasive samples 487 

is critical to understanding the genetic diversity and population structure of large-488 

bodied, low-density mammals such as the tiger; individuals are not easily captured for 489 

biological sampling, baited hair traps are not reliable, and dens or latrines are rarely 490 

seen. Similar methods are being used to study the Sumatran elephant and Sumatran 491 

rhino, which will provide more information on the effects of land conversion on other 492 

threatened large mammal species.  493 

 494 
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TABLES 974 

 975 

Table 1. Estimates of genetic diversity in subspecies of Panthera tigris. Microsatellite 976 

loci were not identical between studies but showed some degree of overlap between the 977 

loci used. 978 

Tiger 
subspecies 

No. of 
individuals 

No. of 
loci 

Observed 
heterozygosity 

Expected 
heterozygosity 

Reference 

P.t. sumatrae 25 21 0.52 ± 0.03 s.e. 0.64 ± 0.03 s.e. This study 

P.t. sumatrae 16 30 0.47 ± 0.02 0.49 ± 0.04 Luo et al. 

2004 

P.t. altaica 34 30 0.47 ± 0.02 0.46 ± 0.04 Luo et al. 

2004 

P.t. altaica 95 8 0.26 ± 0.11 - Henry et al. 

2009 

P.t. corbetti 33 30 0.64 ± 0.02 0.67 ± 0.03 Luo et al. 

2004 

P.t. jacksoni 22 30 0.56 ± 0.02 0.57 ± 0.03 Luo et al. 

2004 

P.t. tigris 6 30 0.52 ± 0.04 0.57 ± 0.04 Luo et al. 

2004 

P.t. tigris 73 5 0.70 ± 0.16 s.d. - Mondol et al. 

2009 

 979 
 980 
  981 
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Table 2. Pairwise differentiation (θw) for regional groups in the Sumatran tiger 982 

population. Estimates were computed in Genepop and significant values (p < 0.05) are 983 

indicated with an asterisk.  984 

 North † East West South 

North -    

East 0.07* -   

West 0.06 0.03 -  

South 0.15* 0.15* 0.13* - 
† North - Ulu Masen-Gunung Leuser ecosystem; East - Tesso Nilo NP, Kerumutan 985 

Wildlife Reserve, Berbak NP; West - Kerinci Seblat NP, Batang Hari protection forest; 986 

South - Way Kambas NP. 987 

 988 
 989 
 990 
 991 
 992 
 993 
 994 
 995 
 996 
 997 
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FIGURES 998 

 999 

 1000 

Fig. 1a. Map showing the remaining Sumatran forest habitat that is occupied by tigers 1001 

(data from Wibisono and Pusparini 2010). Locations where faecal samples were 1002 

collected are indicated by the red points.  1003 

 1004 

  1005 
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 1006 

Fig. 1b. Regional subdivision of the Tiger Conservation Landscapes and protected areas 1007 

sampled during this study. The Northern group includes the Ulu Masen ecosystem; the 1008 

Western group includes Kerinci Seblat NP and Batang Hari protection forest; the 1009 

Eastern group includes Tesso Nilo NP, Kerumutan wildlife reserve, Bukit Tigapuluh 1010 

NP, and Berbak NP; and the Southern group includes Way Kambas NP. Locations of 1011 

the tiger positive samples are represented by the red points1012 
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 1013 

 1014 

Fig. 2. Maps showing the genetic subgrouping of positive tiger samples using 3 different algorithms in Structure, Tess, and Geneland. 1015 

Stucture preferentially separated northern Riau samples from the rest of Sumatra. Tess placed southern Way Kambas samples into a 1016 

separate group. Geneland suggested 4 subgroups, which could reflect underlying isolation by distance.  1017 


