
Quantum mechanical analysis of nonlinear optical response of interacting graphene
nanoflakes
Hanying Deng, David Zs. Manrique, Xianfeng Chen, Nicolae C. Panoiu, and Fangwei Ye

Citation: APL Photonics 3, 016102 (2018); doi: 10.1063/1.5009600
View online: https://doi.org/10.1063/1.5009600
View Table of Contents: http://aip.scitation.org/toc/app/3/1
Published by the American Institute of Physics

Articles you may be interested in
Enhanced Faraday rotation and magneto-optical figure of merit in gold grating/graphene/silicon hybrid
magneto-plasmonic devices
APL Photonics 3, 016103 (2018); 10.1063/1.5008775

Sideband pump-probe technique resolves nonlinear modulation response of PbS/CdS quantum dots on a
silicon nitride waveguide
APL Photonics 3, 016101 (2018); 10.1063/1.5005490

End-fire silicon optical phased array with half-wavelength spacing
APL Photonics 3, 011301 (2018); 10.1063/1.5000741

An integrated nonlinear optical loop mirror in silicon photonics for all-optical signal processing
APL Photonics 3, 026102 (2018); 10.1063/1.5013618

Tutorial: Integrated-photonic switching structures
APL Photonics 3, 021101 (2018); 10.1063/1.5017968

High-performance axicon lenses based on high-contrast, multilayer gratings
APL Photonics 3, 011302 (2018); 10.1063/1.5009760

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1967847154/x01/AIP-PT/APLP_ArticleDL_0618/AIP_CP_eTOC_1640x440_ad.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Deng%2C+Hanying
http://aip.scitation.org/author/Manrique%2C+David+Zs
http://aip.scitation.org/author/Chen%2C+Xianfeng
http://aip.scitation.org/author/Panoiu%2C+Nicolae+C
http://aip.scitation.org/author/Ye%2C+Fangwei
/loi/app
https://doi.org/10.1063/1.5009600
http://aip.scitation.org/toc/app/3/1
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.5008775
http://aip.scitation.org/doi/abs/10.1063/1.5008775
http://aip.scitation.org/doi/abs/10.1063/1.5005490
http://aip.scitation.org/doi/abs/10.1063/1.5005490
http://aip.scitation.org/doi/abs/10.1063/1.5000741
http://aip.scitation.org/doi/abs/10.1063/1.5013618
http://aip.scitation.org/doi/abs/10.1063/1.5017968
http://aip.scitation.org/doi/abs/10.1063/1.5009760


APL PHOTONICS 3, 016102 (2018)

Quantum mechanical analysis of nonlinear optical
response of interacting graphene nanoflakes

Hanying Deng,1,2 David Zs. Manrique,2 Xianfeng Chen,1 Nicolae C. Panoiu,2
and Fangwei Ye1,a
1Key Laboratory for Laser Plasma (Ministry of Education), Collaborative Innovation Center
of IFSA (CICIFSA), School of Physics and Astronomy, Shanghai Jiao Tong University,
800 Dongchuan Road, Shanghai 200240, China
2Department of Electronic and Electrical Engineering, University College London,
Torrington Place, London WC1E7JE, United Kingdom

(Received 17 October 2017; accepted 11 December 2017; published online 29 December 2017)

We propose a distant-neighbor quantum-mechanical (DNQM) approach to study the
linear and nonlinear optical properties of graphene nanoflakes (GNFs). In contrast to
the widely used tight-binding description of the electronic states that considers only
the nearest-neighbor coupling between the atoms, our approach is more accurate and
general, as it captures the electron-core interactions between all atoms in the structure.
Therefore, as we demonstrate, the DNQM approach enables the investigation of the
optical coupling between two closely separated but chemically unbound GNFs. We
also find that the optical response of GNFs depends crucially on their shape, size, and
symmetry properties. Specifically, increasing the size of nanoflakes is found to shift
their accommodated quantum plasmon oscillations to lower frequency. Importantly,
we show that by embedding a cavity into GNFs, one can change their symmetry prop-
erties, tune their optical properties, or enable otherwise forbidden second-harmonic
generation processes. © 2017 Author(s). All article content, except where other-
wise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5009600

I. INTRODUCTION

Owing to their ability to confine and guide light down to nanometer scale, the collective oscilla-
tions of electrons in conducting materials, known as plasmons, have generated great expectations for
applications ranging from metamaterials,1–3 quantum optics,4,5 and photovoltaics6 to photodetectors7

and biological sensing.8,9 Plasmons are commonly observed in noble metallic nanostructures, appear-
ing as pronounced spectral resonances in their optical absorption and scattering spectra. However,
noble metals suffer from relatively large ohmic losses, resulting in a limited plasmon lifetime.10,11 In
addition, metal plasmons can hardly be tuned, unless one uses metallic nanoparticles with different
shapes,12 thus severely limiting the operating spectral domain.

Graphene, a monolayer of carbon atoms arranged in a hexagonal lattice,13 has emerged as a
promising alternative to noble metals for nanoplasmonic applications due to its ability to support
plasmons with unique properties, including large tunability,14,15 long lifetime,15,16 and high degree
of optical confinement.17,18 Strong intrinsic optical nonlinearity has also been observed in graphene
and that can be further enhanced by plasmons. By using bottom-up chemical synthesis methods19

or top-down electron-beam techniques,20,21 nanometer-sized graphene nanoflakes (GNFs) with var-
ious shapes and sizes can be manufactured, providing a versatile platform to investigate plasmonic
phenomena at the quantum level. In addition to inheriting remarkable physical properties from the
extended sheet, the nanometer-sized graphene supports even more confined plasmons. Moreover,
the plasmonic response of nanometer-sized graphene can reach the visible-light spectrum region
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that is beyond the range of the plasmons in extended graphene sheets, thus extending our ability to
manipulate visible light at deep-subwavelength scale.

Intense research efforts have recently advanced our understanding of linear and nonlinear opti-
cal properties of nanostructured graphene.22–25 For extended graphene, the nonlinear response is
commonly described using a classical nonlinear conductivity derived from the Boltzmann trans-
port equation,26 assuming that intraband transitions dominate the optical response. Such classical
electrodynamic description is invalid for nanometer-sized graphene, as the optical properties of
nanostructured graphene are strongly influenced by nonlocal and finite-size effects. More recently,
ab initio methods and the tight-binding (TB) description of the electronic states have been applied to
investigate the optical response of the nanometer-size graphene.27,28 The TB method is not accurate
enough in general, since only the interaction of nearest-neighbor atoms is considered. Moreover, the
TB method is not suitable for non-tightly bound structures, such as two interacting GNFs. Although
ab initio techniques take into account the many-body interactions and therefore are more accurate
and general than the TB approach, quantitatively accurate predictions of optical properties are com-
putationally expensive, and therefore their application is limited to fewer atoms than those employing
the TB method.

In our study, we use an all-atom coupling approach to calculate the linear and nonlinear polariz-
abilities of GNFs, which are the finite-size analog of linear and nonlinear optical susceptibilities of
bulk optical media. In our approach, we assume that the π-orbitals of each atom are coupled to the
core potential of all atoms. The electronic structure is then calculated, and a perturbative approach29

is subsequently used to evaluate the linear and nonlinear polarizabilities. Importantly, our method
inherently accounts for the symmetry properties of GNFs. For example, our method predicts that no
second-harmonic is generated in GNF configurations invariant to inversion symmetry transformations
as second-harmonic generation (SHG) is forbidden in such centrosymmetric structures. In order to
illustrate the flexibility and generality of our method, we apply it to GNFs of different shapes and
sizes, cavities in GNFs, and dimers of GNFs of different shapes.

II. OPTICAL RESPONSE CALCULATION AND RESULTS

A. Optical response calculation

Under illumination with an optical beam with frequency tuned to a frequency at which plasmons
can be excited in the GNF, these graphene structures generate significant nonlinear optical response,
which manifests as enhanced second-harmonic generation (SHG) and third-harmonic generation
(THG). In this work, we study the nonlinear optical response of GNF with various shapes and
topologies, namely, the linear and nonlinear polarizabilities of such structures. We model GNFs as
a planar hexagonal distribution of carbon atoms with lattice constant a = 1.42 Å. For example, as
illustrated in Fig. 1(a), a triangular GNF consisting of 141 carbon atoms has a side length of 2.2 nm.
Considering that the localized electrons in the carbon-carbon σ-bond do not contribute significantly
to the low energy optical response, only the π-bond forming pz orbitals are included in the quantum-
mechanical calculation. That is, each carbon atom is represented by a single pz orbital oriented
perpendicularly to the graphene plane, as per Fig. 1(b).

In order to investigate non-tightly bound structures, we considered interactions between the pz

electrons and all cores in the structure. The Hamiltonian operator for a single electron in the GNF is
expressed as

Ĥ =−
~

2m
∇2
~r −

N∑
α=1

Zeff e2

~r −~r0α
, (1)

where Zeff is the effective core charge, the first term describes the kinetic energy, and the second
term represents the potential arising from the Coulomb interactions between the pz electron and all
the other nuclei in the GNF. The electronic structure is computed using the Schrödinger equation

Ĥψ(~r)=Eψ(~r), (2)

where E and ψ(~r) are the eigenenergy and eigenfunction, respectively. Then, we follow a perturbative
approach to evaluate the linear and nonlinear optical response of GNFs (see supplementary material

ftp://ftp.aip.org/epaps/apl_photonics/E-APPHD2-3-001801


016102-3 Deng et al. APL Photonics 3, 016102 (2018)

FIG. 1. (a) Illustration of nonlinear optical interactions in a triangular GNF. (b) Schematic representation of sp2 hybridization
of carbon atoms of graphene. (c) Triangular and hexagonal GNFs. Tn and Hn denote triangular and hexagonal GNFs, where
n is the number of 6-atom hexagons on the side of GNFs. (d) Dimer structures with the separation distance, D. (e) Hexagonal
GNFs containing a cavity at the Γ point and along the ΓM and ΓK directions. In all cases, the planar GNFs lie on the x–y plane.

for more details about the quantum mechanical calculations). The structures investigated in this paper
are a series of triangular and hexagonal GNFs [Fig. 1(c)], and dimers of triangular and hexagonal
GNFs [Fig. 1(d)] to demonstrate inter-nanoflake optical coupling. We also study the optical response
of hexagonal GNFs with an embedded cavity, as shown in Fig. 1(e). The cavity is located either at
the center of the cavity or along the ΓM or ΓK symmetry axes of the cavity.

B. Shape and size effects in optical response of graphene nanoflakes

We assume that the incident electric field is polarized in a direction parallel to one of the sides
of the triangle or hexagon, indicated as the x axis in Fig. 1(a), with all the structures considered in
this work being assumed to lie in the x–y plane. We first consider hexagonal GNFs. Because they are
centrosymmetric structures, SHG is forbidden in hexagonal GNFs, and thus we focus on their first-
(linear) and third-order optical response.

In Fig. 2, we show the frequency dependence of linear polarizability and THG nonlinear polar-
izability of hexagonal GNFs, with the size of the GNF increasing from the top to the bottom panel,
as illustrated in the middle panels. Figures 2(a)–2(f) present the real and imaginary parts of linear
polarizability, αxx(ω), of hexagonal GNFs. The polarizability spectrum clearly shows that the peak
of the imaginary part of the polarizability occurs at the spectral position where its real part becomes
exactly zero, which is the condition that defines the existence quantum plasmons. For the smallest
size, which is a single benzene, the linear polarizability shows a resonance at 6 eV [see Fig. 2(a)],
which corresponds to the transition from the highest-occupied molecular orbital (HOMO) to the
lowest-unoccupied molecular orbital (LUMO). With the structural size increasing, some additional
resonances expectedly appear as more energy levels are involved into the optical transitions. As
expected, our calculations predict that the magnitude of the polarizability increases when the size of
the GNF increases, as the density of states increases with the number of atoms in the GNF. We also
note that the peak energy of the plasmon resonance is continuously red-shifted with the increase in
the structural size of the GNF, which is a consequence of finite-size effects of these GNF that is not
included in their classical description but captured by our DNQM description. Importantly, as the
size of the GNF increases, additional plasmon resonances can be seen in the spectra, which is similar
to what can be observed in the classical regime.

Figures 2(g)–2(l) show the real and imaginary parts of the third-order polarizability, γxxxx(ω),
(also called second hyperpolarizability when referring to molecules) associated with the THG. Note
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FIG. 2. The effect of the GNF size on the optical response of hexagonal GNFs. Real and imaginary parts of linear polarizability
[(a)–(f)] and the third-order nonlinear polarizability for THG [(g)–(l)] of hexagonal GNFs with different sizes as shown in
the middle panel. The red (green) curves indicate the imaginary (real) part of the polarizabilities. The linear and nonlinear
polarizabilities are calculated in atomic units (a.u.) with e= ~=me = a0 = 1 and should be multiplied by the factors given in
the supplementary material.

that the nonlinear response of GNFs is also highly sensitive to the structural size, and with the
increase in the size of the GNF, the magnitude and the resonance frequency of the nonlinear plasmon
oscillations exhibit the same trend as in the linear case. Also note that both linear and nonlinear
resonances can reach the visible-range spectrum as long as the size of the GNFs is small enough.

The results for triangular GNFs are presented in Fig. 3. The top panels show the structures
of triangular GNFs under consideration with their size increasing from left to right. Unlike the
centrosymmetric hexagonal structures, triangular GNFs are non-centrosymmetric, and consequently
the second-order polarizability tensor, β, (also called hyperpolarizability) has non-zero components,
meaning that the SHG is allowed. In particular, considering the symmetry properties of the triangle,
βyyy , 0, and thus this is the component we considered in our study.

The incident-frequency dependence of the linear polarizability αyy(ω) on triangular GNFs, cal-
culated for GNFs of different sizes, is presented in Fig. 3(a). Note that increasing the structural size
induces a red-shift for the plasmon frequency, similar to the case of hexagonal GNFs. The imaginary
and real parts of nonlinear polarizabilities corresponding to SHG (βyyy), and THG (γyyyy) for triangu-
lar GNFs are shown in Figs. 3(b) and 3(c), respectively. Similarly to the case of hexagonal structures,
the most pronounced peak in the spectra of nonlinear polarizabilities is red-shifted when the GNF
size increases. However, the particular shape of the corresponding linear and nonlinear spectra of
the triangular GNFs is markedly different from the analog ones calculated for the hexagonal GNFs,
implying that the optical response of GNFs is strongly dependent on their geometrical configuration.

In Figs. 3(d)–3(f), we present an overview of the dependence of the first resonance peak energy
for the first-, second-, and third-order polarizabilities, respectively, on the number of carbon atoms
of a triangular GNF. Expectedly, the magnitude of the linear and nonlinear polarizabilities increases
with the number of carbon atoms in the GNF. Additionally, the resonance peaks display an obvious
red-shift with the increase in the number of carbon atoms, the steepest variation occurring in the
linear response. In particular, when the number of carbon atoms increases from 13 to 198, the first
resonance peak energy of the linear, second-order, and third-order polarizabilities varies by 2.45 eV,
1.25 eV, and 0.825 eV, respectively.

C. Graphene nanoflakes containing a quantum cavity

We next investigate the linear and nonlinear optical response of GNFs containing a quantum
cavity. The cavity can be created at desired locations by removing one or more carbon atoms. As

ftp://ftp.aip.org/epaps/apl_photonics/E-APPHD2-3-001801


016102-5 Deng et al. APL Photonics 3, 016102 (2018)

FIG. 3. The effect of GNF size on the optical response of triangular GNFs. We show the normalized real and imaginary parts
of (a) linear, (b) second-order, and (c) third-order polarizability, calculated for the triangular GNFs shown in the top panel. The
red (green) curves indicate the imaginary (real) part of the polarizabilities. The circular symbols show the dependence of the
first resonance peak energy on the number of carbon atoms for (d) linear, (e) second-order, and (f) third-order polarizabilities.
The magnitudes of the peaks of the linear and nonlinear polarizabilities are proportional to the area of the circles.

expected, the optical response of GNFs can be significantly altered by the presence of the cavity.
In particular, the cavity can break the inversion symmetry of the GNF so that, as is the case with
SHG, forbidden nonlinear optical interactions become possible. We illustrate this and other cavity
effects in Fig. 4, by comparing the linear and nonlinear polarizabilities of two hexagonal GNFs
(H3 and H6) that contain a cavity at different locations (see the cavity location in the inset). For a
better comparison, the linear and nonlinear spectra of full GNFs are also presented.

These calculations reveal several important conclusions. Thus, compared to the GNF of larger
sizes (H6), the presence of a cavity into a smaller GNF (H3) produces more dramatic modifications
of the spectra of polarizabilities. Interestingly, we note that a cavity introduced at the center of the
H3 nanoflake induces a blue-shift of the linear and nonlinear plasmon frequencies, whereas a cavity
located off center on the ΓK symmetry axis induces a red-shift [see the top panels in Figs. 4(a)
and 4(b)]. Equally important, we find that the H3 flake has resonances in the visible domain, even
when it contains a cavity.

For the larger GNF (H6), the spectral changes produced when a cavity is inserted in the nanoflake
are relatively small; however, in the presence of the cavity, the second-order polarizability is no longer
identical to zero. To be more specific, in the case of full hexagonal structures, SHG is strictly forbidden
due to inversion symmetry, whereas in the presence of the cavity along the ΓK or ΓM symmetry axes,
inversion symmetry breaking induces intense SHG when the fundamental frequency is near the
plasmon resonances, as shown in Fig. 4(c). Of course, when the cavity is at the center of the GNF, the
inversion symmetry of the structure is preserved, and thus all even-order polarizabilities of hexagonal
GNFs identically vanish. This effect can be used as an efficient approach to engineer the nonlinear
optical response of graphene structures. It can also have important practical implications, e.g., to
molecular sensing. Thus, similar to the effect of the cavity, a molecule adsorbed by the GNF can
drastically alter its symmetry properties and significantly change the nature of generated nonlinear
optical signal.
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FIG. 4. Linear and nonlinear polarizabilities of hexagonal GNFs containing a quantum cavity. We consider the hexagonal
GNF H3 with a cavity located at Γ and off center, along the ΓK direction, and H6 with a cavity at Γ or along the ΓK and
ΓM directions (see the middle panel). We show the normalized real (green) and imaginary (red) part of (a) linear and (b) the
third-order polarizabilities. The normalized nonzero second-order polarizabilities when the cavity is along the ΓK and ΓM
directions are shown in (c).

D. Optical response of GNF dimers

Finally, we explore the effects arising from optically coupling two closely spaced GNFs. As two
specific examples, we investigate the optical coupling between two hexagonal and triangular GNFs,
as schematically shown in Fig. 5. Here we want to emphasize that the widely used tight-binding
model does not describe the electronic states for GNFs dimers, as it does not allow coupling between
atoms beyond the nearest neighbors, and accordingly is not suitable for the study of the interaction
between two GNFs. By contrast, the DNQM approach we proposed captures interactions among all
atoms of the structure, and thus it is well suited for the investigation of composite configurations,
such as GNF dimers.

Figure 5 presents the variation of linear and third-order nonlinear polarizabilities of hexagonal
and triangular GNF dimers as a function of the spacing between the two comprising nanoflakes, D.

FIG. 5. Dependence of linear and nonlinear polarizabilities of GNF dimers on the separation distance, D. a = 1.42 Å is the
lattice constant. [(a) and (b)] Variation of the linear polarizability of hexagonal and triangular GNF dimers with D, respectively.
[(c) and (d)] Variation of the third-order nonlinear polarizability of hexagonal and triangular GNF dimers with D, respectively.
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Note that the second-order nonlinear processes are forbidden in these two dimer configurations due
to their inversion symmetry. As Fig. 5 shows, for large D values, the coupling between two flakes
is negligible, and consequently the spectrum of the “dimers” is essentially identical with that of a
single GNF. Only when D becomes small enough, the optical properties of dimerized GNFs begin to
deviate from those of a single GNF. Remarkably, as can be seen from the linear polarizability spectra
shown in Figs. 5(a) and 5(b), whereas only one pronounced peak exits for a single-GNF as seen for
larger D, for small D, the interaction between the two plasmons of the GNFs induces an energy split
that increases as D decreases. In addition, with the increase of D, the additional lowest-energy peak
is blue-shifted for the hexagonal GNF dimer [Fig. 5(a)] and is red-shifted for the triangular GNF
dimer [Fig. 5(b)]. The size of the energy splitting is an indication of the strength of the interaction
between the GNFs. Using this measure, one can conclude that hexagonal GNFs interact much more
strongly as compared to the triangular ones, a possible explanation of this finding being that more
carbon atoms are in close proximity of each other than in the case of triangular GNF dimers. It should
also be noted that the coupling between two GNFs can significantly alter the third-order nonlinear
polarizabilities, too, as per Figs. 5(c) and 5(d).

III. CONCLUSIONS

In summary, we have computed the linear and nonlinear polarizabilities of GNFs using a distant-
neighbor quantum mechanical approach and revealed that the optical response of graphene nanoflakes
depends significantly on their shape, size, and symmetry properties. In particular, the peak energy of
the plasmon resonance is red-shifted, and the magnitude of the linear and nonlinear polarizabilities
increases as the size of the graphene nanoflake increases. Significant changes in the optical response
were demonstrated by introducing a quantum cavity in the graphene nanoflake. In particular, strong
second-harmonic generation is enabled in hexagonal graphene nanoflakes by using a cavity to break
the structural inversion symmetry. We have also explored the optical response of graphene nanoflake
dimers and found that the strong coupling between two closely spaced graphene nanoflake leads to
the energy splitting of the plasmon band, the magnitude of this splitting depending on the shape of
the interacting nanoflakes. Importantly, the theoretical techniques and ideas developed in this study
are not specific to graphene but can be extended to other two-dimensional (2D) materials, such as
MoS2

30,31 and black phosphorous32,33 (one only needs to update in our method the corresponding
Hamiltonian operator and basis functions of each atom for these new materials). Potential applications
of our findings to molecular sensors have also been discussed.

SUPPLEMENTARY MATERIAL

See supplementary material for the supporting content.
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P. Godignon et al., Nature 487, 77 (2012).
15 F. H. Koppens, D. E. Chang, and F. J. G. de Abajo, Nano Lett. 11, 3370 (2011).
16 H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, Nano Lett. 12, 3766 (2012).
17 Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez et al.,

Nature 487, 82 (2012).
18 A. Grigorenko, M. Polini, and K. Novoselov, Nat. Photonics 6, 749 (2012).
19 J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng et al.,

Nature 466, 470 (2010).
20 B. Song, G. F. Schneider, Q. Xu, G. Pandraud, C. Dekker, and H. Zandbergen, Nano Lett. 11, 2247 (2011).
21 Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, and G. Zhang, Adv. Mater. 23, 3061 (2011).
22 J. D. Cox and F. J. G. de Abajo, Nat. Commun. 5, 5725 (2014).
23 J. D. Cox, I. Silveiro, and F. J. G. de Abajo, ACS Nano 10, 1995 (2016).
24 A. Lauchner, A. E. Schlather, A. Manjavacas, Y. Cui, M. J. McClain, G. J. Stec, F. J. G. de Abajo, P. Nordlander, and

N. J. Halas, Nano Lett. 15, 6208 (2015).
25 J. D. Cox and F. J. G. de Abajo, ACS Photonics 2, 306 (2015).
26 S. Mikhailov, Europhys. Lett. 79, 27002 (2007).
27 M. Ezawa, Phys. Rev. B 76, 245415 (2007).
28 S. Thongrattanasiri, A. Manjavacas, and F. J. G. de Abajo, ACS Nano 6, 1766 (2012).
29 R. W. Boyd, Nonlinear Optics, 3rd ed. (Taylor & Francis, 2003).
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