

Exploring the Uncertainty of BECCS in the Future UK Low-Carbon Energy System

Dr. Pei-Hao Li (p.li@ucl.ac.uk) UCL Energy Institute ETSAP Meeting, Stuttgart, Germany 7th-9th Nov, 2018

Outline

- Introduction
- UK TIMES (UKTM)
- BECCS in UKTM
- Scenarios
- Results
- Conclusions and Future Works

Introduction

- 2008 UK Climate Change Act: 80% reduction by 2050
 - ➢ Five carbon budgets (up to 2032) so far
- Paris Agreement (12th Dec, 2015)
 - "The Paris Agreement, in seeking to strengthen the global response to climate change, reaffirms the goal of limiting global temperature increase to well below **2 degrees Celsius**, while pursuing efforts to limit the increase to **1.5 degrees**."
- IPCC 1.5 degree special report (8th Oct, 2018):
 - only 12 years left to limit climate change catastrophe
- UK government (15th Oct, 2018) requested the CCC:
 - Evaluate when and how to achieve net zero GHG emissions
- Negative emission technologies (including BECCS) are crucial
- But BECCS is highly uncertain!!

UK TIMES (UTKM)

- Developed by UCL Energy Institute with BEIS in wholeSEM project
- A whole energy systems model
- Technology-rich, Minimum cost
- Adopted by UK government (BEIS, CCC) for policy making (5th Carbon Budget, Clean Growth Strategy), National Grid (Future Energy Scenarios), consultancies, universities

BECCS in UKTM

- **Bioenergy resource:** import, domestic production, transformation and transport (supply chain)
- **BECCS:** majorly for electricity generation and hydrogen production

Scenarios for uncertain BECCS

- Bioenergy availability (low and high)
 - According to AEA Ricardo report on UK biomass feedstock availability
- GHG targets:
 - The Climate Change Act 2008: 80% reduction on 1990 level by 2050
 - 5th Carbon Budget: 57% reduction on 1990 levels by 2030
 - Constraint on cumulative GHG emissions during 2032~2050
 - For net zero scenarios, net GHG emissions should be 0 in 2050

GHG targets	Low bio CCS from 2021	Low bio CCS from 2040	High bio CCS from 2021	High bio CCS from 2040
80% reduction by 2050	GHG80_BIOL (Reference)	GHG80_BIOL _CCS2040	GHG80_BIOH	GHG80_BIOH _CCS2040
Net zero by 2050	Infeasible	Infeasible	GHG100_BIOH	GHG100_BIO H_CCS2040

Results: GHG Emissions

- **Higher BIO:** Much lower emissions from ELC generation and H2 production
- **GHG80 + higher BIO:** More emissions from residential and transport sectors
- Delay of CCS: less emissions from H2 production

Results: Elc Supply & Demand

- Higher BECCS: negative emissions
- Extreme cases: more nuclear power, higher electrification in the industrial and residential sectors

Results: Final Energy Consumption

- Delay of CCS: less hydrogen ٠
- **GHG80 + high BIO:** more fossil fuels, less electricity, less hydrogen •
- **GHG100:** higher electrification levels •

Difference of Final Energy Consumption in 2050

Results: Costs

• Higher costs

- Lower availability of bioenergy
- Stricter GHG targets and delay of CCS
- GHG100_BIOH: sharp increase of levels of electrification in final years

Results: Net Zero

Final Energy Consumption

Sectoral Electricity Consumption

GHG100 BIOH CCS2040

- Influences on decarbonisation costs
 - GHG targets > Bio availability > delay of CCS

Difference of undiscounted costs in 2050 (GHG80_BIOL as base)

GHG80_BIOL_CCS2040	GHG80_BIOH	GHG80_BIOH_CCS2040	GHG100_BIOH	GHG100_BIOH_CCS2040
1.4%	-6.2%	-3.6%	4.4%	6%

- BECCS
 - Especially important to decarbonise the Elc sector
 - Create rooms for other sectors
- Usage of bioenergy is flexible
- Net zero by 2050
 - Impossible without BECCS (or CCS after 2040)
 - Delay of CCS:
 - Extremely high level of electrification (esp. industrial sector)
 - Bioenergy is required in the transport sector before 2050
 - Consumers' participation becomes extremely critical

Conclusions and Future Works

- Link with <u>global energy system model (TIAM-UCL)</u> to explore the availability of bioenergy from international trades for the UK
- Evaluate the <u>environmental impacts</u> of high bioenergy production
- Incorporate <u>consumers' technology choice</u> into account (UK nationwide survey carried out for H2020 REEEM project)
 - Heating technologies
 - Vehicle technologies
- Consider other NETs

Thanks for your attention!

Dr. Pei-Hao Li UCL Energy Institute p.li@ucl.ac.uk

