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Abstract. This paper discusses the properties of certain risk estimators that

recently regained popularity for choosing regularization parameters in ill-posed
problems, in particular for sparsity regularization. They apply Stein’s unbiased

risk estimator (SURE) to estimate the risk in either the space of the unknown
variables or in the data space. We will call the latter PSURE in order to dis-

tinguish the two different risk functions. It seems intuitive that SURE is more

appropriate for ill-posed problems, since the properties in the data space do
not tell much about the quality of the reconstruction. We provide theoretical

studies of both approaches for linear Tikhonov regularization in a finite di-

mensional setting and estimate the quality of the risk estimators, which also
leads to asymptotic convergence results as the dimension of the problem tends

to infinity. Unlike previous works which studied single realizations of image

processing problems with a very low degree of ill-posedness, we are interested
in the statistical behaviour of the risk estimators for increasing ill-posedness.

Interestingly, our theoretical results indicate that the quality of the SURE risk

can deteriorate asymptotically for ill-posed problems, which is confirmed by
an extensive numerical study. The latter shows that in many cases the SURE

estimator leads to extremely small regularization parameters, which obviously
cannot stabilize the reconstruction. Similar but less severe issues with respect

to robustness also appear for the PSURE estimator, which in comparison to

the rather conservative discrepancy principle leads to the conclusion that regu-
larization parameter choice based on unbiased risk estimation is not a reliable

procedure for ill-posed problems. A similar numerical study for sparsity reg-

ularization demonstrates that the same issue appears in non-linear variational
regularization approaches.

1. Introduction. Choosing suitable regularization parameters is a problem as old
as regularization theory, which has seen a variety of approaches both from de-
terministic (e.g. L-curve criteria, [23, 22]) or statistical perspectives (e.g. Lep-
skij principles, [3, 26]), respectively in between (e.g. discrepancy principles moti-
vated by deterministic bounds or noise variance, cf. [38, 4]). While the particular
class of statistical parameter choice rules based on unbiased risk estimation (URE)
was used for linear inverse reconstruction techniques early on [35, 37, 17], there
is a renewed interest in these approaches for iterative, non-linear inverse recon-
struction techniques, in particular in the context of sparsity constraints, see e.g.,
[33, 15, 42, 19, 30, 43, 12, 13, 14, 40, 44, 11, 39]). These works are based on ex-
tending Stein’s general construction of an unbiased risk estimator [36] to the inverse
problems setting. Compared to approaches that measure the risk in the data space,
the classical SURE and a generalized version (GSURE, [15, 19, 13, 40]) measure the
risk in the space of the unknown which seems more appropriate for ill-posed prob-
lems. Previous investigations show that the performance of such parameter choice
rules is reasonable in many different settings (cf. [21, 45, 9, 2, 34, 31, 15]). However,
most of the problems considered in these works are very mildly ill-posed (which we
will define more precisely below), the interplay between ill-posedness and the per-
formance of the risk estimators is not studied explicitly and the inherent statistical
nature of the selected regularization parameter is ignored as only single realizations
of noise are typically considered.

Therefore, a first motivation of this paper is to further study the properties
of SURE in Tikhonov-type regularization methods from a statistical perspective
and systematically in dependence of the ill-posedness of the problem. For this
purpose we provide a theoretical analysis of the quality of unbiased risk estimators
in the case of linear Tikhonov regularization. In addition, we carry out extensive
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numerical investigations on appropriate model problems. While in very mildly ill-
posed settings the performances of the parameter choice rules under consideration
are reasonable and comparable, our investigations yield various interesting results
and insights in ill-posed settings. For instance, we demonstrate that SURE shows
a rather erratic behaviour as the degree of ill-posedness increases. The observed
effects are so strong that the meaning of a parameter chosen according to this
particular criterion is unclear.

A second motivation of this paper is to study the discrepancy principle as a
reference method and as we shall see it can indeed be put in a very similar context
and analysed by the same techniques. Although the popularity of the discrepancy
principle is decreasing recently in favour of choices using more statistical details,
our findings show that it is still more robust for ill-posed problems than risk-based
parameter choices. The conservative choice by the discrepancy principle is well-
known to rather overestimate the optimal parameter, but on the other hand it avoids
to choose too small regularization as risk-based methods often do. In the latter
case the reconstruction results are completely deteriorated, while the discrepancy
principle yields a reliable, though not optimal, reconstruction.

Formal Introduction. We consider a discrete inverse problem of the form

y = Ax∗ + ε, (1)

where y ∈ Rm is a vector of observations, A ∈ Rm×n is a known matrix, and
ε ∈ Rm is a noise vector. We assume that ε consists of independent and identically
distributed (i.i.d.) Gaussian errors, i.e., ε ∼ N (0, σ2Im). The vector x∗ ∈ Rn
denotes the (unknown) exact solution to be reconstructed from the observations.
There are two potential difficulties for this: If A has a non-trivial kernel, e.g. for
n > m, we simply cannot observe certain aspects of x∗ and regularization has to
interpolate them from the observed features in some way. This is, however, not
the ill-posedness we are interested in here. In practice, we often know what we
miss, i.e, the structure of the kernel, and we consider these problems only ”mildly
ill-posed”. The second difficulty is more subtle: The singular values of A might
decay very fast, which means that certain aspects of x∗ are barely measurable and
even small additional noise ε can render their recovery unstable. This is the main
difficulty we are interested in here, so we will measure the degree of ill-posedness of
(1) by the condition of A restricted to its co-kernel, i.e. the ratio between largest
and smallest non-zero singular value. Note that this definition deviates from the
classical definition of ill-posedness for continuous problems by Hadamard [20], which
leads to a binary classification of problems as either well- or ill-posed but is not very
useful for practical applications. In order to find an estimate x̂(y) of x∗ from (1),
we apply a variational regularization method:

x̂α(y) = argmin
x∈Rn

1

2
‖Ax− y‖22 + αR(x), (2)

where R is assumed convex and such that the minimizer is unique for positive
regularization parameter α > 0. In what follows the dependence of x̂α(y) on α and
the data y may be dropped where it is clear without ambiguity that x̂ = x̂α(y).

In practice there are two choices to be made: First, a regularization functional R
needs to be specified in order to appropriately represent a-priori knowledge about
solutions and second, a regularization parameter α needs to be chosen in dependence
of the data y. The ideal parameter choice would minimize a difference between x̂α(y)
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and x∗ over all α, which obviously cannot be computed and is hence replaced by
a parameter choice rule that tries to minimize a worst-case or average error to the
unknown solution, which can be referred to as a risk minimization. In the practical
case of having a single observation only, the risk based on average error needs to be
replaced by an estimate as well, and unbiased risk estimators that will be detailed
in the following are a natural choice.

For the sake of a clearer presentation of methods and results we first focus on
linear Tikhonov regularization, i.e.,

R(x) =
1

2
‖x‖22,

leading to the explicit Tikhonov estimator

x̂α(y) = Tαy := (A∗A+ αI)−1A∗y. (3)

In this setting, a natural distance for measuring the error of x̂α(y) is given by its
`2-distance to x∗. Thus, we define

α∗ := argmin
α>0

‖x̂α(y)− x∗‖22 (4)

as the optimal, but inaccessible, regularization parameter. Many different rules
for the choice of the regularization parameter α are discussed in the literature.
Here, we focus on strategies that rely on an accurate estimate of the noise variance
σ2. A classical example of such a rule is given by the discrepancy principle: The
regularization parameter α̂DP is given as the solution of the equation

‖Ax̂α(y)− y‖22 = mσ2. (5)

The discrepancy principle is robust and easy-to-implement for many applications
(cf. [5, 24, 32]) and is based on the heuristic argument, that x̂α(y) should only
explain the data y up to the noise level.

The broader class of unbiased risk estimators accounts for the stochastic nature of
ε by aiming to choose α such that it minimizes certain `2-errors between x̂α(y) and
x∗ only in expectation: We first define the mean squared prediction error(MSPE)
as

MSPE(α) := E
[
‖A (x∗ − x̂α(y)) ‖22

]
(6)

and refer to its minimizer as α̂MSPE. Since MSPE depends on the unknown vector
x∗, we have to replace it by an unbiased estimate we will call PSURE here and
define:

α̂PSURE ∈ argmin
α>0

PSURE(α, y)

:= argmin
α>0

‖y −Ax̂α(y)‖22 −mσ2 + 2σ2dfα(y)
(7)

with

dfα(y) = tr (∇y ·Ax̂α(y)) .

While the classical SURE estimator would try to estimate the expectation of the
simple `2-error between x̂α(y) and x∗ like in (4), a generalization [15, 19] is often
considered in inverse problems where A may have a non-trivial kernel: We define
the mean squared estimation error(MSEE) here as

MSEE(α) := E
[
‖Π(x∗ − x̂α(y))‖22

]
, (8)
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where Π := A+A denotes the orthogonal projector onto the range of A∗ ( M+

denotes the Pseudoinverse of M), and refer to the minimizer of MSEE(α) as α̂∗SURE.
Again, we replace MSEE by an unbiased estimator to obtain

α̂SURE∈ argmin
α>0

SURE(α, y)

:= argmin
α>0

‖xML(y)− x̂α(y)‖22 − σ2tr
(
(AA∗)+

)
+ 2σ2gdfα(y)

(9)

with

gdfα(y) = tr((AA∗)+∇yAx̂α(y)), xML = A+y = A∗(AA∗)+y.

If A is non-singular, as it will be in the theoretical analysis and numerical experi-
ments in this work, the above definition coincides with the classical one considered
by Stein [36].

Note that the main difference between the two risk functions MSPE and MSEE
and their corresponding estimators PSURE and SURE is that they measure in
image and domain of the ill-conditioned operator A, respectively. The second im-
portant observation here is that all parameter choice rules depend on the data y
and hence on the random errors ε1, . . . , εm. Therefore, α̂DP, α̂PSURE and α̂SURE

are random variables, described in terms of their probability distributions. In the
next section, we first investigate these distributions by a numerical simulation study
in a simple inverse problem scenario using quadratic Tikhonov regularization. The
results point to several problems of the presented parameter choice rules, in partic-
ular of SURE, and motivate our further theoretical investigation in Section 3. The
theoretical results will be illustrated and supplemented by an exhaustive numeri-
cal study in Section 4. Finally we extend the numerical investigation in Section
5 to a sparsity-promoting LASSO-type regularization, for which we find a similar
behaviour. Conclusions are given in Section 6.

2. Risk Estimators for Quadratic Regularization. In the following we discuss
the setup in the case of the simple quadratic regularization functional R(x) = 1

2‖x‖
2,

i.e. we recover the well-known linear Tikhonov regularization scheme. The linearity
can be used to simplify arguments and gain analytical insight in the next section.
While the arguments presented can easily be extended to more general quadratic
regularizations, this model already contains all important properties.

2.1. Singular System and Risk Representations. Considering a quadratic reg-
ularization allows to analyze x̂α in a singular system of A in a convenient way. Let
r = rank(A), q = min(n,m). Let

A = UΣV ∗, Σ = diag (γ1, . . . , γq) ∈ Rm×n, γ1 ≥ . . . ≥ γr > 0, γr+1 . . . γm := 0

denote a singular value decomposition of A with

U = (u1, . . . , um) ∈ Rm×m, V = (v1, . . . , vn) ∈ Rn×n

unitary. Defining

yi = 〈ui, y〉 , x∗i = 〈vi, x∗〉 , ε̃i = 〈ui, ε〉 (10)

we can rewrite model (1) in its spectral form

yi = γix
∗
i + ε̃i, i = 1 . . . q; yi = ε̃i, i = q + 1 . . .m, (11)

where ε̃1, . . . , ε̃m are still i.i.d. ∼ N (0, σ2). All quantities considered in the following
depend on n or m. In particular, we have A = An,m, y = ym, x∗ = x∗n, γi = γn,m,
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x∗i = x∗i,n,m and ε̃i = ε̃i,n,m. This dependence is made explicit in the statements
of the results and technical assumptions for clarity but is dropped in the main text
for ease of notation. Increasing m corresponds to sampling from an equation such
as (1) more finely, whereas an increase in n increases the level of discretization of
an operator A∞ (see section 2.2). In our asymptotic considerations both n and m
tend to infinity.
We will express some more terms in the singular system that are frequently used
throughout this paper. In particular, we have for xML, the regularized solution x̂α
(dropping the dependence on y below for notational simplicity) and its norm

xML = A+y = V Σ+U∗y, with Σ+ = diag

(
1

γ 1

, . . . ,
1

γ r
, 0 . . . 0

)
∈ Rn×m

x̂α = (A∗A+ αI)−1A∗y =: V Σ+
αU
∗y, with Σ+

α = diag

(
γi

γ2i + α

)
∈ Rn×m

‖x̂α‖22 =

m∑
i=1

γ2i
(γ2i + α)2

y2i (12)

as well as the residual and distance to the maximum likelihood estimate

‖Ax̂α − y‖22 =

m∑
i=1

α2

(γ2i + α)2
y2i . (13)

‖xML − x̂α‖22 = ‖A∗(AA∗)+y − (A∗A+ αI)−1A∗y‖22 = ‖V
(
Σ+ − Σ+

α

)
U∗y‖22

=

r∑
i=1

(
1

γi
− γi

(γ2i + α)

)2

y2i .

Based on the generalized inverse we compute

(AA∗)+ = U(ΣΣ∗)+U∗ = Udiag

(
1

γ21
, . . . ,

1

γ2r
, 0, . . . , 0

)
U∗

A∗(AA∗)+A = V diag(1, . . . , 1︸ ︷︷ ︸
r

, 0, . . . , 0︸ ︷︷ ︸
n−r

)V ∗,

which yields the degrees of freedom and the generalized degrees of freedom

dfα := tr(∇y ·Ax̂) = tr
(
A(A∗A+ αI)−1A∗

)
=

r∑
i=1

γ2i
γ2i + α

gdfα := tr((AA∗)+∇y ·Ax̂) = tr
(
(AA∗)+A(A∗A+ αI)−1A∗

)
= tr((ΣΣ∗)+ΣΣ−1α ) =

r∑
i=1

1

γ2i
γi

γi
γ2i + α

=

r∑
i=1

1

γ2i + α
.

Next, we derive the spectral representations of the parameter choice rules. For the
discrepancy principle, we use (13) to define

DP(α, y) :=

m∑
i=1

α2

(γ2i + α)2
y2i −mσ2, (14)
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and now, (5) can be restated as DP(α̂DP, y) = 0. For (7) and (9), we find

PSURE(α, y) =

m∑
i=1

α2

(γ2i + α)2
y2i −mσ2 + 2σ2

m∑
i=1

γ2i
γ2i + α

(15)

SURE(α, y) =

r∑
i=1

(
1

γi
− γi
γ2i + α

)2

y2i − σ2
r∑
i=1

1

γ2i
+ 2σ2

r∑
i=1

1

γ2i + α
. (16)

2.2. An Illustrative Example. We consider a simple imaging scenario which ex-
hibits typical properties of inverse problems. The unknown function x∗∞ : [−1/2, 1/2]
→ R is mapped to a function y∞ : [−1/2, 1/2]→ R by a periodic convolution with
a compactly supported kernel of width l ≤ 1/2:

y∞(s) = A∞,lx
∗
∞ :=

∫ 1
2

− 1
2

kl (s− t)x∗∞(t) dt, s ∈ [−1/2, 1/2],

where the 1-periodic C∞0 (R) function kl(t) is defined for |t| ≤ 1/2 by

kl(t) :=
1

Nl

{
exp

(
− 1

1−t2/l2

)
if |t| < l

0 l ≤ |t| ≤ 1/2
, Nl =

∫ l

−l
exp

(
− 1

1− t2/l2

)
dt,

and continued periodically for |t| > 1/2. Examples of kl(t) are plotted in Figure
1(a). The normalization ensures that A∞,l and suitable discretizations thereof have
the spectral radius γ1 = 1 which simplifies our derivations and the corresponding
illustrations. The x∗∞ used in the numerical examples is the sum of four delta
distributions:

x∗∞(t) :=

4∑
i=1

aiδ

(
bi −

1

2

)
, with a = [0.5, 1, 0.8, 0.5], b =

[
1√
26
,

1√
11
,

1√
3
,

1√
3/2

]
The locations of the delta distributions approximate [−0.3,−0.2, 0.1, 0.3] by irra-
tional numbers which will simplify the discretization of this continuous problem.

Discretization. For a given number n ∈ N, let

Eni :=

[
i− 1

n
− 1

2
,
i

n
− 1

2

]
, i = 1, . . . , n

denote the equidistant partition of [−1/2, 1/2] and ψni (t) =
√
n1Eni (t) an orthonor-

mal basis (ONB) of piecewise constant functions over that partition. If we use m
and n degrees of freedom to discretize range and domain of A∞,l, respectively, we
arrive at the discrete inverse problem (1) with

(Al)i,j =
〈
ψmi , A∞,lψ

n
j

〉
=
√
mn

∫
Emi

∫
Enj

kl (s− t) dtds (17)

x∗j =
〈
ψnj , x

∗
∞
〉

=
√
n

∫
Enj

x∗∞(t) dt =
√
n

4∑
i

ai1Eni δ

(
bi −

1

2

)
The two dimensional integration in (17) is computed by the trapezoidal rule with
equidistant spacing, employing 100 × 100 points to partition Emi × Eni . Note that
we drop the subscript l from Al whenever the dependence on this parameter is not
of importance for the argument being carried out. As the convolution kernel kl has
mass 1 and the discretization was designed to be mass-preserving, we have γ1 = 1
and the condition number of A is given by cond(A) = 1/γr, where r = rank(A).
Figure 2 shows the decay of the singular values for various parameter settings and
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Figure 1. (a) The convolution kernel kl(t) for different values of
l. (b) True solution x∗, clean data Alx

∗ and noisy data Alx
∗ + ε

for m = n = 64, l = 0.06, σ = 0.1.

Table 1. Condition of Al computed different values of m = n and l.

l = 0.02 l = 0.04 l = 0.06 l = 0.08 l = 0.1

m = 16 1.27e+0 1.75e+0 2.79e+0 6.77e+0 2.31e+2
m = 32 1.75e+0 6.77e+0 6.94e+1 6.88e+2 2.30e+2
m = 64 6.77e+0 6.88e+2 6.42e+2 1.51e+3 4.22e+3
m = 128 6.88e+2 1.51e+3 1.51e+4 4.29e+3 4.29e+4
m = 256 1.70e+3 4.70e+4 1.87e+6 4.07e+6 1.79e+6
m = 512 4.70e+4 1.11e+7 1.22e+7 2.12e+7 3.70e+7

Table 1 lists the corresponding condition numbers: From this, we can see that the
degree of ill-posedness of solving (1) measured in terms of the rate of decay of the
singular values and the condition number grows very fast with increasing m and l.
It is easy to show that in the infinite dimensional setting, the rate of decay would
be exponentially fast.

Distributions. Using the above formulas and m = n = 64, l = 0.06, σ = 0.1, we
computed the empirical distributions of the α values selected by the different pa-
rameter choice rules by evaluating (14), (15) and (16) on a fine logarithmical α-grid,
i.e., log10(αi) was increased linearly in between −40 and 40 with a step size of 0.01.
We draw Nε = 106 samples of ε. The results are displayed in Figures 3 and 4:
In both figures, we use a logarithmic scaling of the empirical probabilities wherein
empirical probabilities of 0 have been set to 1/(2Nε). While this presentation com-
plicates the comparison of the distributions as the probability mass is deformed, it
facilitates the examination of small values and tails.

First, we observe in Figure 3(a) that α̂DP typically overestimates the optimal
α∗. However, it performs robustly and does not cause large `2-errors as can be
seen in Figure 3(b). For α̂PSURE and α̂SURE, the latter is not true: While being
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Figure 2. Decay of the singular values γi of Al for different choices
of m = n and l. As expected, increasing the width l of the con-
volution kernel leads to a faster decay. For a fixed l, increasing m
corresponds to using a finer discretization and γi converges to the
corresponding singular value of A∞,l, as can be seen for the largest
γi, e.g., for l = 0.02.

Table 2. Statistics of the `2-error ‖x∗−xα̂‖2 for different param-
eter choice rules using m = n = 64, l = 0.06, σ = 0.1 and Nε = 106

samples of ε.

min max mean median std

optimal 4.78 9.63 8.04 8.05 0.43
DP 6.57 10.81 8.82 8.87 0.34
PSURE 6.10 277.24 8.38 8.23 1.53
SURE 6.08 339.80 27.71 8.95 37.26

closer to α∗ than α̂DP most often, and, as can be seen from the joint error his-
tograms in Figure 4, producing smaller `2-errors more often (87%/56% of the time
for PSURE/SURE), both distributions show outliers, i.e., occasionally, very small
values of α̂ are estimated that cause large `2-errors. In the case of α̂SURE, we even
observe two clearly separated modes in the distributions. Table 2 shows different
statistics that summarize the described phenomena. These findings motivate the
theoretical examinations carried out in the following section.
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Figure 3. Empirical probabilities of (a) α̂ and (b) the correspond-
ing `2-error for different parameter choice rules using m = n = 64,
l = 0.06, σ = 0.1 and Nε = 106 samples of ε.
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(a) Discrepancy principle vs PSURE
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(b) Discrepancy principle vs SURE

Figure 4. Joint empirical probabilities of log10 ‖x∗ − xα̂‖2 using
m = n = 64, l = 0.06, σ = 0.1 and Nε = 106 samples of ε (the
histograms in Figure 3(b) are the marginal distributions thereof).
As in Figure 3(b), the logarithms of the probabilities are displayed
(here in form of a color-coding) to facilitate the identification of
smaller modes and tails. The red line at x = y divides the areas
where one method performs better than the other: In (a), all sam-
ples falling into the area on the right of the red line correspond to a
noise realization where the discrepancy principle leads to a smaller
error than PSURE. The percentage of samples for which that is
true is 13% for PSURE and 44% for SURE.
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Figure 5. True risk functions (black dotted line), their estimates
for six different realizations yk, k = 1 . . . 6 (solid lines), and their
corresponding minima/roots (dots on the lines) in the setting de-
scribed in Figure 1 using `2-regularization: (a) DP(α,Ax∗) and
DP(α, yk). (b) MSPE(α) and PSURE(α, yk). (c) MSEE(α) and
SURE(α, yk).

3. Properties of the Parameter Choice Rules for Quadratic Regulariza-
tion. In this section we consider the theoretical (risk) properties of PSURE, SURE
and the discrepancy principle. To allow for a concise and accessible presentation of
the main results, all proofs are shifted to Appendix A. As we are investigating ran-
dom quantities, convergence rates are given in terms of the stochastic order symbols
OP and oP, which correspond to Landau’s big O and small o notation, respectively,
when convergence in probability is considered. Let us recall the definition of OP
and oP using the formulation in [41], Chapter 2.1.

Definition 3.1 (Stochastic Order Symbols). Let (Ω,F ,P) a probability space.
Zn : Ω→ R, n ∈ N, be a sequence of random variables, and (rn)n∈N be a sequence
of positive numbers. We say that

Zn = OP(rn) if lim
T→∞

lim sup
n→∞

P
(
|Zn| > Trn

)
= 0. (18)

We say that

Zn = oP(rn) if for all ν > 0 lim
n→∞

P
(
|Zn| > ν rn

)
= 0. (19)

Instead of Zn = OP(rn) or Zn = oP(rn) we may also write Zn/rn = OP(1) or
Zn/rn = oP(1), respectively.

Assumption 1. For the sake of simplicity we only consider m = n in this first
analysis. Furthermore, we assume

1 = γ1,m ≥ . . . ≥ γm,m ≥ 0 . (20)

Note that all assumptions are fulfilled in the numerical example we described in the
previous section.

We mention that we consider here a rather moderate size of the noise, which
remains bounded in variances as m → ∞. A scaling corresponding to white noise
in the infinite dimensional limit is rather σ2 ∼ m and an inspection of the estimates
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below shows that the risk estimate is potentially far from the expected values in
such cases additionally.

3.1. PSURE-Risk. We start with an investigation of the PSURE risk estimate.
Based on (15) and Stein’s result, the representation for the risk is given as

MSPE(α) = E[PSURE(α, y)]

=

m∑
i=1

α2

(γ2i + α)2
E[y2i ]− σ2m+ 2σ2

m∑
i=1

γ2i
γ2i + α

=

m∑
i=1

α2

(γ2i + α)2
(γ2i · (x∗i )2 + σ2)− σ2m+ 2σ2

m∑
i=1

γ2i
γ2i + α

. (21)

Figure 5(b) illustrates the typical shape of MSPE(α) and PSURE estimates
thereof. Following [29, 25] who considered the case A = Im and [46, 18], who
investigated the performance of Stein’s unbiased risk estimate in the different con-
text of hierarchical modeling, we show that, with the definition of the loss L by

L(α) :=
1

m
‖Ax∗ −Ax̂α(y)‖22,

1/m PSURE(α, y) is close to L for large m. Note that PSURE is an unbiased
estimate of the expectation of L.

Theorem 3.2. If Assumption 1 holds, then we have for any sequence of vectors
(x∗m)m∈N, x∗m ∈ Rm, such that ‖x∗m‖22 = O(m) as m→∞

sup
α∈[0,∞)

∣∣∣ 1

m
PSUREm(α, y)− Lm(α)

∣∣∣ = OP

(
1√
m

)
.

Remark 1. The result of Theorem 3.2 guarantees stochastic boundedness of the
sequence (√

m sup
α∈[0,∞)

∣∣∣ 1

m
PSUREm(α, y)− Lm(α)

∣∣∣)
m∈N

.

It does not entail the existence of a proper weak limit of PSURE, which would
require stronger assumptions on the sequences (x∗m)m∈N and

(
(γi,m)mi=1

)
m∈N.

The latter result can be used to show that, in an asymptotic sense, if the loss
L is considered, the estimator α̂PSURE does not have a larger risk than any other
choice of regularization parameter. This statement is made precise in the following
corollary.

Corollary 1. Let (δm)m∈N be a sequence of positive real numbers such that 1/δm =
o(
√
m). Under the assumptions of Theorem 3.2 the following holds true for any

sequence of positive real numbers (αm)m∈N:

P
(
L(α̂PSURE,m) ≥ Lm(αm) + δm

)
→ 0.

We finally mention that our estimates are rather conservative, in particular with
respect to the quantity Sl3(α) in the proof of Theorem 3.2, since we do not assume
particular smoothness of x∗. With an additional source condition, i.e., certain decay
speed of the x∗i , it is possible to derive improved rates, which are however beyond
the scope of our paper. We refer to [10] and [27] for recent results in that direction,
where optimality of xα̂PSURE with respect to the risk MSEE under source conditions
for spectral cut-off and more general, filter based methods are shown, respectively.
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We turn our attention to the convergence of the risk estimate as m→∞ as well as
the convergence of the estimated regularization parameters.

Theorem 3.3. If Assumption 1 holds, then we have for any sequence of vectors
(x∗m)m∈N, x∗m ∈ Rm, such that ‖x∗m‖22 = O(m) as m→∞

sup
α∈[0,∞)

∣∣∣ 1

m

(
PSUREm(α, y)−MSPEm(α, y)

)∣∣∣ = OP

( 1√
m

)
and

E
(

sup
α∈[0,∞)

∣∣∣ 1

m

(
PSUREm(α, y)−MSPEm(α, y)

)∣∣∣)2

= O
( 1

m

)
. (22)

In order to understand the behaviour of the estimated regularization parameters
we start with some bounds on α̂MSPE, which recover a standard property of deter-

ministic Tikhonov-type regularization methods, namely that σ2

α does not diverge
for suitable parameter choices (cf. [16]).

Lemma 3.4. A regularization parameter α̂∗PSURE,m obtained from MSPEm satisfies

σ2

max1≤i≤m |x∗i,m|2
≤ α̂∗PSURE,m ≤ max

{
1, 8σ2

∑
γ4i,m∑

γ4i,m(x∗i,m)2

}
Proposition 1. The sequence of functions fm : α 7→ 1

mMSPEm(α) is equicon-
tinuous on sets [C1, C2] with 0 < C1 < C2 and hence has a uniformly convergent
subsequence fmk with continuous limit function f .

In order to obtain convergence of minimizers it suffices to be able to choose
uniform constants C1 and C2, which is possible if the bounds in Lemma 3.4 are
uniform:

Theorem 3.5. Let maxmi=1 |x∗i,m| be uniformly bounded in m and 1
m

∑m
i=1 γ

4
i,m(x∗i,m)2

be uniformly bounded away from zero. Then there exists a subsequence α̂MSPE,mk

that converges to a minimizer of the asymptotic risk f . Moreover α̂PSURE,mk con-
verges to to a minimizer of the asymptotic risk f in probability.

Remark 2. It follows from Theorem 3.3 and Definition 3.1 that

P
(

sup
α∈[0,∞)

∣∣∣ 1

m

(
PSUREm(α, y)−MSPEm(α, y)

)∣∣∣ > ν
log(m)√

m

)
= 0 for all ν > 0,

whereas MSPEm(α, y) is bounded away from zero by the assumptions of Theo-
rem 3.5. Therefore, asymptotically, minimizing MSPEm is the same as minimizing
PSURE .

3.2. Discrepancy Principle. We now turn our attention to the discrepancy prin-
ciple, which we can formulate in a similar setting as the PSURE approach above.
With a slight abuse of notation, in analogy to the other methods, we denote the
mean of DP(α, y) by MDP(α) (mean discrepancy) and define α̂MDP as the solution
of the equation

MDP(α) =

m∑
i=1

α2

(γ2i + α)2
E[y2i ]−mσ2 = 0.

Figure 5(a) illustrates the typical shape of MDP(α) and its DP estimates. Observing
that

DP(α, y)−MDP(α) = PSURE(α, y)−MSPE(β)

we immediately obtain the following result:
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Theorem 3.6. If Assumption 1 holds, we have for any sequence of vectors (x∗m)m∈N,
x∗m ∈ Rm, such that ‖x∗m‖22 = O(m)

sup
α∈[0,∞)

∣∣∣ 1

m

(
DPm(α, y)−MDPm(α)

)∣∣∣ = OP

( 1√
m

)
and

E
(

sup
α∈[0,∞)

∣∣∣ 1

m

(
DPm(α, y)−MDPm(α)

)∣∣∣)2

= O
( 1

m

)
.

3.3. SURE-Risk. Now we consider the SURE-risk estimation procedure. Figure
5(c) illustrates the typical shape of MSEE(α) and SURE estimates thereof. Based
on (16), if γm > 0 for all m, the risk can be written as

MSEE(α, y) =

m∑
i=1

(
1

γi
− γi

(γ2i + α)

)2 (
γ2i (x∗i )

2 + σ2
)
− σ2

m∑
i=1

1

γ2i
+ 2σ2

m∑
i=1

1

γ2i + α
.

For the PSURE criterion we showed in Theorem 3.2 that PSURE(α, y) is close to the
loss L in an asymptotic sense with the standard

√
m-rate of convergence. An analo-

gous result can be shown for SURE and the associated loss L̃(α) := cm‖Π(x∗−x̂α)‖22
but with different associated rates of convergence cm, dependent on the singular val-
ues.

Theorem 3.7. Let Assumption 1 be satisfied and in addition to (20), let γm,m > 0
for all m and m = n = r. Then we have for any sequence of vectors (x∗m)m∈N,
x∗m ∈ Rm, such that maxmi=1 |x∗i,m| is uniformly bounded as m→∞,

sup
α∈[0,∞)

∣∣∣cmSUREm(α, y)− L̃m(α)
∣∣∣ = OP (dm) ,

where

cm :=

(
m∑
i=1

1

γ2i,m

)−1
and dm := cm ·

√√√√ m∑
i=1

1

γ4i,m
.

In the same manner as for PSURE, we may use the latter convergence result to
show that, in an asymptotic sense, if the loss L̃ is considered, the estimator α̂SURE

does not have a larger risk than any other choice of regularization parameter. We
stress again that this optimality property depends on the loss considered, as it is
the case in Corollary 1.

Corollary 2. Let (δm)m∈N be a sequence of positive reals such that dm = o(δm).
If the assumptions of Theorem 3.7 hold, we have for any sequence of positive real
numbers (αm)m∈N:

P
(
L̃m(α̂SURE,m

)
≥ L̃m(αm) + δm)→ 0.

Note that 1/
√
m ≤ dm ≤ 1, depending on the behaviour of the singular values.

If infm dm > 0, OP(dm) = OP(1) in Theorem 3.7 and only sequences δm such that
infm δm > 0 are permissible in Corollary 2.

We can now proceed to an estimate between SURE and MSEE similar to the ones
for the PSURE risk, however we observe a main difference due to the appearance
of the condition number of the forward matrix A:
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Theorem 3.8. Let Am ∈ Rm×m be a full rank matrix. In addition to Assumption
1, let γm,m > 0 for all m and γm,m → 0. Then, we have for any sequence of vectors
(x∗m)m∈N, x∗m ∈ Rm, such that ‖x∗m‖22 = O(m) as m→∞,

sup
α∈[0,∞)

∣∣∣ 1

m cond(Am)2
(
SUREm(α, y)−MSEEm(α)

)∣∣∣ = OP

( 1√
m

)
and

E
(

sup
α∈[0,∞)

∣∣∣ 1

m cond(Am)2
(
SUREm(α, y)−MSEEm(α)

)∣∣∣)2

= OP

( 1

m

)
. (23)

We finally note that in the best case the convergence of SURE is slower than that
of PSURE. However, since for ill-posed problems the condition number of A will

grow with m the typical case is rather divergence of cond(A)2√
m

, hence the empirical

estimates of the regularization parameters might have a large variation, which will
be confirmed by the numerical results below.

4. Numerical Studies for Quadratic Regularization.

4.1. Setup. As in the illustrative example in Section 2.1, we computed the empir-
ical distributions of the different parameter choice rules for the same scenario (cf.
Section 2.2) for each combination of m = n = 16, 32, 64, 128, 256, 512, 1024, 2048,
l = 0.01, 0.02, 0.03, 0.04, 0.06, 0.08, 0, 1 and σ = 0.1. For m = 16, . . . , 512, Nε = 106

and for m = 1024, 2048, Nε = 105 noise realizations were sampled. The computa-
tion was, again, based on a logarithmical α-grid, i.e., log10 α is increased linearly in
between -40 and 40 with a step size of 0.01. In addition to the distributions of α,
the expressions

sup
α

∣∣∣PSURE(α, y)−MSPE(α, y)
∣∣∣, and sup

α

∣∣∣SURE(α, y)−MSEE(α, y)
∣∣∣ (24)

were computed over the α-grid. As in some cases, the supremum is obtained in
the limit α → ∞, and hence, on the boundary of our computational grid, we also
evaluated (24) for α =∞ in these cases.

4.2. Illustration of Theorems. We first illustrate Theorems 3.3 and 3.8 by com-
puting (22) and (23) based on our samples. The results are plotted in Figure 6 and
show that the asymptotic rates hold. For SURE, the comparison between Figures
6(b) and 6(c) also shows that the dependence on cond(A) is crucial.

4.3. Dependence on the Ill-Posedness. We then demonstrate how the empirical
distributions of α̂ and the corresponding `2-error, ‖x∗−xα̂‖22, such as those plotted
in Figure 3, depend on the ill-posedness of the inverse problem.

Dependence on m. In Figures 7 and 8, m is increased while the width of the con-
volution kernel is kept fix. The impact of this on the singular value spectrum is
illustrated in Figure 2. Most notably, smaller singular values are added and the
condition of A increases (cf. Table 1). Figures 7(a) and 8(a) suggest that the dis-
tribution of the optimal α∗ is Gaussian and converges to a limit for increasing m.
The distribution of the corresponding `2-error looks Gaussian as well and seems to
concentrate while shifting to larger mean values. For the discrepancy principle, Fig-
ures 7(b) and 8(b) show that the distribution of α̂DP widens for increasing m, and
the distribution of the corresponding `2-error develops a tail while shifting to larger
mean values. Figures 7(c) and 8(c) show that the distribution of α̂PSURE seems to
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Figure 6. Illustration of Theorems 3.3 and 3.8 for `2-
regularization: The left hand side of (22)/(23) was estimated by
the sample mean and plotted vs. m. For (23), the normalization
with cond(A) was omitted in (b) and included in (c). The black
dotted lines were added to compare the order of convergence.

converge to a limit for increasing m. The distribution of the corresponding `2-error
also develops a tail while shifting to larger mean values. For SURE, Figures 7(d)
and 8(d) reveal that increasing m leads to erratic, multimodal distributions: Com-
pared to the other α-distributions, the distribution of α̂SURE includes a significant
amount of very small values, and the corresponding `2-error distributions range over
very large values.

Dependence on l. In Figures 9 and 10, the width of the convolution kernel, l, is
increased while m = 64 is kept fix (cf. Figure 2 and Table 1). It is worth noticing
that as l = 0.02 corresponds to a very well-posed problem, the optimal α∗ is often
extremely small or even 0, as can be seen from Figure 9(a). The general tendencies
are similar to those observed when increasing m. For SURE, Figures 9(d) and
10(d) illustrate how the multiple modes of the distributions slowly evolve and shift
to smaller vales of α (and larger corresponding `2-errors).

4.4. Linear vs Logarithmical Grids. One reason why the properties of SURE
exposed in this work have not been noticed so far is that they only become apparent
in very ill-conditioned problems (cf. Section 1). Another reason is the way the risk
estimators are typically computed: Firstly, for high dimensional problems, (3) often
needs to be solved by an iterative method. For very small α, the condition of (A∗A+
αI) is very large and the solver will need a lot of iterations to reach a given tolerance.
If, instead, a fixed number of iterations is used, an additional regularization of the
solution to (1) is introduced which alters the risk function. Secondly, again due
to the computational effort, a coarse, linear α-grid excluding α = 0 instead of a
fine, logarithmic one is often used for evaluating the risk estimators. For two of the
risk estimations plotted in Figure 5(c), Figure 11 demonstrates that this insufficient
coverage of small α values by the grid can lead to missing the global minimum and
other misinterpretations.

5. Numerical Studies for Non-Quadratic Regularization. In this section, we
consider the popular sparsity-inducing R(x) = ‖x‖1 as a regularization functional
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Figure 7. Empirical probabilities of α for `2-regularization and
different parameter choice rules for l = 0.06 and varying m.

(LASSO penalty) to examine whether our results also apply to non-quadratic regu-
larization functionals. For this, let I be the support of x̂α(y) and J its complement.
Let further |I| = k and PI ∈ Rk×n be a projector onto I and AI the restriction of
A to I. We have that

dfα = ‖x̂α(y)‖0 = k and gdfα = tr(ΠB[J]), B[J] := PI(A
∗
IAI)

−1P ∗I ,

as shown, e.g., in [39, 14, 12], which allows us to compute PSURE (7) and SURE
(9). Notice that while x̂α(y) is a continuous function of α [7], PSURE and SURE
are discontinuous at all α where the support I changes.
To carry out similar numerical studies as those presented the last section, we have
to overcome several non-trivial difficulties: While there exist various iterative op-
timization techniques to solve (2) nowadays (see, e.g., [8]), each method typically
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Figure 8. Empirical probabilities of log10
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∗ − xα‖22
)

for `2-
regularization and different parameter choice rules for l = 0.06 and
varying m.

only works well for certain ranges of α, cond(A) and tolerance levels to which the
problem should be solved. In addition, each method comes with internal parameters
that have to be tuned for each problem separately to obtain fast convergence. As
a result, it is difficult to compute a consistent series of x̂α(y) for a given logarith-
mical α-grid, i.e., that accurately reproduces all the change-points in the support
and has a uniform accuracy over the grid. Our solution to this problem is to use
an all-at-once implementation of ADMM [6] that solves (2) for the whole α-grid
simultaneously, i.e., using exactly the same initialization, number of iterations and
step sizes. See Appendix B for details. In addition, an extremely small tolerance
level (tol = 10−14) and 104 maximal iterations were used to ensure a high accuracy
of the solutions.
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Figure 9. Empirical probabilities of α for `2-regularization and
different parameter choice rules for m = 64 and varying l.

Another problem for computing quantities like (24) is that we cannot compute the
expectations defining the real risks MSPE (7) and MSEE (9) anymore: We have
to estimate them as the sample mean over PSURE and SURE in a first run of the
studies, before we can compute (24) in a second run (wherein MSPE and MSEE
are replaced by the estimates from the first run).
We considered scenarios with each combination of m = n = 16, 32, 64, 128, 256, 512,
l = 0.02, 0.04, 0.06 and σ = 0.1. Depending on m, Nε = 105, 104, 104, 104, 103, 103

noise realizations were examined. The computation was based on a logarithmical
α-grid where log10 α is increased linearly in between -10 and 10 with a step size of
0.01.

Risk Plots. Figure 12 shows the different risk functions and estimates thereof. The
jagged form of the PSURE and SURE plots evaluated on this fine α-grid indicates
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Figure 10. Empirical probabilities of log10

(
1
m‖x

∗ − xα‖22
)

for `2-
regularization and different parameter choice rules for m = 64 and
varying l.

that the underlying functions are discontinuous. Also note that while PSURE and
SURE for each individual noise realization are discontinuous, MSPE and MSEE
are smooth and continuous, as can be seen already from the empirical means over
Nε = 104.

Empirical Distributions. Figure 13 shows the empirical distributions of the different
parameter choice rules for α. Here, the optimal α∗ is chosen as the one minimizing
the `1-error ‖x∗−xα̂‖1 to the true solution x∗. We can observe similar phenomena as
for `2-regularization. In particular, the distributions for SURE, also have multiple
modes at small values of α and at large values of `1-error.
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Figure 11. Illustration of the difference between evaluating the
SURE risk on a coarse, linear grid for α as opposed to a fine,
logarithmic one: In (a), a linear grid is constructed around α̂DP

as α = ∆α, 2∆α, . . . , 50∆α with ∆α = 2α̂DP/50. While the plot
suggests a clear minimum, (b) reveals that it is only a sub-optimal
local minimum and that the linear grid did not cover the essential
parts of SURE(α, y). (c) and (d) show the same plots for a different
noise realization. Here, a linear grid will not even find a clear
minimum. Both risk estimators are the same as those plotted in
Figure 5(c) with the same colors.

Sup-Theorems. Due to the lack of explicit formulas for the `1-regularized solution
xα(y), carrying out similar analysis as in Section 3 to derive theorems such as
Theorems 3.3 and 3.8 is very challenging. In this work, we only illustrate that
similar results may hold for the case of `1-regularization by computing the left
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Figure 12. Risk functions (black dotted line), k = 1, . . . , 6 esti-
mates thereof (solid lines) and their corresponding minima/roots
(dots on the lines) in the setting described in Figure 1 using `1-
regularization: (a) DP(α,Ax∗) and DP(α, yk). (b) MSPE(α) (em-
pirical mean over Nε = 104) and PSURE(α, yk). (c) MSEE(α)
(empirical mean over Nε = 104) and SURE(α, yk).
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Figure 13. Empirical probabilities of (a) α and (b) the corre-
sponding `1-error for different parameter choice rules using `1-
regularization, m = n = 64, l = 0.06, σ = 0.1 and N = 104

samples of ε.

hand side of (22) and (23) based on our samples. The results are shown in Figure
14 and are remarkably similar to those shown in Figure 6.

Linear Grids and Accurate Optimization. All the issues raised in Section 4.4 about
why the properties of SURE revealed in this work are likely to be overlooked when
working on high dimensional problems are even more crucial for the case of `1-
regularization: For computational reasons, the risk estimators are often evaluated
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Figure 14. Illustration that Theorems 3.3 and 3.8 might also hold
for `1-regularization: The left hand side of (22)/(23) is estimated
by the sample mean and plotted vs. m. The black dotted lines
were added to compare the order of convergence.

on a coarse, linear α-grid using a small, fixed number of iterations of an iterative
method such as ADMM. Figure 15 illustrates that this may obscure important
features of the real SURE function, such as the strong discontinuities for small α,
or even change it significantly.

6. Conclusion. We examined variational regularization methods for ill-posed in-
verse problems and conducted extensive numerical studies that assessed the statis-
tical properties different parameter choice rules. In particular, we were interested
in the influence of the degree of ill-posedness of the problem (measured in terms
of the condition of the forward operator) on the probability distributions of the
selected regularization parameters and of the corresponding induced errors. This
perspective revealed important features that were not discussed or noticed before
but are essential to know for practical applications, namely that unbiased risk es-
timators encounter enormous difficulties: While the discrepancy principle yields
a rather unimodal distribution of regularization parameters resembling the opti-
mal one with slightly increased mean value, the PSURE estimates start to develop
multimodality, and the additional modes consist of underestimated regularization
parameters, which may lead to significant errors in the reconstruction. For the
case of SURE, which is based on a presumably more reliable risk, the estimates
produce quite wide distributions (at least in logarithmic scaling) for increasing ill-
posedness, in particular there are many highly underestimated parameters, which
clearly yield bad reconstructions. We expect that this behaviour is rather due to the
bad quality of the risk estimators than the quality of the risk. These findings may
be explained by Theorem 3.8, which indicates that the estimated SURE risk might
deviate strongly from the true risk function MSEE when the condition number of
A is large, i.e. the problem is asymptotically ill-posed as m→ 0. Consequently one
might expect a strong variation in the minimizers of SURE with varying y compared
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Figure 15. Illustration of the difficulties of evaluating the SURE
risk in the case of `1-regularization: In (a), a coarse linear grid
is constructed around α̂DP as α = ∆α, 2∆α, . . . , 20∆α with ∆α =
α̂DP/10. Similar to Figure 11(a) the plot suggests a clear mini-
mum. However, using a fine, logarithmic grid, (b) reveals that it
is only a sub-optimal local minimum before a very erratic part of
SURE(α, y) starts. (c) shows how a coarse α-grid can lead to an
arbitrary projection of SURE(α, y) that is likely to miss important
features. Both risk estimators are the same as those plotted in
Figure 12(c) with the same colors. In (d), the difference between
computing SURE(α, y) with the consistent and highly accurate ver-
sion of ADMM (Impl A) and with a standard ADMM version using
only 20 iterations (Impl B) is illustrated.

to the ones of MSEE. A potential way to cure those issues is to develop novel risk
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estimates for MSEE that are not based on Stein’s method, possibly it might even
be useful not to insist on the unbiasedness of the estimators.

We finally mention that for problems like sparsity-promoting regularization, the
SURE risk leads to additional issues, since it is based on a Euclidean norm. While
the discrepancy principle and the PSURE risk only use the norms appearing nat-
urally in the output space of the inverse problem (or in a more general setting the
log-likelihood of the noise), the Euclidean norm in the space of the unknown is
rather arbitrary. In particular, it may deviate strongly from the Banach space ge-
ometry in `1 or similar spaces in high dimensions. Thus, different constructions of
SURE risks are to be considered in such a setting, e.g. based on Bregman distances.

Appendix A. Proofs.

Proof of Theorem 3.2. We find

L =
1

m
‖Ax̂− y + ε‖22 =

1

m
‖Ax̂− y‖22 +

1

m
‖ε‖22 +

2

m
〈ε,Ax̂− y〉

=
1

m

m∑
i=1

α2

(γ2i + α)2
y2i −

1

m
‖U∗ε‖22 +

2

m
〈ε,Ax̂−Ax∗〉

=
1

m

m∑
i=1

α2

(γ2i + α)2
y2i −

1

m
‖ε̃‖22 +

2

m
〈ε,Ax̂−Ax∗〉 ,

where ε̃ = U∗ε, that is, ε̃i = 〈ui, ε〉. Note that

Ax̂−Ax∗ = UΣΣ−1α U∗(Ax∗ + ε)− UΣV ∗x∗

= U{ΣΣ−1α − I}ΣV ∗x∗ + UΣΣ−1α U∗ε ,

and recall from (10) that x∗i = 〈vi, x∗〉. Since U∗U = UU∗ = I, Var[ε̃i] = σ2. This
yields

2

m
〈ε , Ax̂−Ax∗〉 =

2

m

m∑
i=1

ε̃2i γ
2
i

γ2i + α
− 2

m

m∑
i=1

αε̃iγix
∗
i

γ2i + α
.

We obtain the representation

1

m
PSURE(α, y)− L

= −σ2 +
2σ2

m

m∑
i=1

γ2i
γ2i + α

+
1

m

m∑
i=1

ε̃2i −
2

m

m∑
i=1

ε̃2i γ
2
i

γ2i + α
+

2

m

m∑
i=1

αε̃iγix
∗
i

γ2i + α

=
1

m

m∑
i=1

(ε̃2i − σ2)− 2

m

m∑
i=1

γ2i
γ2i + α

(ε̃2i − σ2) +
2

m

m∑
i=1

αγi
α+ γ2i

x∗i ε̃i

=: Sl1(α) + Sl2(α) + Sl3(α),

where the terms Slj(α), j ∈ {1, 2, 3} are defined in an obvious manner. Since
ε̃21, . . . , ε̃

2
n are independent and identically distributed with expectation σ2 we im-

mediately obtain that
√
mSl1(α) = OP(σ2).

Note that Sl1(α) is independent of α. Next, we consider the term Sl2(α).



26 LUCKA, PROKSCH, BRUNE, BISSANTZ, BURGER, DETTE AND WÜBBELING

Due to (20) the values γ2i /(γ
2
i + α) ∈ (0, 1] for α ∈ [0,∞), are monotonically

decreasing (with respect to i). Thus, we find

sup
α∈[0,∞)

|Sl2(α)| = sup
α∈[0,∞)

1

m

∣∣∣∣ m∑
i=1

γ2i
γ2i + α

(ε̃2i − σ2)

∣∣∣∣
≤ sup

1≥c1≥...≥cm≥0

1

m

∣∣∣∣ m∑
i=1

ci(ε̃
2
i − σ2)

∣∣∣∣.
It follows from [28], Lemma 7.2:

sup
1≥c1≥...≥cm≥0

1

m

∣∣∣∣ m∑
i=1

ci(ε̃
2
i − σ2)

∣∣∣∣ = sup
1≤j≤m

1

m

∣∣∣∣ j∑
i=1

(ε̃2i − σ2)

∣∣∣∣,
and an application of Kolmogorov’s maximal inequality yields

P
(

sup
α∈[0,∞)

|Sl2(α)| > σ2T√
m

)
≤ m

σ4T 2
Var

(
1

m

m∑
i=1

(ε̃2i − σ2)

)
=

2

T 2
. (25)

Hence

lim
T→∞

lim sup
m→∞

P
(

sup
α∈[0,∞)

|Sl2(α)| > σ2T√
m

)
= 0

and therefore, by Definition (18),

sup
α∈[0,∞)

|Sl2(α)| = OP
(
σ2/
√
m
)
,

where we also used that Var(ε̃2i − σ2) = 2σ4, which follows from ε̃i ∼ N (0, σ2).
Finally, we estimate Sl3(α). Now, if α ≥ 1, then it follows from condition (20) that
0 ≤ αγi/(γ2i + α) ≤ αγi/α = γi ≤ 1 and

αγi
γ2i + α

− αγi+1

γ2i+1 + α
=
α(γi − γi+1)(α− γiγi+1)

(γ2i + α)(γ2i+1 + α)
≥ 0,

and a further application of Kolmogorov’s maximal inequality as in (25) yields

sup
α∈[0,∞)

|Sl3(α)| ≤ sup
1≥c1≥...≥cm≥0

1

m

∣∣∣∣ m∑
i=1

cix
∗
i ε̃i

∣∣∣∣+ sup
α∈[0,1]

|Sl3(α)|

= OP

(
σ‖x∗‖2/m

)
+ sup
α∈[0,1]

|Sl3(α)| = OP

(
σ/
√
m
)

+ sup
α∈[0,1]

|Sl3(α)|.

To determine its asymptotic order, we consider the term
(
Sl3(α), α ∈ [0, 1]

)
as a

(Gaussian) stochastic process in α ∈ [0, 1] for fixed m. Clearly, by the Cauchy-
Schwarz inequality

Sl3(α)2 ≤ 1

m

m∑
i=1

( αγi
γi + α

x∗i

)2
· 1

m

m∑
i=1

ε̃2i ≤
1

m

m∑
i=1

(x∗i )
2 · 1

m

m∑
i=1

ε̃2i .

The first factor is bounded since, by Assumption, ‖x∗‖22 = O(m) and for any
m ∈ N, 1

m

∑m
i=1 ε̃

2
i is a random variable (independent of α) and therefore almost

surely bounded (w.r.t. α). Hence, the process
(
Sl3(α), α ∈ [0, 1]

)
is almost surely

bounded (w.r.t. α ∈ [0, 1]). Recall that we need to show that supα∈[0,1] |Sl3(α)| =
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OP(1/
√
m), where the stochastic order symbol OP(1/

√
m) is defined in (18). Let

T > 0. An application of the Markov inequality yields

P
(

sup
α∈[0,1]

|Sl3(α)| > σT√
m

)
≤ 2
√
m

σT
E
[

sup
α∈[0,1]

|Sl3(α)|
]
.

Since ε̃ and −ε̃ have the same distribution due to symmetry of the standard normal
distribution,

E
[

sup
α∈[0,1]

|Sl3(α)|
]
≤ E

[
sup
α∈[0,1]

Sl3(α)

]
+ E

[
sup
α∈[0,1]

(−Sl3(α))

]
= 2E

[
sup
α∈[0,1]

Sl3(α)

]
.

Hence, the desired result follows if we show that

E
[

sup
α∈[0,1]

Sl3(α)

]
= O(σ/

√
m).

To do so, we apply the following Gaussian comparison inequality.

Theorem A.1 (Sudakov-Fernique inequality (Theorem 2.2.3 in [1])). Let f and g
be a.s. bounded Gaussian processes on T . If

E[ft] = E[gt] and E[(fs − ft)2] ≤ E[(gs − gt)2]

for all s, t ∈ T, then

E
[

sup
t∈T

ft

]
≤ E

[
sup
t∈T

gt

]
.

Let α1, α2 ∈ [0, 1].

E
[(
Sl3(α1)− Sl3(α2)

)2]
=

4σ2

m2

m∑
i=1

(
α2
1γ

2
i

(γ2i + α1)2
− α2

2γ
2
i

(γ2i + α2)2

)2

(x∗i )
2

= 4(α1 − α2)2
σ2

m2

m∑
i=1

γ6i
(γ2i + α1)2(γ2i + α2)2

(x∗i )
2 ≤ (

√
α1 −

√
α2)2

16σ2

m2

m∑
i=1

(x∗i )
2.

Consider the process

S̃l3 :=

(
S̃l3(α) =

4
√
α

m

m∑
i=1

x∗i ε̃i, α ∈ [0, 1]

)
.

Obviously, S̃l3 is almost surely bounded and

E
[(
S̃l3(α1)− S̃l3(α2)

)2]
= (
√
α1 −

√
α2)2

16σ2

m2

m∑
i=1

(x∗i )
2,

which yields

E
[(
Sl3(α1)− Sl3(α2)

)2] ≤ E
[(
S̃l3(α1)− S̃l3(α2)

)2]
for all α1, α2 ∈ [0, 1].

Since E[Sl3(α)] = E[S̃l3(α)] = 0 for all α ∈ [0, 1], the assumptions of Theorem A.1
are satisfied, which allows us to conclude

E
[

sup
α∈[0,1]

Sl3(α)

]
≤ E

[
sup
α∈[0,1]

S̃l3(α)

]
.
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Furthermore,

E
[

sup
α∈[0,1]

S̃l3(α)

]
≤ E

[
sup
α∈[0,1]

|S̃l3(α)|
]
≤ E

[
4

m

∣∣∣∣ m∑
i=1

x∗i ε̃i

∣∣∣∣] =

√
2

π

√√√√16σ2

m2

m∑
i=1

(x∗i )
2,

where we used that 4
m

∑m
i=1 x

∗
i ε̃j ∼ N

(
0, 16σ2/m2

∑m
i=1(x∗i )

2
)

and that for a ran-

dom variable Z ∼ N (0, s2) the first absolute moment is given by E|Z| = s
√

2/π.
This yields

lim
T→∞

lim sup
m→∞

P
(

sup
α∈[0,1]

|Sl3(α)| > σT√
m

)
≤ lim
T→∞

lim sup
m→∞

4σ

√
2‖x∗‖2√
mπT

= 0,

since, by Assumption, ‖x∗‖22 = O(m). By Definition (18) we conclude supα∈[0,1] |Sl3(α)| =
O(σ/

√
m).

Proof of Corollary 1. By definition PSURE(α̂PSURE, y) ≤ PSURE(αm, y). This
yields

P(L(α̂PSURE) ≥ L(αm) + δm)

≤ P
(
L(α̂PSURE)− 1

m
PSURE(α̂PSURE, y) ≥ L(αm)− 1

m
PSURE(αm, y) + δm

)
≤ P

(
2 sup
α∈[0,∞)

|L(α)− 1

m
PSURE(α, y)| ≥ δm

)
.

It follows from Theorem 3.2 that supα∈[0,∞) |L(α)− 1
m PSURE(α, y)| = oP(δm) for

any sequence (δm)m∈N such that 1/δm = o(
√
m). By definition (see (19)),

P
(

sup
α∈[0,∞)

|L(α)− 1

m
PSURE(α, y)| ≥ δm ν

)
→ 0 for all ν > 0.

Setting ν = 1/2 above, the claim now follows.

Proof of Theorem 3.3. Observing (15) and (21) we find

1

m

(
PSURE(α, y)−MSPE(α)

)
=

1

m
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where ε̌i := y2i − E[y2i ]. The random variables ε̌1, . . . , ε̌n are independent and
centered. Notice that

Var[ε̌i] = Var[y2i ] = E[y4i ]− (E[y2i ])2 = 4γ2i x
∗
i
2σ2 + 2σ4,

since yi ∼ N (γix
∗
i , σ

2). Consider the monotonically increasing function α 7→
α2
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2 ∈ [0, 1] (where α ∈ [0,∞)) and note that the sequence
(

1
(γ2
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2

)m
i=1

is

increasing. With the same arguments as in the proof of Theorem 3.2 (see (25)),
using Kolmogorov’s maximal inequality, we estimate
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It remains to show the L2-convergence (22). To this end define the j-th partial sum

Sj :=

j∑
i=1

ε̌i

and observe that {Sj | j ∈ N} forms a martingale. The Lp-maximal inequality for
martingales yields

E
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sup
α∈[0,∞)

∣∣∣ 1

m

(
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= O
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1
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)
as above.

Proof of Lemma 3.4. It is straightforward to see the differentiability of MSPE and
to compute

MSPE′(α) =

m∑
i=1

2γ4i
(γ2i + α)3

(α(x∗i )
2 − σ2).

Hence, for α < σ2

maxi |x∗
i |2

, the risk MSPE is strictly decreasing, which implies the

first inequality. Moreover, for α ≥ 1 we obtain

α3MSPE′(α) = 2

m∑
i=1

γ4i
(γ2i /α+ 1)3

(α(x∗i )
2 − σ2)

>
α

4

m∑
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γ4i (x∗i )
2 − 2σ2

m∑
i=1

γ4i

and we finally see that MSPE′ is nonnegative if in addition α ≥ 8σ2
∑
γ4
i∑

γ4
i (x

∗
i )

2 .

Proof of Theorem 3.5. From the uniform convergence of the sequence fmk in Propo-
sition 1 we obtain the convergence of the minimizers α̂MSPE,mk . Combined with
Theorem 3.3 we obtain an analogous argument for α̂PSURE,mk .

Proof of Theorem 3.7. For m = n and invertible matrices A the projection Π sat-
isfies Π = id and

‖x∗ − x̂α‖22 = ‖x∗‖22 − 2〈x∗, x̂α〉+ ‖x̂α‖22 =

m∑
i=1

(x∗i )
2 − 2〈x∗, x̂α〉+

m∑
i=1

γ2i
(γ2i + α)2

y2i ,

where we used (12). Recall from (11) that yi = γix
∗
i + ε̃i. This yields

〈x∗, x̂α〉 = 〈V Σ−1U∗(y − ε), V Σ+
αU
∗y〉 = 〈Σ−1U∗(y − ε),Σ+

αU
∗y〉

= 〈Σ−1(yi − ε̃i)mi=1,Σ
+
α (yi)

m
i=1〉 = 〈Σ−1(γix

∗
i )
m
i=1,Σ

+
α (yi)

m
i=1〉

= 〈(x∗i )mi=1,Σ
+
α (yi)

m
i=1〉 =

m∑
i=1

γix
∗
i

γ2i + α
yi.
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Hence,

‖x∗ − x̂α‖22 =

m∑
i=1

(x∗i )
2 − 2

m∑
i=1

x∗i γi
γ2i + α

yi +

m∑
i=1

γ2i
(γ2i + α)2

y2i .

Recall from (16) that

SURE(α, y) =

m∑
i=1

(
1

γi
− γi
γ2i + α

)2

y2i − σ2
m∑
i=1

1

γ2i
+ 2σ2

m∑
i=1

1

γ2i + α
. (26)

We obtain

SURE(α, y)− ‖x∗ − x̂α‖22

=

m∑
i=1

( 1

γ2i
− 2

γ2i + α

)
(y2i − σ2)− ‖x∗‖22 + 2

m∑
i=1

γ2i (x∗i )
2

γ2i + α
+ 2

m∑
i=1

γix
∗
i

γ2i + α
ε̃i

=

m∑
i=1

( 1

γ2i
− 2

γ2i + α

)
(y2i − E[y2i ]) + 2

m∑
i=1

γix
∗
i

γ2i + α
ε̃i

= 2α

m∑
i=1

x∗i
γi(γ2i + α)

ε̃i +

m∑
i=1

α2 − γ4i
γ2i (γ21 + α)2

(ε̃2i − σ2)

=: GSl1(α) +GSl2(α),

where GSl1(m,α) and GSl2(m,α) are defined in an obvious manner. Obviously,

α

γ2i + α
≤ α

γ2i+1 + α
and 0 ≤ α

γ2i + α
≤ 1

by assumption (20). Therefore

sup
α∈[0,∞)

|GSl1(α)| = sup
α∈[0,∞)

∣∣∣∣∣2α
m∑
i=1

x∗i
γi(γ2i + α)

ε̃i

∣∣∣∣∣ ≤ sup
0≤c1≤...≤cm≤1

∣∣∣∣∣2
m∑
i=1

ci
x∗i
γi
ε̃i

∣∣∣∣∣
= sup

1≤j≤m

∣∣∣∣∣2
m∑
i=j

x∗i
γi
ε̃i

∣∣∣∣∣ = OP

(√√√√ m∑
i=1

(x∗i )
2

γ2i

)
,

where the last estimate follows from Kolmogorov’s maximal inequality as in (25) .
Now, since

cm

√√√√ m∑
i=1

(x∗i )
2

γ2i
≤ cm

√√√√ max
1≤i≤m

|x∗i |
m∑
i=1

1

γ2i
= O(

√
cm).

Next we derive a corresponding estimate for the term GSl2(α). Observe that 0 ≤
α/(γ2i + α) ≤ α/(γ2i+1 + α) ≤ 1 and 1 ≥ γ4i /(γ

2
i + α)2 ≥ γ4i+1/(γ

2
i+1 + α)2 ≥ 0 for
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any α ≥ 0 and any 1 ≤ i ≤ m by ordering of the singular values. This implies

sup
α∈[0,∞)

|GSl2(α)| = sup
α∈[0,∞)

∣∣∣∣ m∑
i=1

α2 − γ4i
γ2i (γ2i + α)2

(ε̃2i − σ2)

∣∣∣∣
≤ sup

1≥c1≥...≥cm≥0

∣∣∣∣ m∑
i=1

ci
γ2i

(ε̃2i − σ2)

∣∣∣∣+ sup
0≤c1≤...≤cm≤1

∣∣∣∣ m∑
i=1

ci
γ2i

(ε̃2i − σ2)

∣∣∣∣
≤ sup

1≤j≤m

∣∣∣∣∣
j∑
i=1

1

γ2i
(ε̃2i − σ2)

∣∣∣∣∣+ sup
1≤j≤m

∣∣∣∣∣
m∑
i=j

1

γ2i
(ε̃2i − σ2)

∣∣∣∣∣ = OP

√√√√ m∑
i=1

1

γ4i

 ,

by a further application of Kolmogorov’s maximal inequality as in (25). Notice that√
cm ≤ 1/

√
m and 1/

√
m ≤ dm ≤ 1 Therefore, since

cm

√√√√ m∑
i=1

1

γ4i
= O (dm) ,

the claim of the theorem follows.

Proof of Theorem 3.8. For full rank matrices A ∈ Rm×m we have from (26)

SURE(α, y)−MSEE(α)

=

m∑
i=1

(
1

γi
− γi

(γ2i + α)

)2 (
y2i − E[y2i ]

)
=

m∑
i=1

(
1

γi
− γi

(γ2i + α)

)2

ε̌i.

As in the proof of Theorem 3.3 we set ε̌i := y2i − E[y2i ]. Recall that the random

variables ε̌i are centered, independent with Var[ε̌i] = 4γ2i x
∗
i
2σ2 + 2σ4. We find

SURE(α, y)−MSEE(α) =
1

γ2m

m∑
i=1

γ2m
γ2i

α2

(γ2i + α)2
ε̌i.

With the same arguments as in the proofs of Theorems 3.2 and 3.3 we obtain

sup
α∈[0,∞)

∣∣∣SURE(α, y)−MSEE(α)
∣∣∣ ≤ sup

0≤c1≤c2≤...≤1

∣∣∣ 1

γ2m

m∑
i=1

ciε̌i

∣∣∣ ≤ max
1≤j≤m

∣∣∣ 1

γ2m

m∑
i=j

ε̌i

∣∣∣.
Again, an application of Kolmogorov’s maximal inequality yields

sup
α∈[0,∞)

∣∣∣SURE(α, y)−MSEE(α)
∣∣∣ = OP

((
4

m∑
i=1

γ2i x
∗
i
2σ2 + 2mσ4

) 1
2

)
and the first claim of the theorem follows with cond(A) = γ1/γm = 1/γm. Moreover,
in a similar manner as in the proofs of the previous theorems, we find

E
(

sup
α∈[0,∞)

∣∣∣ 1

m cond(A)2
(

SURE(α, y)−MSEE(α)
)∣∣∣)2

≤ E sup
1≤j≤m

∣∣∣∣ 1

γ2m
Sj

∣∣∣∣2
and by the Lp maximal inequality the second claim now follows as

E sup
1≤j≤m

∣∣∣∣ 1

γ2m
Sj

∣∣∣∣2 ≤ 1

γ4m
ES2

m = O
(
m/γ4m

)
.
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Appendix B. Consistent LASSO Solver. We want to solve (2) with R(x) =
‖x‖1 for a large number of different values of α but need to ensure that the results
are comparable and consistent. For this, we rely on an implementation of the scaled
version of ADMM [6] that carries out the iterations for all α simultaneously, with
the same penalty parameter ρ for all α and a stop criterion based on the maximal
primal and dual residuum over all α. Online adaptation of ρ is also performed based
on primal and dual residua for all α. While ensuring the consistency of the results,
this leads to sub-optimal performance for individual α’s which has to be countered
by using a large number of iterations to obtain high accuracies.

Algorithm 1 (All-At-Once ADMM). Given α1, . . . , αNα , ρ > 0 (penalty param-
eter), τ > 1, µ > 1 (adaptation parameters), K ∈ N (max. iterations) and
ε > 0 (stopping tolerance), initialize X0, Z0, U0 ∈ Rn×Nα by 0, and Y = y ⊗ 1TNα ,
Λ = [α1, . . . , αNα ] ⊗ 1n, where 1q denotes an all-one column vector in Rq. Fur-
ther, let � denote the component-wise multiplication between matrices (Hadamard
product).

For k = 1, . . . ,K do:

update x, z and u:

Xk+1 = (A∗A+ ρI)−1(A∗Y + ρ(Zk − Uk))

Zk+1 = sign
(
Xk+1 + Uk

)
�max

(
Xk+1 + Uk − Λ/ρ, 0

)
Uk+1 = Uk +Xk+1 − Zk+1

update primal and dual residuum:

rk+1
i = Xk+1

(·,i) − Z
k+1
(·,i) ∀ i = 1, . . . , Nα

sk+1
i = −ρ(Zk+1

(·,i) − Z
k
(·,i)) ∀ i = 1, . . . , Nα

ρ adaptation:

(Uk+1, ρ) =


(Uk+1/τ, τρ) if #

{
i
∣∣∣ ‖rk+1

i ‖2 > µ‖sk+1
i ‖2

}
> Nα/2

(τUk+1, ρ/τ) if #
{
i
∣∣∣ ‖sk+1

i ‖2 > µ‖rk+1
i ‖2

}
> Nα/2

(Uk+1, ρ) else.

check primal and dual stop tolerance

εprii = ε
(√

n+ max(‖Xk+1
(·,i) ‖2, ‖Z

k+1
(·,i) ‖2)

)
∀ i = 1, . . . , Nα

εduali = ε
(√

n+ ρ‖Uk+1
(·,i) ‖2

)
∀ i = 1, . . . , Nα

stop if ‖rk+1
i ‖2 < εprii ∧ ‖sk+1

i ‖2 < εduali ∀ i = 1, . . . , Nα

The algorithm returns both Xk+1
(·,i) and Zk+1

(·,i) as approximations of the solution

to (2) with R(x) = ‖x‖1 and α = αi of which we use Zk+1
(·,i) for our purposes as it

is exactly sparse due to the soft-thresholding step (z-update). In the computations,
we furthermore initialized ρ = 1 and used τ = 2, µ = 1.1, ε = 10−14 and K = 104.
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