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The response of a linear system to an external perturbation is governed by the Fourier limit, with the
inverse of the interaction time constituting a lower limit for the system bandwidth. This does not hold for
nonlinear systems, which can thus exhibit sub-Fourier-behavior. The present Letter identifies a mechanism
for sub-Fourier-sensitivity in driven quantum systems, which relies on avoided crossing between Floquet
states. Features up to three orders of magnitude finer than the Fourier limit are presented.
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Many processes in Physics can be traced back to the
response of a system to a periodic perturbation of a finite
duration Ts. For a linear system, its frequency response to
the perturbation is governed by the Fourier limit: the system
bandwidth Δω cannot be smaller than the inverse of the
interaction time, 2π=Ts, the two quantities being equal in
the absence of additional relaxation processes.
Nonlinear systems are not Fourier limited, and their

response to an external perturbation may exhibit sub-
Fourier features. It was in particular shown that for the
kicked rotor system quantum interference leads to a sub-
Fourier response [1–3]. Sub-Fourier-behavior was also
observed in biharmonically driven classical systems [4].
In both cases, the underlying mechanism relies on the
system’s extreme sensitivity to the nature of the driving,
with periodic and quasiperiodic drivings leading to a
completely different response.
In this Letter, we identify a mechanism for sub-Fourier-

sensitivity in driven quantum systems, which relies on an
avoided crossing between Floquet states. The quantum
features identified here are found to be narrower than
their classical counterparts, and results for features up to
three orders of magnitude finer than the Fourier limit are
presented. These results are of general interest in terms of
fundamental physics, as they allow a direct comparison
with the classical counterpart, and thus provide a general
framework to study the role of quantum effects in the
occurrence of sub-Fourier-dynamics in ac driven systems.
Also they may find direct application in quantum control
and sensing applications, where extreme sensitivity to
external perturbations are of paramount importance.
Specifically, the ability to distinguish between two frequen-
cies in a time shorter than the one allowed by the
Fourier limit is of direct relevance to signal processing.
Additionally, external perturbations, such a magnetic or a
gravity field, affect the system’s quasienergy spectrum,

making these perturbations detectable within the proposed
scheme with superior sensitivity given the sub-Fourier
features. This opens new avenues in magnetic field and
gravity quantum sensing, with ultracold atoms in driven
optical lattices representing a direct implementation [5].
The system considered here is a prototypical quantum

ratchet consisting of a space-symmetric potential and a
time-asymmetric oscillating force [6,7]. Specifically, we
consider a quasiperiodically driven quantum ratchet, the
generalization to quasiperiodic driving of the conventional
periodic quantum ratchet [6,8–10]. Specifically, we con-
sider a quantum particle of massm, subject to the following
periodic potential

VðxÞ ¼ V0 cosð2πx=LÞ; ð1Þ

and the following biharmonic driving force

FðtÞ ¼ F1 cosðω1tÞ þ F2 cosðω2tþ θÞ; ð2Þ

where ω1 and ω2 are the driving frequencies, and θ the
driving phase. In the simulations, reduced units are defined
such that m ¼ 2π=L ¼ 5ℏ ¼ 1. For such a small value of
the Planck constant, it is possible to associate Floquet states
with invariant manifolds in phase space in the classical
limit [8].
For F1;2 ≠ 0, ω2 ≠ ω1, and θ ≠ nπ, with n integer, all

the relevant spatiotemporal symmetries of the system are
broken [6,7], and the action of the external driving will set
the particle into directed motion [6,8–10]. Quantitatively,
the response of the system to the external driving will be
quantified by the particle’s average velocity.
Let us consider first the case of periodic driving,

ω2 ¼ ω1p=q, with p and q as integer coprimes, and, thus,
with a driving period T ¼ 2πq=ω1. Given the periodicity
in time and space, we will adopt the Floquet-Bloch
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formalism [11,12]. The quasienergy spectrum of the
associated Floquet-Bloch states ψk;nðx; tÞ—where ℏk is
the quasimomentum and n a quantum number indexing the
Floquet states—is very rich, as shown in Fig. 1 for a typical
example, where the value of the driving phase θ was chosen
to maximize the directed motion. Since the total number of
quasienergy levels is infinite, in order to have a reasonable
representation of them, depicting only the most relevant
ones for the present discussion, the opacity of each point in
Fig. 1 has been taken proportional to the absolute square of
the projection of the Floquet-Bloch state ψk;nðx; tÞ at t ¼ 0

onto the momentum eigenstate expðkxiÞ= ffiffiffiffi
L

p
. In this sense,

the most relevant Floquet-Bloch states are those with a
large overlap with the corresponding momentum eigen-
state. These are the states that are more readily prepared in a
typical experiment.
The average current associated with a given Floquet-

Bloch state ψk;n is given by

vnðk;θÞ ¼
1

T

Z
t0þT

t0

dt
Z

L

0

dxψ�
k;nðx; tÞ

�
−

ℏ
im

∂
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�
ψk;nðx; tÞ:

ð3Þ

It can also be calculated from the slope in a plot of
quasienergy vs quasimomentum via the relationship

vnðkÞ ¼
1

ℏ
∂ϵnðkÞ
∂k : ð4Þ

The quasienergy spectrum of Fig. 1 thus evidences that the
darker lines correspond mainly to the lowest currents, with
higher current values associated to states more difficult to
observe (lower opacity lines), as showing a small overlap
with a momentum eigenstate.

Note however that the quasienergies are densely packed
into the first Brillouin zone, −ℏω=2 < ϵn < ℏω=2, with
ω ¼ 2π=T and T ¼ 2πq=ω1, a fact that determines multi-
ple crossings between them. These crossings, unless a
symmetry rules otherwise, are not real crossings but
avoided crossings, in which the two quasienergies—which
can get very near each other—never have identical values.
The parameter region where the two energies are near is
associated with a strong interaction and mixing between the
two Floquet states, with the two states ultimately exchang-
ing their roles.
Avoided crossings occur by varying a system parameter.

Here we are interested in avoided crossings generated by a
variation in the driving phase, as will be shown in the
following that these avoided crossings determine sub-
Fourier narrowing in the long-time limit. Accordingly,
Fig. 2 shows two avoided crossings, indicated by vertical
lines, produced by varying the driving phase.
A key element for the discussion of sub-Fourier mecha-

nism identified in the following is the association of
sharp variation in the particle velocity to avoided crossings
generated by a variation in the driving phase. To this
purpose, the plot of the quasienergy of Fig. 2 is comple-
mented by (bottom panel) the corresponding particle

FIG. 1. Quasienergies ϵn as a function of the wave number k for
a spatially symmetric, as per Eq. (1), quantum ratchet subject to
the biharmonic force [Eq. (2)], with V0 ¼ F1 ¼ F2 ¼ ω1 ¼ 1,
ω2 ¼ 2ω1, and θ ¼ −π=2. Each point has an opacity proportional
to the absolute square of the projection of the Floquet-Bloch
state ψk;nðx; tÞ at t ¼ 0 onto the corresponding ℏk-momentum
eigenstate.
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FIG. 2. Quasienergy and momentum pn ¼ mvn of selected
Floquet-Bloch states as a function of the driving phase θ for
the same system as in Fig. 1 with a quasimomentum given by
ℏkðθÞ ¼ F2ðsin θ þ 1Þ=ω2—which is obtained from Eq. (6), see
Supplemental Material [13]. These Floquet-Bloch states are the
relevant ones for the asymptotic sub-Fourier-narrowing mecha-
nism discussed in the following. The panels show two avoided
crossings—indicated by vertical dotted lines—between three
levels: level 6 and 16, which has an appreciable component of
the initial quantum state, and level 37, initially irrelevant. These
two crossings provoke a fast change of the identity of level 6,
resulting in the current’s rapid drop observed in Fig. 3 at about
jΔθj ¼ jω2 − 2ω1jTs ≈ 0.3. Only the quasienergies of the states
undergoing sharp avoided crossings, of relevance to the occur-
rence of sub-Fourier features, are labeled, with the label scheme
indicated in the top panel applying to both panels.
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momentum. This evidences the aforementioned correspon-
dence between a sharp variation in momentum and an
avoided crossing.
We note in passing that, to obtain maximum numerically

accuracy, the values for the momentum in Fig. 2 were
calculated directly from Eq. (3), i.e., by calculating the
Floquet-Bloch states, diagonalizing the evolution operator
in a driving period, and then time averaging. For each value
of the driving phase θ, only the Floquet-Bloch states with
ℏkðθÞ ¼ F2ðsin θ þ 1Þ=ω2 were considered, as these are
the states that determine the asymptotic sub-Fourier nar-
rowing, as it will be shown in the following.
An avoided crossing can take place within a very small

interval of the varying parameter, thus involving very
abrupt changes. We demonstrate here, using numerical
experiments, how those abrupt changes can be exploited in
a finite time application, by increasing considerably the
sub-Fourier-sensitivity of the quantum system.
In order to examine linewidth narrowing, and identify

eventual sub-Fourier mechanisms, it is necessary to deter-
mine the response of the system as a function of
the frequency of the perturbation. To this purpose,
we consider the quantum ratchet of Eqs. (1) and (2),
but with a second driving frequency that is not necessarily
in a rational ratio with the first one. The driving force
can thus not be periodic at all. In any real experiment,
the time spent measuring the current can not be taken
to infinity, but to a—supposedly large—observation
time Ts. We are interested in the dependency of the
finite-time current vTs

¼ ð1=TsÞ
R t0þTs
t0 dtvðtÞ—where

vðtÞ ¼ hψðtÞjðp=mÞjψðtÞi is the expected velocity at
instant t—as a function of the driving frequencies.
It was shown in Ref. [12] that the finite-time current can

be expressed in terms of the current vnðk; θÞ of Floquet-
Bloch states of nearby time periodic systems,

vTs
∼

1

δω2Ts

Z
θ0þδω2Ts

θ0

dθ̃
X

k0;n

jCk0;nj2vn(kðθ̃Þ; θ̃); ð5Þ

where

kðθ̃Þ ¼ k0 þ lim
δω2→0

Z
t0þTbðθ̃−θÞ=δω2Tc

t0

dt0Fðt0Þ=ℏ; ð6Þ

δω2 ¼ ω2 − ω1p=q is the frequency distance to the nearby
periodic drive, with p and q as coprime integers, and
θ0 ¼ θ þ ω2t0. Equation (5) is valid in the asymptotic limit
Ts → ∞, δω2Ts ¼ const. The population jCk0;nj2 ¼
jhψk0;nðt0Þjψðt0Þij2 depends on the probability distribution
of Floquet-Bloch states at initial time t0.
We stress that the long-time resonant behavior of vTs

as
a function of the driving frequency is determined by the
Floquet-Bloch states selected by kðθÞ of Eq. (6) as a
function of the driving phase θ, as per Eq. (5).

Figure 3 shows the frequency dependency of the finite-
time current for a system with the same parameters as
discussed in Figs. 1 and 2, starting from a uniform wave
function ψðx; 0Þ ¼ const—i.e., k0 ¼ 0. A very good agree-
ment is found between the numerically calculated finite-
time current of the ratchet and the asymptotic prediction
[Eq. (5)], based on Floquet-Bloch states of nearby periodic
systems, in the expected limit, that is, for small δω2 and
large Ts.
Note the width of the resonance in Fig. 3 is smaller,

by a factor of about 10, over the expected Fourier width
Δω2Ts ¼ ðω2 − 2ω1ÞTs ¼ 2π. A classical ratchet is also
expected to be sub-Fourier [4,14], more specifically
Δω2Ts ¼ 2π=q. However, in the example considered here,
q ¼ 1 and the classical result agrees with the Fourier
width—being in fact what is observed in the simulations
of Ref. [15]. Thus, there is evidence of sub-Fourier-
narrowing determined by the quantum nature of the system.
The sub-Fourier-behavior of Fig. 3 can be explained in

terms of avoided crossings between Floquet states. The
bottom panel of Fig. 2 shows the average momentum
pn ¼ mvn of the first 10 Floquet states, together with the
16th and 37th. The states have been sorted according to
their initial probability jCnj2. The top panel focuses on the
quasienergy of the three levels involved in two avoided
crossings, which are indicated by vertical dotted lines. Of
the three, the first two levels have an appreciable proba-
bility jC6j2 ¼ 0.063 and jC16j2 ¼ 0.019, whereas the third
is negligible jC37j2 ¼ 4 × 10−7. However, the two avoided
crossings at about θ ∼ −1.27 provoke a change of identity
in state 6, first swapping with 16, and ending up with the
quasienergy and current of level 37. The current of state 6
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FIG. 3. Finite-time current as a function of the second driving
frequency ω2 for a system with same parameters as in Figs. 1
and 2 with θ ¼ −π=2, starting from a uniform wave function
ψðx; 0Þ ¼ const The solid line is the asymptotic prediction
[Eq. (5)], and the points correspond to several observation times.
The plot shows an improvement about 10× better than the Fourier
width Δω2 ¼ 2π=Ts.
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thus changes drastically in a small interval, being respon-
sible of the abrupt drop observed in Fig. 3.
Thus, the sub-Fourier-narrowing is determined by sharp

avoided crossings as a function of the driving phase. The
emergence of this mechanism for sub-Fourier-narrowing in
a driven quantum system is the central result of this work.
The quasienergy spectrum is sufficiently rich to allow

for much more sensitive sub-Fourier-behavior than the
one presented above. Figure 4 shows an example of an
extremely sharp avoided crossing between a relevant
Floquet state, level 2, with an (initially) irrelevant one,
level 49, which carries a considerably larger current.
In order to take advantage of the avoided crossing of

Fig. 4 in a finite-time measurement, we can make use of a
convenient result, which states that if the system ψðx; t0Þ is
a Bloch state with wave number k0, then ψðx; tÞ is also a
Bloch state with wave number kðtÞ ¼ k0 þ

R
t
t0
dt0Fðt0Þ=ℏ.

Therefore, starting from a uniform wave function
ψðx; t0Þ ¼ const (k0 ¼ 0), we can obtain a Bloch state
with a desired target wave number k by applying a constant
force F0 ¼ ℏk=Δt.
Figure 5 shows the result of such approach. All simu-

lations start from a uniform wave function (k ¼ 0) at
t ¼ −2T, are moved to the desired k point by application
of a constant force during a time interval 2T, and then
(t ¼ 0) the biharmonic driving [Eq. (2)] is switched on for a
time Ts to measure the ratchet current. The measures

starting from the point þ in Fig. 4 find almost no current
variation for values δω2 < 0, while positive δω2 are
detected with great sensitivity due to the avoided crossing.
A similar behavior is found for the detection of negative
δω2 in the simulations shown in the bottom panel of
Fig. 5. Compared to Fourier resolution, the quantum ratchet
demonstrates here a sensitivity about 1000 times finer, a
result that is intimately related to the coherent nature of
the quantum dynamics.
In conclusion, this Letter examined the long-time

response of a driven quantum system. Sub-Fourier-
behavior was identified, with the response of the system,
examined as a function of the perturbation frequency,
narrowing faster for increasing interaction time than the
Fourier limit. The occurrence of sub-Fourier-narrowing
was traced back to a quantum-mechanical mechanism,
with the sub-Fourier-dynamics associated to sharp
avoided crossing observed as a function of the driving
phase. Inspection of the quasienergy spectrum thus allows
for the identification of sub-Fourier features in the
system’s response. Besides its fundamental interest, the
mechanism identified here may find application in met-
rology and sensing, where the width of the relevant
resonance determines the ultimate performance of the
measurement.

Financial support from the Ministerio de Economía y
Competitividad of Spain, Grant No. FIS2016-80244-P, is
acknowledged.

-0.111

-0.11

-0.109

ε n
2
49

-1.2 -1.1 -1

θ

-2

0

2

4

p n

-1.086 -1.085 -1.084

0
3
6

+ −

FIG. 4. A very sharp avoided crossing. Quasienergy (top) and
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states undergoing sharp avoided crossing of relevance to the
occurrence of sub-Fourier features are labeled, with the label
scheme indicated in the top panel applying to both panels. The
inset shows an enlargement of the region around the avoided
crossing, with the þ (θ ¼ −1.0851) and − (θ ¼ −1.0845)
indicating the driving phases and starting points in the simu-
lations of Fig. 5.
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biharmonic driving, a constant force is applied during 2T in order
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