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Abstract
1.	 Uncovering the roles of biotic interactions in assembling and maintaining species‐
rich communities remains a major challenge in ecology. In plant communities, in-
teractions between individuals of different species are expected to generate 
positive or negative spatial interspecific associations over short distances. Recent 
studies using individual‐based point pattern datasets have concluded that (a) de-
tectable interspecific interactions are generally rare, but (b) are most common in 
communities with fewer species; and (c) the most abundant species tend to have 
the highest frequency of interactions. However, it is unclear how the detection of 
spatial interactions may change with the abundances of each species, or the scale 
and intensity of interactions. We ask if statistical power is sufficient to explain all 
three key results.

2.	 We use a simple two‐species model, assuming no habitat associations, and where 
the abundances, scale and intensity of interactions are controlled to simulate 
point pattern data. In combination with an approximation to the variance of the 
spatial summary statistics that we sample, we investigate the power of current 
spatial point pattern methods to correctly reject the null model of pairwise spe-
cies independence.

3.	 We show the power to detect interactions is positively related to both the abun-
dances of the species tested, and the intensity and scale of interactions, but nega-
tively related to imbalance in abundances. Differences in detection power in 
combination with the abundance distributions found in natural communities are 
sufficient to explain all the three key empirical results, even if all pairwise interac-
tions are identical. Critically, many hundreds of individuals of both species may be 
required to detect even intense interactions, implying current abundance thresh-
olds for including species in the analyses are too low.

4.	 Synthesis. The widespread failure to reject the null model of spatial interspecific 
independence could be due to low power of the tests rather than any key biologi-
cal process. Since we do not model habitat associations, our results represent a 
first step in quantifying sample sizes required to make strong statements about 
the role of biotic interactions in diverse plant communities. However, power 

www.wileyonlinelibrary.com/journal/jec
mailto:﻿
http://orcid.org/0000-0002-1343-8058
http://orcid.org/0000-0003-0061-227X
http://orcid.org/0000-0002-4830-8966
http://creativecommons.org/licenses/by/4.0/
mailto:t.rajala@ucl.ac.uk


2  |    Journal of Ecology RAJALA et al.

1  | INTRODUC TION

Understanding the contribution of biological interactions to the as-
sembly and regulation of natural communities remains a key goal in 
ecology. The continual development and refinement of methods to 
detect interactions from spatial, temporal, and spatio‐temporal data 
have therefore been a mainstay of the literature on the subject.

A particular focus on the role of competition can be found in 
plant ecology, not least because plants seem to require the same 
few nutrients (Silvertown, 2004), but also because their sessile na-
ture might permit an understanding of processes from the spatial 
pattern of individuals (Murrell, Purves, & Law, 2001), and allow 
for easier experimental manipulation (Goldberg & Barton, 1992). 
Multiple methods exist to detect interspecific interactions but in 
non‐manipulative field conditions there are often only two choices, 
both of which rely upon data where the location, identity, and often 
size of every individual is recorded (Wiegand et al., 2017). The 
first option is to fit growth and/or survival models that take into 
account the identity and size of nearby neighbours (e.g. Comita, 
Muller‐Landau, Aguilar, & Hubbell, 2010; Stoll, Murrell, & Newbery, 
2015; Stoll & Newbery, 2005; Uriarte, Condit, Canham, & Hubbell, 
2004). However, this requires repeated sampling over time in order 
to track the fate of every individual and very often such data are 
not available. Another issue is that because all interaction parame-
ters are fitted at once, considering all pairwise interactions is very 
difficult due the large number of parameters. As a consequence 
neighbouring individuals are sometimes lumped into conspecifics 
and heterospecifics with the potential problem that interspecific 
interactions are “lost” due to cancelling out of weak and strong, 
and/or positive, and negative effects of different species. An ex-
tension that has been recently explored is to model survival/
growth as functions of the phylogenetic or functional similarity of 
neighbours (Fortunel, Valencia, Wright, Garwood, & Kraft, 2016; 
Uriarte et al., 2010). The second option is to investigate the spatial 
pattern of the community to test the null hypothesis that species 
are independently arranged with respect to one another. Inference 
from a single snapshot of the community relies upon the assump-
tion that spatial data retain the “memory” of the birth, death and 
growth of the individuals (Flügge, Olhede, & Murrell, 2012), and 
consequently the effect of interspecific interactions should show 
up as inter‐species spatial dependence after any effect of the abi-
otic environment has been removed (Murrell et al., 2001). Under 
the assumption that all pairwise tests are independent, each pair 
of species can be assessed individually, and dependent interactions 

are categorised as being a competitive interaction if the species 
are spatially segregated, and facilitative if they are positively asso-
ciated in space, although confirmation via experimental manipula-
tion is still advisable. Due to less restrictive data requirements (the 
test can be carried out on a single sampling of the community), the 
spatial snapshot option has proven to be very popular, and the test 
methods employ well‐established spatial statistics such as Ripley’s 
K or the pair correlation function (pcf) to test the null model of 
spatial independence (Wiegand et al., 2012).

The results of previous spatial analyses of multi‐species commu-
nities have found only a very low frequency of interspecific spatial 
interactions (aggregation/segregation) over scales relevant to plant 
competition, implying interspecific interactions are generally rare, 
or weak (as discussed by Chacón‐Labella, Cruz, & Escudero, 2017; 
Luo, Yu, Chen, Wu, & Ding, 2012; Wang et al., 2014; Wiegand et 
al., 2012). However, comparisons of different plant communities 
have also revealed a positive relationship between the frequency of 
spatial independence and the number of species in the community 
(Chacón‐Labella et al., 2017; Luo et al., 2012; Perry, Miller, Enright, & 
Lamont, 2014; Wang et al., 2014; Wiegand et al., 2012). Spatial inde-
pendence between all pairs of species is one of the key assumptions 
of several unifying theories for biodiversity (McGill, 2010), and the 
low frequency of detected interactions has been put forward in sup-
port of this assertion (Chac′on‐Labella et al., 2017; Perry et al., 2014; 
Wiegand et al., 2012). However, classical niche theory also predicts 
the strength of interspecific interactions to decline as the number of 
coexisting species increases (equation 4 in Chesson, 2000), with the 
relative strength of interspecific interactions being proportional to 
1/(s − 1) for s species. Therefore, the main difference between the 
theories is that null models for biodiversity assume spatial indepen-
dence for all communities regardless of species richness, whereas 
niche theory predicts spatial interactions are likely to be stronger, 
and therefore more frequently detected in less species‐rich commu-
nities. Hence, we argue the spatial analyses appear to better support 
the predictions of classical niche theory.

However, both the low frequency of interspecies interac-
tions and the relationship between species richness and species 
interactions could arise due to the ability of the statistical tests 
to detect significant interactions at the sample sizes being used. 
Because of the unequal treatment of the null and alternative hy-
pothesis in classical testing, failure to reject the hypothesis of no 
interaction does not provide concrete proof of a lack of interac-
tions. As pointed out by Wiegand et al. (2012), when species are 
rare the rate at which two species might co‐occur in space is also 

should be factored into analyses and considered when designing empirical 
studies.
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very low and the statistical tests used might not be able to de-
tect any interaction, even if it were very strong. If, as is often the 
case, species‐rich communities have few common and many rare 
species, then we would expect to detect few significant interac-
tions. Indeed, several investigations have found the frequency of 
significant spatial associations between species to be positively 
related to the abundance of both species being considered (Luo et 
al., 2012; Wang et al., 2014; Wiegand et al., 2012), raising the pos-
sibility that interactions can only be detected amongst the most 
abundant species.

For all tests, a lower limit on the abundances of species to be 
included in the analyses must normally be set, and this acknowl-
edges there is a limit to our ability to detect even strong interac-
tions in small sample sizes. Previous investigations have used a range 
of lower abundance thresholds including 100 (Flügge, Olhede, & 
Murrell, 2014), 70 (Wiegand et al., 2012), 30 (Perry, Miller, Lamont, 
& Enright, 2017), and even 18 (Chaćon‐Labella et al., 2017) individ-
uals. However, how and why is the lower threshold of individuals 
selected? What are the limits of our analyses to detect significant 
interspecific interactions? We are unaware of any study that inves-
tigates the statistical power of the tests for spatial independence 
between pairs of species that are commonly used and consequently 
there are no guidelines for the lower abundance threshold. As such 
care is required when interpreting failures to reject the null hypoth-
esis, and we argue it is hard to make strong statements about the 
relative roles of stochastic‐ and niche‐based processes across differ-
ent communities until we gain a better understanding of the power 
of the methods to detect departures from spatial independence. In 
other words, is spatial independence a good first approximation in 
species rich plant communities because of diffuse competition lead-
ing to weak interactions, or is it because the statistical methods lack 
the power to detect the interactions for the given sample sizes typ-
ically available?

Here, we will elaborate on the statistical power of commonly 
used methods to detect significant interactions from spatial point 
pattern data. We shall study this problem by constructing a simple 
model for generating bivariate patterns where we can directly con-
trol the strength of interaction, and by utilising an approximation to 
the variance of the spatial summary statistic. We will show how the 
power to detect significant interactions is very much a function of 
the species’ abundances, the strength of the interaction (normally 
the variable we are trying to infer, and therefore unknown), and the 
spatial scale over which the test is performed. Unfortunately, it is 
not possible to provide definitive sample size criteria since the power 
also changes with the summary statistic and test method being used. 
In particular, for simplicity we ignore habitat associations, and as we 
will discuss, it is hard to tell how much our results will change when 
using inhomogeneous tests that take this into account. Despite this, 
our results are a useful first guide to understanding the sample sizes 
required to detect pairwise interactions. With this caveat in mind, 
our analyses will suggest previous abundance thresholds for species 
inclusion are likely too low to detect even very strong interactions 
in the most species‐rich communities being tested, thus questioning 

the previously derived conclusion of a lack of dependence between 
species. Since power can be estimated from Monte Carlo simula-
tions, we hope our results will motivate ecologists to think more 
about the issue of sample size in future studies and therefore help 
to resolve the debate over the relative importance of biotic interac-
tions in species‐rich communities.

2  | MATERIAL S AND METHODS

2.1 | Summary statistics for bivariate interaction

Consider data for two species labelled 1 and 2 given as two sets 
of locations of individuals x1=

{
x11,… x1n1

}
 and x2=

{
x21,… x2n2

}
 

respectively, where the locations are observed in a well‐defined 
area. We will call the combined set of points (x1, x2), a bivari-
ate point pattern, and refer to the individuals’ locations simply 
as points. Technical details are left to Supporting Information 
Appendix A, but in brief we assume that the data generating mech-
anisms can be described by some processes X1 and X2, and the 
goal of statistical analysis is to draw conclusions about the pro-
cesses using the observed set (x1, x2). We start by assuming that 
the processes are second‐order stationary, which means there is 
no underlying heterogeneity in the abiotic environment (e.g. el-
evation, soil chemistry) that also affects the distributions of the 
species, and implies that the statistics calculated from the data do 
not depend on any particular location in the observation window 
(see Section 4 for extensions). Although ecological communities 
are rarely well approximated by stationary models, we motivate 
studying the stationary case as this must be explored first, before 
any more complex scenarios can be understood.

We will focus our attention on the second‐order statistic com-
monly known as Ripley’s K (Ripley, 1979) and its derivative, the pcf; 
our rationale being that these two summaries are amongst the most 
popular when characterising joint dependence (Law et al., 2009; 
Perry, Miller, & Enright, 2006; Velázquez, Martínez, Getzin, Moloney, 
& Wiegand, 2016). First (as is standard) we define the intensity of a 
point process λ > 0 as the expected number of points per unit area. 
The cross‐K or partial‐K, denoted here by K12(r), is a function defined 
as the expected number of points of species 2 inside a circle of radius 
r placed on a random individual of species 1, scaled with intensity λ2 
to remove dimension and facilitate comparisons. Due to symmetry, it 
follows that K12 (r) = K21(r). The parameter r controls for spatial scale 
and allows for multi‐scale analysis.

The derivative of K12 in r is denoted by g12(r), and is called the 
cross- or partial‐pcf. The pcf describes the aggregation/segregation 
of cross‐species point locations at distance r where the probabil-
ity of having a species 1 individual in some small region and a spe-
cies 2 individual in some small region distance r away is relative to  
g12 (r)λ1λ2. The quantities are scaled so that for independent pro-
cesses the expectation is K12 (r) = πr2 and g12 (r) = 1. The different 
statistics are used to ask subtly different questions, with K12 (r) test-
ing for species independence up‐to distance r, and g12 (r) testing for 
independence at distance r.
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2.2 | Model generated data for illustration

For better understanding of the power of bivariate point pattern sta-
tistics, we develop a simple two‐species model for which the level 
of cross‐species aggregation/segregation can be controlled directly 
and explicitly by two parameters that determine the spatial scale 
and the strength of the interaction. Using this model, we can provide 
power estimates for different sample sizes and interaction scales and 
strengths using simulations. The details of the model are provided in 
Supporting Information Appendix B. Briefly, we assume species 1 is 
insensitive to the presence of species 2, but that the spatial distribu-
tion of species 2 is dependent on the spatial distribution of species 1. 
Asymmetric interactions are a reasonable starting point given they 
are thought to be quite common in plant communities (Freckleton 
& Watkinson, 2002) and theory suggests competitive asymmetry 
may help maintain diversity in competitive communities (Nattrass, 
Baigent, & Murrell, 2012). The locations of all n1 individuals are given 
by a Poisson process, so species 1 exhibits no intraspecific spatial 
structure. The n2 individuals are placed with distribution that de-
pends on the locations of species 1. Importantly the model has

where h(r) = exp[−r2/(2τ2)] is a decreasing function whose exponen-
tial decay is controlled by the parameter τ > 0, and has a range (h is 
non‐zero) of approximately 2τ.

This function is analogous to the interaction or competition 
kernels used in spatially explicit birth‐death models (Murrell, 
2010; Murrell & Law, 2003). The strength of interspecies’ inter-
action, as summarised by g12 (r), is controlled by the parameter 
b ≥ −1. If −1 < b < 0 the two species exhibit segregation (g12 < 1), 
if b > 0 the two species exhibit aggregation or clustering (g12 > 1), 
and when b = 0 the two species are independent. The reader 
should note that this model is simply a pattern generating process 
for illustration, rather than a mechanistic model, and we simulate 
patterns conditional on fixed n1 and n2 as we want full control 
over them (for the unconditional model the abundances are ran-
dom, like in the birth and death processes, see e.g. Murrell, 2010). 
Example point patterns showing inter‐species aggregation and 
segregation can be found in Supporting Information Figure S6 in 
Appendix B.

2.3 | Testing bivariate independence

We now turn our attention to the main problem of determining if the 
processes X1 and X2, as observed through the bivariate point pattern 
(x1, x2), are statistically independent. If the processes were independ-
ent, then the observed pattern would be a random super‐position of 
the two processes. We will take this as our independence or null hy‐
pothesis which now needs to be tested using the observed data.

To test if the independence hypothesis is compatible with the data, 
observed values of a chosen test statistic are compared to the distribu-
tion of the test statistic under the independence model. We can test 

either (a) at some specific distance, which we call pointwise tests or (b) si-
multaneously over multiple distances. For both types of tests, the idea is 
to compute some test statistic T ∈ ℝ from the data, and compare it to the 
values of T (its distribution) as if the null hypothesis were true. If the data 
value is sufficiently extreme, we have reason to reject the null hypothesis.

The true distribution of the test statistic under independence is 
rarely known in point pattern applications, and needs to be approx-
imated by an empirical distribution derived from simulations under 
the independence model. This approach is known as Monte Carlo 
testing (Myllymäki, Mrkvička, Grabarnik, Seijo, & Hahn, 2017). We 
consider the observation area to be rectangular, in which case the 
independence simulation consists of randomly shifting pattern 1 
(or 2 or both) with a toroidal wrap (Lotwick & Silverman, 1982). 
This keeps the intra‐species statistics of the patterns intact while 
“breaking” any interspecies dependencies, and can also be used for 
inhomogeneous patterns (Cronie & van Lieshout, 2015).

For the purposes of this discussion, we will consider only the 
simple pointwise testing scenario, for which we can employ an 
analytical approach using a Gaussian approximation to the distri-
bution corresponding to the random shift simulations. As we will 
show, the approximation is very useful since it is not only compu-
tationally very efficient relative to the MC simulations, but also 
allows some analytical insight into what affects the power of the 
tests. The pointwise tests we will study are comparable to simul-
taneous tests when the best distance to test at is known (see 
Supporting Information Table S1 in Appendix C). As detailed in 
Supporting Information Appendix A, we can choose an unbiased 
estimator K̂12 for which approximately it holds:

where K12 is the value under the correct model. Conditional on the 
observed point counts n1, n2, the variance of K̂12 (r) can be approx-
imated by

where c1, c2, c3 are constants depending on the distance r and the 
geometry of the observation area (see Supporting Information 
Appendix A.3). At a short distance, the constants reflect mainly 
the stochasticity of each point’s neighbour count, and when the 
distance increases the “censoring” of the neighbourhood at the 
edge of the finite observation window contributes additional un-
certainty. The form given in Equation 2 is exact when X1 and X2 are 
distributed according to a homogeneous Poisson process, but as 
we will see later on in Section 3.1, the approximation works quite 
well also for weakly internally aggregated/segregated patterns. 
Under strong internal aggregation, the true variance of K12 will 
be higher than the approximation given by (2), but under strong 
internal segregation the true variance of the cross‐K will be lower 
than given by (2); we refer to Supporting Information Appendix 
A.3 for further details. Although we focus on K12, the approach to 

g12 (r)=1+bh (r) ,

(1)K̂12 ∼ N
(
K12,�

2
)
⇔T :=

K̂12−K12

�
∼ N

(
0,1

)
,

(2)�2≈ c1
(
n1n2

)−1 [(
n1+n2

)
c2+c3

]
,
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approximating the distribution is nearly identical for g12, only the 
constants are different.

2.4 | Power of a statistical test

Denoting the null hypothesis of bivariate independence by H0, the test 
statistic by T, and a confidence level of the test by (1 − α) where α ∈ (0,1). 
Recall that α is the researcher’s fixed accepted margin of making a false 
positive decision, also known as type I error, defined mathematically as

where P is the distribution of T, q1−α is the corresponding threshold 
value for T so that if T > q1−α is under H0, then we reject the null hy-
pothesis H0. The condition refers to T being tested. On the other 
hand, the power of a test is the probability of a true positive judgment, 
that is, the probability of rejection when the hypothesis H0 does not 
hold. Consider first the margin of making a false negative judgment,

also known as type II error. Then the power of the test is defined as

Therefore, a test is powerful if it can correctly reject the wrong 
null model with a high probability.

Consider the idealised situation of testing the cross‐species in-
dependence using the pointwise summary K12=K12(r̃) for some fixed 

spatial scale r̃ only. For the test statistic K12, the null hypothesis H0: 
“random superposition” implies K12=k0=𝜋r̃2. Let us now consider 
the situation that in truth K12 = k12 ≠ k0. Then, if we accept the ap-
proximate Gaussianity of the test statistic as shown in the previous 
section, it follows by elementary manipulations that

where Φ is the cumulative distribution function of the standard 
normal distribution, with a‐quantiles qa (approx. 1.96 for α = 0.05 
in the two‐sided test). Notice that the sign of interaction does not 
matter, meaning that due to symmetry of the Gaussian distribution 
aggregation is as easy or hard to detect as segregation of similar 
strength. Also notice how the power is dependent on the vari-
ance (σ2) of the test statistic used. The smaller the variance, the 
higher the power, which explains why different unbiased estima-
tors of K12 have been developed (see e.g. Illian, Penttinen, Stoyan, 
& Stoyan, 2008) and, while all being correct in the sense of bias, 
they can lead to different rates of detecting interactions because 
of different variances.

We can now use the power formula and our approximation for 
the variance (Equation 2) to illustrate how to

•	 compute the power of the test given the point counts n1, n2, ex-
pected true signal k12, and the type I error tolerance α;

•	 compute the required point counts given the expected true signal 
k12, the type I error tolerance α, and the type II error tolerance β 
or power.

𝛼=P
(
T>q1−𝛼|H0 true

)
,

�=P
(
T≤q1−�|H0 not true

)
,

power=power
(
H0,T,�

)
:=1−� .

(3)power≈1−Φ

(
q1−�∕2−

|k12−k0|
�

)
,

F I G U R E  1   Top: Examples of the segregated bivariate point patterns, b = −0.5 and 2τ = 10, 100 × 100 window. Bottom: The power of K12‐
based pointwise cross‐species independence tests when species are segregated like in the example patterns. The true power is estimated 
using 5,000 repeated tests with 199 random shifts each
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3  | RESULTS

The power formula (Equation 3) is a good approximation to the 
power of the toroidal shift Monte Carlo test (Figure 1). There is very 
little difference between the test’s true power and the approxima-
tive power given by the analytical formula, with the analytical ap-
proximation slightly overestimating the power (at most 10%) due to 
the clustering of species 2 and subsequent underestimation of the 
variance via formula (2). The acceptable quality implies that we can 
discuss the power and its effect on ecological interpretations using 
the convenient analytical formula, acknowledging the small optimis-
tic bias and the simplifying assumptions of stationarity and weak 
intra‐species structuring.

As indicated by Equation 2, the variance of the estimator for the 
K12‐function is increased when either or both of n1 and n2 are small. 
This means that both the imbalance in population abundances as 
well as the total number of individuals affect our ability to detect 
bivariate interactions. We shall investigate each of these in turn, as 
well as the spatial distance of testing.

3.1 | Power in balanced scenarios and the 
importance of the spatial scale of testing

Figure 1 depicts the pointwise powers for different balanced (n1 = n2) 
low‐abundance scenarios when data are segregated (aggregated re-
sults are nearly identical). Visual inspection of the example point 
patterns (Figure 1, top row) already gives some indication that de-
partures from spatial independence might be hard to detect for the 
lowest abundances. More formal analysis of the power quantifies the 
increase in ability to detect interactions with increasing abundances 
(n1, n2) of the species being investigated and how this is affected by 
the spatial scale at which the hypothesis is tested (Figure 1, bottom 
row). In all cases, the power to detect the interaction at small spatial 
scales (r < 2) is low because, although the interaction is at its strong-
est here, the variance of K12 is relatively high and overwhelms the 
ecological signal. The trade‐off between signal and noise leads to a 

unimodal relationship between power and the neighbourhood ra-
dius r, with the peak being approximately at r = 7 for the interaction 
range 2τ = 10 for all abundance sizes considered (Figure 1). We will 
refer to this peak in power with r as the optimal distance for testing, 
and will focus on this best case scenario for the results presented 
below. The unimodal relationship highlights the point that having 
some prior knowledge about the likely ranges of biotic interactions 
is going to be important for detecting interactions.

Previous results based on in situ data analysis suggest detectable 
interactions between trees typically occur over 10–20 m (Uriarte et 
al., 2004). Scaling our analyses accordingly, we can use the power 
formula to estimate the population sizes we require in order to reli-
ably detect an interaction of a given strength and range (Figure 2). 
If for example, we wish to be 75% sure a true positive is not to be 
missed when the interaction strength is weak (b = −0.1), then we re-
quire species with populations of approximately 400 individuals for 
the 10 unit interaction neighbourhood (2τ = 10) and 250 individuals 
for 20 unit neighbourhood (2τ = 20). This value is surprisingly large 
compared to what data we commonly have available to us.

In contrast, for the maximum possible negative interaction 
strength (b = −1), a similar level of power is reached with only 
around 35 individuals for 2τ = 10 unit and 18 individuals for 2τ = 20. 
Conversely, if we have a pair of species with n1 = n2 = 50, and we 
wish to be 75% sure a true positive is not missed, we must hope that 
the true interaction |b| when coupled with short interaction range 
(2τ = 10) is at least 0.7–0.75, and if coupled with long interaction 
range (2τ = 20) is at least 0.3–0.4. It therefore seems likely that only 
the very strongest interactions are detectable with the number of 
individuals that are typically found in the species‐rich datasets.

3.2 | Imbalances in species abundance

Since most communities exhibit a “hollow curve” distribution of 
population abundances (McGill et al., 2007), an imbalance in popula-
tion sizes is very common. From the variance formula (2), it is clear 
that imbalance has a strong effect on the power because the term 

F I G U R E  2  Power of K12‐based pointwise cross‐species independence tests when abundances are balanced and testing is done on the 
best possible distance. Test level α = 5%
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(n1n2)
−1, and hence the variance, increases with imbalance. This re-

lationship is confirmed when we use the power formula to quan-
tify the effect of population imbalance for different interaction 
strengths and combined population sizes (Figure 3). So, for example, 
for an interaction strength of |b| = 0.1 and a desired power of 80%, 
a combined individual count of about 750 is required when the pop-
ulations are perfectly balanced, but 1,000 are required when one 
species is five times more abundant than the second species, and a 
surprisingly large 1,500 required when one species is ten times more 
abundant than the other. Alternatively, consider that we require 90% 
power, and that the interactions are assumed to be |b| = 0.5 and of 
short range, 2τ = 10. Then, to be on the safe side, we should attain 
samples of sizes at least (100, 100), (40, 200), or (30, 300), depending 
on the imbalance.

3.3 | Power at rainforest sample sizes

We now consider how our understanding of the power to detect 
interactions might affect results for abundance distributions typical 
of observed plant communities. For simplicity, let us assume interac-
tions are of the type given by our model and that every species is 

interacting with every other species in an identical manner (so b and 
range 2τ are the same for all pairs of species). Since the power is the 
probability of detecting interactions, given that they exist, we can 
get a rough estimate of the number of detected cross‐species inter-
actions by assuming the tests are independent, and summing up the 
powers. This then allows a coarse comparison of recently reported 
frequencies of detected interactions in tropical forests (Chaćon‐
Labella et al., 2017; Lan et al., 2016; Perry et al., 2014; Wang et al., 
2014; Wiegand et al., 2012) with the expected frequency of de-
tected interactions as a function of power.

Figure 4 shows the expected number of cross‐species interactions 
detected as a function of abundance for various hypothetical interac-
tion strengths and ranges. The abundances are taken from the Barro 
Colorado Island 1995 census (https://ctfs.si.edu/webatlas/datasets/
bci/abundance) of woody plants with diameter at breast height at 
least 1 cm (Condit, 1998), and these are used in conjunction with our 
variance approximation and bivariate interaction model (so we are not 
using the spatial point pattern associated with the 1995 census). The 
abundances are highly skewed, with a large proportion of low‐abun-
dance species, and we show the power in two cases, when the pool of 
species consists of those with abundance at least 30 and 100. Reducing 

F I G U R E  3  Sample size n1 +n2 requirements if testing for independence at level α = 5% with a K12‐based pointwise cross‐species 
independence test in the example scenario. Interaction range 2τ = 10
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the species pool by increasing the abundance threshold naturally in-
creases the proportions of detection, and highlights the importance of 
using similar thresholds when comparing different communities. It is 
striking how little power is to be expected for most of the species even 
when assuming strong interaction (b = −0.75). Only when the abun-
dance of a species reaches thousands, can we be expected to detect 
even 50% of the interactions present. This is a very thought‐provoking 
result, as the lack of detection might be explained simply by a lack of 
power in the majority of species‐pairs. However, we remind the reader 
that our tests do not take habitat associations into account whereas the 
previous analyses (Chaćon‐Labella et al., 2017; Lan et al., 2016; Perry et 
al., 2014; Wang et al., 2014; Wiegand et al., 2012) approximately factor 
this out, and being different tests the power to detect interactions will 
be different. We discuss this point in more detail below.

4  | DISCUSSION

Understanding the relative strength of interspecific interactions is 
one of the key goals of community ecology, and the null model ap-
proach has been popular for characterising spatial point patterns of 
(predominantly) diverse plant communities (e.g. Chacón‐Labella et 
al., 2017; Lan et al., 2016; Martinez, Wiegand, Gonzalez‐Taboada, & 
Obeso, 2010; Perry et al., 2014; Velázquez, Paine, May, & Wiegand, 
2015; Wang et al., 2014; Wiegand et al., 2012; Wiegand et al., 2017). 
However, there has been little guidance on when a given test is likely 
to be able to detect species associations that are present. Here, we 
have made a first step in closing this important gap in our under-
standing. Our results clarify the quantitative relationships between 
the strength of the underlying biological interaction, sample size 
(number of individuals of both species under investigation), and the 
spatial scale over which the test is being performed. We have also 
shown that statistical power may explain both the low detection rate 
of biological interactions in plant communities, and the negative re-
lationship between species‐richness and frequency of detected in-
terspecific interactions in comparative studies.

Ecologists have had to rely largely upon their intuition for de-
ciding the minimum population size to include in their analyses with 
the result that a range of criteria up to 100 individuals (Flügge et 
al., 2014) have been used. For species‐rich communities, where 
many interspecific interactions may necessarily be weak (Chesson, 
2000), abundances of both species may need to be in the hundreds 
of individuals before any interaction is detected (Figure 3), and this 
implies previous abundance thresholds are likely too low to detect 
many interactions. As several authors have acknowledged, the fail-
ure to reject the null hypothesis of spatial independence in so many 
species‐pairs does not necessarily mean interspecific interactions 
are not occurring, or present (Chacón‐Labella et al., 2017; Perry et 
al., 2014; Wiegand et al., 2012), and we hope our study highlights 
how the power of the tests can be assessed and should be factored 
into the interpretation of the results. The power formula can also be 
used in estimating the area of observation necessary to increase the 
power to a desirable level (Supporting Information Appendix C.4), 

so can also be used to aid study design. Nonetheless, we do stress 
that there is still much to be learned about the power of the statis-
tical tests used in earlier studies, given the assumptions we had to 
make, and that the reader should take our contribution as a guide to 
sample sizes that are required to make strong statements about the 
frequency and strength of interspecific interactions.

Although our model is clearly mis‐specified as we use tests as-
suming that intensity is not dependent on abiotic features of the 
environment, the general applicability of our results will carry‐over 
into the inhomogeneous setting. The quantitative relationships be-
tween sample sizes and statistical power will of course change for 
different tests, including the inhomogeneous Poisson process, but 
the qualitative relationships we uncover are likely to remain. In par-
ticular, we would still expect a positive relationship between popu-
lation size and frequency of interactions to emerge simply due to an 
increase in power at larger sample sizes. Such a positive relationship 
has already been reported in a number of empirical studies that take 
habitat associations into consideration (Chacón‐Labella et al., 2017; 
Luo et al., 2012; Wang et al., 2014; Wiegand et al., 2012). It is possi-
ble that common species are better competitors and are somehow 
suppressing the abundance of the weaker competitors, but without 
experimental manipulation, or perhaps different analyses using re-
peated sampling over time (Damgaard & Weiner, 2017), it is hard to 
distinguish whether this pattern is a result of biological processes 
or the ability of the statistical methods to detect interactions at dif-
ferent population sizes. Given the potential for low power to detect 
interactions for abundances typical of species‐rich communities, we 
suggest that future tests should consider the neighbourhood from 
the perspective of traits or phylogenetic relatedness (e.g. Wang et 
al., 2016), with interactions potentially being some function of re-
latedness or functional similarity. In so doing, tests would consider 
the impact of multiple species on a focal species and would reduce 
some of the low power issues we highlight here. However, such an 
approach requires reliable phylogenies, and adequate sampling of 
traits that are relevant to growth, survival and fecundity of individu-
als, and these are still challenging issues in ecology.

The spatial scale over which tests are performed is important for 
the ability to detect spatial dependencies (Figure 1), and our results 
are similar to empirical studies that often find few negative interac-
tions at the shortest distances, even though this is where the interac-
tions are likely to be strongest (Chacón‐Labella et al., 2017; Wang et 
al., 2014; Wiegand et al., 2012). Short scales suffer from having high 
variability due to the relatively small number of neighbours possible 
in a small area, but at longer distances, the effect of neighbours is 
weaker. Hence, there is a sweet spot where this trade‐off is maxi-
mised, and the location of this is likely dependent on several factors, 
not least of which is the scale over which interactions are occurring 
(see e.g. figure 2 in Chacón‐Labella et al., 2017 for an empirical ex-
ample). For woody plants, there have been several studies that have 
fitted neighbourhood growth or survival models to individual‐based 
data that track the fate of trees over time (e.g. Stoll & Newbery, 2005; 
Uriarte et al., 2004), and most results seem to point to interactions 
being confined to 10–30 m radius around an individual. However, 
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little is known about how the spatial scales of interspecific interac-
tions change with life history stage, environmental conditions, or 
even species identity even though the latter has been shown to be 
very important for determining coexistence (Murrell & Law, 2003). 
Any changes to the scales of interactions will have consequences for 
the hypothesis testing methods discussed here, but until more is un-
derstood about the spatial scales of interactions between species, it 
seems sensible to test over ranges reported in earlier studies.

Our discussion up to this point has been in the context of sta-
tionary, most notably homogeneous, data. Most recent analyses 
have tried to factor out the effects of spatial heterogeneity in the 
abiotic environment by using inhomogeneous Poisson processes as 
the null model (Chacón‐Labella et al., 2017; Punchi‐Manage et al., 
2015; Wiegand et al., 2012). Currently, it is hard to predict whether 
the power of an inhomogeneous analogue of our scenario would be 
lower or higher. On the one hand, we could expect higher power 
to detect interactions because the model better captures the un-
derlying processes that generate the spatial distributions of the 
species within the community. However, we also expect variance to 
be increased, since extra parameters need to be estimated leaving 
fewer degrees of freedom per parameter. For example, tests using 
the inhomogeneous Poisson process method use a smoothing ker-
nel to approximately remove the effects of large scale structure 
assumed to be caused by habitat associations (see e.g. Wiegand et 
al., 2012). Typically, the same smoothing parameter is used for all 
species, which is a sensible assumption when little is known about 
the spatial scale of habitat associations, but there is no reason to sus-
pect a single smoothing parameter is appropriate for all species. An 
open challenge is to better understand how mis‐specification of the 
smoothing parameter will bias the detection of interactions. Again, 
we feel that using a biologically motivated model to simulate data is 
a useful approach for exploring such issues.

The understanding of statistical significance versus the practical 
importance of any effect has been discussed in other application do-
mains (Button et al., 2013; Hojat & Xu, 2004; Sawyer & Ball, 1981). 
The difficulties inherent in studies determining significance in set-
tings with relatively small sample sizes, has for example been noted 
by Ioannidis (2005) and Open Science Collaboration et al. (2015). Our 
results underscore the difficulties of statistical testing for smaller 
sample sizes, especially given the unequal weighting between the 
null and alternate hypotheses. We also remind the reader that the 
spatial statistics used in the null model approach do not say anything 
directly about the processes that may have created the patterns, and 
different processes could generate the same summary statistic. Since 
the data are often a single snapshot of the community it is also hard 
to infer the importance of the results for the population dynamics of 
the species under scrutiny. For example, other processes such as tem-
poral variation in the environment (Chisholm et al., 2014), and within 
species interactions (perhaps mediated via specialist natural enemies, 
LaManna et al., 2017) could both contribute more to population dy-
namics than any detected pairwise interaction. Similarly, interactions 
that are undetected due to low sample sizes could be expected to 
contribute little to population dynamics, especially if both species are 

quite rare, although the contribution of many weak interactions might 
still be significant factors affecting growth, survival, and/or fecun-
dity. As a result, we believe the spatial tests for independence should 
act as exploratory studies to highlight potentially significant species 
interactions, but understanding their biological importance requires 
different methods. As an alternative, model‐based approaches, either 
in the form we use here (which include the familiar Thomas Cluster 
models) or birth‐death models (May, Huth, & Wiegand, 2015; Rajala, 
Murrell, & Olhede, 2018) could also be applied to the inference of 
biological interactions from point pattern data (Wiegand et al., 2017). 
Model fitting will normally lead to estimation of parameters that can 
also be estimated in the field (e.g. dispersal kernels, interaction ker-
nels), we therefore feel that their continued development will help to 
improve the understanding of the processes underpinning the results 
returned (Wiegand et al., 2017).

In conclusion, we hope our main contribution is to encourage 
more users to consider explicitly the ability of the spatial point pat-
tern tests to detect significant associations between species. We 
have shown that the data requirements to detect even strong inter-
actions may be quite high, mirroring results for null model tests of 
species co‐occurrences in community matrix data (Freilich, Wieters, 
Broitman, Marquet, & Navarrete, 2018; Gotelli, 2000). On this basis, 
we suggest it is desirable to only interpret the frequency of interac-
tions across large numbers of species once the effect of different 
powers to detect interactions for pairs of species of given popula-
tion sizes has been (even approximately) factored out. This seems 
especially important in comparative analyses across different com-
munities where the spatial scales, strengths of interactions, and the 
species abundance distributions may differ and affect the power to 
detect interactions.
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