
On-path Cloudlet Pricing for Low Latency
Application Provisioning

Argyrios G. Tasiopoulos∗, Onur Ascigil∗, Ioannis Psaras∗, Stavros Toumpis†, George Pavlou∗
∗Dept. of Electronic and Electrical Engineering, University College London
†Dept. of Informatics, Athens University of Economics and Business

Email: {argyrios.tasiopoulos, o.ascigil, i.psaras, g.pavlou}@ucl.ac.uk, toumpis@aueb.gr

Abstract—Cloud computing has been tremendously success-
ful in providing a commercial infrastructure for hosting com-
putationally intensive applications. Nevertheless, an increasing
number of Low Latency Applications (LLAs) notably in the
entertainment, IoT, and automative domains require response
times much smaller than the supported ones by the typical
“client-to-cloud” network model. Cloudlets have been introduced
as “data centres in a box”, for bringing computing resources
“closer” to the end users. As a result, LLAs can take advantage
of cloudlets to improve their Quality-of-Service (QoS) by reducing
the underlying response times between their users and application
instances’ location. In this work, we study the emerging market
of stateful LLAs’ provisioning over geo-distributed third-party
cloudlets. We assume that cloudlets offer their resources in
the form of Virtual Machines (VMs) via collocated markets.
Forwarding requests for LLAs interact with cloudlet markets for
performing on-path and on-demand resource provisioning. We
introduce a pricing scheme where users pay a fixed price for each
time unit of their engagement to an LLA instance. Our evaluation
on realistic topologies and application requests demonstrate the
merits of on-demand provisioning when accompanied by a pay-
as-you-go pricing scheme.

I. INTRODUCTION

Cloud computing is the prominent cost-efficient infrastruc-
ture for delivering computationally demanding applications to
end-users. Clouds’ abundance of resources enables them to
elastically cope with changes in applications’ demand in a
scalable manner via on-demand computation. That is, Clouds
exploit economies of scale for decreasing their running cost [7]
while deploying usage-based pricing mechanisms for con-
trolling the demand for their computing resources. However,
an increasing number of applications (like augmented reality,
automotive, health monitoring etc.) require low response times,
rendering the current cloud-based infrastructure unfit for the
purpose of application provisioning. We refer to these as Low
Latency Applications (LLAs) since they strongly rely on the
latency of the network for achieving a satisfying Quality-of-
Service (QoS).

Cloudlets have been proposed as “data centres in a box” that
can be deployed throughout the Internet, for bringing comput-
ing resources closer to the end users [12]. That is, cloudlets
have the potential of improving the network conditions by
decreasing the Round-Trip-Time (RTT) between end-users
and application instances when hosted at cloudlets’ points-of-
presence. Clearly, cloudlets can serve as an alternative com-
puting infrastructure, that augments as well as complements
the centralised provisioning at the cloud, for enabling LLAs.

Fig. 1: On-path application provisioning setting

Nevertheless, cloudlets are incapable of providing the essen-
tially boundless elasticity of the cloud, meaning that occasion-
ally the demand for resources at a given cloudlet can exceed
their availability. That is, resource allocation mechanisms have
to prioritise the requests that benefit the most when served by
a cloudlet. Especially in the case of stateful LLA provisioning,
resource allocation is a challenging task since once a request
is accepted and a user is engaged to an application instance,
the established application session cannot be disrupted for
reallocating the involved resources. The reason is that session
disruptions can cause a user to quit the LLA, which is
considered the worst possible outcome in terms of QoS.

In this work we investigate the emerging market of provi-
sioning heavily stateful LLAs over third party cloudlets. In
our context, heavily stateful LLAs are defined as the ones that
cannot be migrated to another cloudlet location, due to the
size of their runtime data generated by their users, without se-
riously damaging their QoS [4]. We consider that computation
is available either at the edge or middle-tier locations of the
network, in the form of cloudlets, and/or at distant clouds/data
centres (Fig. 1). We argue that application provisioning over
cloudlets is expected to take place in a decentralised and
uncoordinated environment. Given that cloudlet resources are
limited, the key challenge is to create a market that operates
on a per-request basis for offering the finest possible resource
allocation granularity. We aim to provide answers to the
fundamental questions of: i) how should cloudlet resources
be allocated over time to different applications/services? and
ii) how much should a cloudlet charge an application? Here,
we present a decentralised pricing mechanism that answers

both questions, while addressing the challenges of dynamic
application provisioning over an infrastructure of third-party
cloudlets.

We introduce a pricing mechanism that associates each
cloudlet with a price for on-path, on-demand, uncoordinated
LLA provisioning. In our context, cloudlets offer their re-
sources in the form of Virtual Machines (VMs) via collocated
markets. As LLA requests are forwarded towards a default
execution location, i.e., at the Cloud, they interact with on-
path cloudlet markets. If the price of a market is below the
gain the LLA would have if it is served, an available VM is
allocated to serve the request; otherwise, the request is rejected
and continues its journey towards the Cloud. For example in
Fig. 1, the requests of User 1 (User 2) attempt to provision
resources on-path at Cloudlet 1 (Cloudlet 2) followed by
Cloudlet 3 before getting served by the Cloud as the last
available provisioning infrastructure. Our design addresses
explicitly the heavily stateful requirement of seamless users’
engagement to LLA instances while setting the price of each
cloudlet based on its resource utilisation. To this end, the main
technical contributions of this paper are as follows:

1) We study the emerging market of heavily stateful LLAs’
provisioning over independent cloudlets from an economics
point of view.

2) We develop a pricing mechanism for on-path, on-demand
LLA provisioning, taking into account the cloudlets’ com-
puting resource limitations and the end users’ requirement
for seamless LLA engagement.

3) We evaluate the merits of our mechanism in an ISP
topology under trace-based application requests.

II. DESIGN RATIONALE & SYSTEM MODEL

A. Design Rationale

We aim to design a market mechanism tailored to the provi-
sioning of LLAs over an uncoordinated cloudlet infrastructure.
Our design has to address explicitly the application provi-
sioning challenges of i) cloudlets’ resource discovery, since
cloudlets points-of-presence are expected to exceed by far the
number of clouds, and ii) the cloudlets’ limited elasticity of
resources.

Given that application requests are forwarded in the network
towards a distant data centre, we argue for both on-path and
on-demand application provisioning. That is, by applying on-
path provisioning, there is no need for a centralised resource
discovery process since resources are discovered in real-time
opportunistically. Furthermore, due to on-demand provision-
ing, cloudlets do not waste resources since each allocated
VM serves an application request. We argue that these design
choices enable the most promising and incrementally deploy-
able conditions for the problem of application provisioning
we tackle; providing an uncoordinated solution. However, on-
demand provisioning has to be accompanied by a pricing
scheme that controls the demand at each cloudlet, and this
needs to happen in a way that the requests that have the highest
provisioning gain at a specific location are given priority.

System Model
S Set of LLAs.
D,Ds Set of cloudlets, default data centre of LLA s.
P Set of requests’ access points.
uds,p Per second QoS gain of LLA s at cloudlet d for request from

access point p, in terms of network condition.
Charging Mechanism

πd Price of cloudlet d.
bds,p Bid of request produced at access point p for LLA s at cloudlet d.
ρmin
d , ρmax

d Target minimum and maximum utilisation of resources at d.
∆π Price decrease step.

TABLE I: Pay-as-you-go Notation

Cloud resources are offered in terms of remote instances,
i.e., virtual machines (VMs), with dedicated CPU, mem-
ory, and storage resources, as an Infrastructure-as-a-Service
(IaaS) [2]. For example as a cloud resource provider, Amazon
offers instances under three pricing schemes:
1) Reserved instances guarantee the long-term availability of

an instance, i.e., for more than a year, by charging fixed
usage-based prices.

2) On-demand instances guarantee the short-term availability
of an instance, i.e., for an hour, by also charging fixed
usage-based prices.

3) Spot instances create an auction-based market for spare
instances. In detail, users can use spot instances only if
their bids exceed a spot price while spot prices are updated
every 5 minutes; meaning that the availability of instances
is not guaranteed.

Offering cloudlet resources as reserved and/or on-demand
instances fails to capture demand fluctuations under the
bounded instances elasticity. Furthermore, spot instances are
suitable for interruptible jobs, since a task is executed as long
as its bid exceeds the current spot price; otherwise, the task is
suspended. Despite some efforts in strategically bidding spot
instances for uninterrupted tasks to the cloud [16], we suggest
that a cloudlet pricing plan should include the applications’
seamless execution in its inherent characteristics, especially in
the case of heavily stateful applications. In this work we argue
that cloudlets’ pricing schemes should follow a pay-as-you-go
structure in terms of application user engagement duration. In
other words, the LLA providers should be charged based on
the time their users occupy a cloudlet instance.

B. System Model

We consider a set S , {1, 2, ..., S} of LLAs and a set
D , {1, 2, ..., D} of cloudlets. We assume that each LLA
s ∈ S can serve its users demand at a distant cloud/data centre,
denoted by Ds, whose capacity is sufficient for serving the
total number of LLA requests it receives. Application users are
connected to the network via a set of P , {1, 2, ..., P} access
points. We assume that the network conditions to a cloudlet
are access-point specific. That is, a user connected to access
point p while requesting an LLA s ∈ S experiences a QoS
improvement uds,p, in terms of network conditions, for each
second that the end user remains engaged to an LLA instance
at cloudlet d ∈ D, as opposed to the default execution cloud
Ds. The notation followed in throughout the paper is presented
in Table I.

Fig. 2: On-Demand Provisioning Pay-as-you-go Charging
Scheme Overview

III. PAY-AS-YOU-GO MECHANISM

In this section, we describe the individual components of
the proposed pay-as-you-go mechanism, namely i) the on-
demand provisioning component, and ii) the utilisation-based
price derivation component. Given a price assignment at each
cloudlet, the on-demand provisioning component defines the
real-time interaction of LLA requests with the collocated
cloudlets’ markets, as the requests are forwarded in the net-
work. On the other hand, the price derivation component is
responsible for deriving a price for each cloudlet given the
resource utilisation achieved at each cloudlet.

A. On-Demand Provisioning

An overview of the on-demand provisioning scheme is
depicted in Fig. 2, where we consider an end user request
of LLA s ∈ S that arrives at the market of cloudlet d ∈ D
(step a). The interaction of the request with each market is
characterised by the following properties:
A1) The request is for a single VM.
A2) The request is associated with a bid, bds,p, that expresses

the user’s willingness to pay for a VM for each engage-
ment time-unit of the user to an LLA s instance at d
when her access point is p.

A3) The request is not queued at the market, i.e., the request
is either served or rejected immediately.

A4) The VM allocation time overhead has no impact on the
LLA’s QoS.

In more detail, let the price for the use of a VM at cloudlet
d be πd. Upon the arrival of the request the market operates
according to the following rules:
R1 If there are no available VMs, the request is rejected.
R2 Else, if there are available VMs:
• If bds,p ≥ πd, a VM is allocated to serve the request at

price πd for each time unit of user engagement.
• Else, if bds,p < πd, the request is rejected.

Assuming bds,p ≥ πd and the existence of available VMs, the
allocation is taking place and the cloudlet starts a timer for
keeping track of the user’s engagement duration (step b). After
the session completion/application termination, the cloudlet
informs the market about the engagement duration (step c).
Then the market verifies the duration and converts it to a
bill that equals the engagement duration times the agreed per
time unit service price πd (step d). Finally, the bill is sent

to the corresponding LLA provider which eventually pays the
cloudlet provider for its service.1 Next, we explain how the
request bids as well as the cloudlet prices are derived.

B. Request Bids and Cloudlet Prices derivation

Let uds,p be the per-time-unit QoS gain of LLA s when a
request is coming from access point p to get served at cloudlet
d, instead of its default cloud. Bidding truthfulness is defined
in the following straightforward way:

Definition 1. A bid bds,p for a request arriving at cloudlet d
from access point p for LLA s is truthful iff bs,p := uds,p, where
uds,p is the per-time-unit QoS gain of the requested LLA at d.

In other words, a bid is truthful when it equals the actual
gain of the served application. Then, given the cloudlet’s price,
πd, the net utility rate of the involved request is defined as:

Definition 2. The net utility rate of class p LLA s from bid
bs,p and QoS gain uds,p is:

net utility rate =

{
uds,p − πd, if bds,p ≥ πd,
0, otherwise.

Proposition 1. Under rules R1-R2, the request bids are
truthful.

Proof. We investigate the following possible cases:
• If uds,p ≥ πd then the bidder would win the item with a

truthful bid as well as an overbid, i.e., bds,p ≥ uds,p.
• If uds,p ≥ πd > bds,p underbidding returns a net utility rate

equal to 0, as opposed to a truthful bid for which the net
utility rate is non-negative.

• If πd > uds,p then the bidder would loose the item with a
truthful bid as well as an underbid, i.e., uds,p ≥ bds,p.

• If bds,p > πd > uds,p, then overbidding would return a
negative net utility rate, as opposed to a truthful bid for
which the net utility rate is 0.

From the previous cases, it is clear that truthful bidding, i.e.,
bds,p = uds,p, is the dominant strategy of the involved request.

Because the bids must be truthful for a rational user, the
strategy of their deployment is straightforward, i.e., assigning
a price bds,p = uds,p to each request. Therefore, a request has
to simply be associated to its involved QoS per time unit gain
at a given cloudlet.

Lastly with respect to cloudlet price derivation, we assume
that each cloudlet d periodically (every w seconds) observes
the utilisation ρold

d of its resources that was achieved at the
previously set price πold

d . Then, given a minimum target
utilization ρmin

d the price is adjusted according to:

πd =

πold
d −∆π, if ρold

d < ρmin
d ,

πold
d + ∆π, if ρold

d > ρmax
d ,

πold
d , otherwise.

1The technical details of the explained process, related to the security,
verification, etc., are beyond the scope of this paper although orthogonal to
its contribution.

where ∆π > 0 is the price decreasing increment. Note that as
a price decreases (increases) the number of requests that can
be served at cloudlet d rises (drops) with the result of increase
(decrease) in the utilisation of d’s resources.

IV. PERFORMANCE EVALUATION

In this section, we demonstrate Pay-as-you-go’s perfor-
mance via simulations in an ISP topology. We implement the
Pay-as-you-go and the baseline approaches, described next,
by extending the Icarus caching simulator for application
provisioning problems [11].

Application categories for LLAs: The QoS of the LLAs is
expressed as a decreasing function of the end users’ perceived
latency to each cloudlet [5], [15]. Similarly to [8] for abstract
resource allocation gains, we consider that each LLA is
characterised by a decreasing QoS function of the latency x
having the general form:

u(x) =

(
umin

umax
+
(

1− umin

umax

)(
1− x− lmin

lmax

) 1
α

)
×umax (1)

The constants umax (umin) represents the maximum (min-
imum) QoS that the application user can achieve at the
minimum (maximum) latency lmin (lmax), i.e., u(lmin) = umax

and u(lmax) = umin. We set umax = 100 and lmin = 5 ms2

when is not specified differently. Moreover, the function u(·)
is convex for 0 < α ≤ 1; that is, we set α = 0.2 since LLAs’
QoS is expected to be more sensitive to latency changes closer
to lmin.

Based on Eq. 1, we create ten LLA categories, each associ-
ated to a QoS function that models a certain sensitivity of the
LLA to latency. For each LLA category we assign a different
umin value from the set of {0, 10, 20, . . . , 90}. In this way,
distinct application categories have diverse QoS gains from
being provisioned at a cloudlet, varying, for example, from
10, for umin = 90 and less-latency sensitive LLAs, to 100, for
umin = 0 and latency-critical LLAs, when provisioned at the
edge, i.e., x = lmin. We consider ten LLA categories to be
sufficient for the purpose of our evaluation since this number
is comparable to the currently considered types in the context
of IoT [3], [10] and Tactile Internet [6]. Lastly, we assume
that users remain engaged to their LLA instance on average
for 1 minute while we execute the following experiments for
the duration of three hours in our simulator.

LLA Realistic Requests’ Generation: Each user selects
one of the 10 LLA categories based on the sequence of request
arrivals in Google’s cluster dataset3. In detail, we associate
each LLA category to a “ParentID” field, that identifies
the service, of the 10 most popular services in the dataset
accounting for more than 200K requests. Then by selecting
random time intervals in the period of the seven hours that
the dataset covers, users request LLA categories based on the
sequence of “ParentID” fields that arrive into Google’s cluster.

2With recent advances in LTE technology, mobile operators re-
ported handset-to-base-station latencies around 2 msec (RTT of 5
ms), see: http://news.itu.int/with-5g-looming-sk-telecom-reduces-lte-latency-
to-just-2ms

3Available at https://research.googleblog.com/2010/01/google-cluster-
data.html.

ISP Topology & Cloudlets Deployment: We evaluate
Pay-as-you-go under the Tiscali topology of the Rocketfuel
dataset [13] that contains 240 nodes and 404 links. Among the
240 nodes, we designate as hosts the 80 nodes that present a
degree of one, i.e., they are connected to only a single node of
the topology. After that, we place the Cloud at the node with
the highest closeness centrality with respect to all hosts, i.e.,
shortest average distance to all hosts. Then we set each host
to generate one request per second forwarded to the Cloud
via the shortest path in terms of latency. We place a cloudlet
to each node of the topology that belong to at least a single
shortest path from a host to the Cloud. That is, we have 79
cloudlets all over the topology for reducing the Cloud RTT
latency that on average is 155 ms to each host. The default
number of available VMs per cloudlet is 20, while we set the
minimum and maximum target utilisation of each cloudlet to
be equal to ρmin

d = 0.85 and ρmax
d = 0.95 respectively.

Comparison approaches: We compare Pay-as-you-go
against the following approaches:

• Static Provisioning: Cloudlets assign their VMs to applica-
tion instances according to their demand that is considered
known in advance, e.g., an equal number of VMs is assigned
to each LLA in the case of an uniform requests’ distribution.

• Least Frequently Used (LFU) provisioning: Cloudlets
periodically assign their VMs to LLA instances, prioritising
the ones with the highest observed demand, i.e., popularity.
In this case, VMs are allocated first to the most popular
application, and the process continues with second most
popular application, and so on, until all the VMs at a
cloudlet are allocated. The number of VMs assigned to each
application is determined according to the number of both
the requests served and rejected.

• Self-Tuning Provisioning: Cloudlets periodically assign
their VMs to LLA instances by prioritising the ones with
the highest QoS gain. In particular, this strategy iterates
through the applications sorted in decreasing order of QoS
gain, and assigns a number of unallocated VMs to the
current application. This results with VMs being assigned
to applications that are willing to pay the most. The number
of VMs assigned to each application again depends on its
observed demand.

The Static approach is a form of proactive provisioning,
because it relies on prior knowledge of the requests demand
for each application, while LFU and Self-tuning approaches
perform reactive provisioning, as each cloudlet periodically
reassigns their VM instances to individual LLAs based on the
request patterns received during the most recent observation
period. We set the default length of the observation period to
5 minutes, i.e., 300 seconds. Note that we consider a single
LLA per LLA category in order to give an advantage to
the above-mentioned approaches against Pay-as-you-go’s on-
demand provisioning, otherwise their performance could be
arbitrarily deteriorated. For example by increasing the number
of LLAs per category from 1 to 10, the utilisation of each
cloudlet would decrease to the 10% of the currently achieved
utilisation for the Static, Self-tuning, and LFU provisioning

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70

A
v
e
ra
g
e

Q
o
S

G
a
in

Number of VMs

Pay-as-you-go
LFU
Self-Tuning
Static Provisioning

(a) QoS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70

P
e
rc
e
n
t
Id
le

T
im
e

Number of VMs

Pay-as-you-go
LFU

Self-Tuning
Static Provisioning

(b) Idle Time Percentage

 0

 2x10
7

 4x10
7

 6x10
7

 8x10
7

 1x10
8

 1.2x10
8

 1.4x10
8

 1.6x10
8

 0 10 20 30 40 50 60 70

R
e
v
e
n
u
e

(X

$
)

Number of VMs

Pay-as-you-go
LFU
Self-Tuning
Static Provisioning

(c) Revenue

Fig. 3: The impact of the number of VMs on the performance of the provisioning mechanisms.

with a negative impact on the achieved QoS gain as well as
cloudlets’ revenue. Lastly, in order to perform a straightfor-
ward and fair comparison against Pay-as-you-go, we assume a
charging mechanism, identical to Pay-as-you-go, where each
cloudlet is associated to a price that equals the lowest QoS gain
over all the accepted LLA request classes at a given location.
In that way, we avoid creating application-specific prices that
challenge the requests’ bidding truthfulness since they would
pay different prices for identical VMs.

A. Impact of the Number of VMs

In Fig. 3, we depict the performance of the LLA pro-
visioning approaches for an increasing number of VMs per
cloudlet for the metrics of: i) users’ average QoS gain (u(x)),
ii) percentage of idle time experienced by the VMs of the
cloudlets, and iii) the total revenue obtained by all cloudlets.
User requests served by the back-end Cloud experience the
maximum latency (i.e., lmax), and thus obtain zero gain. The
revenue obtained by a cloudlet is computed as the product of
the engagement time of the served users at each VM and the
per-second usage price of the VM determined by a cloudlet.
For the Pay-as-you-go mechanism, the per-second usage price
of the VMs at a cloudlet is derived periodically based on the
difference between the observed and the target utilisation, as
described in Section III-A. For the rest of the strategies, we
assume a second-price auction mechanism, where the winning
bidders pay for the next highest bid, and the bids are set to
the QoS gain of the users as in a true value bidding.

As shown in Fig. 3a, the Pay-as-you-go mechanism can
achieve a higher average QoS gain than the other strategies.
Specifically, the Self-Tuning mechanism is outperformed since
it ignores the utilisation of resources when provisioning the
LLAs. As a result, a larger portion of the requests are served
by the Cloud without obtaining any QoS gain. On the other
hand, LFU and Static approaches provision LLAs purely based
on utilisation, without considering the QoS gain of the users,
resulting in lower average QoS gain.

Our QoS findings are in accordance with the average idle
time percentage of the resources, as it is demonstrated in
Fig. 3b. As expected, Static provisioning presents a higher
utilisation of resources, i.e., lower idle time, compared to
LFU and Self-tuning by exploiting the knowledge of LLAs’
upcoming demand. However, since Static, LFU, and Self-

tuning approaches operate by assigning VMs to LLA instances
periodically, they are outperformed by the Pay-as-you-go
mechanism that provisions requests as soon as they arrive,
in an on-demand manner.

As a result of achieving higher QoS gain and utilisation of
resources, the Pay-as-you-go mechanism obtains the highest
revenue, as depicted in Fig. 3c. As the number of VMs
increases, the idle time of the strategies raises by around 15%.
At the same time the average QoS gain of the users presents
an upward trend, which leads to higher bids for resources
followed by greater revenues. We observe that the Self-Tuning
approach obtains higher revenue than the LFU and nearly the
same revenue as Static provisioning.

B. Impact of Observation Period Length

In the experiments presented earlier, we used a default
observation period length of 300 seconds (5 minutes). In
Fig. 4, we demonstrate the impact of this parameter on QoS
gain (left plot) and idle time percentage (right plot) of the
provisioning mechanisms.

First of all, we observe that the performances of both
LFU and Self-tuning approaches are increasing function of
the observation period duration before being stabilised at 200
seconds. This is related to the fact that LFU and Self-tuning
rely on the estimation of LLAs’ demand, that is inaccurate
for short observation durations in the trace of requests we are
using since it fails to capture the demand fluctuations.

In terms of QoS gain, the Self-tuning mechanism achieves
a remarkable increase of 33% in the duration interval 0 to
200 seconds. At the same time, the LFU mechanism achieves
nearly 50% increase in resource utilisation since the idle time
percentage drops from 40%, for a duration of 0 seconds,
to 20%, for 200 seconds. The Pay-as-you-go mechanism
is affected the least by the observation period factor while
constantly achieving the highest QoS gain and lowest idle time
percentage compared to the rest of approaches.

Our evaluation demonstrates that the Pay-as-you-go mech-
anism can provision resources with high utilisation while pro-
viding high QoS gains for the end-users. The price derivation
mechanism of our on-demand provisioning mechanism leads
to higher revenues than the provisioning mechanisms that
periodically allocate the VMs to LLAs based on the observed
demand.

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400

A
v
e
ra
g
e

Q
o
S

G
a
in

Observation Period Length (sec)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 200 400 600 800 1000 1200 1400

P
e
rc
e
n
t
Id
le

T
im
e

Observation Period Length (sec)

Pay-as-you-go
LFU
Self-Tuning
Static Provisioning

Fig. 4: Impact of observation period length on QoS gain of
users (left) and average idle times of VMs (right).

V. RELATED WORK

Cloudlets have been proposed in [12] with the initial
purpose of acting as a surrogate infrastructure where mobile
devices can offload intensive tasks as a response to their
computing and battery limitations. Specifically, [1] addresses
the problem of application-specific task offloading over the fog
infrastructure, i.e., a task requires the corresponding virtual in-
stance of the application at a cloudlet before getting offloaded.
However, the authors only consider stateless applications,
while ignoring completely the economic aspects of such a
problem. In [9], the authors propose a self-tuning applica-
tion provisioning mechanism using a combinatorial auction
mechanism, where application providers bid periodically for
a specific number of VMs organised in different execution
zones. Nevertheless, the presented mechanism relies on precise
predictions about the future demand of an application and
takes place in a centralised way that challenges the scalability
of such a scheme. Closer to our setting, [14] discusses LLA
provisioning over third-party cloudlets in an economic context
for “lightly” stateful applications, which can be migrated
between cloudlets without severely degrading the involved
QoS for mobile users (as a result of the hand-offs between
different cells). Similar to spot pricing mechanisms (e.g.,
[16], our approach can react to transient changes in demand,
but without either suspending applications or collecting (i.e.,
queuing) user bids to execute an auction.

VI. CONCLUSIONS

An increasing number of network applications with low
latency requirements render cloud provisioning unfit for pur-
pose. In this paper, we investigated the emerging market
where heavily stateful low latency applications lease third-
party cloudlet resources for provisioning their instances. This
is a promising research direction for bringing application
instances closer to their users in order to improve the involved
perceived latency.

Along these lines, we introduced a Pay-as-you-go charging
scheme as an on-path, on-demand market based provisioning
mechanism. In the proposed scheme, cloudlets are associ-
ated with a single price that is adjusted based on their
target resource utilisation. Then LLAs’ requests forwarded
in the network interact on-path with collocated markets to
the cloudlets, provisioning on-demand an application instance
to the first cloudlet with a price lower than their QoS gain.
Our mechanism address explicitly the challenges of heavily
stateful applications whose instances cannot be suspended

and/or migrated to other cloudlet locations, without impairing
irreversibly the perceived QoS. The advantages of such an
approach were demonstrated against a variety of proactive and
reactive provisioning techniques in realistic topologies.

ACKNOWLEDGMENT

This work has been supported by the EC H2020
ICN2020 project (GA no. 723014), the EPSRC INSP fel-
lowship (EP/M003787/1), and UK EPSRC KCN project
(EP/L026120/1).

REFERENCES

[1] O. Ascigil, T. K. Phan, A. G. Tasiopoulos, V. Sourlas, I. Psaras, and
G. Pavlou. On uncoordinated service placement in Edge-Clouds. In
Cloud Computing Technology and Science (CloudCom), 2017 IEEE
International Conference on, pages 41–48. IEEE, 2017.

[2] S. Bhardwaj, L. Jain, and S. Jain. Cloud computing: A study of
Infrastructure as a Service (IaaS). International Journal of engineering
and information Technology, 2(1):60–63, 2010.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its
role in the Internet of Things. In Proceedings of the first edition of the
MCC workshop on Mobile cloud computing, pages 13–16. ACM, 2012.

[4] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In Proceedings
of the 2nd Conference on Symposium on Networked Systems Design &
Implementation-Volume 2, pages 273–286. USENIX Association, 2005.

[5] M. Claypool and K. Claypool. Latency and player actions in online
games. Communications of the ACM, 49(11):40–45, 2006.

[6] G. P. Fettweis. The tactile internet: Applications and challenges. IEEE
Vehicular Technology Magazine, 9(1):64–70, 2014.

[7] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The cost of a
cloud: research problems in data center networks. ACM SIGCOMM
computer communication review, 39(1):68–73, 2008.

[8] H. Izakian, A. Abraham, and B. T. Ladani. An auction method for
resource allocation in computational grids. Future Generation Computer
Systems, 26(2):228–235, 2010.

[9] R. Landa, M. Charalambides, R. G. Clegg, D. Griffin, and M. Rio.
Self-tuning service provisioning for decentralized Cloud applications.
IEEE Transactions on Network and Service Management, 13(2):197–
211, 2016.

[10] I. Lee and K. Lee. The internet of things (iot): Applications, investments,
and challenges for enterprises. Business Horizons, 58(4):431–440, 2015.

[11] L. Saino, I. Psaras, and G. Pavlou. Icarus: a caching simulator
for information centric networking (icn). In Proceedings of the 7th
International ICST conference on Simulation Tools and Techniques,
pages 66–75. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2014.

[12] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for
VM-based Cloudlets in mobile computing. IEEE pervasive Computing,
8(4), 2009.

[13] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies
with Rocketfuel. ACM SIGCOMM Computer Communication Review,
32(4):133–145, 2002.

[14] A. G. Tasiopoulos, O. Ascigil, I. Psaras, and G. Pavlou. Edge-MAP:
Auction markets for edge resource provisioning. In IEEE 19th World of
Wireless Mobile and Multimedia Networks (WoWMoM), 2018.

[15] B. Zhang, N. Mor, J. Kolb, D. S. Chan, K. Lutz, E. Allman,
J. Wawrzynek, E. A. Lee, and J. Kubiatowicz. The Cloud is not enough:
Saving IoT from the cloud. In HotStorage, 2015.

[16] L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang. How to
bid the cloud. In ACM SIGCOMM Computer Communication Review,
volume 45, pages 71–84. ACM, 2015.

	Introduction
	Design Rationale & System Model
	Design Rationale
	System Model

	Pay-as-you-go Mechanism
	On-Demand Provisioning
	Request Bids and Cloudlet Prices derivation

	Performance Evaluation
	Impact of the Number of VMs
	Impact of Observation Period Length

	Related Work
	Conclusions
	References

