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Abstract
We give a simple proof of a standard zero-free region in the t-aspect for the Rankin–Selberg
L-function L(s, π × π̃) for any unitary cuspidal automorphic representation π of GLn(AF )

that is tempered at every nonarchimedean place outside a set of Dirichlet density zero.

Keywords Cuspidal automorphic representation · Rankin–Selberg · Zero-free region

Mathematics Subject Classification 11M26 (primary); 11F66 · 11N36 (secondary)

1 Introduction

Let F be a number field, let n be a positive integer, and letπ be a unitary cuspidal automorphic
representation of GLn(AF ) with L-function L(s, π), with π normalised such that its central
character is trivial on the diagonally embedded copy of the positive reals. The proof of the
prime number theorem due to de la Valleé–Poussin gives a zero-free region for the Riemann
zeta function ζ(s) of the form

σ > 1 − c

log(|t | + 3)

for s = σ + i t , and this generalises to a zero-free region for L(s, π) of the form

σ ≥ 1 − c

(n[F : Q])4 log(q(π)(|t | + 3))
(1.1)

Research supported by the European Research Council grant agreement 670239.

With an appendix by Farrell Brumley.

B Peter Humphries
pclhumphries@gmail.com

Farrell Brumley
brumley@math.univ-paris13.fr

1 Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK

2 LAGA-Institut Galilée, 99 avenue Jean Baptiste Clément , 93430 Villetaneuse, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-018-2136-8&domain=pdf


P. Humphries, F. Brumley

for some absolute constant c > 0, where q(π) is the analytic conductor of π in the sense
of [12, Equation (5.7)], with the possible exception of a simple real-zero βπ < 1 when π is
self-dual. A proof of this is given in [12, Theorem 5.10]; the method requires constructing an
auxiliary L-function having a zero of higher order than the order of the pole at s = 1, then
using an effective version of Landau’s lemma [12, Lemma 5.9].

Now let π ′ be a unitary cuspidal automorphic representation of GLn′(AF ), and consider
theRankin–Selberg L-function L(s, π×π ′). Via theLanglands–Shahidimethod, this extends
meromorphically to the entire complex plane with at most a simple pole at s = 1, with this
pole occurring precisely when π ′ ∼= π̃ . Moreover, this method shows that L(s, π × π ′) is
nonvanishing in the closed right half-plane �(s) ≥ 1 [25, Theorem].

Remark 1.2 One can also obtain the nonvanishing of L(s, π × π ′) on the line �(s) = 1 via
the Rankin–Selberg method. For n = n′ and π ′

� π̃ , this is shown in [21, Theorem 6.1]; the
method of proof nonetheless is equally valid for n �= n′ or π ′ ∼= π̃ , noting in the latter case
that L(s, π × π̃) has a simple pole at s = 1 (see also [24, Equation (1.5)]). Note, however,
that the product of L-functions considered in [21, Remark, p. 198] may not be used to show
the desired nonvanishing of L(1+ i t, π ×π ′), but merely the nonvanishing of L(1, π ×π ′).

Proving zero-free regions for L(s, π×π̃) akin to (1.1), on the other hand, seems to bemuch
more challenging. The method of de la Valleé–Poussin relies on the fact that the Rankin–
Selberg convolutions L(s, π×π) and L(s, π×π̃) exist and extendmeromorphically toCwith
at most a simple pole at s = 1. For L(s, π ×π ′), the associated Rankin–Selberg convolutions
have yet to be proved to have these properties, so as yet this method is inapplicable.

Remark 1.3 Note that in [12, Exercise 4, p. 108], it is claimed that one can use this method to
prove a zero-free region similar to (1.1) when π ′

� π and π ′
� π̃ ; however, the hint to this

exercise is invalid, as the Dirichlet coefficients of the logarithmic derivative of the auxiliary
L-function suggested in this hint are real but not necessarily nonpositive. (In particular, as
stated, [12, Exercise 4, p. 108] would imply the nonexistence of Landau–Siegel zeroes upon
taking f to be a quadratic Dirichlet character and g to be the trivial character.)

Remark 1.4 When at least one of π and π ′ is self-dual, then this method can be used to
prove a zero-free region akin to (1.1). When both π and π ′ are self-dual, this is proved by
Moreno [21, Theorem 3.3] (see also [24, Equation (1.6)]). When only one of π and π ′ is
self-dual, such a zero-free region has been stated by various authors (in particular, see [5,
p. 619], [6, p. 92], and [7, p. 1]); to the best of our knowledge, however, no proof of this claim
has appeared in the literature. In the appendix to this article written by Farrell Brumley, a
complete proof of this result is given.

In [5], Gelbart and Lapid generalise Sarnak’s effectivization of the Langlands–Shahidi
method for ζ(s) [24] to prove a zero-free region for L(s, π × π ′) of the form

σ ≥ 1 − cπ,π ′

|t |Nπ,π ′

for somepositive constants cπ,π ′ , Nπ,π ′ dependent onπ andπ ′, provided that |t | is sufficiently
large; their method applies not only to automorphic representations of GLn(AF ) but to more
general reductive groups.

In [3] and [18,Appendix], Brumley proves amore explicit zero-free region for L(s, π×π ′)
that is also valid in the analytic conductor aspect and not just the t-aspect. For π ′

� π̃ , this
is of the form

σ ≥ 1 − c
(

(

q(π)q(π ′)
)2(n+n′)

(|t | + 3)2nn
′[F :Q])− 1

2+ 1
2(n+n′) −ε

,
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together with the bound

L(s, π × π ′) �ε

(

(

q(π)q(π ′)
)2(n+n′)

(|t | + 3)2nn
′[F :Q])− 1

2+ 1
2(n+n′) −ε

for s in this zero-free region, while for π ′ ∼= π̃ , this is of the form

σ ≥ 1 − c
(

q(π)8n(|t | + 3)2n
2[F :Q])− 7

8+ 5
8n −ε

, (1.5)

together with the bound

L(s, π × π̃) �ε

(

q(π)8n(|t | + 3)2n
2[F :Q])− 7

8+ 5
8n −ε

(1.6)

for s in this zero-free region.
Recently, Goldfeld and Li [7] have given a strengthening in the t-aspect of a particular

case of Brumley’s result, namely the case π ′ ∼= π̃ subject to the restriction that F = Q and
that π is unramified and tempered at every nonarchimedean place outside a set of Dirichlet
density zero. With these assumptions, they prove the lower bound

L(1 + i t, π × π̃) �π

1

(log(|t | + 3))3
(1.7)

for |t | ≥ 1, which gives a zero-free region of the form

σ ≥ 1 − cπ

(log(|t | + 3))5
(1.8)

for some positive constant cπ dependent on π provided that |t | ≥ 1. Their proof, like that
of Gelbart and Lapid [5], makes use of Sarnak’s effectivization of the Langlands–Shahidi
method; the chief difference is that, like Sarnak but unlike Gelbart and Lapid, they are able
to use sieve theory to obtain a much stronger zero-free region. On the downside, the proof
is extremely long and technical, and, being written in the classical language instead of the
adèlic language, any generalisation of their method to arbitrary number fields and allowing
ramification ofπ would be a challenging endeavour. (Indeed, the Langlands–Shahidimethod,
in practice, is rather inexplicit at ramified places, though see [11] for explicit calculations for
the case n = 1 and F = Q, so that π corresponds to a primitive Dirichlet character.)

In this article, we give a simple proof of the following.

Theorem 1.9 Let π be a unitary cuspidal automorphic representation of GLn(AF ) that is
tempered at every nonarchimedean place outside a set of Dirichlet density zero. Then there
exists an absolute constant cπ dependent on π (and hence also on n and F) such that
L(s, π × π̃) has no zeroes in the region

σ ≥ 1 − cπ

log(|t | + 3)
(1.10)

with |t | ≥ 1. Furthermore, we have the bound

L(s, π × π̃) �π

1

log(|t | + 3)
(1.11)

for s in this region.

In particular, we improve the zero-free region (1.8) and lower bound (1.7) of Goldfeld and
Li to (1.10) and (1.11) respectively while removing Goldfeld and Li’s restriction that F = Q
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and that π is unramified at every place. Nonetheless, we still require that π be tempered at
every nonarchimedean place outside a set of Dirichlet density zero; moreover, this zero-free
region is only in the t-aspect, unlike Brumley’s zero-free region in the analytic conductor
aspect.

The proof of Theorem 1.9 shares some similarities with the method of de la Valleé–
Poussin. Once again, one creates an auxiliary L-function, though this has a zero of equal
order to the order of the pole at s = 1. While Landau’s lemma cannot be used in this setting
to obtain a standard zero-free region, one can instead use sieve theory. This approach is
discussed in [26, Section 3.8] when L(s, π × π̃) is the Riemann zeta function, so that F = Q

and π is trivial, and this method can also be adapted to prove a standard zero-free region in
the q-aspect for L(s, χ), where χ is a primitive Dirichlet character; cf. [1,11].

This usage of sieve theory, however, seems to have limitations; it is unclear how to prove
zero-free regions via sieve theory for Rankin–Selberg L-functions L(s, π ×π ′)with π ′

� π̃ ,
even in the particular case π ′ = 1 and n ≥ 2, so that L(s, π ×π ′) is the standard L-function
L(s, π). We expand upon this point in Remark 3.5.

By slightly different means, we sketch how to prove a weaker version of Theorem 1.9.

Theorem 1.12 Let π be a unitary cuspidal automorphic representation of GLn(AF ) that is
tempered at every nonarchimedean place outside a set of Dirichlet density zero. Then for
|t | ≥ 1, we have the bound

L(1 + i t, π × π̃) �π

1

(log(|t | + 3))3
, (1.13)

and so there exists an absolute constant cπ dependent on π such that L(s, π × π̃) has no
zeroes in the region

σ ≥ 1 − cπ

(log(|t | + 3))5
. (1.14)

Though this is a weaker result than Theorem 1.9, the method of proof is of particular
interest; it is essentially a generalisation from GL1(AQ) to GLn(AF ) of the method of Bala-
subramanian and Ramachandra [1]. It turns out that Brumley’s method [3] in proving (1.6) is
a natural generalisation of [1] except that sieve theory is not used and so the resulting lower
bounds for L(1 + i t, π × π̃) are not nearly as strong.

Theorem 1.12 gives the same bounds as obtained by Goldfeld and Li, and this is no
accident. Goldfeld and Li create an integral of an Eisenstein series and obtain upper bounds
for this integral via theMaaß–Selberg relation togetherwith upper bounds for L(1+i t, π×π̃)

and L ′(1+ i t, π × π̃), while they use the Fourier expansion of the Eisenstein series together
with sieve theory to find lower bounds for this integral. In the proof of Theorem 1.12, we
follow Brumley’s method of studying a smoothed average of the Dirichlet coefficients of an
auxiliary L-function. Upper bounds for this smoothed average are then obtained via Perron’s
inversion formula and Cauchy’s residue theorem, in place of Goldfeld and Li’s usage of the
Maaß–Selberg relation, togetherwith upper bounds for L(1+i t, π×π̃ ) and L ′(1+i t, π×π̃ );
lower bounds for this smoothed average stem once again from sieve theory.

2 Sieve theory

The L-function L(s, π) of π can be written as the Dirichlet series
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L(s, π) =
∑

a⊂OF
a�={0}

λπ(a)

N (a)s

for�(s) sufficiently large,where N (a) = NF/Q(a) := #OF/a, and extends to ameromorphic
function on C with at most a simple pole at s = 1 if n = 1 and π is trivial, so that
L(s, π) = ζF (s). Similarly, the Rankin–Selberg L-function L(s, π × π̃) is meromorphic on
C with only a simple pole at s = 1. We denote by 	π×π̃ (a) the coefficients of the Dirichlet
series for − L ′

L (s, π × π̃), so that

− L ′

L
(s, π × π̃) =

∑

a⊂OF
a�={0}

	π×π̃ (a)

N (a)s
.

These coefficients are nonnegative; see [12, Remark, p. 138]. Moreover, the residue of this
at s = 1 is 1, and we have that

	π×π̃ (p) = |λπ(p)|2 log N (p)

whenever π is unramified at p.
We denote by Sπ the set of places of F at which π is either ramified or nontempered.

Lemma 2.1 ([7, Lemmata 12.12 and 12.15]) Suppose that π is tempered at every nonar-
chimedean place outside a set of Dirichlet density zero. For Y �π (|t | + 3)2,

∑

Y≤N (p)≤2Y
p/∈Sπ

|λπ(p)|2
∣

∣

∣1 + N (p)i t
∣

∣

∣

2 �π

Y

log Y
.

Proof We use Ikehara’s Tauberian theorem and the fact that Sπ has Dirichlet density zero to
see that

∑

Y≤N (p)≤2Y
p/∈Sπ

|λπ(p)|2 log N (p) =
∑

Y≤N (a)≤2Y

	π×π̃ (a) + oπ (Y ) = Y + oπ (Y ). (2.2)

The assumption that π is tempered at every nonarchimedean place outside a set of Dirichlet
density zero implies that |λπ(p)| ≤ n whenever p /∈ Sπ , so that for any C > 0, the left-hand
side of (2.2) is

∑

Y≤N (p)≤2Y
p/∈Sπ|λπ (p)|<C

|λπ(p)|2 log N (p) +
∑

Y≤N (p)≤2Y
p/∈Sπ|λπ (p)|≥C

|λπ(p)|2 log N (p)

≤ C2
∑

Y≤N (p)≤2Y

log N (p) + n2 log 2Y# {Y ≤ N (p) ≤ 2Y : p /∈ Sπ , |λπ(p)| ≥ C} ,

and as
∑

Y≤N (p)≤2Y

log N (p) =
∑

Y≤N (a)≤2Y

	(a) + oF (Y ) = Y + oF (Y ),

we ascertain that

# {Y ≤ N (p) ≤ 2Y : p /∈ Sπ , |λπ(p)| ≥ C} ≥ 1 − C2

n2
Y

log Y
+ oπ

(

Y

log Y

)

. (2.3)
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Next, for C ∈ (0, 2), we note that
∣

∣

∣1 + N (p)i t
∣

∣

∣ = 2

∣

∣

∣

∣

sin

( |t |
2

log N (p) − (2m − 1)
π

2

)∣

∣

∣

∣

for any integer m, and so via the bound | sin x | ≤ |x |, we have that
#

{

Y ≤ N (p) ≤ 2Y :
∣

∣

∣1 + N (p)i t
∣

∣

∣ < C
}

≤
∑

|t |
2π logY− C

2π + 1
2≤m≤ |t |

2π log 2Y+ C
2π + 1

2

#

{

e
(2m−1)π−C

|t | ≤ N (p) ≤ e
(2m−1)π+C

|t |
}

. (2.4)

From [9, Proposition 2], we have that

πF (x + y) − πF (x) ≤ 4[F : Q] y

log y

for 2 ≤ y ≤ x , where πF (x) := #{N (p) ≤ x}; the proof of this reduces to the case F = Q,
in which case this is a well-known result that can be proven via the Selberg sieve (with the
appearance of an additional error term) or the large sieve. So assuming that 1

2
√
Y

≤ C ≤
|t | log 2

2 and Y > 4|t |2, the inner term on the right-hand side of (2.4) is bounded by

64[F : Q] CY

|t | log Y
4|t |2

using the fact that log(eu + 1) ≥ log u and eu − 1 ≤ 2u for u ∈ (0, 1). Consequently,

#
{

Y ≤ N (p) ≤ 2Y :
∣

∣

∣1 + N (p)i t
∣

∣

∣ < C
}

≤ 64C[F : Q] log 2
π

Y

log Y
4|t |2

.

Since

# {Y ≤ N (p) ≤ 2Y : Y /∈ Sπ } = Y

log Y
+ oF

(

Y

log Y

)

,

it follows that for Y �F (|t | + 3)2,

#
{

Y ≤ N (p) ≤ 2Y : p /∈ Sπ ,

∣

∣

∣1 + N (p)i t
∣

∣

∣ ≥ C
}

≥
(

1 − 64C[F : Q] log 2
π

)

Y

log Y
+ oπ

(

Y

log Y

)

. (2.5)

By choosing C sufficiently small in terms of n and F , (2.3) and (2.5) imply that

#
{

Y ≤ N (p) ≤ 2Y : p /∈ Sπ , |λπ(p)|
∣

∣

∣1 + N (p)i t
∣

∣

∣ ≥ C2
}

�π,C
Y

log Y
,

from which the result follows. �
Remark 2.6 The only point at which we make use of the assumption that π is tempered at
every nonarchimedean place outside a set of Dirichlet density zero is in proving (2.3). It
would be of interest whether an estimate akin to (2.3) could be proved unconditionally.

Remark 2.7 While the implicit constants in Theorems 1.9 and 1.12 depend on π , much of the
argument still works if we keep track of this dependence in terms of the analytic conductor
of π . The main issue seems to be the lower bound stemming from Lemma 2.1; in particular,
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the use of Ikehara’s Tauberian theorem to prove (2.2). We could instead use (1.6) together
with an upper bound for L ′(σ + i t, π × π̃) in the region (1.5) derived via the methods of Li
[19] to prove (2.2) with an error term that is effective in terms of the analytic conductor of
π , but the payoff would not be great as the weaker zero-free region (1.5) would only give a
weak error term.

3 Proof of Theorem 1.9

Let π and π ′ be unitary cuspidal automorphic representations of GLn(AF ) and GLn′(AF )

respectively. Let ρ = β + iγ be a nontrivial zero of L(s, π × π ′) with 1/2 ≤ β < 1 and
γ �= 0. We define

� := π ⊗ |det| iγ2 � π̃ ′ ⊗ |det|− iγ
2 ,

This is an isobaric (noncuspidal) automorphic representation of GLn+n′(AF ). The Rankin–
Selberg L-function of � and ˜� factorises as

L(s,� × ˜�) = L(s, π × π̃)L(s, π ′ × π̃ ′)L(s + iγ, π × π ′)L(s − iγ, π̃ × π̃ ′). (3.1)

This is ameromorphic function onCwith a double pole at s = 1, simple poles at s = 1±iγ if
π ′ ∼= π̃ , and holomorphic elsewhere.We let	�×˜�(a) denote the coefficients of the Dirichlet

series for − L ′
L (s,� × ˜�), so that

− L ′

L
(s,� × ˜�) =

∑

a⊂OF
a�={0}

	�×˜�(a)

N (a)s
.

Again, these coefficients are nonnegative.

Lemma 3.2 For σ > 1,

− L ′

L
(σ,� × ˜�) < − 2

σ − β
+ 2

σ − 1
+ O

(

log q(� × ˜�)
)

.

Proof By taking the real part of [12, (5.28)], we have that

− L ′

L
(σ + iγ, π × π ′) − L ′

L
(σ − iγ, π̃ × π̃ ′) < − 2

σ − β
+ O

(

log q(iγ, π × π ′)
)

for σ > 1; cf. [12, (5.37)]. Similarly,

− L ′

L
(σ, π × π̃) − L ′

L
(σ, π ′ × π̃ ′) <

2

σ − 1
+ O

(

log q(π × π̃)q(π ′ × π̃ ′)
)

for σ > 1 via [12, (5.37)], using the fact that 	π×π̃ (a) and 	π ′×π̃ ′(a) are real. �
Lemma 3.3 Suppose that π and π ′ are unramified at p. Then

	�×˜�(p) = log N (p)
∣

∣

∣λπ(p) + λπ̃ ′(p)N (p)iγ
∣

∣

∣

2
.

Proof Indeed, (3.1) implies that

	�×˜�(p) = 	π×π̃ (p) + 	π ′×π̃ ′(p) + 	π×π ′(p)N (p)−iγ + 	π̃×π̃ ′(p)N (p)iγ ,
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and

	π×π̃ (p) = log N (p) |λπ(p)|2 ,

	π ′×π̃ ′(p) = log N (p) |λπ ′(p)|2 ,

	π×π ′(p) = log N (p)λπ (p)λπ ′(p),

	π̃×π̃ ′(p) = log N (p)λπ (p)λπ ′(p)

whenever π and π ′ are unramified at p. �
Now let us restrict to the case π ′ = π̃ .

Corollary 3.4 Suppose that π is tempered at every nonarchimedean place outside a set of
Dirichlet density zero. Then for σ > 1,

− L ′

L
(σ,� × ˜�) �π

(|γ | + 3)2(1−σ)

σ − 1
.

Proof We have that

− L ′

L
(σ,� × ˜�) ≥

∑

N (p)�π (|γ |+3)2
p/∈Sπ

log N (p)

N (p)σ
|λπ(p)|2

∣

∣

∣1 + N (p)iγ
∣

∣

∣

2

�π

(|γ | + 3)2(1−σ)

σ − 1

by dividing into dyadic intervals and applying Lemma 2.1.

Proof of Theorem 1.9 By combining Lemma 3.2 and Corollary 3.4 and choosing σ = 1 +
c/ log(|γ | + 3), we find that

1 − β �π

1

log(|γ | + 3)
,

which gives the zero-free region (1.10). Now using [12, (5.28)], we find in the region

σ ≥ 1 − cπ

2 log(|t | + 3)

away from t = 0, we have that

− L ′

L
(s, π × π̃) �π log(|t | + 3).

Next, we note that

log L(s, π × π̃) =
∑

a⊂OF
a/∈{{0},OF }

	π×π̃ (a)

N (a)s log N (a)

for �(s) > 1. So

|log L(s, π × π̃)| ≤ log L(σ, π × π̃).

Since L(s, π × π̃) has a simple pole at s = 1,

log L(s, π × π̃) �π log
1

σ − 1
.
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In particular, in the region

σ ≥ 1 + 1

log(|t | + 3)
,

we have that

log L(s, π × π̃) �π log log(|t | + 3).

Now suppose that s = σ + i t with

1 − cπ

2 log(|t | + 3)
≤ σ ≤ 1 + 1

log(|t | + 3)
.

Then log L(s, π × π̃) is equal to

log L

(

1 + 1

log(|t | + 3)
+ i t, π × π̃

)

+
∫ s

1+ 1
log(|t |+3) +i t

L ′

L
(w, π × π̃) dw,

so again

log L(s, π × π̃) �π log log(|t | + 3).

Finally, we note that

1

|L(s, π × π̃)| = exp (−� (log L(s, π × π̃))) �π log(|t | + 3),

which is equivalent to (1.11). �
Remark 3.5 To prove Theorem 1.9 for L(s, π × π ′) with π ′

� π̃ , we would need to replace
Lemma 2.1 with a result of the form

∑

Y≤N (p)≤2Y
p/∈Sπ∪Sπ ′

∣

∣

∣λπ(p) + λπ̃ ′(p)N (p)iγ
∣

∣

∣

2 �π,π ′
Y

log Y
,

but it is unclear how one might generalise the proof of Lemma 2.1 to obtain such a result.

4 Proof of Theorem 1.12

For t ∈ R\{0}, define the isobaric automorphic representation � of GLn+n′(AF ) by

� := π ⊗ |det| i t2 � π̃ ′ ⊗ |det|− i t
2 .

Then

L(s,� × ˜�) = L(s, π × π̃)L(s, π ′ × π̃ ′)L(s + i t, π × π ′)L(s − i t, π̃ × π̃ ′). (4.1)

This is a meromorphic function on C with a double pole at s = 1, simple poles at s = 1± i t
if π ′ ∼= π̃ , and holomorphic elsewhere.

We let λ�×˜�(a) denote the coefficients of the Dirichlet series for L(s,� × ˜�), so that

L(s,� × ˜�) =
∑

a⊂OF
a�={0}

λ�×˜�(a)

N (a)s
.
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Again, the coefficients λ�×˜�(a) are nonnegative. Write

L(s,� × ˜�) = r−2

(s − 1)2
+ r−1

s − 1
+ O(1)

for s near 1 and

L(s,� × ˜�) = δπ ′,π̃
r±
−1

s − (1 ± i t)
+ O(1)

for s near 1 ± i t . Finally, we write

ζF (s) = γ−1(F)

s − 1
+ γ0(F) + O(s − 1)

for s near 1.

Lemma 4.2 We have that
r−2

|L(1 + i t, π × π ′)|2 = γ−1(F)2L(1, ad π)L(1, ad π ′),

r−1

|L(1 + i t, π × π ′)|2 = L(1, ad π)(γ0(F) + γ−1(F)L ′(1, ad π ′))

+ L(1, ad π ′)(γ0(F) + γ−1(F)L ′(1, ad π))

+ 2γ−1(F)2L(1, ad π)L(1, ad π ′)�
(

L

L

′
(1 + i t, π × π ′)

)

.

Similarly,

r±
−1 = γ−1(F)L(1, ad π)L(1 ± i t, π × π̃)2L(1 ± 2i t, π × π̃).

Proof This follows from the factorisation L(s, π × π̃) = ζF (s)L(s, ad π). �
Lemma 4.3 ([7, Lemma 5.1]) We have that

L(1 + i t, π × π ′) �π,π ′ log(|t | + 3),

L ′(1 + i t, π × π ′) �π,π ′ (log(|t | + 3))2.

Proof This is proved by Goldfeld and Li in [7, Lemma 5.1] for F = Q and π ′ ∼= π̃ , but
the proof in this more generalised setting (via the approximate functional equation) follows
mutatis mutandis. �

Together with the fact that L(1, ad π) �= 0, this shows the following.

Corollary 4.4 We have that

r−2 �π,π ′
∣

∣L(1 + i t, π × π ′)
∣

∣ log(|t | + 3),

r−1 �π,π ′
∣

∣L(1 + i t, π × π ′)
∣

∣ (log(|t | + 3))2,

r±
−1 �π,π ′

∣

∣L(1 + i t, π × π ′)
∣

∣ (log(|t | + 3))2.

Now letψ ∈ C∞
c (0,∞)be afixed nonnegative function satisfyingψ(x) = 1 for x ∈ [1, 2]

and ψ(0) = 0. The Mellin transform of ψ is

̂ψ(s) :=
∫ ∞

0
ψ(x)xs

dx

x
,
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which is entire with rapid decay in vertical strips. Define

F(Y ) =
∑

a⊂OF
a�={0}

λ�×˜�(a)ψ

(

N (a)

Y

)

.

We let q(� × ˜�) denotes the analytic conductor of � × ˜�; from [12, (5.11)], we have that

q(� × ˜�) ≤ (

q(π)q(π ′)
)2(n+n′)

(|t | + 3)2nn
′[F : Q]. (4.5)

On the other hand, it is easily seen that

q(� × ˜�) �π,π ′ (|t | + 3)2.

Remark 4.6 While (4.5) is stated in [12, (5.11)], a complete proof does not seem to have
appeared in the literature. In the appendix to this article, a proof of (a more general version
of) this statement is given.

Lemma 4.7 (Cf. [3, Proof of Theorem 3]) For Y ≥ q(� × ˜�), there exists δ > 0 such that

F(Y ) = r−2̂ψ(1)Y log Y + (

r−1̂ψ(1) + r−2̂ψ
′(1)

)

Y

+ δπ ′,π̃r
+
−1

̂ψ(1 + i t)Y 1+i t + δπ ′,π̃r
−
−1

̂ψ(1 − i t)Y 1−i t + O(Y 1−δ).

Proof Indeed,

F(Y ) =
∫ σ+i∞

σ−i∞
L(s,� × ˜�)̂ψ(s)Y s ds

for σ > 1, and moving the contour to the left shows that

F(Y ) = (

Ress=1 +δπ ′,π̃ Ress=1+i t +δπ ′,π̃ Ress=1−i t
)

L(s,� × ˜�)̂ψ(s)Y s

+ 1

2π i

∫ σ+i∞

σ−i∞
L(s,� × ˜�)̂ψ(s)Y s ds

for any σ < 1. The convexity bound of Li [19] and the rapid decay of ̂ψ in vertical strips
imply that

1

2π i

∫ σ+i∞

σ−i∞
L(s,� × ˜�)̂ψ(s)Y s ds �ε q(� × ˜�)

1−σ
2 +εY σ ,

from which the result follows. �
In [3,18], Brumley notes that

F(Y ) ≥
∑

Y≤N (a2n)≤2Y

λ�×˜�(a2n)

and that λ�×˜�(a2n) ≥ 1. This is paired with a modified version of Lemma 4.7 in order
to prove effective lower bounds for |L(1 + i t, π × π̃)| in terms of the analytic conductor
q(π ×π̃ , 1+i t). Instead of restricting the sum over integral ideals to those that are 2n-powers
and using the fact that λ�×˜�(a2n) ≥ 1, our approach is to restrict to prime ideals at which π

is unramified and tempered and use sieve theory to show that λ�×˜�(p) is often not too small
on dyadic intervals.
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Lemma 4.8 Suppose that π and π ′ are unramified at p. Then

λ�×˜�(p) =
∣

∣

∣λπ(p) + λπ̃ ′(p)N (p)i t
∣

∣

∣

2
.

Proof This follows via the same method as the proof of Lemma 3.3. �
We now restrict to the case π ′ = π̃ .

Proof of Theorem 1.12 From Lemma 4.7 and Corollary 4.4, we have that for Y ≥ q(� × ˜�),
there exists δ > 0 such that

F(Y ) �π |L(1 + i t, π × π̃)| Y (log Y )2 + Y 1−δ.

On the other hand, Lemmata 4.8 and 2.1 imply that for Y �π (|t | + 3)2,

F(Y ) �π

Y

log Y
.

This gives the lower bound (1.13). Then as in [7, Proof of Theorem 1.2], (1.14) follows via
the mean value theorem. �
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Appendix A. Standard zero-free regions when at least one factor is
self-dual, (by Farrell Brumley1)

The aim of this appendix is to provide a proof of the claim, stated in Gelbart–Lapid–Sarnak
[6, p. 92] and Gelbart–Lapid [5, p. 619], that Rankin–Selberg L-functions are known to
satisfy a standard zero-free region whenever at least one of the forms is self-dual. This is
Theorem A.1 below. The method is through the classical argument of de la Vallée–Poussin.
We take advantage of the occasion to clarify parts of the literature, and to justify, in Lemma
A.2, another oft claimed inequality on the archimedean conductor.2

Theorem A.1 Let n, n′ ≥ 1. Let F be a number field. Let π and π ′ be unitary cuspidal
automorphic representations of GLn(AF ) and GLn′(AF ), respectively. We normalize π and
π ′ so that their central characters are trivial on the diagonally embedded copy of the positive
reals. Assume that π ′ is self-dual.

There is an effective absolute constant c > 0 such that L(s, π × π ′) is non-vanishing for
all s = σ + i t ∈ C verifying

σ ≥ 1 − c

(n + n′)3 log
(

q(π)q(π ′)(|t | + 3)n[F :Q]) ,

with the possible exception of one real zero whenever π is also self-dual.

1 Supported by ANR grant 14-CE25.
2 I would like thank Philippe Michel and Étienne Fouvry for suggesting that I write up a proof of Theorem
A.1. I am grateful as well to Peter Humphries for allowing me to include this appendix to his paper, and for
suggesting many improvements to the proofs and exposition.
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Zero-free regions for Rankin–Selberg L-functions...

Remark A.1 In [22] it is shown that when n = n′ = 2, L(s, π×π ′) satisfies the conclusions of
Theorem A.1, except possibly when it is divisible by the L-function of a quadratic character.
A similar result holds for n = n′ = 3whenπ andπ ′ are symmetric square lifts from self-dual
forms on GL2.

Remark A.2 Theorem A.1 implies a standard zero-free region for the L-function of a non-
self dual cusp form π on GLn , by taking π ′ to be the trivial character on GL1. The fact that
L(s, π) admits no exceptional zeros whenever π is not self-dual is originally due to Moreno
[20, Theorem 5.1] when n = 2 and Hoffstein–Ramakrishnan [10, Corollary 3.2] for n ≥ 3.
(For complex characters it is classical.)

Remark A.3 If π is self-dual on GLn , then Theorem A.1 allows for the possibility of a single
exceptional zero, necessarily real, of L(s, π). There are cases when this exceptional zero
can be provably eliminated. To the best of our knowledge, these cases are, at the time of this
writing, limited to the following situations:

(1) when π is a cusp form on GL2, due to Hoffstein–Ramakrishnan [10, Theorem C];
(2) when π is a cusp form on GL3. This is due to Banks [2, Theorem 1], who verifies

Hypothesis 6.1 in [10].
(3) when π is a cusp form on GL5 which arises as the symmetric fourth power lift of a cusp

formonGL2 which is not of solvable polynomial type. This is due toRamakrishnan-Wang
[22]; see the comments after Corollary C in loc cit.;

(4) for the L-functions L(s, π, sym6) and L(s, π, sym8), when π is a self-dual cusp from
on GL2. This is Theorem D in [22].

All of these results build on the groundbreaking work of [8]. Moreover, cases (3) and (4)
make full use of the advances in functoriality by Kim and Shahidi [15,16].

Remark A.4 We emphasize the importance of the cuspidality condition in (1) and (2) in the
above remark, which rules out the divisibility of L(s, π) by the L-function of a quadratic
character.

For example, if π is a dihedral form on GL2 over F , induced by a Hecke character χ

of a quadratic field extension E , then L(s, π) = L(s, χ). Now if π is cuspidal, χ does not
factor through the norm, which (as was remarked in [22]) rules out χ real. One can then
obtain a standard zero-free region for π by appealing to the classical GL1 case for complex
(Hecke) characters over E . The original argument given in [10, Theorem B and Remark 4.3]
for dihedral forms on GL2 is, on the surface, more complicated, but this is simply due to to
the more general framework in which it is set.

Similarly, the cuspidality condition for GL3 rules out the possibility that π arises as the
symmetric square lift of a dihedral form on GL2.

All of the above remarks pertain to results in the full conductor aspect only; for the t-aspect,
we refer to the body of the paper.

Proof For t ∈ R let

� = π ⊗ |det|i t � π̃ ⊗ |det|−i t � π ′

and D(s) = L(s,� × ˜�). Then we have the factorization D(s) = L1(s)L2(s), where

L1(s) = L(s, π × π̃)2L(s, π ′ × π ′)

and

L2(s) = L(s + i t, π × π ′)2L(s − i t, π̃ × π ′)2L(s + 2i t, π × π)L(s − 2i t, π̃ × π̃).
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Letm ≥ 1 be the order of the pole of D(s) at s = 1. Then [12, Theorem 5.9] (which is based
on [8, Lemma]) states that there is a constant κ > 0 such that D(s) has no more than m real
zeros in the interval

1 − κ

(n + n′)2(m + 1) log q(� × ˜�)
< σ < 1. (A.5)

Let us calculate the integer m. The factor L1(s) has a pole of order 3 at s = 1. Moreover,
if t �= 0 the factor L2(s) is holomorphic at s = 1. When t = 0, the regularity of L2(s) at
s = 1 depends on whether or not π is self-dual:

(1) if π is not self-dual and t = 0, the function L2(s) is holomorphic at s = 1, since
necessarily π �= π ′ and π �= π̃ ′;

(2) if π is self-dual and t = 0, the function L2(s) has a pole of order 2 or 4, according to
whether π �= π ′ or π = π ′.

We deduce that m = 3 when either π is not self-dual or t �= 0. When π is self-dual and
t = 0, we have m = 5 or 7, according to whether π �= π ′ or π = π ′.

Now let σ ∈ (0, 1) and suppose that L(s, π × π ′) vanishes to order r at s = σ + i t . By
the functional equation and the self-duality of π ′, this is equivalent to L(σ − i t, π̃ × π ′)
vanishing to order r at s = σ − i t . From this it follows that L2(s), and hence D(s), has a
zero at s = σ of order 4r . Moreover, this is the case regardless of the value of t or whether
π is self-dual. If σ lies in the range (A.5), then since 4r ≤ m, we deduce from the previous
paragraph that r = 0 whenever π is not self-dual or t �= 0, and r ≤ 1 whenever π is self-dual
and t = 0.

To finish the argument we must now majorize log q(� × ˜�). Corresponding to the fac-
torization of D(s) we have

q(� × ˜�) = q(π × π̃)2q(π ′ × π ′)q(i t; π × π ′)2q(−i t; π̃ × π ′)2q(2i t; π × π)

×q(−2i t; π̃ × π̃).

The bounds of [4, Theorem 1], applied to the finite conductor of each factor above, yield

q f (� × ˜�) ≤ (q f (π)2q f (π
′))4n+2n′

. (A.6)

For the archimedean conductor, Lemma A.2 below implies that

q∞(� × ˜�) ≤ Cn+n′
1 (q∞(π)2q∞(π ′))4n+2n′

(1 + |t |)(4nn′+2n2)[F :Q], (A.7)

for an absolute constant C1 > 0. This yields

log q(� × ˜�) ≤ C2(n + n′) log
(

q(π)q(π ′)(3 + |t |)n[F :Q])

for an absolute constant C2 > 0, which finishes the proof. �
The following result— the analog at archimedean places of the Bushnell–Henniart bounds

(A.6) on the Rankin–Selberg conductor — has been claimed without proof in many sources,
including [12, (5.11)] and our own [3] (to name just two). Nevertheless, there does not seem
an available proof in the literature.

Lemma A.2 Let Fv be R or C. Let n, n′ ≥ 1 be integers. Let πv and π ′
v be irreducible

unitary generic representations ofGLn(Fv) andGLn′(Fv), respectively. There is an absolute
constant C > 0 such that

qv(i t;π × π ′) ≤ Cn+n′
qv(π)n

′
qv(π

′)n(1 + |t |)nn′[Fv :R].
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Remark A.8 The constant C in Lemma A.2 can be explicitly computed, and the proof gives
an exact value. But since the archimedean conductor should not be considered an “exact
quantity” (and conventions for the definition vary according to the source), it makes little
sense to include the precise value of C in the estimate.

Remark A.9 In the course of the proof, we shall recall the definition of the archimedean
Rankin–Selberg and standard analytic conductor as given by Iwaniec–Sarnak in [13]. Their
ad hoc recipe boils down to taking the product over all Gamma shifts arising in the local
L-factors. It will be apparent that the definition of qv(i t;π × π ′) can be made in the admis-
sible (rather than unitary generic) dual. One may drop the hypothesis of genericity (but not
unitarity) in the statement of Lemma A.2 at the price of allowing the constant C to depend
linearly on n and n′.

Remark A.10 In [10, Lemma b], the authors prove something close to Lemma A.2, but their
result only yields an upper bound of the form

qv(i t;π × π ′) ≤ C(qv(π)qv(π
′)(1 + |t |))B , (A.11)

for some constants B,C > 0, depending on n and n′. Indeed, the archimedean factor of the
“thickened level” M(π) introduced in [loc. cit., Definition 1.4], is defined using the sum,
rather than the product, of all Gamma shifts. (Note that in [8] the max of the Gamma shifts is
taken.) ThusMv(π), for v | ∞, behaves quantitativelymuch differently than the archimedean
factor of the analytic conductor of Iwaniec–Sarnak [13]. Since its appearance, the latter has
become the preferred measure of complexity in the study of L-functions.

It should be emphasized that since

log qv(i t;π × π ′) � logMv(i t;π × π ′) and log qv(i t;π) � logMv(i t;π),

the bounds (A.7) with unspecified exponents are consequences of the work of Hoffstein–
Ramakrishnan. Thus the proof of Lemma A.1 can be made to be independent of Lemma A.2,
at the price of an inexplicit dependence in the implied constant on n and n′.

In any case, the proof of Lemma A.2 is closely modelled on that of [10, Lemma b], with
the appropriate modifications for dealing with analytic conductor.

Proof Using Langlands’ classification of the admissible dual of GLn(Fv) (see, for example,
[17]), πv and π ′

v correspond to ⊕ϕi and ⊕ϕ′
j , for irreducible representations ϕi and ϕ′

j of
the Weil group WFv of Fv . By definition, we have

L(s, πv) =
∏

i

L(s, ϕi ), L(s, π ′
v) =

∏

j

L(s, ϕ′
j ), L(s, πv × π ′

v) =
∏

i, j

L(s, ϕi ⊗ ϕ′
j ),

which gives rise to similar factorizations of the associated conductors. Let di , d ′
j denote the

dimensions of ϕi and ϕ′
j , respectively, so that n = ∑

di and n′ = ∑

d ′
j . Dropping the

indices i and j , we must therefore prove that for irreducible representations ϕ and ϕ′ ofWFv ,
of respective dimensions d and d ′, we have

qv(i t;ϕ ⊗ ϕ′) ≤ Cqv(ϕ)d
′
qv(ϕ)d(1 + |t |)dd ′[Fv :R], (A.12)

for an absolute constant C > 0.
When Fv = C, one has WC = C

×, so that all irreducible representations are one-
dimensional. We may write any such character as χk,ν(z) = (z/|z|)k |z|2ν , for k ∈ Z and

123



P. Humphries, F. Brumley

ν ∈ C. Letting μ = ν + |k|/2, the associated L-factor (see [17, (4.6)]) is �C(s + μ). The
recipe of Iwaniec–Sarnak [13, (21) and (31)] gives

qv(i t;ϕ) = (1 + |i t + μ|)2.
Now if ϕ = χk,ν and ϕ′ = χk′,ν′ , then ϕ ⊗ ϕ′ = χk+k′,ν+ν′ . This implies that

qv(i t;ϕ ⊗ ϕ′) = (1 + |i t + |k + k′|/2 + ν + ν′|)2.
An application of the triangle inequality yields

qv(i t;ϕ ⊗ ϕ′) ≤
(

1 + |t | +
( |k|

2
+ |ν|

)

+
( |k′|

2
+ |ν′|

))2

.

We claim that |k|
2 + |ν| � | |k|

2 + ν| = |μ|. We may assume that k �= 0. On one hand,
( |k|

2
+ |ν|

)2

= k2

4
+ |ν|2 + |k||ν| ≤ k2

4
+ |ν|2 + k2

2
+ |ν|2

2
≤ 3

(

k2

4
+ |ν|2

)

.

On the other, since π and π ′ are unitary generic, the Jacquet–Shalika bounds |Re(ν)| ≤ 1/2
[14, Corollary 2.5] (extended to the archimedean places by Rudnick–Sarnak in [23, §A.3])
imply

k2

4
+ |ν|2 ≤ |μ|2 + |k|

2
= |μ|2

(

1 + |k|
2|μ|2

)

≤ |μ|2
(

1 + 2

|k|
)

≤ 3|μ|2.

This proves the claim and implies qv(i t;ϕ ⊗ ϕ′) � (1 + |t | + |μ| + |μ′|)2. Using
1 + |t | + |μ| + |μ′| ≤ 1 + |t | + |μ| + |μ′| + |μμ′|

= (1 + |μ|)(1 + |μ′|) + |t |
≤ (1 + |μ|)(1 + |μ′|)(1 + |t |), (A.13)

we establish (A.12) in the case Fv = C.
When Fv = R, each irreducible representation ϕ of WR = C

× ∪ jC× is of dimension 1
or 2. If ϕ is one-dimensional, then its restriction to C

× is χ0,ν for ν ∈ C (see [17, (3.2)]). We
let k = 1 − ϕ( j) ∈ {0, 2}. Writing μ = ν + k/2, we have L(s, ϕ) = �R(s + μ) and

qv(i t, ϕ) = 1 + |i t + μ|.
If ϕ is two-dimensional, then it is the induction of χk,ν from C

× to GL2(R), where k ≥ 1
and ν ∈ C. Putting μ = ν + k/2 we have L(s, ϕ) = �C(s + μ) and

qv(i t;ϕ) = (1 + |i t + μ|)2.
In either case, let (k, ν) and (k′, ν′) be the parameters associated with ϕ and ϕ′, respectively.
We now examine the tensor products parameters.

(1) If bothϕ andϕ′ are one-dimensional, then so isϕ⊗ϕ′, with parameter (1−ϕ( j)ϕ′( j), ν+
ν′). Then (A.12) reads

1 +
∣

∣

∣

∣

i t + 1 − ϕ( j)ϕ′( j)
2

+ ν + ν′
∣

∣

∣

∣

≤ C(1 + |μ|)(1 + |μ′|)(1 + |t |).

Applying the triangle inequality and 1−ϕ( j)ϕ′( j) ≤ (1−ϕ( j))+ (1−ϕ′( j)) = k+k′,
the left-hand side is bounded above by

1 + |t | +
(

k

2
+ |ν|

)

+
(

k′

2
+ |ν′|

)

.
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The same reasoning as in the complex case then establishes (A.12).
(2) If ϕ is one-dimensional, and ϕ′ is irreducible and two-dimensional, then the twist ϕ⊗ϕ′ is

irreducible and two-dimensional, induced fromC
× by the characterχ0,νχk′,ν′ = χk′,ν+ν′ .

Thus ϕ ⊗ ϕ′ has parameters (k′, ν + ν′). Inequality (A.12) is then equivalent to

1 + |i t + μ + μ′| ≤ C(1 + |μ|)(1 + |μ′|)(1 + |t |).
This follows (with C = 1) from the triangle inequality and (A.13).

(3) Suppose that ϕ and ϕ′ are both irreducible and two-dimensional, and let k ≥ k′. Then
ϕ ⊗ ϕ′ is the direct sum of two two-dimensional representations, induced from C

× from
the characters χk,νχk′,ν′ = χk+k′,ν+ν′ and χ−k,−νχk′,ν′ = χk′−k,ν′−ν . (Note that the
latter representation is reducible when k = k′.) This shows that

L(s, ϕ ⊗ ϕ′) = �C(s + μ + μ′)�C(s + μ − μ′)

and

qv(i t;ϕ ⊗ ϕ′) = (1 + |μ + μ′|)2(1 + |μ − μ′|)2.
Then (A.12) is equivalent to

(1 + |i t + μ + μ′|)(1 + |i t + μ − μ′|) ≤ C(1 + |μ|)2(1 + |μ′|)2(1 + |t |)2.
This follows (withC = 1) from applying the triangle inequality and (A.13) to each factor
on the left-hand side.

This completes the proof of Lemma A.2. �
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