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                                               Abstract 

Modulation of inflammation in the reduction of intra 

hepatic resistance 

In cirrhosis, there is a dichotomy in the haemodynamic abnormality in the intra hepatic 

and splanchnic circulation, as a result of an imbalance between vasoactive agents. In the 

intra-hepatic circulation, there is vasoconstriction secondary to endothelial dysfunction 

and vasodilatation in the splanchnic circulation which is provoked by a multitude of 

mechanisms. Inflammation has been also implicated in propagation of the haemodynamic 

abnormalities of portal hypertension in patients with acute on chronic liver failure 

(ACLF).  

The studies conducted in this thesis aim to understand how modulating inflammation 

leads to the reduction of intra hepatic resistance. In the first part of the thesis, I validated 

the bile duct ligated rat model for my studies. I establish ADRA2a adrenergic receptor as 

the target receptor in this model to treat portal hypertension. I was able to show that a 

specific ADRA2a adrenergic receptor antagonist was able to improve the haemodynamic 

and inflammatory parameters. This strategy was also able to improve the function of the 

immune cells in this model. This provided a proof-of-concept for ADRA 2a adrenergic 

receptor as a target for intervention in ACLF to reduce inflammation and thereby reduce 

portal pressure. 
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In the second section of the thesis, I studied the role of arginine in the modulation of portal 

hypertension in a bile duct ligated rat model of cirrhosis. Thereafter, I showed a significant 

lowering of portal pressure in a BDL model of cirrhosis by L-Arginine supplementation 

via modulation of the NO-ADMA-DDAH and inflammatory pathway. The findings from 

this study provides the basis for novel agents for the treatment of portal hypertension. 

.The studies conducted within the remit of this thesis provides valuable insight into the 

pathophysiology of portal hypertension and alludes to an alternative management strategy 

for portal hypertension. 
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                                 Chapter 1 

Modulation of inflammation in the reduction of intra 

hepatic resistance 

1.1 Introduction 

The first published description of cirrhosis of the liver was in 1817 by Samuel Black of 

Newry, Ireland. The caption of this paper is: “Dissections of Two Habitual Drunkards ”. 

The case was observed in 1808 and the paper read in 1816. It has been published in the 

“Transactions of the Association of Fellows and Licentiates of the King’s and Queen’s 

College of Physicians in Ireland”, Dublin (1817), Vol. I, pp. 56-62.  Wherein, he describes 

the post mortem findings of the liver of a journeyman baker, who had a significant alcohol 

history. He states that the liver was shrunken to about a third of the size, was hard and 

rigid and dark in colour. He commented that there were numerous tubercle with variable 

size and this was also found on the liver parenchyma. 

From this early description of cirrhosis, it has become the eighteenth most common cause 

of death in the world and seventh in Europe (WHO data).In data published by the Office 

of National Statistics, cirrhosis of the liver is the second most common cause of death in 

male patients aged between 34 to 55 years accounting for about ten percent of deaths. And 

even more significantly, the second most common cause of death in female patients in the 

age group of 24 to 55 years is cirrhosis of the liver accounting up to eight percent of the 

total deaths. 
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Fig 1: National Audit Office data: Standardized mortality rate for chronic disease  

in UK 

In another set of data published by the National Audit office, it is clear that while most 

other  cause of death is going down in the United Kingdom, the death rate from cirrhosis 

has gone up significantly as shown in Figure 1. As a consequence of this increase in 

mortality and morbidity associated with cirrhosis in the UK the increase in chronic liver 

disease poses particular problems with respect significant costs to the public both in terms 

of treatment and in loss of productivity. The impact of increase incidence notably alcohol 

intake, obesity and type 2 diabetes both here in the UK and globally implies that these 

problems are likely to increase in the future. 

The incidence of cirrhosis has been estimated by several studies but all these studies 

calculated the numbers from the death certification figures. These figures may therefore 
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over-estimate the actual number of patients with cirrhosis. In a recent study from 

Nottingham, the incidence of cirrhosis was calculated after extrapolation of data from the 

general practice research database.  

It is estimated in these studies estimate 76 per 100,000 people were living with cirrhosis 

in 2001 and there is a 45% increase in the incidence of cirrhosis in the last decade, majority 

of them attributable to alcohol. Disease progression with cirrhosis among this mainly 

ambulatory population was rapid with a rate of decompensation in people with 

compensated disease of 5% per year and 1 in 10 dying in the first year following diagnosis. 

This figure increased to 25% of people dying within one year for those with 

decompensated disease. Mortality in subjects with compensated and decompensated 

cirrhosis was 93.4 and 178.0 per 1000 person years compared with only 19.2 per 1000 

person years in the general control population. Following adjustment for age and sex 

people with compensated and decompensated disease were respectively 5 and 10 times 

more likely to die than the general population (1). The statistical data presented above 

implies that the burden of liver disease will continue to challenge us to find strategies to 

improve the outcome in the next century. 
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1.2 The Pathophysiology of Portal hypertension 

Portal hypertension is the most common haemodynamic abnormality caused by cirrhosis 

of the liver in the western world (2). The onset of portal hypertension heralds the 

beginning of complications such as variceal bleeding, ascites, hepatorenal syndrome, 

spontaneous bacterial peritonitis and hepatic encephalopathy, which in turn results in 

increased morbidity and mortality. It is defined as the pathological increase of portal 

venous pressure to above 10-12 mmHg from the normal value of 5 mmHg. The portal 

venous pressure is measured by assessing the gradient between the wedged hepatic 

pressures to the free hepatic venous pressure via a transjugular route as the portal vein is 

inaccessible. The formulae used to calculate the hepatic venous pressure gradient is (3) 

HVPG = WHVP - FHVP 

The correction is required to adjust the increased intra-abdominal pressure to provide an 

accurate measurement of the portal venous pressure. The actual pressure in the portal vein 

is measured by the principles governing any pressure difference between two points, by 

applying the Ohm’s Law: 

RQP 
 

Where the delta change in pressure between any two points in the portal vein is determined 

by the rate of blood flow and the resistance applied by the wall of the vein in that section. 

 Although it is a surrogate measurement of portal venous pressure, it has been shown to 

have excellent clinical co-relation. A reduction of hepatic venous pressure gradient below 
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12 mmHG or a reduction of less than 20% from the baseline has been shown to reduce 

the incidence of variceal bleeding to less than 10% (4), (5). Recently, there has been a 

suggestion that there may be other benefits of reduction of portal pressure other than just 

lowering portal pressure, which improves the survival of patients with portal hypertension 

(6). Although there has been a great improvement in the understanding of the 

pathophysiology of portal hypertension, there is still an unmet need for the development 

of a treatment strategy for portal hypertension. 

The classical view of portal hypertension suggested that the increased resistance to portal 

blood flow to the liver is the main determinant in the propagation and maintenance of 

portal hypertension. This has been the basis of the treatment modalities available up to 

now. This  includes non-selective beta blocker (propanolol, nadolol) for the prevention of 

primary  (7) and secondary episodes of variceal bleeding (8) and short acting intravenous 

drugs like somastatin and its analogues and terlipressin (9) for the treatment of acute 

variceal bleeding which effectively reduced the splanchnic blood flow. However, recent 

evidence suggest that reduction of the splanchnic blood flow may not be the most 

appropriate treatment for certain stages of refractory ascites and can even have deleterious 

outcome (10). 

There has been a gradual paradigm shift in the understanding of the pathophysiology of 

portal hypertension. Clinicians and scientists are beginning to arrive at a consensus that 

intrahepatic resistance to portal blood flow is the initiating factor in the development of 

portal hypertension. Correction of this aspect is more likely to improve the severe 
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haemodynamic abnormality and prognosis associated with clinically significant portal 

hypertension. 

1.2.1 Increased portal blood flow resistance: 

In portal hypertension, there is an increase in the resistance to the portal blood flow. This 

can be due to the increase in intrahepatic resistance as well as resistance generated by the 

co-lateral porto-systemic circulation. 

1.2.1.1  Intra hepatic resistance: 

The normal liver is a very compliant vascular organ whereby it can accommodate increase 

in portal blood blow, without any detrimental effect. The intra hepatic vascular tree is able 

to dilate appropriately in response to the increased blood flow as seen in the context of 

postprandial increase in portal blood flow. The main site of resistance in a normal liver 

has been suggested to be at the hepatic sinusoids, terminal hepatic venules and portal 

venules.  However as the portal pressure remains within the normal level of 4-8 mmHg, 

there is no real significance to the resistance (11). 

However, this compliance is not seen in portal hypertension. Intrahepatic resistance (IHR) 

was classically thought to be as a result of the mechanical effects of cirrhosis including 

fibrosis, thrombosis and nodule formation which leads to abnormal architecture of the 

sinusoidal space and hence distortion to the laminar flow of blood (12). The exact site of 

intra hepatic resistance is variable and can change according to etiological factors and 

disease process. Chronic hepatitis appears to have both pre-sinusoidal and sinusoidal 
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vascular abnormalities which contribute towards the increased resistance (13) where as 

there is abnormal architecture in the sinusoidal and post sinusoidal site (14), when liver 

injury is caused by ischaemia. As the disease progresses, there is terminal vein fibrosis, 

reduction in sinusoidal space by enlarging hepatocyte and deposition of collagen in the 

space of disse, all of which contribute to the increased vascular resistance. Thus, at the 

beginning of research into this area, the importance was given to the anatomical 

abnormalities as the most important cause of portal hypertension. There is some emerging 

evidence that anatomical architectural deformities can be corrected by treatment of 

underlying condition like treatment of Hepatitis C (15) 

The seminal paper by Mittal and Groszmann in 1984 gave the first indication into the 

presence of a modifiable component in the intra hepatic vasculature (16). Bhathal and 

Grossman in 1985 confirmed this perspective and led to the theory of presence of a 

pharmacologically modifiable vascular element in addition to the mechanical factors that 

influence intra hepatic resistance (17). A significant body of research has evolved since 

then to understand and apply this principle to modify intra hepatic resistance as a 

treatment of portal hypertension. 

It has been estimated that this dynamic and reversible component of intrahepatic 

resistance may account for about 30-40% of the total resistance in the cirrhotic liver. 

These include vascular smooth muscle cells present in the intra hepatic vasculature (18) 

activated hepatic stellate cells and hepatic myofibroblasts (19, 20) that may distort the 

regenerative nodule within the fibrous septa. In addition to these factors, there is also an 

imbalance between the intrahepatic vasoactive agents. Angiotensin II, endothelin I, 
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adrenergic stimulation are some of the agents which propagate the vasoconstriction of the 

intra hepatic microcirculation (21), (22). On the other hand, Nitric oxide, CO, H2S are 

some of the vasodilators present in the intra hepatic circulation. Normally, vascular tone 

is maintained by a delicate balance between the vasoconstrictors and vasodilators. 

Endothelial dysfunction (ED) implicate a loss of function of numerous activities of the 

endothelium (23), mainly characterised by impairment of the production and release of 

endothelium driven vasodilatory factors including NO (24), (25).  Endothelial dysfunction 

is thought to be a key event in the development of distinct human vascular diseases, 

including liver cirrhosis, hypertension, diabetes and atherosclerosis. Reduced NO 

bioavailability makes a major contribution to endothelial dysfunction and is mainly due 

to reduced NO production or increased NO breakdown due to the chemical reaction with 

oxidant radicals (26). The hepatic vascular bed of cirrhotic liver exhibits ED and is now 

considered to play a key role in the initiation and advancement of liver cirrhosis.  

As a result, there is an abundance of vasoconstrictors and a lack of vasodilators especially 

nitric oxide (NO) ((27), (25),(28) , (29)) which leads to intrahepatic vasoconstriction and 

increased resistance. NO, in particular has been shown to have a potent vasodilator 

function and plays an important role in maintaining the vascular tone in normal livers 

(16). The deficiency of NO is due to the loss of activity of endothelial Nitric Oxide 

Synthetase, which is the rate-limiting enzyme in the synthesis of NO. Although the protein 

expression of eNOS remains same or increases, there is loss of activity, which suggest 

that there is a post translational modification in the eNOS protein, hence leading to its 

inactivation (25). Among the culprits for this modification that may influence hepatic 

eNOS activity is reduction in the akt mediated phosphorylation of eNOS and increased 
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expression of caveolin I (30), (28). Furthermore, eNOS may be unable to synthesize NO 

in the presence of oxidative stress which depletes the essential co-factor like 

tetrahydrobiopterin which are essential for the oxidation process to take place for NO 

synthesis (31) leading to uncoupling of the eNOS protein. There has been recent interest 

in the elevated levels of the endogenous inhibitor Asymmetrical Dimethyl Arginine 

(ADMA), which leads to inhibition of eNOS, thus leading to decrease NO production 

(32). In addition, there is scavenging of the produced NO by reactive oxygen species 

which can be prevented by the use of anti-oxidants (33) (34) 

The hepatic stellate cells located in the sinusoids with perisinusoidal and inter cellular 

branching acquire contractile properties and modulate intra hepatic resistance 

dynamically (35). They synthesize collagen and form a myofibrobalst like matrix around 

the sinusoids and terminal hepatic venules in cirrhotic livers and have been shown to have 

an enhanced response to endothelins (36). The endocannabinoid system has also been 

implicated in the activation of hepatic stellate cells and cannabinoid receptor CB1 

upregulation is associated with fibrogenesis of the liver and some associated metabolic 

effects like insulin resistance and dyslipidaemia (37). 

Thus, in summary, there is a combination of reversible dynamic component and 

irreversible components, which lead to increase in intra hepatic resistance. 

1.2.1.2  Portosystemic collateral resistance 

Portosystemic collaterals are formed as a result of portal hypertension as a means to 

decompress the portal circulation by diverting blood to the systemic circulation by 
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opening up of unopened and new blood vessels. However, the resistances present in these 

vessels are still more than normal vascular resistance, therefore, they contribute to the 

overall resistance of blood flow. 

1.2.2 Splanchnic vasodilatation 

The other important phenomenon occurs in the systemic circulation in cirrhosis is 

splanchnic vasodilatation. This is associated with an increase flow in the splanchnic 

circulation, which contributes to the propagation and maintenance of portal hypertension 

(38). This is manifested by the classical phenomenon of vascular hyporeactivity  to vaso 

constrictors which can be corrected by removal of the endothelium (39) and 

overproduction of NO. The importance of this overproduction of NO is implicated by the 

fact that a non-specific inhibition of NOS leads to the correction of the haemodynamic 

abnormalities in the splanchnic circulation (40). The main enzyme responsible for this 

increased NO production is endothelial Nitric Oxide Synthetase (eNOS). This is proven 

by the increased protein expression (41) and activity of eNOS (42) and excessive 

production of NO by the pulsatile flow and shear stress generated activation of the eNOS 

enzyme (43). Although there is good evidence to suggest that eNOS is the main enzyme 

responsible for the NO overproduction (44) there is evidence that the upregulation of 

eNOS prior to onset of the hyperdynamic circulation suggesting that there may be other 

factors involved in the increased production of NO (45). In 1991, Moncada and colleagues 

showed that endotoxemia present in liver cirrhosis model caused  upregulation of 

inducible Nitric Oxide Synthetase (iNOS) which acted as a source of increased NO 

production and resulting in the hyperdynamic circulation (46). Subsequently it has been 
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shown that selective inhibition of iNOS does not abrogate the hyperdynamic circulation 

and vascular hyporesponsiveness to vasoconstrictors (47), thus suggesting that iNOS 

production may not have a direct effect on splanchnic vascular regulation. Furthermore, 

it has been shown in several studies that there is a causal relationship between 

endotoxemia and NO production (48) (49). There is also suggestion that neuronal NOS 

(nNOS) normally found in the neurons and vascular smooth muscle cells is upregulated 

in the mesenteric arteries (50)and aorta and takes part in the progression and maintenance 

of hyperdynamic circulation of cirrhosis (51).Several other factors have been implicated 

in the upregulation of the eNOS enzyme and among them, the presence of co-factors like 

Calcium, Calmodulin and tetrahydyobiopterin, which is increased by circulating 

endotoxin are important (52). Among the positive regulators, Heat Shock Protein 90 

(Hsp90) (53) and akt phosphorylation contributes to the splanchnic eNOS activation (54). 

The portal pressure can also dictate the amount of splanchnic dilatation as a rise in portal 

pressure increases the shear stress which leads to increase phosphorylation of eNOS via 

the akt/protein kinase B pathway (44).Vascular Endothelial Growth Factor (VEGF) is one 

of the most important potent inducer of angiogenesis and eNOS phosphorylation via the 

akt pathway and it helps to propagate and maintain the hyperdynamic circulation in 

cirrhosis(55). There is also some suggestion from the literature that the alteration of the 

eNOS protein from its normal sub-cellular location near the golgi body to the plasma 

membrane make it more able to produce NO and may be related to the endothelial 

dysfunction in the splanchnic vasculature noted in cirrhosis (56). Furthermore, recently it 

has been shown that eNOS is negatively regulated by S-nitrosylated, which means 

addition of a NO group to a thiol side chain to a cystiene residue (57) 
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Among other molecules that have been implicated in the splanchnic vasodilation in 

cirrhosis is carbon monoxide (CO), which is a byproduct of the Heme Oxygenase (HO) 

pathway through which there is activation of soluble Guanylate Cyclase (sGC) in the 

vascular smooth muscle cells leading to vasodilatation and hyperdynamic circulation (58). 

Prostacylin I, derived from the cycloxygenase pathway has been found be increase in 

cirrhosis and acts on the adenyl cyclase to induce vasodilatation (59). There is also a 

suggestion of involvement of the endocannabinoid system in the splanchnic vasodilatation 

as it already known that anandamide, a cannabinoid receptor 1 (CB1) receptor agonist is 

elevated in cirrhosis and participates in vasodilatation of the mesenteric vessels but there 

is an ongoing controversy whether its mechanism involves NO or not (60). A growing 

body of evidence also suggests the involvement of Hydrogen Sulphide (H2S) in the 

vasodilatation of the aorta and mesentery via the opening of the kATP  channel and 

independent of the cGMP pathway (61), (62). Another molecule that has been shown to 

be involved in the propagation of the hyperdynamic circulation is the pro-inflammatory 

cytokine TNFα, although there is still some controversy about the exact mechanism 

involved. The proof that it is implicated in this process is given by the study using 

thalidomide, an anti-TNFα agent in portal hypertensive rats which abrogates the 

hyperdynamic circulation (63). It has been suggested that TNFα induces synthesis of 

tetrahydrobiopterin, which is an essential co-factor of eNOS in the synthesis of NO (64) 

and it is also implicated in the induction of iNOS in the aorta to play a part in the 

maintenance of the hyperdynamic circulation (65).Lastly, another molecule that has been 

found to be increased in cirrhosis is adrenomedullin, which is an endogenous potent 
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vasodilatory peptide, which is thought to be working through the cGMP and the akt 

phosphorylation pathways (66, 67) 

In addition to arterial hypotension, there is also volume expansion, which helps to 

maintain the hyperdynamic circulation. Peripheral vasodilatation leads to activation of the 

baroreceptors and volume receptors which in turn activate the neurohumoral system and 

the renin angiotensin system. The consequence is absorption of salt and water from the 

kidneys leading to increased plasma volume. This increased plasma volume and 

peripheral vasodilatation leads to increased splanchnic blood flow. In cirrhosis, the 

increased blood flow leads to aggravation of the intra hepatic resistance, which is already 

increased as result of intra hepatic endothelial dysfunction. 

In summary, the intra hepatic resistance is the initiator of portal hypertension and the 

splanchnic vasodilatation and consequent increased blood flow to the liver maintains and 

propagates portal hypertension. There is an imbalance between the vasodilators and 

vasoconstrictors in the intra hepatic and splanchnic circulation with opposing effects. 

There has been multiple factors which have been implicated in the pathogenesis of portal 

hypertension, nitric oxide being one of the most important factor influencing this process. 

The modulation of nitric oxide remains an important strategy to decrease intra hepatic 

resistance and various strategies have already been applied to increase the availability of 

NO in the intra hepatic circulation.  
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1.3 The impact of Inflammation on portal hypertension 

The onset of portal hypertension is the defining event in the clinical course of a cirrhotic 

patient (68). It is associated with the development of complication from portal 

hypertension which include variceal bleeding, ascites, spontaneous bacterial peritonitis 

and hepatic encephalopathy. All of these complications are associated with poor outcome. 

Portal hypertension in cirrhosis is propagated by two components. Splanchnic 

vasodilatation is caused by reduced systemic vascular resistance and results in increased 

blood flow to the liver. The primary haemodynamic change is recognised to be the 

increased intra hepatic resistance (IHR). IHR has two important component. One is 

termed as the fixed component, which is as a result of architechtural distortion due to 

nodule formation and microthrombi. However, it is being increasingly recognised that the 

intra hepatic vascular tone and the contractility are a significant component of IHR. The 

splanchnic vasodilatation and hyperdynamic circulation associated with portal 

hypertension in cirrhosis is thought to be a compensatory mechanism as a consequence of 

the increased intra hepatic resistance. 

Pro inflammatory cytokines have been shown to be elevated in liver cirrhosis (69). 

Lemmers et al showed that progressive elevation of IL-6 levels were found in patients 

with cirrhosis and alcoholic hepatitis as compared to normal controls. The levels of pro 

inflammatory cytokines have been shown to have been increased in alcoholic hepatitis 

(70). In a more recent study by our group, we have shown that TNFα is an important 

mediator of portal and systemic haemodynamic derangement in alcoholic hepatitis. In this 

study, Dr.Mookerjee shows that the plasma TNFα level was directly related to the severity 
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of liver disease i.e. it was highest in the group of patients with alcoholic hepatitis as 

compared to the cirrhotic patients. In the same study, an anti TNFα agent (Infliximab) was 

used in all ten patients as a one off bolus dose and the patients were assessed at 24 hours 

and on the day of discharge. The portal pressure was significantly reduced after 24 hours 

of administration of infliximab and it remained low at the time of discharge. The systemic 

vascular resistance was increased and there was improvement in the hepatic and renal 

blood flow. This study provides proof of the role of TNFα as a pro inflammatory cytokine 

in the propagation of portal hypertension (71). 

Acute on chronic liver failure is a recently described clinical syndrome wherein there is 

acute deterioration of liver function precipitated by superimposed liver injury or 

superadded infection. The definition and natural history of this clinical syndrome has been 

established in the recently concluded European consortium study CANONIC study where 

the ACLF patients were differentiated from patients with acute decompensation by the 

presence of one or more organ failure, presence of high systemic inflammatory response 

and high mortality within 28 days of admission. In fact the high systemic inflammatory 

response was identified as the key precipitating factor in the pathogenesis of this 

syndrome. (72).Studies in patients with acute severe alcoholic hepatitis have shown that 

they have a higher portal pressure as compared to decompensated cirrhosis (73). 

1.3.1 The impact of inflammation on intra hepatic resistance 

Cirrhosis is characterized by architectural distortion resulting in resistance to sinusoidal 

blood flow. This is primarily caused by nodule formation and scarring of the liver. 
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However increasingly increased vascular tone because of an imbalance between the 

vasoactive agents is being implicated as a more important aspect of increase intra hepatic 

resistance in portal hypertension. Nitric oxide (NO) has been demonstrated to be a key 

regulator of intrahepatic vascular tone, and NO production from endothelial nitric oxide 

synthase (eNOS) in the sinusoidal endothelial cell (SEC) is decreased in cirrhosis (16), 

(27).NO modulates the vascular tone by acting on the smooth muscle cells. Intra hepatic 

resistance is also regulated by activated hepatic stellate cells, which adapt a 

myofibroblastic phenotype upon activation. Activated HSC also played a key role in the 

development of angiogenesis leading to intra hepatic shunting and vascular collateral 

formation. 

 

Hepatic innate immune signaling also has a role in the propagation of increased intra 

hepatic resistance. It plays a part in both increased fibrosis and vascular tone. The role of 

Pathogen associated molecular pattern (PAMP) in the progression of fibrosis has been 

shown in rodent models where in various knockout of the Toll Like Receptor (TLR) 

pathway such as CD14, Liposaccharide Binding Protein (LBP), MYd88, TIR-domain-

containing adapter-inducing interferon-β (TRIF) have shown reduction in fibrosis in Bile 

duct ligated (BDL) and Carbon tetrachloride (CCL4) model ((74), (75)). These pathways 

have been demonstrated as Kupffer Cell (KC) independent processes. However, in 

advanced liver disease, hepatic stellate cells (HSC) play a more active role in the 

development of hepatic inflammation and oxidative stress, which in turn increases the 

intra hepatic vascular tone. The upregulation of the TLR signaling pathway promotes the 

production of pro inflammatory cytokines which include TNFα , IL6 and IL8, initiating 
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both hepatic and systemic inflammation (76). Another downstream effect of HSC 

activation is production of Reactive Oxygen Species (ROS). Oxidative stress leads to 

impaired production of NO via multiple pathways. ROS directly reacts with NO to 

produce peroxynitrate and other reactive nitrogen species ROS leads to direct eNOS 

dysfunction by ‘uncoupling’ and inhibition of phosphorylation and increase in the 

formation of eNOS inhibitors. (77).Plasma level of NOS inhibitor ADMA are raised in 

cirrhosis and further raised in patients with Alcoholic Hepatitis (78).In addition, hepatic 

expression of eNOS inhibitor caveolin-1 and eNOS trafficking protein NOSTRIN are 

increased in alcoholic hepatitis as compared to decompensated cirrhotic patients. These 

proteins will reduce eNOS activity and in turn NO production (79) 

  

Hepatocye cell death through oxidative injury will activate local innate immune pathways 

by way of Damage Associated Molecular Pattern (DAMPs).These protein are responsible 

for the introduction of ‘sterile inflammation’ through the TLR pathway as well (80).There 

is cross talk between the PAMPs and the DAMPs as bacterial LPS stimulates DAMP 

proteins like HMGB1 which activate both pathways (81). Therefore, local liver injury 

propagated by bacterial translocation and activation of the innate immune pathway 

through the TLR pathway leads to further inflammation and oxidative stress. This leads 

to significant intra hepatic vascular dysfunction and thereby propagates the progression 

of portal hypertension. 
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1.3.2 The impact of inflammation in the splanchnic circulation 

The forward theory of portal hypertension suggests that there is splanchnic vasodilatation 

and reduction in the systemic vascular resistance with resultant increased portal venous 

inflow to the liver. As opposed to the intra hepatic circulation, there is excess NO in the 

splanchnic circulation and reduced responsiveness of the mesenteric circulation to 

vasoconstrictors. In a recent study, it has been shown that peri vascular cells, which are 

present in the adventitial layer of mesenteric vessels have increased number of activated 

macrophages expressing inducible NOS. Thus paracrine effect of inflammatory cells 

producing NO may augment portal hypertension (82).The relative contribution of the 

various NOS isoforms are still being debated. In rodent models of pre sinusoidal portal 

hypertension using the portal vein ligation (PVL) model, it is clear from various studies, 

that endothelial NOS (eNOS) is the predominant contributor of NO production the 

mesenteric circulation (83).However in the studies using Bile Duct Ligation (BDL) model 

inducing biliary cirrhosis and portal hypertension, there is evidence to show that there is 

increased expression of aortic iNOS after administration of LPS (84). 

The role of the gut liver axis in propagating splanchnic vasodilatation has been 

investigated. Patients with advanced cirrhosis produces increased systemic NO and 

endotoxemia post TIPSS and there is also evidence to show increased in iNOS activity in 

these group of patients (85). Flouroquinolone antibiotics like norfloxacin had been used 

in cirrhotic patients to show there is reduction in the endotoxin load, improvement in the 

mean arterial pressure, and systemic vascular resistance as well as reduction in NO 

mediated mid arm vasodilatation (86), (87). In cirrhotic rats, pro inflammatory cytokines 



39 

 

like TNFa and IL6 are reduced by down regulation of eNOS phosphorylation by Akt upon 

treatment with norfloxacin (88) 

Studies from iNOS and eNOS knockout studies have suggested there are agents other than 

NO that are implicated in the pathogenesis of splanchnic vasodilatation in cirrhosis (83). 

Microparticles (MP), membrane vesicles that can affect the vascular and inflammatory 

signaling pathways have been found to be increased in cirrhotic patients and their levels 

co-relate to disease severity and inflammation. They have also been shown to impair the 

vasoconstrictor effect on cultured rat aorta rings (89). 

All the above factors are implicated in the modulation of inflammatory pathways in the 

regulation of splanchnic vascular tone. 

 

 

1.4 Bacterial Translocation and Portal Hypertension 

Due to the unique anatomical location the liver and its vascular blood supply, there is 

significant exposure to intestinal bacteria and bacterial products in the context of cirrhosis. 

The role of gut microflora in the pathogenesis of complications of cirrhosis including 

spontaneous bacterial peritonitis and hepatic encephalopathy is well recognised. Recently 

there has been renewed interest in the concept of bacterial translocation in the 

pathogenesis of portal hypertension and complication of cirrhosis. 

Bacterial Translocation (BT) is defined as the passage of viable and non-viable products 

of microbes and microbial particles from the intestine into the mesenteric lymphnodes 

and other organs.BT has become an increasingly interesting focus for many complication 
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of cirrhosis. Bacterial cultures are positive in mesenteric lymph nodes in 30.8% of Child 

C cirrhotic patients as compared to 6.8% of non cirrhotic patients (90). Similarly the 

surrogate marker of BT, lipopolysaccharide (LPS)-binding protein (LBP), was observed 

to be increased in 42% of cirrhotic patients (86).  It has also been recognized that bacterial 

infections are associated with a poorer prognosis from variceal haemorrhage (VH) (91)).  

BT is associated with other portal hypertension-related  complications, such as hepatic 

encephalopathy and spontaneous bacterial peritonitis (SBP) (92). 

The downstream mechanism of BT is complex but the most preserved pathway of innate 

immunity signals is via the exposure to microbial products or pathogen associated 

molecular patterns (PAMP) leading to activation of toll like receptors (TLR), which are 

most commonly expressed in Kupffer Cells (KC) although they are expressed in all types 

of parenchymal and non parenchymal cells. The kupffer cells in turn become activated by 

the TLR pathway and adopt a pro inflammatory phenotype releasing cytokines like TNFa, 

IL 6 and IL 2 (93). This pro-inflammatory cytokine response to BT is associated with 

severe portal hypertension in cirrhosis. Serum bacterial DNA levels, as a surrogate marker 

of BT, are correlated with severity of inflammation and portal hypertension in cirrhosis 

(94). Moreover, in patients with SBP, elevated levels of catecholamines and TNFa are 

associated with higher HVPG (95).In rodent studies, it has been shown that injection of 

LPS increases the portal pressure (96) and antibiotics have been used to reduce the 

occurrence of bacterial translocation (97). In humans, use of antibiotics have been shown 

to improve the haemodynamic abnormalities in the cirrhotic patient proving the notion 

that reduction of the bacterial translocation has a beneficial effect on the portal pressure 

(87). Direct inhibition of TNFa in patients with severe alcoholic hepatitis showed 
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significant reduction in portal pressure both immediately and also sustained till day of 

discharge of patients. This was associated with improvement in the hepatic and renal 

blood flow. This study suggest that targeting inflammation may be an important target to 

reduce portal pressure and improve outcome of patients (71).Several pro inflammatory 

cytokines like CRP and IL 6 have been shown to be raised in patients with cirrhosis and 

the level of the cytokine load co-relates with the portal pressure (98) (99). Therefore, 

bacterial translocation is a major mediator of inflammation induced portal hypertension 

in advanced cirrhosis. 

 

1.5 The link between inflammation, sympathetic 

nervous system   and portal hypertension 

The relationship between sympathetic nervous system and inflammation has been known 

for a long time. In the mid-1980s, it was well recognised that secondary lymphoid tissues 

is highly innervated by sympathetic nervous fibres in close proximity to immune cells 

(100). These immune cells express adrenoreceptors which are functional and translate 

neuronal signals into immune cell signal (101).The activation of the SNS in the context 

of an active immune system results in release of sympathetic neurotransmitters. 

Sympathetic influence on immune cells can be direct via adrenergic receptors on immune 

cells or via regulating blood or lymph flow (102).One of its main function is to modulate 

the release of pro inflammatory peptides (103) 

High levels of catecholamines in the portal venous plasma of patients with cirrhosis were 

reported by Shaldon et al. in 1961 (104). Patients with a high Child score, more 

pronounced portal hypertension, avid fluid-sodium retention, and the hepatorenal 
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syndrome have the highest plasma levels of NA and adrenaline. Selective catheterisation 

techniques and tracer kinetic methods have disclosed that the increased circulating 

noradrenaline in patients with cirrhosis is caused by sympathetic nervous overactivity in 

a number of organs (105). The very high noradrenaline from the kidney accords with the 

conception of a preferential renal sympathetic nervous over activity in patients with 

advanced liver disease (106) 

Several investigators have found a direct relation between the size of the portal/sinusoidal 

pressure and the circulating level of noradrenaline. This may suggest that sympathetic 

over-activity is involved in the pathogenesis of the portal hypertension in such patients. 

 

There is a large body of evidence to suggest that a decrease in the central and arterial 

blood volume of patients with cirrhosis (107).Moreover, it is already known that inverse 

relationship between the size of the central and arterial blood volume (i.e. the volume in 

the heart cavities, lungs, and central arterial tree) on the one hand and arterial and renal 

venous NA on the other (108). This suggests to us that central and arterial hypovolaemia 

is a significant afferent stimulus to overall and renal sympathetic over activity. Moreover, 

the increased arterial level of noradrenaline is directly related to the increased portal 

venous pressure and azygos blood flow. Various experiments have been done to block 

central and peripheral adrenoreceptors which lowers systemic and portal pressures. These 

findings suggest that the sympathetic nervous system plays a role in the genesis and 

perpetuation of portal hypertension (109). A close relation has been demonstrated 

between circulating noradrenaline and survival, and the level of plasma noradrenaline is 

an independent prognostic factor in cirrhosis. 
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In the recently published prospective CANONIC study, acute on chronic liver failure 

patients can be differentiated from acute decompensation of cirrhosis by the presence of 

organ failure, a marked systemic inflammatory response and higher short term mortality. 

Systemic inflammation appears to the most important prognostic factor as it rises with the 

progression of disease. However, the key precipitants for acute decompensation and acute 

on chronic liver failure were similar, suggesting that the major determinant for the 

development of ACLF is host response to injury rather the nature of the precipitant (72).  

There is increasing evidence that norepinephrine modulates the activation of kupffer cells 

by pro inflammatory cytokines via the adrenergic receptors (110). Gut derived bacteria or 

bacterial products activate pathogen associated molecular patterns which secrete pro 

inflammatory cytokines to activate kupffer cells. NE is thought to upregulate TNFα 

production in KC through the adrenergic receptor pathway (111). Extra hepatic tissue and 

cells also have been shown to secrete catecholamine in an acute inflammatory 

environment via the alpha 2a receptors (112) 

The close relationship between noradrenaline levels, SIRS and intrahepatic resistance 

leads to the hypothesis that modulation of the sympathetic nervous system will reduce 

intra hepatic resistance and provides a valid target for the management of portal 

hypertension. 
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1.6 Adreno-receptors in the hepatic vasculature 

The adreno receptors are a group of transmembrane receptor in the class of G-protein 

coupled receptors that are targeted by catecholamine. A significant number of cells 

possess these receptors and stimulation by catecholamine will provoke the activation of 

downstream pathways and stimulation of the sympathetic nervous system. 

Up to now, several different adreno-receptors have been identified. They have been 

divided into two main groups – α and β adrenergic receptors. They have been further sub 

divided into α1 and α2 and the β adrenergic receptor has been sub divided into β1, β2 and 

more recently β3.The α adrenergic receptors are further divided into sub groups. Alpha 1 

adrenergic receptors are have three highly homologous subtypes –α1a, α1b, α1d. Alpha 2 

adrenergic receptors are also further sub divided into three sub types. They are α2a, α2b 

and α2c. These are homologous subtypes with main action being inhibition of insulin 

release and induction of glucagon release and more importantly giving pre-synaptic 

negative feedback for the release of noradrenaline. 

Adrenaline or noradrenaline are receptor ligands to either α1, α2 or β-adrenergic receptors. 

α1 couples to Gq, which results in increased intracellular Ca2+ and subsequent smooth 

muscle contraction. α2, on the other hand, couples to Gi, which causes a decrease in 

neurotransmitter release, as well as a decrease of cAMP activity resulting in smooth 

muscle contraction. β receptors couple to Gs, and increases intracellular cAMP activity, 

resulting in e.g. heart muscle contraction, smooth muscle relaxation and glycogenolysis. 

https://en.wikipedia.org/wiki/Receptor_ligands
https://en.wikipedia.org/wiki/Alpha-1_adrenergic_receptor
https://en.wikipedia.org/wiki/Alpha-2_adrenergic_receptor
https://en.wikipedia.org/wiki/Alpha-1_adrenergic_receptor
https://en.wikipedia.org/wiki/Gq_alpha_subunit
https://en.wikipedia.org/wiki/Calcium
https://en.wikipedia.org/wiki/Smooth_muscle
https://en.wikipedia.org/wiki/Smooth_muscle
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There is presence of adrenergic receptors in the liver, the predominant ones being α1 and 

β2 adrenergic receptors. The α1 adrenergic receptor is primarily responsible for the 

vasoconstriction in the resistance vessels which includes the venules whereas the β2 

adrenergic receptors are primarily responsible for vasodilataion of the arterial side of the 

hepatic vasculature. The evidence for the presence of α2 adrenergic receptor and in 

particular α2a adrenergic receptor is scarce, especially in the normal liver. However, there 

is definite proof of its presence in kupffer cells (111) and other migratory cells (113). 

This makes it an attractive target for modulation in the diseased state. 

 

1.7 Arginine metabolism in liver disease 

The previous section of the thesis focused on targeting the sympathetic nervous system in 

order to modulate inflammation and thereby reduce portal hypertension. Another aspect 

of modulation of the intra and extra hepatic vascular tone is the vasoactive substance nitric 

oxide. Inflammation is both directly and indirectly involved in the metabolism of nitric 

oxide in the hepatic vasculature. L-Arginine is the sole substrate for the production of 

nitric oxide and had immunological properties that merit further investigation in the 

context of liver cirrhosis and portal hypertension. In order to understand the metabolic 

pathways that are implicated in this process, I have started this section of the thesis with 

a literature review and have attempted to highlight the rational of studying this pathway 

in more detail as my alternative strategy for the modulation of inflammation for the 

reduction of intra hepatic resistance in portal hypertension. 
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Arginine is a semi essential amino acid which acts a sole substrate of enzyme eNOS for 

oxidation into NO and citrulline (114). As discussed previously, NO has become an 

important vasoactive agent both in the intra  and extra hepatic circulation which modulates 

vascular tone. There is a growing body of research into modulation of NO in order to 

reduce intra hepatic resistance but very little effort has gone into the understanding of the 

metabolism of L-Arginine in liver disease. Most of the studies related to arginine 

supplementation in humans have been done as part of immunonutrition in intensive care 

patients and therefore the outcomes are confounded by the presence of other amino acid 

constituents in the packet.  

Moreover, therapeutic interventions based on both stimulation and inhibition of arginine 

metabolism has given contradictory results. The metabolism of L-arginine in normal and 

disease state are influenced by many factors and therefore it will be important to 

understand these pathways before a rational strategy can be applied to modulate 

inflammation in order to lower portal pressure. 

1.7.1 Normal arginine metabolism 

 

Muscle derived glutamine starts the pathway for arginine synthesis by converting to 

citrulline in the small intestines via the glutamine- ornithine pathway (115). Most of the 

released citrulline (83%) in turn is absorbed by the kidney (116). Arginine is synthesised 

proximal renal tubules in the kidney from the citrulline (117) (118).About 10-15% of 

whole body arginine is produced by this pathway. Alternative pathways for arginine 
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availability include protein breakdown and diet intake with the jejunum as the major site 

of intestinal absorption (119). 

There are four major metabolic pathways of arginine. Firstly, arginine is metabolised by 

the enzyme Arginase. There are two isoforms of Arginase, Arginase I being the cytosolic 

enzyme which is expressed in the liver and Arginase II which is present in the 

mitochondria and present in the intestines, kidney and brain. Arginase I mainly involved 

in the metabolism of ammonia and urea whereas arginase II is used up in the synthesis of 

ornithine, proline and glutamine (120). Arginase II plays an important role in the 

degradation of intestinally absorbed arginine (121).  

Second major pathway for arginine metabolism is by the synthesis of NO. NO is produced 

by the oxidation of L-arginine by the enzyme NOS (Nitric oxide synthetase). There are 

three isoforms of the enzyme which are endothelial NOS (eNOS), neuronal NOS (nNOS) 

and inducible NOS (iNOS).All the three isoforms produce NO which have different 

functions (119). 

Besides these two important pathways, a large portion of L-arginine is used up in the 

synthesis of proteins and agmatine. L-arginine is also utilised in the biosynthesis of 

creatine which is the pre cursor of creatinine (122). 

1.7.2 Arginine metabolism in disease state 

There is a paucity of data for arginine metabolism in liver disease itself but a surrogate to 

this would be to understand the metabolism of arginine in sepsis, which is 



48 

 

pathophysiologically akin to liver disease. Plasma arginine concentration have been found 

to be consistently low in the humans and animal models when they are under stress or 

septic and the prognosis was significant worse in patients with low arginine levels along 

with low levels of other amino acids (123).The whole body plasma level of arginine , 

which is the total volume of arginine synthesised from protein breakdown and de novo 

arginine production via the intestinal-renal axis remains the  same in the septic patients 

and non septic intensive care patients (124). The main impetus for maintenance is on the 

de novo arginine synthesis of arginine through the intestinal-renal axis (125), (126). 

 

However, in critically ill patients the net amount of plasma arginine may be reduced 

because of impaired intestinal function, which is the main site for production of citrulline 

(119).Therefore, de novo arginine production is the main pathway for the maintenance of 

the balance of plasma arginine levels. 

The reduction of plasma arginine levels may suggest that there is a shift of arginine to the 

intra cellular compartment. In order to facilitate transport, there are certain conditions that 

have to be met like availability of a transport system of which there are many. The most 

important transport system is the y+ is the most important and high affinity transport 

system. These transport system are associated with transport proteins called Cationic 

Amino Acid Transporters (CAT), of which there are three, namely CAT1, CAT2 (B) and 

CAT3. The uniqueness of these transport system is that they may be co-localised with a 

NOS enzyme in the plasma membrane (127). More specifically, eNOS is co localised with 

the CAT1, which helps to regulate the flux of arginine inhibitors into the cell. 
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Furthermore, some endogenous inhibitors like ADMA also compete for the same 

transport system, therefore may be able to regulate the arginine flux across the cells (128). 

1.7.3 Catabolism of Arginine 

1.7.3.1 Arginase Pathway 

Arginase is a binuclear manganese mettaloenzyme, which is an integral part of the urea 

cycle in the liver and is the main enzyme for the catabolism of L-Arginine into ornithine 

and urea. There are two isoforms of arginase Arginase I and Arginase II, which share 60% 

homology (129).Arginase I is a cytosolic enzyme which is present primarily in the liver 

and Arginase II is a mitochondrial enzyme present in the extra-hepatic tissue including 

the vascular smooth muscle cells (120). It is suggested that Arginase will compete with 

NOS for the substrate L-Arginase but on consideration of their biochemical properties, it 

is evident that the L-arginine has greater affinity for the purified NOS than arginase 

although there is a suggestion that there is similar rate of substrate utilisation at 

physiological levels of L-Arginine (122). However, early studies on activated 

macrophages reveal that majority of substrate are being consumed by the arginase 

pathway to produce urea and inhibition of arginase (130), (131). Apart from depleting L-

arginine as a substrate for NO production, arginase also inhibit the expression of iNOS 

repressing the translation and stability of the protein (132) and by production of urea 

(133).On the other hand, the intermediate product of L-Arginine by the NOS pathway, N-

Hydroxy-L-Arginine is a potent inhibitor of arginase and therefore there is presence of a 

reciprocal inhibition pathway (134). Apart from depleting the substrate L-Arginine, 
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arginase also sensitise the endothelial cells to the endogenous NOS inhibitor ADMA, 

which will prevent the formation of NO (135).There is also suggestion in the literature 

that depletion of arginine results in uncoupling of the eNOS protein leading to the 

formation of oxygen free radical, which can directly inactivate any NO formed. Thus 

indirectly increased arginase activity can have a negative impact on NO generation. In 

addition, superoxide in combination with NO forms peroxynitrite, which causes increased 

vascular reactivity and endothelial damage (136).  

Apart from causing endothelial dysfunction as a result of depletion of substrate L-

Arginine for the production of NO by various mechanisms mentioned above, there is also 

growing evidence that increased arginase activity causes vascular smooth muscle 

dysfunction. Urea produced by the arginase pathway is eliminated via the kidney, 

however ornithine is used up in the formation of polyamine and L-proline, which are 

important component for the proliferation of vascular smooth muscle and essential for the 

formation of several structural proteins including collagen (137), (138).Pharmacological 

inhibition of arginase leads to reduction in vascular smooth muscle proliferation. 

Increased arginase activity can directly stimulate smooth muscle cell proliferation and 

polyamine synthesis and can be associated with the decrease in NO as it is a known 

inhibitor of smooth muscle cell proliferation (138).In the context of cirrhosis, recent data 

suggest that both isoforms of Arginase is regulated differently as there is increased 

expression of arginase II and decrease expression of arginase I, which suggest that they 

are involved in different processes in cirrhosis. Arginase I being utilised by the urea cycle 

in the liver and the arginase II being used up in the synthesis of ornithine, polyamine and 

L-proline which lead to proliferation of vascular smooth muscle cells (139) 
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In conclusion, arginase has established itself as a major regular of NO in the vasculature. 

It can cause both endothelial and vascular dysfunction by modulation the intra cellular 

metabolism of L-arginine. More specifically, arginase compete with NOS enzyme for the 

substrate  

L-arginine, depleting it significantly by various mechanisms and causing reduced NO 

production. In the vasculature arginase depletes NO generation by directing the utilisation 

of L-arginine in the production of ornithine and polyamine, which is responsible for 

smooth muscle cell proliferation and causing vascular dysfunction.  

1.7.3.2 Arginine - NO Pathway 

L-Arginine is the sole substrate for the production of NO and citrulline by NOS (140). 

This is the second most important pathway of arginine metabolism after the arginase 

pathway. There are three types of NOS that have been identified. Endothelial NOS (eNOS 

or Type 3) which is the major NOS involved in the vasodilation and neuronal NOS (nNOS 

or Type 2) found in the nerve endings have been designated as constitutive NOS and 

inducible NOS (iNOS or Type 2) is the other NOS which is induced by cytokines and 

endotoxins (141).In order for the reaction to take place, NOS enzyme requires NADPH 

and O2 in stoichiometric quantities. The NOS enzyme also requires important co-factors 

including Flavin-adenine dinudestide (FAD), flavin mononucleotide (FMN), 

tetrahydrobiopterin and glutathione (142). In addition electron transfer to the haeme group 

is mediated by calmodulin and calcium is required for the calmodullin binding in the 

constitutive NOS enzymes although it is not a necessary condition for the iNOS reaction 

to take place (143). 
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Various alterations in the availability of these co-factors will impact on the reaction of 

these NOS enzymes. The NOS enzymatic reaction is also regulated by arginase by 

multiple mechanism as detailed above and by methylarginine, which will be detailed in a 

separate section. 

1.7.3.3 ADMA pathway 

There is a dichotomy in the amount of NO present in the circulation. In the splanchnic 

and peripheral circulation, there is an abundance of NO which may be due to the 

continuous induction of iNOS through endotoxins, which have been translocated through 

the gut barrier. However in the intra hepatic circulation, there is a deficit in NO as a 

consequence of endothelial dysfunction. This deficiency in NO may be due to arginine 

depletion as a consequence of presence of large amount of arginase and Asymmetrical 

Dimethyl Arginine in the liver, which will compete with the same transport system as 

arginine and therefore leads to its intracellular depletion and hence reduction on NO 

production (144),(145). From the sepsis literature, it is clear that ADMA is an independent 

risk factor for intensive care mortality and has been shown to be associated with hepatic 

dysfunction (146). This increased ADMA level will alter the Arginine to ADMA ratio in 

the intra cellular compartment, therefore provide a rationale to supplement arginine to 

alter this ratio. 

1.7.4 ADMA  metabolism 

Asymmetrical Dimethyl Arginine (ADMA) are methylated  L-arginine residue in protein 

produced during proteolysis that freely circulate in the plasma and excreted in the urine 
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and present in cells and tissues (147).It is the most important endogenous inhibitor of 

endothelial nitric oxide synthesise and therefore has been implicated in endothelial 

dysfunction (145) 

ADMA is synthesised when arginine residue of protein are methylated by the enzyme 

protein arginine methyltransferase (PRMT) Type I. Type II PRMT methylate protein to 

form  symmetrical dimethyl arginine (SDMA), whereas both Type I and type II can 

monomethylate the arginine residue to form N-monomethyl L-arginine (L-NMMA). Both 

ADMA and L-NMMA can inhibit NOS but SDMA does not (148).PRMT type I are 

expressed in the heart, smooth muscle cells and the endothelium. The expression of PRMT 

Type I can be increased due to shear stress and inhibited by suppression of the IκB kinase 

or by using a peroxisome proliferated-activator receptor gamma(PPARγ) activator, 

troglitazone, suggesting that the ADMA levels can be regulated by modulating the PRMT 

Type I receptor expression (149) 

The most important target for ADMA is the NOS enzyme and it can inhibit all three 

isoforms of NOS with equal potency. There is a suggestion that ADMA can also cause 

uncoupling of the NOS enzyme however it is still unclear whether this is a true effect 

(150). Another target for ADMA would be the y+ transport system , wherein it would 

compete with L-Arginine for its transport to the intra-cellular compartment but this occurs 

when there is a significant rise in the ADMA level which almost become physiologically 

irrelevant(151) 

The major metabolic pathway for degradation of ADMA is by Dimethylaginine 

Dimethylamino Hydrolase (DDAH) to citrulline and dimethylamine (152)There are two 



54 

 

isoforms of DDAH that have been identified with different tissue localisation. DDAH I 

has been encoded from the genes expressed in Chromosome 1 and DDAH II in 

chromosome 6 (153). Both the enzymes are expressed abundantly in the vascular tissues 

but with a preponderance to DDAH II (154). 

The concern of an increased plasma level of ADMA relates to its concentration to the 

plasma arginine concentration. In physiological states the level of ADMA is about 

0.45µmol/L to 0.65µmol/L and in diseased states, it can go from 0.69µmol/L to 

0.85µmol/L. In comparison, the arginine levels are in the range of 30-100µmol/L in the 

plasma and 1-2mmol/L in the intra-cellular compartment (155) (122). 

As such, it is logical to assume that that the vast amount of arginine outcompetes with the 

cellular ADMA, however there is evidence that in disease states such as cirrhosis, there 

is a relative increase in ADMA which is disproportionate to the normal arginine to ADMA 

ratio and hence can inhibit the NOS enzyme. This phenomenon is known as the arginine 

paradox.  

We and others have shown that the plasma ADMA level rises significantly in cirrhosis in 

humans and rats (156) (32). The rise in the level of ADMA and the relative deficiency of 

arginine confirms the presence of the ‘arginine paradox’ which implies that although the 

total amount of arginine is greater than the plasma ADMA level, the increase in ADMA 

level alters the ratio. This paradox provides a rational for the supplementation of L-

arginine to reverse the ratio and benefit from the effects of increased nitric oxide 

production, especially in the intra-hepatic circulation. 
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1.7.5 Protein synthesis and energy source 

Arginine is necessary for the production of various proteins. In sepsis, there is an increase 

in the level of acute phase proteins and antibodies (157). There is also some evidence of 

increased muscle protein synthesis. In children with sepsis, there is an increase in arginine 

oxidation, which suggests that arginine is also needed for energy production. 

1.7.6 Arginine and Immune Function 

Evidence from studies in sepsis and endotoxaemia suggest that this is a L-arginine 

deficiency state (158). The arginine deficiency is as a result of decreased uptake, reduced 

de novo production of L-arginine and rapid metabolism of L-arginine by arginase both in 

the liver and in other organs in sepsis. This is inspite of the fact that there is more arginine 

production from protein breakdown. This turns arginine into a semi-essential amino acid. 

Arginine deficiency has been noted in endotoxaemic murine models and patients admitted 

to ITU ((159), (160). Decreased nitric oxide production during sepsis is probably due to 

the reduced activity of the Nitric oxide synthetase 3. This reduction in nitric oxide results 

in endothelial dysfunction. There is also evidence that the cationic amino acid transporter, 

which is the main transporter for arginine is altered and CAT2b is upregulated. This 

transporter is particularly important for activated macrophage which imports large amount 

of L-arginine for the production of nitric oxide (161). Besides the observed deficiency of 

L-arginine and nitric oxide in sepsis, there is also documented deficiency of citrulline, 

which in turn worsens arginine availability and nitric oxide production (162). However, 
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the main pathway for the metabolism of L-arginine in the context of sepsis remains via 

the arginase pathway.  

During inflammatory conditions both arginase I and arginase II activity are induced by 

specific cytokines with preferential activation of Arginase I ((119), (163), (164). 

Replenishing the plasma arginine level would be important to maintain all the cellular 

function including its immune function. This could be achieved by either replacing L-

arginine directly or indirectly by replacing citrulline. All these evidence suggest that there 

is an overall inverse relationship of L-arginine with sepsis and other inflammatory 

condition.  
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1.7.7 Discussion  

Therefore, in conclusion, arginine concentration is significantly reduced in the context of 

inflammation and sepsis. The deficiency is determined by the regulation of the various 

metabolic pathways in sepsis. Arginase metabolic pathway is the most important pathway 

for the degradation of arginine. The plasma ADMA levels are high relative to the plasma 

arginine concentration in inflammatory or sepsis therefore providing an imbalance in the 

arginine: ADMA ratio. This provides an opportunity to test a hypothesis that 

supplementation of L-arginine would alter the ratio and also act as a regulator of 

inflammation in liver diseases 

 

 

 

 

. 
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1.8 Hypothesis 

 

In cirrhosis, portal hypertension is propagated by systemic inflammation and upregulation 

of the sympathetic nervous system. Modulation of the sympathetic nervous system will 

reduce inflammation which thereby  reduces the intra hepatic resistance and  portal 

pressure. 

Aim of the studies: 

1. To define the relationship between inflammatory mediators and the sympathetic 

nervous system and haemodynamic abnormality in a rodent model of portal 

hypertension. 

2. To antagonise the alpha 2a receptor in a rodent model of biliary cirrhosis and 

portal hypertension and to assess its effect on inflammatory parameters and 

haemodynamic abnormalities. 

3. To explore the importance of arginine in liver failure and portal hypertension and 

to understand the implication of arginine supplement as an anti-inflammatory 

strategy in the treatment of portal hypertension. 
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                            Chapter 2  

                  Materials and Methods 

2.1 Animals  

All animal experiments were conducted according to the Home Office guidelines under 

the UK Animals in Scientific Procedures Act 1986. This study was performed in male 

Sprague-Dawley (SD) rats (Charles-rivers), weighing 220–250gms  were obtained from 

the Comparative Biological Unit at University College London. All rats were housed in 

the respective unit and given free access (ad libitum) to standard rodent chow and water, 

with a light/dark cycle of 12 hours (the dark phase extended from 1900–0700 hours), at a 

temperature of 22–23°C and humidity of approximately 50%. 

2.1.1. Bile-duct ligation (BDL):  

 The bile duct ligation of the rats were done as described. Following induction anesthesia 

(1L/min oxygen containing 5% isoflorane), anesthesia was maintained with 2% isoflorane 

in air, delivered at 0.5L/min to a facemask. Rectal temperature was maintained at 36±1oC 

using a heating pad. A midline laparotomy was performed and the common bile duct 

(CBD) was isolated by blunt dissection. The CBD tied off with triple ligatures (4-0 silk), 

before transecting the CBD between the  distal two ligatures. 4 weeks BDL was allowed 

for the development of secondary biliary cirrhosis often with observed hepatic 

decompensation (e.g. ascites). 
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2.1.2 Sham operation: 

These  operations as described were performed in the same manner as described in Section 

2.1.1 but no ties were placed and the duct was not ligated. The surgery was completed 

within 15 min, and rats were returned to individual cages after cessation of anesthesia 

where feeding and water ingestion resumed.  

2.2 Study design 

Male Sprague Dawley rats weighing 220-250 g were randomly assigned to receive sham 

or bile duct ligation (BDL) surgery as described above and  previously (165). Four weeks 

later haemodynamic measurements were performed and samples collected for analysis. 

For the BRL44408 study, treatment with either 10 mg/kg BRL44408 maleate (Sigma-

Aldrich Company Ltd., Dorset, UK) dissolved in sterile water or saline (control, equal 

volume) by subcutaneous  (s.c.) injection was given on the last 2 days of the study. In the 

second part of the experiments, the rats were injected for the last 10 days of the experiment 

using the same protocol. Previous pre clinical studies have shown that the sub cutaneous 

route as the best route at the dose of 10mg/kg (166).  

  For the L-arginine supplementation studies, treatment with either 30gm/kg L-Arginine 

(Damor Pharma, Italy) dissolved in sterile water or saline (control, equal volume) by oral 

gavage was given on the last 7 days of the study. The dose regime and route was chosen 

from previous studies (167). Rats were randomly assigned to the different treatment 

groups.  

at the rate of 0.33mg/kg. 
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All rats were exsanguinated under terminal anesthesia (2% isofluorane). Within seconds 

blood was withdrawn from the descending aorta and immediately put into ice cold 

heparin/EDTA containing tubes (until full exsanguination), centrifuged at 3000 rpm and 

4oC for 10 min, and the plasma collected and stored at -80°C until assayed. Liver tissue 

was also removed immediately harvested and snap frozen for storage at -80°C until 

analyzed. Liver tissues were also fixed with 10% formalin for further histological 

analysis. 

 2.3 Haemodynamic measurements 

Haemodynamics were measured under anesthesia (2% isofluorane in air). Mean arterial 

pressure (MAP) was measured pre-laparotomy by direct cannulation of the right carotid 

artery. Portal pressure (PP) was measured by direct cannulation of the portal vein post 

laparotomy. Pressures were transduced to a Powerlab 4SP data acquisition device (AD 

Instruments Ltd., Oxford, UK) analysed using BioPac Student Lab v4 software (BioPac 

Systems Inc., Goleta CA, USA). Hepatic arterial and portal venous blood flow were 

measured using a doppler flow probe connected to a TS420 transit-time perivascular 

flowmeter (Transonic Systems Inc., Ithica NY, USA). Intrahepatic resistance was 

calculated by dividing the portal pressure by the sum of the hepatic arterial and portal 

venous flows.  

 

 2.4 Echocardiography 

Rats are placed in the supine position and transthoracic echocardiography performed 

under 1.5% anesthesia using a commercial echocardiography machine (Vivid 7 
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Dimension™, GE Healthcare, Bedford, UK) with a 14 MHz probe recording at a depth 

of 0-2 cm. End diastolic and systolic diameters were determined from a parasternal long-

axis view using two-dimensional B-mode with the diameter measured from the apex to 

the aortic. Left ventricular dimensions during diastole and systole were also determined 

from a parasternal short-axis view using time-motion (M)-mode.  Measurements were 

taken of the internal dimension of the cavity, the anterior and posterior wall.  Stroke 

volume was determined as the product of the velocity time integral (VTI) and the vessel 

cross-sectional area (π x [0.5 x diameter] 2). Prior studies in rats of this age showed the 

aortic diameter to be 0.26 cm, thus a cross sectional area of (0.13)2 x π was assumed for 

all animals studied. As heart rate ranges from 350-500 beats per minute and respiration 

rate from 60-100 breathes per minute, the theoretical number of cycles needed to account 

for the variation in flow with respiration ranges from 3.5 (350/100) to 8.3 (500/60).  In 

practice, an average of 5-6 consecutive cycles was enough to account for this variability.  

Heart rate was determined by measuring the time between 5-6 consecutive cycles from 

the start of each Doppler trace.  Cardiac output was calculated as the product of stroke 

volume and heart rate.  

 2.5 Measurement of plasma biochemistry 

All basic chemical reagents were purchased from Fisher Scientific (Loughborough, UK), 

Sigma-Aldrich Company Ltd. (Dorset, UK), or VWR International Ltd. (Lutterworth, 

UK). 

All biochemical parameters (ALT, ALP, albumin, total protein, ammonia, bilirubin, urea 

and creatinine, lactate) were analyzed using 200μl of respective plasma samples using a 
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Cobas Integra 400 multianalyzer with the appropriate kits (Roche-diagnostics, Burgess 

Hill, West Sussex, UK). 

 2.6 Plasma and liver tissues cytokines 

Snap frozen (-80°C) and stored plasma and liver samples were later analyzed for cytokine 

profiles. Prior to analysis, 100μg of liver tissues was homogenized and deproteinized in 

300µl of ice-cold cell lysis buffer solution. After centrifugation at 12,000 x g for 10 

minutes at 4°C, the supernatants were collected for processing. Following protein 

concentration quantification of equilibrated liver protein samples and plasma supernatants 

(50µl) were analyzed for TNF-α cytokine levels (pg/ml) and IL-6  levels (pg/ml) by flow 

cytometry using the Becton Dickinson (BD™ biosciences, San Diego, CA) rat 

inflammation cytometric bead array (CBA) kit as described by the manufacturer's 

instructions. Samples were analysed by measuring the fluorescence produced by the CBA 

beads on a ‘FACS Canto™ II flow cytometry system (BD™ Sciences) and the data 

analyzed with BD™ CTA software. 

 2.7 Western blot analysis 

Frozen liver was homogenised in RIPA buffer (Pierce Biotechnology Inc., Rockford IL, 

USA) with complete ultra mini protease inhibitors and phostop phosphatase inhibitors 

(Roche Diagnostics Ltd., Burgess Hill, UK) using 7mm steel beads with a tissue lyser 

(Qiagen Ltd., Manchester, UK). Proteins were extracted by incubating for 2 hours at 4 

degC with continuous rotation and insoluble cell debris was removed by centrifugation at 

16,000rpm x for 20 mins, 4 degC. Protein concentration was measured using a BCA assay 
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kit (Pierce Biotechnology Inc., Rockford IL, USA) for liver lysates. Equal amounts of 

protein were separated on 4–12% NuPAGE Bis-Tris gel under reduced denaturing 

conditions using either MES or MOPS running buffer (Life Technologies, Renfrew, UK) 

depending on the molecular weight of the protein of interest. The molecular weight 

markers, Novex Sharp pre-stained protein standards and MagicMark XP Western protein 

standards (Life Technologies, Renfrew, UK), were combined in 1 lane. Separated proteins 

were transferred on to PVDF membranes (Invitrogen, Paisley, UK) and successful 

blotting was confirmed with Ponceau S stain (Sigma-Aldrich Company Ltd., Dorset, UK). 

Following transfer, membranes were blocked for 1 hr at room temperature in TBS/0.1% 

Tween-20/5% BSA then incubated overnight at 4 deg C in the appropriate primary 

antibody diluted in TBS/0.1% Tween-20/5% BSA. The primary antibodies used were 

specific to the protein of interest. The primary antibodies used were:rabbit anti Adra2a 

(1:1000 dilution, PA1-048, Pierce Biotechnology Inc., Rockford IL, USA), mouse anti 

eNOS (1:1000 dilution, 610297, BD Biosciences, Oxford, UK), rabbit anti phospho-

eNOS (Ser1177) (1: 1000, #9571, Cell Signalling Technology, Inc., Danvers MA, USA), 

and mouse anti GAPDH (1:1000 dilution, ab6046, Abcam plc., Cambridge, UK). 

Secondary detection was performed by incubating for 1 hour at room temperature with 

the appropriate HRP-conjugated secondary antibody diluted in TBS/0.1% Tween-20/5% 

BSA. The secondary antibodies used were donkey anti mouse IgG (human and rat IgG 

cross-adsorbed, 1:10,000 dilution, A16017, Life Technologies, Renfrew, UK), goat anti 

Rabbit IgG (human and rat IgG cross-adsorbed, 1:10,000 dilution, sc-2054, Santa Cruz 

Biotechnology, Inc., Dallas TX, USA. The bands were visualized using an enhanced 

chemiluminescence detection kit and quantified by densitometry. Loading accuracy was 
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evaluated via membrane rehybridization with antibodies against mouse and rabbit anti-α 

tubulin (1:1000; Upstate Biotechnology, Albany, NY) or mouse anti GAPDH (1:1000 

dilution, ab6046, Abcam plc., Cambridge, UK). Densitometry was measured using 

Alphaview SA v3.4.0 software (ProteinSimple, San Jose CA, USA). 

 

 2.8 Histology 

Formalin fixed liver tissue was processed through graded alcohol and xylene and 

embedded in paraffin. 3-5mm sections were dewaxed in xylene, stained with hematoxylin 

and eosin (for assessment of routine liver histology) or picrosirius red (for assessment of 

collagen deposition), and mounted in DPX. Liver tissue was processed in accordance with 

standard protocol and Haematoxylin and Eosin together with Sirius Red staining was 

performed. Histological staging was conducted by a consultant histopathologist using a 

14 point secondary biliary cirrhosis scoring system. Sirius red staining was quantified 

using computer assisted digital image analysis. A circular polarising filter was used for 

picrosirius red stained slides. Collagen proportionate area was determined using Zeiss 

KS300 image analysis software.  

 

2.9 Radiometric analysis of hepatic NOS activity 

The conversion of 14C L-arginine to 14C L-citrulline was used as an index of NOS activity. 

Snap frozen liver tissue was homogenised and measured for protein content as above. For 

NOS activity determination, 5µl of supernatant was incubated with 40µl of a reaction 

medium [Tris-HCL buffer (50mM, pH 7.4); NADPH (1.25mM); 14C-arginine (10µCi/ml, 

Amersham, UK); norvaline (5mM); and either CaCl2 (400µM) or EGTA (600µM)] at 
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30oC for 30 minutes, and the reaction stopped with 500ml of ice-cold citrate buffer (50mM 

pH5) containing EDTA (1mM). The arginine:citrulline ratio were determined by 

separating the amino acid components using thin layer chromatography on silica plates 

(Kieselgel 60, Merck, Darmstadt, Germany). Non-tritiated amino acids were added to aid 

spot detection, and the components separated using a running mixture of 

CHCl3:MeOH:NH4OH:H2O (ratio of 10:45:20:10). The individual spots were removed 

and the scintillation activity measured as for DDAH activity assay above. The activity 

was expressed as µmoles citrulline made/ mg protein/ min. The difference in the measured 

NOS activities between the calcium present / calcium chelated (EGTA present- for iNOS 

activity determination) assays described above, were interpreted as representing eNOS 

activity. 

 2.10 Plasma Renin Activity 

Plasma renin activity was assessed using a FRET assay specific for rat renin (SensoLyte 

520 Rat renin assay kit; AnaSpec, EGT Group, Seraing, Belgium). Briefly, plasma 

samples (EDTA as anticoagulant) were incubated with a 5-FAM/QXL520 FRET peptide 

corresponding to a part of rat angiotensinogen. Kinetic measurements (every 5 minutes 

for 1 hour, 37degC) of fluorescence intensity at ex/em 490 nm/520 nm were taken using 

a fluostar omega plate reader (BMG Labtech Ltd., Aylesbury, UK) with excitation and 

emission filters of 485/12 nm and 520/20 nm. The initial velocity (V0) in RFU/min was 

calculated from the linear portion of the kinetic curves using Omega MARS data analysis 

software v11.31277.0 (BMG Labtech Ltd., Aylesbury, UK) 
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2.11 Plasma Noradrenaline Levels 

Plasma noradrenaline concentration was measured using a competitive ELISA (LDN 

Labor Diagnostika Nord GmbH & Co. KG, Nordhorn, Germany). Briefly, noradrenaline 

was extracted from plasma samples (EDTA as anticoagulant), standards, and controls 

using a boronate affinity gel coated plate. The extracted noradrenaline was acylated and 

enzymatically derivatised. The concentration of derivatised noradrenaline was measured 

using a competitive ELISA with a HRP-conjugated secondary antibody and TMB as 

substrate. The absorbance spectrum from 350 to 850 nm was measured using a Fluostar 

Omega plate reader (BMG Labtech Ltd., Aylesbury, UK). The absorbance at 450nm for 

the standards was used to generate a 4-parameter non-linear regression (y linear, x 

logarithmic) from which the concentrations of the samples was calculated using Omega 

MARS data analysis software v11.31277.0 (BMG Labtech Ltd., Aylesbury, UK). 

 2.12 Cyclic AMP ELISA 

96 well plates pre-coated with mouse monoclonal anti-rabbit IgG and blocked with a 

proprietary formulation of proteins (Cayman Chemical,AnnArbor,USA). To prepare the 

plasma, to 500 μl plasma  2 ml ice cold ethanol is added and vortexed. The supernatant 

obtained after centrifugation at 1,500 x g for 10 minutes is  transferred to a clean 10 ml 

test tube. The supernatant is dried then resuspended in 500 μl of ELISA Buffer. 

Supernatants of these cultures were applied to the ELISA plates in 3 step dilutions and 

incubated for 3 hrs at room temperature. Plates were washed and incubated with an HRP 

coupled secondary goat anti-mouse Ig antibody Southern Biotechnology) for one hour at 

room temperature. Thereafter Ellman’s reagent is reconstituted and 200µl pipetted into 
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each well. The plate is then incubated for 90 minutes in a orbital shaker. The plate is read 

in a colour absorbance wavelength range between 405-420nm in a sphectrophotometer 

using  the Endoscan V software. 

 

2.13 Cell culture 

Rat hepatic stellate cells were a kind gift from Jonathan Fallowfield. Rat HSCs were 

cultured in DMEM (high glucose, with sodium pyruvate & glutamax) with 10% FBS (Life 

Technologies, Renfrew, UK). All treatments with agonist or antagonist were performed 

in serum free medium. 

 

2.14 Gel contraction 

Rat hepatic stellate cells were cultured within 3D collagen gels (Fibroblast-populated 

collagen lattices; FPCL). 24 well cell culture plates were pre-coated with sterile 2% BSA 

(Sigma) in PBS (Sigma). Ice cold neutral collagen solution was made by mixing 1 part 

0.2M HEPES pH 8.0 (life tech), 4 parts >2mg/ml rat tail collagen type I (First Link (UK) 

Ltd., Wolverhampton, UK), and 5 parts DMEM (high glucose, with sodium pyruvate and 

glutamax; Life tech). For FPCL, equal volumes of the neutral collagen solution and 

hepatic stellate cells resuspended at  10cells/ml in DMEM were mixed. 1ml of the FPCL 

was added to each well and allowed to polymerise for 1 hour at 37degC 5% CO2. After 

polymerisation, 1ml of serum free medium with or without 50uM guanfacine was added 

causing detachment of the FPCL from the plate. After 6 hours the contracted gels were 

imaged using a Fluorchem M ccd (Protein simple) with white light transillumination. 
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2.15 Isolation of Liver Non-Parenchymal Cells and 

circulating cells. 

The isolation of Liver non parenchymal cells was performed in the following manner. 

Perfused liver tissue was dissected with a scalpel and homogenized in Hanks balanced 

salt solution (with calcium and magnesium + collagenase 0.01% and DNAse I (0.01%). 

The homogenate was then transferred to a 50ml Falcon tube and incubated at 37’C prior 

to filtration through a 100mcm cell strainer.  

Thereafter it was centrifuged at 500rpm for 5 minutes at 4’C and the supernatant 

subsequently centrifuged at 2000rpm for 10 minutes at 4’C. The supernatant was 

discarded and the pellet resuspended in PF4 (HBSS with no calcium or magnesium, 

DNAse I 0.01%, bovine serum albumin (0.25%) and centrifuged at 2000rpm for 10 

minutes at 4’C. The pellet was then resuspended in 3.9ml of RPMI 1640 and mixed gently 

with 2.1ml (RPMI and optiprep 22%). RPMI was then layered on top followed by 25 

minute centrifugation (2800rpm without brake at 4’C). The non-parenchymal cells were 

then isolated from the interface, resuspended in an equivalent volume of PF4 and 

centrifuged at 2000’C at 4’C for 10 minutes. 10 x 106cells were used in all subsequent 

assays.  

The peripheral circulating cells were suspended over a polymorphoprep solution and 

centrifuged at 500rpm for 10 mins at 4’C . The layer of interest (neutrophils at the bottom 

layer and the monocyte at the middle layer) are pipetted out and resuspended in a 10ml 

HBSS solution without Ca+/Mg+.. A further centrifuge at 350rpm for 10 mins produced a 

pellet. A red cell lysis buffer is added to the pellet and resuspended with vortex. After 
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removing the supernatant, 250 µl of HBSS is added to the solution and cell count is made 

by FACS after appropriate gating. 

 

2.16 Phagocytic function of Non parenchymal and 

circulating cells 

The phagocytic function of non parenchymal and circulating cells was assessed by the 

following method. The neutrophils and monocytes were isolated by the method described 

above in Section 2.15. The cells were centrifuged at 2000rpm for 5 minutes at 4ºC and 

the supernatant discarded. 200ul of latex beads containing media were added to the pellet 

and incubated at 37’C in the dark for 20 minutes. 5ml of ice cold PBS was then added and 

centrifuged at 2000rpm for 5 minutes at 4ºC. The pellet was then washed with 5ml of cold 

PBS and centrifuged. Fc blocker was then added and incubated for 10 minutes at 4’C. 

Cell surface markers for neutrophils (Anti CD32 antibody)  and kupffer cells (Anti-

CD163 antibody) was then added and incubated for 30minutes at 4’C in the dark. The  

phagocytic function was assessed with the help of the FACS canto machine after the cells 

were  washed with 1ml of FACS buffer, centrifuged and resuspended in 100ml FACS 

buffer solution. 

2.17 Kupffer cell ROS production 

To assess Kupffer cell ROS production, 20ug/ml of E.coli endotoxin was added to 1x 106 

non-parenchymal cells sample and incubated for 30minutes at 37’C. ROS inducer at a 

final concentration of 200-500uM was used for the positive control. The samples were 
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then centrifuged at 500g for 5 minutes and the supernatant discarded. The cells were then 

resuspended in 5ml of wash buffer, centrifuged at 500g for 5minutes and the supernatant 

removed. The cells were re-suspended in 500ul of ROS detection solution and incubated 

for 30 minutes at 37’C in the dark. Following centrifugation, the cells were resuspended 

in 100ul of FACS buffer, Fc blocker added (1:25) and incubated for 10minutes at 4’C.  

Anti-CD163 antibody was added and the cells incubated for 30minutes at 4’C in the dark. 

The cells were then washed with 1ml of FACS buffer, centrifuged and resuspended in 

100mcl FACS buffer solution.  

2.18 Limulus amoebocyte Lysate (LAL) endotoxin assay 

The chromogenic limulus amoebocyte lysate kinetic assay (Charles River Laboratories) 

was used for the detection of endotoxin. Portal venous plasma (100mcl) was diluted 1:10 

with endotoxin-free water and incubated at 75’C for 30 minutes. 100mcl of sample and 

100mcl of LAL reagent were mixed in a 96-well plate and analysed at 405nm with 

spectrophotometer using the Endoscan V software. Results are expressed as EU/ml. 

2.19 Brain water Measurement 

Brain water content was measured 24 hour post surgery. At the time of sacrifice, the rat 

brain was immediately removed and the right frontal lobe was excised with a sharp scalpel 

and inserted into a plastic tube and weighed in a electronic digital weighing machine. 

They are placed in an oven at 105 degrees for 48 hours. The percentage of water content 

was calculated as [(wet weight-dry weight)/wet weight] x 100%. 
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2.20 Arginase activity assay 

Liver tissue was suspended in a TRIS/HCL buffer containing a protease inhibitor cocktail 

(Sigma-Aldrich) and PMSF, and manually macerated with a glass mortar and pestle. The 

suspension was then centrifuged, and the clear homogenate was collected leaving the 

precipitate behind. 20 μl liver homogenate or serum was then combined with 20μl MnCl 

(10 mM), 150 μl Tris Buffer (pH 7.4, 50 mM), and 100μl of l-arginine (50 mM; Sigma-

Aldrich) for 30 min at 37° C. Arginine hydrolysis was stopped with 0.5 ml Tungstic acid 

solution (150 mM) containing concentrated hydrochloric and sulphuric acid (100 mM 

each). Unwanted particulate matter was pelleted by centrifuging at 5,000 RPM for 10 min 

at 4° C. 200μl of clear solution was used for detection of urea on a COBAS INTEGRA 

400 using a UREAL kit assay (Roche). To subtract background serum urea levels, each 

experiment was duplicated substituting the l-arginine substrate with 100 μl water. 1 U of 

arginase activity is defined as the amount of enzyme required to catalyze formation of 

1μM urea per minute. To avoid any bias in arginase activity attributable to baseline 

differences in protein content of the liver sections, protein content for each sample was 

determined by the Biuret test. This allowed arginase activity to be standardized against 

protein content, expressed as IU/liter serum or IU/mg protein. 

 

 

 

2.21 RNA isolation and qRT-PCR  

 



73 

 

Frozen liver was homogenized in TRI reagent (Sigma-Aldrich Company Ltd., Dorset, 

UK) using 7mm steel beads with a tissue lyser (Qiagen Ltd., Manchester, UK). After 

extraction with chloroform total RNA was isolated using an RNeasy mini kit (Qiagen 

Ltd., Manchester, UK). RNA concentration was measured using a nanodrop (Labtech 

International Ltd., Uckfield, UK). Reverse transcription was performed on 1ug RNA per 

sample with combined polyT and random hexamer primers using a Quantitect reverse 

transcription kit (Qiagen Ltd., Manchester, UK). 

qPCR was performed using hydrolysis probe assays (Integrated DNA Technologies, 

BVBA., Leuven, Belgium) and Taqman Fast Advanced marmix (Life Technologies, 

Renfrew, UK) on a 7500 Fast qPCR machine (Life Technologies, Renfrew, UK) 

 

2.22 Statistics 

Data are expressed as mean ± SEM or median [range] as appropriate. Significance of 

difference was tested with student T-test or Mann-Witney comparisons test; p<0.05 was 

taken to be statistically significant. Comparison between multiple groups was by analysis 

of variance (ANOVA) with a Bonferroni correction for multiple comparisons. Software 

used included Microsoft Excel 2007 (Microsoft Corp., Redmond, WA) and GraphPad 

Prism 4.0 (GraphPad Software, Inc., San Diego, CA) 
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                                    Chapter 3 

Characterisation of the Bile duct ligated rat as a model 

of Portal Hypertension and biliary cirrhosis 

3.1 Introduction 

The effect on hepatic morphology after traditional  bile duct ligation has been studied 

extensively since the original publication by Cameron and Oakley et al in 1932.The timing 

of development of cirrhosis varied between various studies. Some reported evidence of 

cirrhosis in 3-5 weeks post bile duct ligation. Biliary obstruction for 15 days or  more led 

to cirrhosis and after 4 weeks , this was found to be the majority of the rats. It was 

associated with extra hepatic cholestasis , with a narrow zone of oedema and ductular 

proliferation at the junction of the parenchyma and the septa which is characteristic of 

biliary cirrhosis in man (168) 

Systemic and splanchnic haemodynamics of the chronic bile duct-ligated rat were 

previously characterized by radioactive microspheres. The conscious bile duct ligated rats 

had a significantly more hyperdynamic circulation as compared to sham operated animals 

with increased cardiac output and portal venous blood flow (169).The chronology of 

evolution of portal hypertension , sodium handling and hyperreninaemia in a bile duct 

ligated rat model was studied by Poo et al (170). They showed that the portal pressure 

increases at week 1 and the mean arterial pressure remains the same until week 4, when 

it drops in the bile duct ligated group as compared to the sham operated animal. A 

significant reduction in sodium excretion and hyperreninaemia was also noted in the bile 

duct ligated rats as compared with control rats. However there is a suggestion that the 
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characteristic hyperdynamic circulation and increase portal pressure in the bile duct 

ligated rats occur earlier than the reduction in the sodium excretion and hyperreninaemia 

, suggesting that these are secondary phenomenon (171) In bile duct ligated rats, increased 

levels of pro inflammatory cytokines were found as compared to the control rats (171). 

BDL-induced cirrhosis was corroborated by the elevated liver damage markers and 

histopathological analysis. Chronic BDL significantly increased most of plasma and 

hepatic cytokine levels and diminished the hepatic IFN-gamma amount (172) 

 

When bile duct ligated rats and sham operated are challenged with lipopolysaccharide 

(LPS), there was increased sensitivity in the bile duct ligated rats as compared to the sham 

operated rats. This was associated with increased cytokine release and plasma 

nitrate/nitrite levels. It also was associated with increased liver injury and mortality in the 

bile duct ligated rats (165) 

 

The aim of our study was to establish that the bile duct ligated model with or without 

lipopolysaccharide had all the necessary vascular and biochemical parameters to test my 

hypothesis. 
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3.2 Animals 

The animals were cared for as per standard protocol as described in section 2.1 

 

3.2.1. Animal models: Physical appearance 

Male Sprague Dawley rats (Charles River, UK) were housed in a temperature and light 

controlled (12 hours light/dark cycle) facility at the Comparative Biology Unit, UCL. Rats 

received standard chow and water ad libitum. All procedures were performed in 

accordance with UK Home Office Animals (Scientific Procedures) Act 1986.  

3.2.2 Weight Changes 

 

  

  
Sham BDL BDL + BRL44408 

Weight gain (%) 43.0 (21.6) 25.8 (14.8) 20.4 (10.3) 

Liver weight (g) 14.6 (1.62) 27.9 (3.84) 24.5 (5.29) 

Table 3.1 : Weight Changes in the three groups of animals. 

All the animals studied were male Sprague Dawley rats supplied by Charles Rivers. Their 

initial weights were between 220-250 gms. Both Sham operated rats and BDL rats gained 

weight albiet at different rates of gain. The chart above denotes the percentage change in 

their weight from baseline up to the time of exsanguination. The liver weights were also 
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calculated in each group. I have included the intervention arm in this table as it shows the 

liver tends to gain weight upon treatment with an ADRA2a adrenergic receptor antagonist. 

3.2.3 Biochemistry Profile 

 

 

 

 

        Sham 

 

        BDL 

 

   BDL + LPS 

 

      Albumin (g/L) 

 

       32.4±0.76 

  

      24.41±0.93*** 

 

  24.80±0.80 

 

     Bilirubin       

       (µmol/L) 

 

      1.00±0.62 

 

      183.80±21.02 

 

  190.1±10.20 

 

      ALT (IU/L) 

 

     70.27±9.07 

 

     100.10±13.26* 

 

    130.3±24.40 

 

          AST (IU/L) 

 

      131.70±17.37 

 

      444.50±58.3*** 

 

    587.5±56.48 

 

      Lactate        (mg/dL) 

 

       2.74±0.52 

 

 

      7.05±0.42 

   

   10.23±0.24 

 

 

 Creatinine (mmol/L) 

 

     31.50±1.75 

 

      33.47±1.63 

 

  40.90±1.96 

 

Table 3.2: Shows the plasma biochemistry parameters in the three groups, Sham, 

BDL and BDL + LPS. These parameters include serum albumin, alanine 

transaminase, Aspartate transaminases, Lactate and Creatinine levels. (*** 

p<0.0001; * p<0.01) 
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The serum biochemistry was measured as per method described in section 2.5.The serum 

albumin was significantly different between the sham operated with saline and BDL 

animals treated with saline (32.4 v 24.4 g/L,p<0.0001) . There was no significant 

difference between BDL animals treated with saline or LPS. 

Similarly, there was a significant increase in the serum bilirubin the BDL rats as compared 

with the sham operated rats ( 183.80±21.02 v 1.00±0.62, p<0.0001). But there was no 

difference between the BDL animals treated with saline or LPS. 

There was a non statistical increase in the BDL rats as compared with the sham operated 

rats in the alanine aminotransferase (ALT) levels (100.10±13.26 v  70.27±9.07). There 

was a further increase in the ALT levels in the BDL rats treated with LPS as compared 

with saline, however, this was not statistically significant (130.30±24.46 v 100.10±13.26). 

There was a significant increase in the plasma AST level in the BDL rats treated with  

saline as compared to the sham operated rats treated with saline ( 444.50±58.3 v 

131.70±131.70, p<0.05). Although there was a further increase in the BDL rats treated 

with LPS as compared to the BDL rats treated with saline, it was statistically not 

significant. 

 Moreover, the plasma lactate was also significantly higher in the BDL animals treated 

with saline as compared to the Sham operated rats (7.65± 0.96 v 2.74± 0.52, p<0.05) and 

serum creatinine was not significantly raised in the BDL rats treated with saline as 

compared with the sham operated rat. 
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3.2.4.  The Mean Arterial Pressure   
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Fig 3.1:  Mean Arterial Pressure (MAP)  in the three groups (Sham , BDL and BDL 

rats treated with LPS). It shows that the MAP is reduced significantly in the BDL 

rat treated with saline as compared to the Sham operated rat (p=0.02).There was no 

further decrease in the MAP in the BDL rats treated with LPS. (Sham=16, BDL=20, 

BDL+LPS=6) 

The mean arterial pressure was measured in all the three groups as described previously 

in section 2.3. (Sham, BDL, BDL+LPS). There was significant reduction in the MAP in 

the BDL group as compared to the Sham operated rats ( 89.63 ± 1.91 v 103.3 ± 2.75, 

p=0.02) . There was however no significant difference in the MAP between the BDL rats 

with or without LPS (99.02 ± 3.4 v 89.63 ± 1.91). 
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3.2.5 Plasma Renin Activity  
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Fig 3.2: Plasma Renin Activity in Sham and BDL animals. This shows that there is 

a significant elevation of PRA in the BDL rats as compared to the Sham animals 

(p<0.0001). 

The plasma renin activity is measured by an ELISA test in sham and BDL rats as described 

in section 2.10. There is a significant increase in the plasma renin activity in the BDL rats 

as compared to the sham rats (234.4 ± 23.39 v 45.5 ± 11.7, p<0.001). 
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3.2.6  Portal Pressure measurements 
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Fig 3.3: Portal pressure measurement in the three groups (Sham, BDL and BDL  

animals treated with LPS). This shows that there is a significant increase in the 

portal pressure in the BDL rats as compared to the Sham animals 

(p<0.001).However, there was no difference in the portal pressure in the BDL rats 

treated with LPS as compared to BDL rats treated with saline. (Sham=16, BDL=21, 

BDL+LPS =6) 

The portal pressure was measured in all the three groups ( Sham, BDL and BDL + LPS) 

as described in section 2.3. There was significant increase in the portal pressure in the 

BDL group as compared to the Sham operated rats (14.79± 0.72. v 6.67±0.72). However 

on injection of LPS to the BDL rats, there was no difference in their portal pressure  

(14.79± 0.72 v 13.86 ± 1.47) 
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3.2.7: The relation between the portal pressure and plasma 

noradrenaline levels. 

 

Fig: 3.4: Relationship between the portal pressure and plasma noradrenaline 

levels.Shows a scatter plot diagram of the Noradrenaline levels in relation to the 

Portal pressure between the Sham and the BDL group.It shows that there is a 

significant linear co-relation between the two variables (p=0.02). (Sham=9, BDL=12) 

The plasma noradrenaline levels was measured by ELISA in sham and BDL rat plasma 

as described in section 2.11. There is a significant difference between the plasma 

noradrenaline levels in the sham and BDL animals. The BDL animals had significantly 

more noradrenaline levels as compared to the Sham operated animals. On plotting the 

noradrenaline levels to the portal pressure, there is a direct co relation between the plasma 

noradrenaline levels and the portal pressure. 
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3.2.8  Hepatic tissue TNFα levels 
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Fig 3.5 : Liver tissue TNFα levels in Sham, BDL and BDL rats treated with LPS. The 

FAC cytokine bead array test shows that the TNFα levels is significant increase in 

the BDL rats as compared to the sham rats (p=0.01). And it rises significantly in 

BDL rats treated with LPS as compared to BDL rats treated with saline (p=0.007) 

(Sham=8,BDL=7, BDL+LPS = 6) 

The liver tissue TNFalpha cytokine levels were measured by FAC cytokine bead array as 

described in section 2.6. The TNFalpha levels was significantly increased in the bile duct 

ligated animals as compared to the sham operated animals (73.23±31.26 v 49.41±22.31, 

p=0.01). However on injecting  LPS to the BDL rat, there is a  further significant rise in 

the TNFα levels as compared to the BDL group without LPS (990.6±227.7 v 73.23±31.23, 

p=0.007). 
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3.2.9  Plasma TNFα levels  
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Fig 3.6  The plasma TNFα in Sham and BDL animals. This shows that there is a 

significant inthe plasma level of TNFα in the BDL rats as compared to the Sham 

operated animals (p=0.003) (Sham+N/S =6, BDL+N/S=6) 

The plasma level of cytokine TNFα is measured by an ELISA test as described in section 

2.6. This shows that the plasma TNFα level increases significantly in the BDL rats as 

compared to the Sham operated rats (19.5±7.84 v 55.26±16.80, p=0.003). 
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3.2.10 Presence of the ADRA 2a receptor in the liver tissue 

To analyse the protein expression of  alpha 2a receptor in the liver, western blot analysis 

were undertaken on liver homogenate. This showed a significantly increased protein 

expression in the bile duct ligated rats as compared with the sham rats (p=0.01,fig 1a). 

Alpha 2a receptor protein was detected  at 68 kilodalton. GAPDH was used to correct for 

protein loading. 

 

 

 

 

 

 

Fig 3.7: Protein expression of alpha 2a adrenoreceptor showing a significant increase 

expression in the BDL rat as compared to the Sham operated rats (p<0.01,t-test) 
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Fig 3.8: mRNA expression of ADRA 2a receptors in Sham, BDL and BDL animals 

There is a significant difference in the number of ADRA 2a receptors in the two 

groups with a significant number which is more in the BDL rats as compared to the 

sham operated rats (p=0.03) 

The receptor density in the liver is shown in the figure above as quantified by qPCR. The 

method of isolation of mRNA was undertaken as per the method described in section 2.20. 

There is a significant difference in the number of receptors in the BDL rats as compared 

to the Sham operated animals.  
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3.3 The effect of inflammation on structure 

The initial elements of the study were to determine the impact of inflammation on the 

structure and function in a rodent model of bile duct ligated rats with reference to liver 

structure and measureable variables of biochemical function and inflammatory 

parameters. 

3.3.1 Structural changes in the liver due to inflammation  

  Histological presentation of the bile duct ligated rat: 

 

   

   

Fig 3.9: Histological assessment in the three groups. The top panel shows the 

Haematoxylin and Eosin stain in the Sham, BDL and BDL+LPS in the top panel. 

The bottom panel shows the Pico Sirius Red staining in the three groups –Sham 

,BDL and BDL+LPS. 

     BDL BDL+LPS    Sham 
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The histological assessment of the rat liver tissue were prepared as described in section 

2.8. As seen in patients with cirrhosis, BDL rats undergo significant loss of the normal 

liver architecture .The sham operated rats show that the normal lobular architecture is 

intact. In bile duct ligated rats, there is increasing loss of defined portal tracts. There is a 

significant increase in the proliferation of cholangiocytes. There is loss of liver 

architecture with early nodule formation. This distortion and loss of liver architecture is 

further augmented by the addition of lipopolysaccharide (LPS), as an inflammatory 

stimulus to BDL animals with greater parenchymal loss. With the Pico Sirius Red 

staining, it is evident that there is preservation of normal architecture in the sham rats , 

whereas there is increased collagen deposition in the in the BDL rats and the BDL rats 

treated with LPS. There is no clear difference in the level of collagen deposition between 

the BDL and the BDL rats treated with LPS. 
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3.4 Discussion  

Improved understanding of the pathogenesis of chronic liver disease and development of 

novel diagnostic, prognostic and therapeutic tools depend on development of appropriate 

reproducible animal models. However, no single animal model has been deemed to be 

perfect for the study of a diverse range of pathological processes leading to acute and 

chronic liver disease. Cholestatic liver injury is one of the major causative factors for the 

development of liver fibrosis and cirrhosis in patients with chronic liver disease. 

Therefore, experimental models have been generated that mimic various aspects of the 

complex mechanisms that lead to hepatic inflammation, fibrosis and cirrhosis. (173). 

Surgical BDL is one of the most widespread experimental models that is used to induce 

obstructive cholestatic injury in mice and rats. (174). We and others have already used 

this model in experiments involving inflammation and portal hypertension. However, 

there are discrepancies in the acceptance of the optimum time for the establishment of 

fibrosis in this model. In a recent study by Tarcin et al, it was demonstrated that collagen 

formation was optimum at week 3 and thereafter there is reduction in the amount of 

collagen content (175).This implied that the fibrosis in this model is at its peak at week 3 

post bile duct ligation and thereafter there is gradual reduction in fibrosis. Therefore it 

was important to validate this model to justify using this model to study this area. 

There can be several important conclusions that can be made from the results of this study. 

We have been able to show that there is a significant difference in the biochemical 

characteristics between the sham operated rat and the bile duct rats. The sham operated 

rats have a significantly higher albumin than the BDL rats, however, the bilirubin is 
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significantly higher in the BDL rats as compared to the sham operated animals. There was 

significant increase in aspartate transaminase in the BDL rats as compared to the sham 

operated rats and there was a trend towards increases in the serum alanine transaminase 

in the BDL rats as compared to the sham operated rats. There was no different in the 

results when the BDL rats were treated with Lipopolysaccharide. From the literature 

review, it is clear that in chronic hepatocellular injury, ALT is more commonly elevated 

than AST; however, as fibrosis progresses, ALT activities typically decline, and the ratio 

of AST to ALT gradually increases, so that by the time cirrhosis is present, AST is often 

higher than ALT (176) (177). In my BDL model, at the end of 4 weeks we already note 

that the liver architecture has changed significantly with evidence of evolving fibrosis. 

This may help to explain why there is no significant difference in the ALT levels between 

the sham and BDL rats in my study. 

 

 The histological slides provide further proof of the progressive nature of liver injury that 

is seen in the bile duct ligated rat model as compared to the sham rats. This is characterised 

by the increased proliferation of cholangiocyte and septa formation in the BDL rats as 

compared to absence of these features in the sham operated rats. On assessment of the 

Sirius red staining of each of the group, it reveals that there is a significant increase in the 

deposition of collagen in the liver disease as compared to the sham operated animals. 

There is no increase in the collagen deposition by the BDL rats treated with LPS as 

compared to untreated BDL rats. 
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This is further supported by the finding of the significantly increased pro inflammatory 

cytokine TNFα in the liver tissue of the BDL rats treated with LPS as compared to the 

BDL rats. There was also significant increase in the TNFα level both in the plasma and 

liver tissue in the BDL rats as compared to the sham operated rats.. This indicates that the 

inflammation is propagated significantly by the addition of LPS. This supports the finding 

of increased cytokine release and plasma nitrate/nitrite levels associated with increased 

liver injury and mortality in the bile duct ligated rats noted by  Harry et al. (165). The 

timing of 3 hours post LPS injection and the dose of 0.33mg/Kg via intra peritoneal route 

has  a major impact on the study. In a recent study by Chou et al, it has been demonstrated 

that there is maximum stimulation of the pro-inflammatory cytokines at 3 hours both in 

the liver tissue and plasma when they used a 0.5mg/kg dosage regime given by a tunnelled 

biliary line(178). There is significant increase in the TNFα  in the plasma however there 

was reduction in the TNFα level in the liver tissue in this study. In our study, we used a 4 

week old BDL model with a lower dose of LPS (0.33mg/Kg) given via the intra peritoneal 

route. The bioavailability of LPS may be variable because of this choice of route and 

probably has led to the finding of no significant difference in the Sham and BDL groups. 

Although we have demonstrated that there is change in the cytokine profile in the BDL 

rats as compared to the Sham rats, this dose and route may not have been adequate to 

effect a haemodynamic change. 

The other significant finding is the upregulation of the ADRA 2a receptor protein in the 

BDL rats as compared to the sham operated animals. There is no evidence of presence of 

ADRA2a receptors in the normal livers. There is increased protein expression of the 

ADRA 2a receptor in the BDL rats. I am able to show this difference between the sham 
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and BDL both by protein expression and mRNA.  In the context of a bile duct ligated rat 

model, the addition of LPS worsens the pro inflammatory cytokine load. This predisposes 

the migrating macrophages to be activated and translocated to the liver. 

In this characterised BDL model we are able to show that the portal pressure is 

significantly raised as compared to the sham operated rat. There is no further 

augmentation of the portal pressure in the BDL rats treated with LPS. The study design 

consisted of giving one dose of LPS by the intra peritoneal route three hours before 

exsanguination. This probably impacted on the fact there was no significant  difference in 

the portal pressure in the BDL rats treated with LPS as compared to the untreated BDL 

ones. In clinical practice the secondary insult is usually over a longer period of time and 

therefore is able to influence the portal pressure in a more significant way.  We have also 

shown that the noradrenaline levels in the BDL rats were significantly increased as 

compared to the sham operated animals. It is well known that production of noradrenaline 

may be from a multitude of sources including the adrenal glands and the circulating 

immune cells which have been shown to have the mechanism to produce noradrenaline 

on its own in a paracrine effect. Intestinal translocation of bacteria and its products 

stimulate the adrenergic receptors in the migrating immune cells. These cells in turn 

stimulate the transmembrane receptors present in each cell to produce the increased 

amount of noradrenaline that is observed in this study.  

There is a reduction of the mean arterial pressure in the BDL rats as compared with the 

sham operated rats. There is no difference in the MAP when LPS is injected to the BDL 

rats. The same early effect of the LPS effect is probably in play as a cause for the non 
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difference in the haemodynamic outcome post injection of LPS.  As a compensatory 

mechanism, we are also able to show that the plasma renin activity is increased in response 

to the low MAP found in the BDL rats as compared to the sham operated animals.  

In conclusion, This model provides me with all the necessary haemodynamic, 

biochemical and cytokine characteristics that will enable me to carry out the studies that 

I have planned for.  The increased protein expression of the ADRA 2a receptor is an 

important finding in the BDL rat. The fact that ADRA2a receptor was not found in the 

sham operated rat suggest that is produced by the migrating immune cells provide a 

rational target to reduce intra hepatic and systemic inflammation and thereby mitigate the 

haemodynamic dysfunction. The next phase of the study will attempt to reduce the high 

inflammatory load in this model by using an ADRA2a adrenergic receptor antagonist and 

thereby reduce intra hepatic resistance and portal hypertension. 
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                                      Chapter 4 

The effect of ADRA2a adrenergic receptor antagonism 

in hepatic and systemic haemodynamics in a BDL rats  

4.1 Introduction. 

Portal hypertension is the clinical syndrome which is implicated in the complication of 

liver cirrhosis. The onset of clinically significant portal hypertension defines disease 

progression. It is responsible for a spectrum of consequences which lead to acute 

decompensation of the liver by way of ascites, variceal bleeding, hepatic encephalopathy 

and hepato-renal syndrome (68). Portal hypertension is characterized by both increased 

intra hepatic resistance and splanchnic vasodilatation. The primary haemodynamic 

change that occurs in portal hypertension is increasing being accepted as increased intra 

hepatic resistance. This increased intra hepatic resistance was originally thought to be as 

a consequence of established fibrosis and nodule formation. However, increasingly it is 

being recognized that there is a reversible component to intra hepatic resistance (179). 

This consist of the vascular tone and activation and contractility of hepatic stellate cells. 

The splanchnic and systemic haemodynamic changes are thought to be a consequence of 

the increased intra hepatic resistance (180) 

It is well established in the literature that the sympathetic system is upregulated in portal 

hypertension. It has been shown in several studies that the plasma norepinehrine is 

elevated in patients with high Childs-Pugh score and severe portal hypertension, with the 

level co relating to disease severity (181-183). Catecholamine are thought to play a role 
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in the pathogenesis of portal hypertension as in experimental models of cirrhosis, they 

have been shown to increase intra hepatic resistance (184).  

Adrenergic receptors have been studied in great detail in the control of vascular regulation 

(185). The main strategy for treatment of portal hypertension is currently a non selective 

beta blocker (186).It is poorly tolerated in about 30% of patients due to side effects and is 

effective in another 30% of patients only. Various other adrenergic receptors have been 

investigated for the treatment of portal hypertension. However, most of them have not 

been used in routine clinical practice because of concerns about systemic hypotension. 

ADRA2a adrenergic receptor is a specific receptor, which is subtype of G-protein related 

peptide which are present as transmembrane protein receptors. It is present in various 

densities in the central and peripheral nervous system and its mechanism of vascular 

regulation has been studied in detail (187). In the sepsis literature, it has been used as a 

target to reduce the inflammatory cytokines produced by the migrating macrophages 

including the kupffer cells (110). Although there is no evidence of significant receptor 

density in the liver, the migrating macrophages and the resistance vessels present a valid 

target in liver disease to assess the modulation of the sympathetic receptor in improvement 

of intrahepatic resistance in the context of cirrhosis of the liver 

The aim of this study is to assess whether that antagonism of the ADRA2a adrenergic 

receptor reduces the intra hepatic resistance and thereby decrease portal pressure. This 

study will also investigate on the possible mechanisms by which the antagonism of the 

ADRA2a adrenergic receptor modulates intra hepatic resistance. 
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4.2 Methods: 

4.2.1 Study design  

Male Sprague Dawley rats weighing 220-250 g were randomly assigned to receive sham 

or bile duct ligation (BDL) surgery as described previously (165). Four weeks later 

haemodynamic measurements were performed and samples collected for analysis. For the 

BRL44408 study, treatment with either 10 mg/kg BRL44408 maleate (Sigma-Aldrich 

Company Ltd., Dorset, UK) dissolved in sterile water or saline (control, equal volume) 

by subcutaneous (s.c.) injection was given on the last 2 days of the study 

 Rats were randomly assigned to the following treatment groups: 

i. Sham group: sham surgery, s.c. saline 

 

ii. Sham+BRL group, s.c BRL 44408 

 

iii. BDL group: BDL surgery, s.c. saline 

 
iv. BDL+BRL group: BDL surgery, s.c. BRL44408 

 

All rats were exsanguinated under terminal anesthesia (2% isofluorane). Within seconds 

blood was withdrawn from the descending aorta and immediately put into ice cold 

heparin/EDTA containing tubes (until full exsanguination), centrifuged at 3000 rpm and 

4oC for 10 min, and the plasma collected and stored at -80°C until assayed. Liver tissue 

was also removed immediately harvested and snap frozen for storage at -80°C until 

analyzed. Liver tissues were also fixed with 10% formalin for further histological 

analysis.  
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All the four groups were used for the haemodynamic assessment. However, in subsequent 

analysis, only the Sham+Saline, BDL+Saline, BDL+BRL were only used. The rationale 

for omitting the Sham+BRL group was that as there was no haemodynamic difference in 

the Sham animal treated with BRL as compared with the Sham animal treated with normal 

saline, it was assumed that it would not have an impact on the results of the other 

experiments. The focus of this set of experiment was to assess the impact of the proposed 

treatment on the diseased animals, therefore the analysis was based on the effect of 

treatment on diseased animal as compared to non treated diseased animals. 

 

4.2.2  Haemodynamic measurement 

All haemodynamic measurements were undertaken exactly as described previously in 

section 2.3. 

4.2.3. Biochemical Parameters 

All biochemical parameters (ALT, ALP, albumin, total protein, ammonia, bilirubin, urea 

and creatinine) were analyzed using 200μl of respective plasma samples using a Cobas 

Integra 400 multianalyzer with the appropriate kits (Roche-diagnostics, Burgess Hill, 

West Sussex, UK). 
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4.2.4  Plasma and tissue Cytokine Assays 

All cytokine assays were undertaken in a similar method as described previously in 

section 2.6. 

4.2.5  Western Blot Analysis 

All the western blot analysis was undertaken in exactly the same technique as previously 

described in section 2.7.  The primary antibody that have been used in this study are 

Adra2a (1:1000 dilution, PA1-048, Pierce Biotechnology Inc., Rockford IL, USA), ), 

mouse anti eNOS (1:1000 dilution, 610297, BD Biosciences, Oxford, UK), rabbit anti 

phospho-eNOS (Ser1177) (1: 1000, #9571, Cell Signalling Technology, Inc., Danvers 

MA, USA), mouse anti ACTA2 (alpha-SMA; 1: dilution, M0851, Dako UK Ltd., Ely, 

UK) and mouse anti GAPDH (1:1000 dilution, ab6046, Abcam plc., Cambridge, UK), 

mouse anti DDAH1 (1:1000 dilution ab2231,abcam plc, Cambridge,UK) mouse anti 

NFkB p65 (1:1000, dilution, 2A12A7,Invitrogen,UK). Loading accuracy was evaluated 

via membrane rehybridization with antibodies against mouse and rabbit anti-α tubulin 

(1:1000; Upstate Biotechnology, Albany, NY) or mouse anti GAPDH (1:1000 dilution, 

ab6046, Abcam plc., Cambridge, UK). 

4.3 Results. 

Following surgery all animals continued to gain weight. From the final body weight taken 

before termination, cirrhotic rats were found to be significantly lower than that of sham 

rats (350 ± 5g vs. 472 ± 9g, respectively; P < 0.001). 
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4.3.1 Biochemical Profile 

Table 4.1 Biochemical Profile 

 

  

Sham+Saline 

 

        BDL+Saline 

 

   BDL + BRL 

 

     Albumin  (g/L) 

 

       33.05±0.84 

  

      26.06±0.93*** 

 

  25.88±1.29 

 

      Bilirubin       

     (µmol/L) 

 

     44.16±15.46 

 

  132.20± 21.02*** 

 

123.40 ± 11.61 

 

      ALT (IU/L) 

 

     60.75±8.81 

 

   90.73±5.49* 

 

    94.73±4.90 

 

       AST (IU/L) 

 

    131.70±17.37 

 

564.30±59.64*** 

 

  589.30±56.32 

Fig 4.1 Shows the biochemical parameters in the three groups (Sham, BDL and 

BDL+BRL) (*** p<0.001, *p<0.01) 

The serum albumin was no different between the sham operated with saline or BRL 

44408. There was a significant reduction in the serum albumin levels in the BDL rats as 
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compared to the sham operated rats (26.06± 0.93 v 33.05±0.84,p<0.001) . This did not 

alter after treatment with BRL 44408 (26.06±0.93 v 25.88±1.29)  

Similarly, the serum bilirubin was not difference between the sham operated animals 

treated with saline and BRL44408.There was a significant increase in the serum bilirubin 

the BDL rats as compared with the sham operated rats (132.2±2.02 v 44.16±15.46, 

p<0.001). However there was no difference between the BDL rats treated with saline or 

BRL 44408 (123.40±11.61 v 132.20±21.02). 

There was a significant increase in the plasma ALT levels in the BDL rats as compared 

with the sham operated rats (90.73±5.49 v 60.75±8.81, p<0.001). There was a trend 

towards a reduction in the plasma ALT levels in the BDL rats treated with BRL as 

compared to the BDL rats treated with saline (94.73±4.90 v 90.73±5.49). 

There was a significant increase in the plasma AST level in the BDL rats treated with  

saline as compared to the sham operated rats treated with saline (564.30±59.69 v 

131.70±17.37,p<0.001). However, there was no reduction in the plasma AST level in the 

BDL rats treated with BRL 44408 as compared with the BDL rats treated with saline 

(589.30±56.32 v 564.30±59.64). 
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4.3.2  Mean Arterial Pressure Measurement 

S
ham

+N
/S

S
ham

 +
 B

R
L

B
D
L +

 N
/S

B
D
L +

 B
R
L

0

50

100

150
p<0.0001             p=0.01

Groups

m
m

H
g

 

Fig 4.2 : Mean arterial pressure measurement of all four groups There is a significant 

increase in the MAP in the BDL rats treated with BRL 44408 as compared to the 

BDL rats treated with saline (p=0.01) (Sham + N/S =16, Sham + BRL =9, BDL+N/S 

= 24, BDL+BRL=21) 

The mean arterial pressure (MAP) was measured in all the groups as described in the 

methods section 2.3. The MAP in the  bile duct ligated rats is significantly lower than 

sham operated rats treated with saline (93.28±3.45 mmHg vs 109.9±3 

mmHg.,p<0.0001).However on treatment with BRL 44408, there is a significant increase 

in the MAP in the treated group as compared with BDL rats (93.28±3.45 mmHg vs 

99.67±4.38 mmHg, p=0.05, Fig 4.3).  



102 

 

4.3.3 Portal Haemodynamic outcome 

4.3.3.1 Portal Pressure Measurement 
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Fig 4.3: Portal pressure measurement of all four groups. The portal pressure was 

significantly increased in the BDL rats treated with saline as compared to the Sham 

operated rats treated with saline (p<0.001).The portal pressure is significantly 

reduced in the BDL rats treated with BRL 44408 as compared with the BDL rats 

treated with saline (p<0.001). (Sham + N/S =16, Sham + BRL =9, BDL+N/S = 24, 

BDL+BRL=21) 

The portal pressure  was measured in all the groups as described in section 2.3. The portal 

pressure was significantly increased in the bile duct ligated rat as compared to the sham 

operated rats (18.24±1.0 vs 7.6±0.6 mmHg,p<0.0001).The portal pressure was 

significantly reduced in the BDL rats treated with BRL 44408 as compared to the BDL 

treated with saline (11.61±0.9 vs 18.24±1.0 mmHg, p<0.0001 Fig 4.4).  
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 4.3.3.2: Hepatic Blood Flow          

A.                                                                                           
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Fig 4.4(A): Portal Vein Blood Flow                 

B. 
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      Fig4.4(B): Hepatic Artery  Blood Flow 
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Fig 4.4(A) and Fig 4.4(B): Hepatic blood flow in all the four groups). The portal vein 

blood flow reduces significantly in the BDL rat as compared to the sham operated 

rat (p<0.001), whereas there is a significant increase portal vein blood flow in the 

BDL rats treated with BRL 44408 as compared to the BDL rats treated with saline 

(p=0.05). A similar pattern was observed in the hepatic artery blood flow with 

reduced blood flow in the BDL rat as compared to the sham operated rat ( 

p=0.0006).However the blood flow goes up on treatment of the BDL rats with BRL 

as compared to BDL rats (p=0.004) (Sham +N/S=12, Sham+BRL=3, BDL+N/S=9, 

BDL+BRL=12) 

 

The portal vein in the BDL rats showed a significant drop in the blood flow as compared 

to the sham operated rats (68.98±19.23 vs 179.1±59.08,p<0.001). The blood flow in the 

portal vein was increased significantly in the BDL rats treated with BRL 44408 as 

compared to the BDL rats treated with saline alone ( 93.16±30.31 vs 68.98±19.23, 

p=0.05). The blood flow in the hepatic artery ( HABF) was also decreased in the BDL 

rats as compared to the sham operated rats ( 24.35±8.04 vs 11.18±5.63,p<0.001), however 

the blood flow increased significantly in the hepatic artery in the BDL rats treated with 

BRL 44408 as compared with the BDL rats treated with saline ( 11.18±5.63 vs 22.09± 

8.29, p<0.01) 
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4.3.4.  Cardiac Haemodynamic outcomes:  

4.3.4.1 Cardiac Output 

A. Cardiac Output 
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Fig 4.5(A): Cardiac output data in all the four groups. The cardiac output increases 

significantly in the BDL rats treated with saline as compared to the sham operated 

rats treated with saline (p=0.001).This was further increased in the BDL rats treated 

with BRL as compared to the BDL rats treated with saline (p=0.001). (Sham+N/S=3, 

Sham+BRL=3, BDL+N/S=6, BDL+BRL=6) 
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4.3.4.2 Stroke Volume  

B. Stroke Volume 
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Fig 4.5(B): Stroke volume data in all the four groups. The stroke volume increases 

significantly in the BDL rats treated with saline as compared to the sham operated 

rats treated with saline (p=0.004).There was no further increased  in the stroke 

volume in the BDL rats treated with BRL as compared to the BDL rats treated with 

saline. (Sham+N/S=3, Sham+BRL=3, BDL+N/S=6, BDL+BRL=6) 
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4.3.4.3  Heart Rate  

C. Heart Rate 
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Fig 4.5(C): Heart rate data in all the four groups. The heart rate  reduces 

significantly in the BDL rats treated with saline as compared to the sham operated 

rats treated with saline (p=0.03).There was a non significant increase  in the heart 

rate in the BDL rats treated with BRL as compared to the BDL rats treated with 

saline (p=0.08). (Sham+N/S=3, Sham+BRL=3, BDL+N/S=6, BDL+BRL=6) 

 

The echocardiogram was undertaken in all the groups of animals as described in section 

2.4. There was no difference between the cardiac output in the sham operated group 

treated with either saline or BRL 44408. However the cardiac output increased 

significantly in the BDL rats as compared to the sham operated rats (156.0 ± 3.055 v 126.3 
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± 5.044, p<0.001). . Further, on treatment with  BRL 44408, the BDL rats increased their 

cardiac output significantly as compared to the BDL rats treated with saline (188.5 ± 7.154 

v 156.0 ± 3.055, p<0.001). The stroke volume was increased significant in the BDL rats 

as compared to the sham operated rats. However, the heart rate was significantly reduced 

in the BDL rats as compared to the sham operated rats. This was improved significantly 

in the BDL rats treated upon treatment with BRL 44408. Overall, the cardiac output is 

increased in the BDL rats treated with BRL 44408 as compared to the BDL rats treated 

with saline. However, the increased output is more significantly determined by the heart 

rate and not by the stroke volume. This indicates that actual cardiac output is not 

increased. 
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4.3.5  Reduction of Intra Hepatic Resistance : 
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Fig 4.6: The calculated intra hepatic resistance for all the four groups. The intra 

hepatic resistance in the BDL rats was significantly greater as compared to sham 

operated rats (p=0.003). This was significantly reduced in the BDL rats treated with 

BRL 44408 as compared to the BDL rats treated with saline (p=0.02) 

The intra hepatic resistance is calculated by the dividing the portal pressure by the total 

hepatic  blood flow. In our experiment, there is no significant difference in the intra 

hepatic resistance between the sham operated animals treated with saline or BRL 44408. 

However, there is a significant increase in the intra hepatic resistance in the BDL rats 

treated with saline as compared to the sham operated animals treated with saline. This 

increased resistance is in the BDL rats treated with saline is significantly reduced with the 

treatment of the  BDL rats with BRL 44408. 
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4.3.6  Plasma renin activity levels 
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Fig 4.7: Plasma renin activity in the three groups. The plasma renin activity was 

significantly increased in the BDL rats as compared to the Sham rats 

(p=0.001).However, the renin activity goes down significantly in the BDL rats treated 

with BRL 44408 as compared to BDL rats treated with saline.( Sham+N/S =11, 

BDL+N/S =10, BDL+BRL=8) 

The plasma renin activity measured by ELISA as described in the methods chapter 2.10 

was compared between the sham operated, BDL rats treated with saline and BDL rats 

treated with BRL.The plasma renin activity was significantly increased in the BDL rats 

as compared to the sham operated rats ( 297.6±4.89 v 45.15±4.89, p=0.001). However 

after treatment with BRL 44408 , BDL rats reduced their plasma renin activity 

significantly as compared to the BDL rats treated with saline ( 178.2±11.0 v297.6±4.89 , 

p=0.009) 
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4.3.7 Plasma Noradrenaline Levels in the three groups 
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Fig 4.8: Plasma noradrenaline levels in the three groups. This shows that the plasma 

noradrenaline is significantly increased in the BDL rats as compared to Sham 

operated rats (p=0.01). This was further increased in the BDL rats treated with BRL 

44408 (p=0.04) (Sham+N/S =9, BDL+N/S =14, BDL+BRL=11). 

The plasma Noradrenaline level was measured by an ELISA assay as described in section 

2.11. This shows that the plasma noradrenaline level goes up in the BDL rats as compared 

to the sham operated rats (286.8±70.40 v 95.40±28.22, p=0.01). This was further 

augmented by treatment of the BDL rat with BRL 44408 (526.22 ±84.69 v 286.8±70.40, 

p=0.04) 
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4.3.8 Reduction of inflammation in BDL rats with BRL 44408 treatment.  

4.3.8.1 Liver Tissue TNFα level                    
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Fig 4.9(A):Liver tissue TNFa levels in the three groups ( Sham, BDL and 

BDL+BRL).The TNFα level goes up significantly in the BDL rats as compared to the 

sham rats (p=0.01). However, on treatment of the BDL rats with BRL 44408, there 

is significant reduction in the liver tissue TNFα level (p=0.03) (Sham+N/S =8, 

BDL+N/S =7, BDL+BRL=5) 

The liver tissue TNFalpha cytokine levels were measured by FAC cytokine bead array as 

described previously in section 2.6. The TNFalpha levels was increased significantly in 

the bile duct ligated animals as compared to the sham operated animals(149.50±73.67 v 

72.80±5.56,p=0.01) However, on treatment with BRL 44408 , the liver tissue TNFalpha 

cytokine levels were significantly reduced as compared with the saline treated BDL rats 

(93.11±16.32 v 149.50±73.67,p=0.03). 
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 4.3.8.2: Plasma TNFa levels in the three groups  
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Fig 4.9(B): Plasma TNFα level for the three groups (Sham, BDL and 

BDL+BRL).The plasma TNFα level was significantly raised in the BDL rat as 

compared to the sham rats (p=0.003) and the level was significantly reduced with 

treatment of the BDL animal with BRL 44408 (p=0.02). (Sham+N/S =6, BDL+N/S 

=7, BDL+BRL=5) 

The plasma TNFalpha cytokine levels were measured by FAC cytokine bead array as 

described previously in section 2.6. The  plasma TNFalpha levels was increased 

significantly in the BDL rats treated with saline as compared to the sham operated rats 

(48.12±4.08 v 20.06±6.06, p=0.003).However, the TNFalpha was significantly reduced 

in the BDL rats treated with BRL 44408 as compared to the BDL rats treated with saline 

(31.11 ±6.08 v  48.12±4.08, p=0.02)  
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4.3.8.3  Liver Tissue NFkB protein expression  
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Fig 4.10: NFkB levels in liver tissue in the three groups). It shows that the NFkB 

levels go up in the liver tissue in the BDL rats as compared to the sham animals 

(p=0.001). This level goes down when BDL rats are treated with BRL 44408 as 

compared to the BDL rats treated with saline (p=0.05)  

The nuclear factor kappa B is a transcription factor which acts a final common pathway 

for a multitude of inflammatory mediators. The western blot analysis of the protein 

expression of the nuclear factor kappa B shows that the expression goes up significantly 

in the BDL rats as compared to the sham operated rats (0.4826 ± 0.04642 v 0.8082 ± 

0.05441,p=0.001).This protein expression goes down  in the BDL rats with treatment with 

BRL 44408  as compared with the BDL rats treated with saline (0.5946 ± 0.07793 v 

0.8082 ± 0.05441, p=0.05) 
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4.3.9 Pathways that have been implicated in the improvement in portal 

pressure. 

4.3.9.1 Cyclic AMP activity after treatment with BRL 44408. 
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Fig 4.11: Cyclic AMP levels measured in the three groups. The cAMP levels in the 

BDL rats was reduced in the BDL rats as compared to the Sham operated rats. 

However, upon treatment with BRL , the BDL rats have increased cAMP activity 

(p=0.01). (Sham+N/S=7, BDL+N/S=6, BDL+BRL=7) 

The cAMP activity was measured from the liver homogenate by a ELISA method as 

described section 2.12. The cAMP activity was non significantly increased in the BDL 

rats as compared with the sham operated rats (276.6 ± 16.48 v 318.7 ± 16.88,p=0.10 ).The 

cAMP activity was however reduced significantly in the BDL rats treated with BRL 

44408 (340.3 ± 15.78  v 276.6 ± 16.48, p=0.01) 
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4.3.9.2  Hepatic Stellate Cell Activation: 

 

 

 

 

Fig 4.12: Rat hepatic stellate cells contraction assay. Rat hepatic stellate cells grown 

in the presence of 5uM Guanfacine show greater contraction in a 3D collagen gel 

than cells grown in the absence of guanfacine  

Gel contraction assay was undertaken as per method detailed in section 2.14. I sought to 

determine whether adrenergic signalling could enhance hepatic stellate cell activation to 

a myofibroblast phenotype. Rat hepatic stellate cells (a gift from Jonathan Fallowfield) 

were seeded into serum-free 3D collagen gels. They were incubated in serum-free medium 

or in the presence of 5uM Guanfacine (an ADRA2a adrenergic receptor agonist). 

Stimulation with Guanfacine caused an increase in the contraction of the 3D collagen gel 

compared to serum free medium.  

Subsequent experiments beyond the remit of this thesis has confirmed this finding in 

human hepatic stellate cells , wherein experiments conducted in this laboratory showed 

that the human stellate cells grown in 5uM of guanfacine showed greater contraction as 

compared to serum free medium. However, on addition of BRL 44408 to the Hepatic 

Stellate Cells and Guanfacine, there was definitive relaxation.  Downstream signalling 

Serum Free Guanfacine 

Rat 

HSC 
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pathway was also analysed to confirm that this pathway was involved in the contraction. 

Western blot analysis of erk-1/2 phosphorylation was increased in guanfacine stimulated 

cells. Although , a numerical assessment of the number of cells was not done, the above 

experiments confirm the involvement in the contraction of the gel by way of reversibility 

of contraction by addition of the ADRA2a antagonist. 
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4.3.9.3  Alpha Smooth Muscle Actin protein expression in the three groups 

 

 

Fig 4.13:  αSMA  protein expression in Sham, BDL  and BDL rats treated with BRL 

44408. This shows that the protein expression of αSMA is significantly increased in 

the BDL liver as compared to the BDL rat liver. However, this expression was 

significantly reduced in the BDL treated with ADRA2a as compared to BDL rats 

treated with saline. GAPDH was used as a control for the western blot. 

The Alpha Smooth Muscle Actin (αSMA) is a surrogate marker for Hepatic Stellate Cell 

activation. The protein expression in this study suggest that there is significant increase 

in the HSC activation in the BDL rats as compared to the sham operated animals as 

evidenced by the increased protein expression of  αSMA in the BDL rats . However, this 

protein expression was significantly reduced in the BDL rats treated with BRL 44408 

suggesting that there is reduction in HSC activation with ADRA2a antagonism.  

It is well established that there is increased production in the cytokine production in the 

BDL rats as compared to the sham animal. These are propagated by increased bacterial 

translocation from the gut. These cytokines in turn activate the hepatic stellate cells as 
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they reach the liver through the portal circulation. The alpha smooth muscle actin protein 

expression is upregulated by the activated hepatic stellate cells. However, on treatment 

with the ADRA2a antagonist, there is reduction in the cytokine production in the liver. 

This in turn deactivates the hepatic stellate cells and thereby indirectly reduces the protein 

expression of the alpha smooth muscle actin. 
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4.3.9.4 Endothelial Nitric oxide Synthetase protein expression in the three groups 
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Fig 4.14: eNOS protein expression in the three groups of animals. This shows that 

the  eNOS  protein expression is  increased significantly in the BDL rats    as 

compared to the sham operated rats (p<0.0001) . However, the protein expression of 

eNOS  is down regulated in the BDL rats treated with BRL as compared with the 

BDL rats treated with saline (p<0.01) 

The protein expression of eNOS protein reveal that the expression goes up in the BDL 

animal as compared to the Sham operated  rat (2.313 ± 0.06395 v 0.7588 ± 0.2095, 

p<0.0001) .However, there is reduced protein expression of  eNOS in the BDL rats treated 

with BRL 44408 as compared to the BDL rats treated with BDL(1.892 ± 0.07007 v 2.313 

± 0.06395, p<0.01) 

 

α tubulin 

eNOS 
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4.3.9.5 Phosphorylated endothelial Nitric oxide synthetase protein expression in the 

three groups 

 

 

 

Fig 4.15: Phosphorylated eNOS and total eNOS protein expression in all the three 

groups. The expression of total eNOS protein is increased in BDL rats compared to 

sham operated rats whereas the level of eNOS phosphorylation is reduced. 

Treatment with BRL44408 reduces the expression of total eNOS protein and 

increases the level of eNOS phosphorylation. 

The expression of total eNOS protein was increased in BDL rats compared to sham 

operated rats but despite this the level of eNOS phosphorylation was greatly reduced. 

Treatment with BRL44408 both reduced the expression of total eNOS protein and 

increased the level of eNOS phosphorylation. 
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BDL+ BRL p-eNOS (Serine 1117) 
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4.3.9.6  DDAH 1 levels in the three groups of animals 
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Fig 4.16: DDAH1 protein expression in the three groups. This shows that the protein 

expression of DDAH1 in the liver tissue is decreased non significantly in the BDL 

rats as compared to the sham operated rats. However, on treatment of the BDL rats 

with BRL 44408, there is a significant increase in the protein expression of DDAH1 

in the liver tissue as compared to the BDL rats treated with saline (p=0.03) 

The DDAH1 protein expression in the liver tissue shows there is non significant reduction 

in its expression in the BDL rats as compared to the sham operated rats (1.955 ± 0.1854 

v 2.164 ± 0.1353). However, on treatment with BRL 44408, the BDL rats had significantly 

increased DDAH1 protein expression (2.363 ± 0.04553 v 1.955 ± 0.1854, p=0.03). This 

signifies that there is less inhibition of eNOS enzyme, which in turn lead to increase NO 

production in the BRL 44408 treated animals. 

α tubulin  

DDAH1 



123 

 

4.3.10 Histological assessment in the three groups  

Fig 4.17: Histological assessment of all the three groups. Liver architecture and 

fibrosis in Sham, BDL, and BDL + BRL rats was assessed by H&E and picrosirius 

red (PSR) staining, respectively. 

Sham rats demonstrate a normal liver architecture. BDL rats show a loss of acinar 

structure and number of hepatocytes, along with the development of fibrous bands, 

significant cholangiocyte proliferation, and some cholestasis. BDL rats treated with BRL 

show the same features with no visible reduction in the level of injury. Representative 

images of the same region of liver stained with picrosirius red imaged by both bright field 

and circular polarised light microscopy are also shown. Under brightfield microscopy, 

sham livers show strong collagen staining surrounding vessels but very little visible 

throughout the parenchyma. BDL livers show a large amount of collagen staining 
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throughout the whole section coinciding with the ductular proliferation. In sham livers, 

polarised light microscopy reveals yellow staining (indicating medium thickness collagen 

fibres) surrounding vessels with some green staining (indicating thin collagen fibres) 

within the parenchyma. BDL livers show both yellow and green staining (suggesting 

medium thickness maturing fibres and thin newly synthesized fibres) throughout the 

section. BDL rats treated with BRL show the same types of collagen fibres without any 

visible reduction in fibrosis 
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4.3.11 Other Organ involvement: 

4.3.11.1 Reduction in brain water  

A. Brain  Water 
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Fig 4.18(A): Brain water changes in all the three groups. Shows the percentage 

change in the brain water in the three groups. The brain water percentage change is 

significant in the BDL rats as compared to the Sham rats (p=0.005). There is 

significant reduction in the brain water content in the BDL rats treated with BRL 

44408 as compared to the BDL rats treated with saline (p=0.03). (Sham+N/S =5, 

BDL+N/S =7, BDL+BRL=7) 

The brain water content is a surrogate marker for cerebral inflammation that occurs in 

cirrhosis. The brain water content was measured as described in section 2.19. The brain 

water content is increased in the BDL rat as compared to the sham operated rat (85.64 ± 

1.235 v 71.20 ± 2.605, p=0.005). However, on treatment with BRL 44408, the brain water 
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content in the BDL rats reduces significantly as compared to the BDL rats treated with 

saline (78.47 ± 2.540 v  85.64 ± 1.235,p=0.03)  

 .4.3.11.2  Plasma Lactate levels  

B.Plasma Lactate Levels 

S
ham

 +
 N

/S

B
D
L +

 N
/S

B
D
L +

 B
R
L

0

2

4

6

8

             p=0.0001p=0.003

Groups

m
m

o
l/
L

 

Fig 4.18(B):Plasma lactate levels in the three groups. The Plasma lactate level goes 

up significantly in the BDL rats as compared to the sham operated rats( p=0.003). 

However, upon treatment with BRL 44408, there was significant reduction in the 

plasma lactate levels as compared to the BDL rats treated with saline (p=0.02). 

(Sham+N/S=5, BDL+N/S=7, BDL+BRL=7) 

The plasma lactate level is a surrogate marker for peripheral ischemia, which in turn is a marker 

for adequacy of systemic circulation. In this model, the plasma lactate level was significantly 

increased in the BDL rats as compared to the sham operated animals (7.053 ± 0.4239 vs 2.74 ± 

0.52,p=0.003) However,upon treatment with BRL 44408 , the plasma lactate level decreased 
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4.3.11.3  Renal Function 

C.Renal Function 
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Fig 4.18(C): Serum creatinine levels in the four groups. This shows that the serum 

creatinine increases in the BDL rats as compared to the sham operated rats (p=0.04). 

This level goes down with treatment of the BDL rats with BRL 44408 as compared 

to the BDL rats treated with saline (p=0.02). (Sham+N/S=8, Sham+BRL = 

3,BDL+N/S=7, BDL+BRL=5) 

The serum creatinine is a marker for renal function. The level gives an indication whether 

there is renal impairment. In this study, the serum creatinine did significantly rise as 

significantly in the BDL rats as compared to the  BDL rats treated with saline ( 2.61 ± 0.24 vs 

7.053 ± 0.4239, p=0.02) 
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compared to the sham operated animal (32.55±1.46 v 24.55 ± 2.573, p=0.04). However this 

reduced significantly in the BDL rats treated with BRL 44408 as compared to the BDL 

rats treated with saline (27.55±1.76 v  32.55±1.45, p=0.02) 

 

4.4 Discussion 

I was able to make several observations based on the results of this study. Firstly, the 

results show that treatment of the bile duct ligated rats with BRL 44408, an ADRA2a 

adrenergic receptor antagonist, results in significant improvement in the haemodynamic 

abnormalities. In particular, there is significant reduction in the portal pressure in the BDL 

rats treated with BRL 44408 as compared to the BDL rats treated with saline. In addition, 

there is an increase in the mean arterial pressure  and increased portal and hepatic blood 

flow in the BRL 44408 treated rats as compared to the BDL rats treated with normal 

saline. Secondly, the results show that there is also a significant reduction in the 

inflammatory markers including plasma and tissue TNFα level and Nuclear Factor Kappa 

B protein expression in  the BDL rats treated with BRL 44408 as compared to the BDL 

rats treated with saline. Thirdly, the results also show various pathways that are implicated 

in the reduction of intra hepatic resistance. This includes the liver tissue cAMP activity 

which is increased in the BRL 44408 treated rats as compared to the BDL rats treated with 

saline, implying that there is relaxation of vasomotor tone thereby improved hepatic blood 

flow. The Hepatic stellate cells (HSC) displays increased contractility with an ADRA2a 

agonist suggesting that the antagonism of this receptor will induce HSC relaxation thereby 

facilitating intra hepatic vasodilatation. Lastly, ADRA2a antagonism improves 
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endothelial dysfunction as evidenced by improvement in the pNOS protein expression, 

indicating increased nitric oxide production in the intra hepatic circulation.  

  Intrahepatic resistance (IHR) was classically thought to be as a result of the mechanical 

effects of cirrhosis including fibrosis, thrombosis and nodule formation which leads to 

abnormal architecture of the sinusoidal space and hence distortion to the laminar flow of 

blood (12). The exact site of intra hepatic resistance is variable and can change according 

to etiological factors and disease process. Chronic hepatitis appears to have both pre-

sinusoidal and sinusoidal vascular abnormalities which contribute towards the increased 

resistance (13) where as there is abnormal architecture in the sinusoidal and post 

sinusoidal site (14), when liver disease is caused by injury. As the disease progresses, 

there is terminal vein fibrosis, reduction in sinusoidal space by enlarging hepatocyte and 

deposition of collagen in the space of disse, all of which contribute to the increased 

vascular resistance. However, the seminal paper by Mittal and Groszmann in 1984 gave 

the first indication into the presence of a modifiable component in the intra hepatic 

vasculature (16).Bhathal and Grossman in 1985 confirmed this perspective and led to the 

theory of presence of a pharmacologically modifiable vascular element in addition to the 

mechanical factors that influence intra hepatic resistance (17). A significant body of 

research has been undertaken and published since then to understand and apply this 

principle to modify intra hepatic resistance as a treatment of portal hypertension. 

It is clear from the literature that reduction of portal pressure to below 12 mmHg or 20% 

below the basal reading has shown to have clear benefit in patients outcome by reducing 

the risk of first bleeding episode to less than 10% (5). In our study, we show that the portal 
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pressure rises to 16.45±3.49 mmHg in the bile duct ligated rats as compared to the portal 

pressure in the sham operated rats which have a portal pressure of 7.36±1.31 mmHg. 

However on treatment with BRL 44408, the BDL rat dropped the portal pressure to 

12.05±2.74 mmHg. This shows that the BRL 44408, a ADRA2a adrenergic receptor 

antagonist lowers portal pressure significantly (27%) from the baseline. The portal blood 

flow was increased in the BDL treated with ADRA2a antagonist as compared to the BDL 

rats treated with saline. This implies that the liver is able to accommodate increased blood 

volume. These results are even more significant in the context of an increased mean 

arterial pressure in the BDL rats treated with BRL 44408. This was complimented by the 

results of the plasma renin activity results which shows that treatment with ADRA2a 

antagonist reduces the plasma renin activity, suggesting increased systemic vascular tone. 

Overall, all the haemodynamic findings in this study suggest that there is significant 

reduction in the intra hepatic resistance in the BDL rats treated with ADRA2a antagonist 

as compared to the BDL rats treated with saline. 

It is well established that the mean arterial pressure and the peripheral resistance is lower 

in rats with established portal hypertension as compared with controls (188)and this has 

been noted in human studies as well(189, 190) . The various treatment strategies that have 

been applied in the clinical trials settings have had a major issue with the systemic blood 

pressure as the drugs which are used to vasodilate the intra hepatic circulation also dilates 

the systemic vasculature and hence causes a deleterious effect on the clinical outcome due 

to significant systemic hypotension. This is due to the presence of a dichotomy between 

the blood vessel caliber in the intrahepatic and systemic and splanchnic circulation. In the 

intrahepatic circulation there is vasoconstriction, whereas in the splanchnic circulation, 
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there is significant vasodilatation as a result of an imbalance between the vasoactive 

substances in the different vasculature beds(191). The observed increase in the mean 

arterial pressure is obviously desirable in the setting of cirrhosis and portal hypertension. 

The cardiac haemodynamic results in this study demonstrate that the BDL rats have a 

hyperdynamic circulation with higher cardiac output as compared to the sham rats. 

However, although the cardiac output was increased in the BDL rats treated with BRL 

44408, the actual increase was due to a non significant increase in the heart rate, which 

may be due to the action of BRL 44408 itself.  

These observations are further supported by the increased noradrenaline levels that have 

been found in my experiments. The plasma noradrenaline is significantly higher in the 

BDL rats as compared to the sham operated rats. The noradrenaline level remains at a 

high level in the BDL rat treated with BRL 44408. The fact that the noradrenaline remains 

high even on treatment of  BRL 44408 into the BDL rats suggest that the free 

noradrenaline are being not able to bind to their receptors as they have been saturated by 

the receptor antagonist. We can speculate that the mechanism of action for this 

observation is the presence of high density ADRA1 adrenoreceptors, which in turn are 

stimulated by the increased noradrenaline level that is produced by the  ADRA2a 

adrenergic receptor antagonist (BRL 44408) used in this study. This causes 

vasoconstriction of the large vessels and thus increases the mean arterial pressure. We 

have not measured the ADRA1 adrenoreceptor density in the aorta in this study but it has 

been suggested in other reviews. (192). .  
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 The other significant observation made in our study was significant increased hepatic 

blood flow after treatment of the BDL rats with BRL 44408 in comparison to the BDL 

rats treated with saline. The forward flow theory of portal hypertension hypotheses’ that 

the splanchnic vasodilatation results in increased blood to the liver with the hepatic arterial 

buffering for the decreased blood flow to the liver. The net effect is an increased hepatic 

blood flow which helps to propagate and maintain the portal hypertension. The above 

findings are more relevant taking into account that the portal pressure was significantly 

reduced in the BRL 44408 treated BDL rats as compared to the BDL rats treated with 

normal saline. The fact that the cirrhotic liver is able to accommodate an increased blood 

flow is evidence of modulation of the reversible component of the intra hepatic resistance. 

The vascular tone forms a significant part of this reversible part of the intrahepatic 

resistance. We show in our study that the cyclic AMP activity in the liver tissue is 

significantly increased in the BDL rats treated with BRL 44408 as compared to the BDL 

rats treated with saline. This implies that there is an increase in the calcium flux into the 

myosin which helps to relax the vascular smooth muscle cells which in turn help to 

vasodilate the intrahepatic vasculature leading to reduction in intra hepatic resistance.  

One of the most important observation in this study is the significant increase in the 

ADRA2a receptor density in the liver of the BDL rats as compared to the Sham operated 

rats. From the sepsis literature , it is clear that the ADRA2a receptor has got significant 

increased expression in the migrating macrophages  in the ceacal ligation and puncture 

rat model and this theory might help to explain the increased receptor expression in the 

BDL rats as compared to the Sham operated rats (193). To compliment this finding, there 

is also increased inflammatory markers including tissue and plasma TNFα and Nuclear 
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Factor in the BDL rats as compared to the sham operated rats. These markers show a 

significant reduction in the level of TNFα, both in the tissue and plasma and also in the 

protein expression of NF kappa B in the BDL rats upon treatment with BRL 44408.It is 

probable that the migrating macrophages from the portal circulation in the BDL rats have 

increased cytokine load and therefore provoke an inflammatory response with the rise of  

TNFα in the plasma and liver tissue. This pro-inflammatory cytokine drive is ameliorated 

by treatment with BRL 44408, demonstrating its anti-inflammatory properties. 

 In order to interrogate the possible pathways that are implicated in the reduction of 

intrahepatic resistance with the ADRA2a antagonism, I also assessed the cyclicAMP 

levels in the three goups of animals. There is significant reduction in the cyclicAMP levels 

in the ADRA2a antagonist treated BDL rats as compared to the BDL rats treated with 

saline. This suggests that this pathway is involved in the vasodilatation process in the intra 

hepatic vasculature. cyclicAMP is a second messenger in the adenyl cyclase pathway 

which is a G-protein receptor dependent signaling cascade which is used in cell 

communication. When a GPCR is activated by its extracellular ligand, a conformational 

change is induced in the receptor that is transmitted to an attached intracellular 

heterotrimeric G protein complex. This in turn stimulate the cyclic nucleoside gated 

calcium channel, which is necessary in the steps for the vasomotor relaxation which in 

the case of intra hepatic circulation reduces intra hepatic resistance.  Till date the various 

treatment strategies have targeted this increased blood flow towards the liver with an aim 

of reducing the total hepatic blood flow. However, there is some conflicting  evidence that 

in cirrhosis with refractory ascites, there may be an adverse effect by adopting this strategy 

https://en.wikipedia.org/wiki/Heterotrimeric_G_protein
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as there is already an existent intense vasoconstriction of the intrahepatic vasculature and 

further restriction of blood flow has a deleterious clinical outcome (10). 

The hepatic stellate cells are contractile cells located in the peri-sinusoidal space with 

elongated protrusion which encircle more than one sinusoid. The stellate cells become 

contractile in the face of chronic liver injury and manifest as fibrotic band of collagen 

which regulate the pre-sinusoidal blood flow. They also express various receptors which 

endothelin 1, angiotensin 1 which induce generation of contractile force by contractile 

cell types (194, 195). In my study, I demonstrate that upon incubation of rat hepatic 

stellate cells in a serum free medium as compared to a medium containing guanfacine 

(ADRA2a agonist), there is increased contractility in the guanfacine containing gel plate. 

This suggest that the hepatic stellate cells also express ADRA2a receptor and provides 

another target cell to reduce the contractility of these cells in order to improve hepatic 

blood flow. 

Alpha Smooth Muscle Actin (αSMA) is a marker of hepatic stellate cells activation. This 

indicates that the HSC modify to form myofibroblasts which impact on the contractibility 

of the sinusoidal cells. In my study, I looked at the protein expression for the αSMA 

protein in the three groups within the experiments. The results reveal that there is a 

significant expression of  αSMA in the BDL rats as compared to the sham operated rats. 

However, on treatment with BRL 44408, there is significant reduction in the αSMA 

expression. This suggest that there is deactivation of the HSC upon treatment of the BDL 

rats treated with BRL 44408. This leads to reduction in the sinusoidal contraction, in turn 

reducing intra hepatic resistance in the treated group. 
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Based on the haemodynamic observations. I have elicited mechanistic pathways that may 

be involved in these observations. Previous studies from our research group has shown 

that the endothelial nitric oxide protein expression is increased in the BDL rats as 

compared to the sham operated rat. In this study, I have been able to validate that 

observation. Further to that, following treatment with BRL 44408, the ADRA2a 

adrenergic receptor antagonist, the protein expression of eNOS is significantly reduced. 

In contrast, the phosphorylated endothelial nitric oxide which is a marker for the enzyme 

activity is reduced in the BDL rats as compared to the sham operated rats. This is increased 

significantly in the BDL rats treated with BRL 44408. This implies that there is increased 

production of intra hepatic nitric oxide, which facilitates reduced vascular tone and 

thereby reduce intra hepatic resistance in the BDL rats treated with BRL 44408. 

Although the treatment protocol for this set of experiment was over two days, I have made 

a histological assessment of the liver tissues from the rats involved in this experiment. I 

have shown that there is significant architectural changes noted in the BDL rats as 

compared to the Sham operated rats. This was evidenced by increased number of 

cholangiocytes in the BDL rats with architectural distortion of the hepatic lobule in the 

BDL rat as compared to the Sham operated animal. This changes are similar to previous 

finding during the establishment of the model in my laboratory and therefore data is not 

shown. However, there was no difference between the BDL rats treated with BRL 44408 

as compared to the BDL rats treated with saline. This indicates that there was no structural 

influence on the haemodynamic changes that is observed in the experiments.  
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Apart from these results related to the effect of ADRA2a antagonism on the porto-

systemic vasculature, I also show some preliminary data on improvement of perfusion to 

other organs including the brain and the kidney. First of all, I show that there is significant 

improvement in the plasma lactate levels in the ADRA2a antagonist treated BDL rats as 

compared to BDL rats treated with saline. This indicates that there is improvement in the 

perfusion of end organs with ADRA2a antagonism. In the brain, there is significant 

reduction in the brain water in the ADRA2a antagonist treated rats indicating that there is 

less brain swelling in this group of animal as compared to the saline treated BDL rats. As 

brain swelling can initiate transcription of cytokines, it is also possible that reduction in 

brain water following treatment with ADRA2a led to a reduction in brain inflammation. 

Studies from our lab have shown that using an anti-inflammatory strategy, there is 

reduction of neuroinflammation and restoration eNOS activity (196). I also show that 

there is significant improvement in the serum creatinine in the BDL rats treated with 

ADRA2a antagonist as compared to the BDL rats treated with saline. I accept that serum 

creatinine does not accurately reflect renal function but it highlights an important signal 

to justify further investigation of the renal effect of ADRA2a antagonism.  

In conclusion, in this study I was able to show an alternative strategy to reduce portal 

pressure. The beneficial effect of an increased mean arterial pressure and increased 

hepatic blood are both desirable in the setting of cirrhosis and portal hypertension. These 

data provide a rationale for considering ADRA2a adrenergic receptor antagonism as a 

legitimate strategy for lowering portal pressure. 
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Taking into account all the above findings, it is clear that the intra hepatic resistance is 

propagated by a combination  of the architectural distortion as a result of nodule formation 

and micro thrombi and a reversible vascular component. This reversible vascular 

component is modifiable with various intervention. Inflammation, mainly propagated by 

the gut-liver axis has been given its due importance as a main proponent of progression 

of intra hepatic resistance. The migratory immune cells from the gut to the liver have been 

implicated in the production of inflammatory cytokines. There has been some suggestion 

in the literature, especially from the sepsis literature about targeting these circulating 

immune cells as a strategy to reduce the inflammatory burden (197). It poses an interesting 

question as to whether targeting these set of circulating immune cells in the context of 

liver disease will have a positive effect on portal hypertension. The next section of studies 

will attempt to answer some of these questions. 
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                               Chapter 5 

The modulation of the immune system by ADRA2a     

adrenergic receptor antagonism 

 

5.1 Introduction  

The relationship between inflammation and portal hypertension has now been shown in 

several studies. Mortensen et.al. have shown that there is a close linear relationship 

between the highly sensitive C-Reactive Protein and the portal pressure (99). Pro-

Inflammatory cytokines like IL-6 have been found to be increased in patient with portal 

hypertension and alcoholic hepatitis (98). We have previously shown that on treatment 

with an anti-TNF agent, the portal pressure improves significantly in patients with 

alcoholic hepatitis, suggesting that targeting the inflammatory cytokines are a valid 

target to reduce portal pressure (198), albeit their clinical translation has been limited by 

serious adverse effects. 

 

The understanding of the pathophysiology of gut derived catecholamine release has 

improved significantly in the last decade. Many inflammatory molecules have been 

identified and these have been noted to be increased in a septic model. There is evidence 

to suggest that the central nervous system receives messages from the immune system 

and vice versa.  Messages from the brain modulate immune function in health and 

disease (199). There is also evidence that noradrenaline levels are released by the 

sympathetic nervous system and modulate the immune function (200). It is already 
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known that the sympathetic nervous activity is increased in sepsis and this leads to 

increased release of noradrenaline.. Previous studies have shown that the level of NE 

release is directly co-related to the level of cytokine (TNFα) and other cytokine release 

(201). 

Similarly, intra-portal infusion of NE in vivo or in isolated livers increased TNFα 

synthesis and release which was inhibited by co-infusion of yohimbine. Furthermore, 

the increased cellular levels of TNFα in Kupffer cells after in vivo administration of NE 

was also blocked by yohimbine (ADRA2 adrenergic receptor antagonist). These results, 

taken together, suggest that gut-derived NE upregulates TNF-α production in Kupffer 

cells through an  α2 adrenergic pathway, which appears to be responsible at least in part 

for the increased levels of circulating TNF-α observed during early sepsis (111) 

Further experiments shows that the enhanced pro inflammatory cytokine release in early 

sepsis in kupffer cells is via the ADRA2a adrenoreceptors. More specifically, it has been 

found that the NE increased the release of TNF-a in cultured KCs, which was specifically 

inhibited by the ADRA2a  antagonist BRL-44408.This suggest that ADRA2a adrenergic 

receptor provides a viable target for the treatment of sepsis (193) 

Therefore, the above studies have provided evidence that in the context of sepsis, gut 

derived NE produces TNFα from the kupffer cells and liver derived macrophages causes 

liver dysfunction. This phenomenon is reversible by antagonism of the ADRA2a 

adrenergic receptor. The ADRA2a adrenergic receptor has been shown to have a 

significant role in the propagation of this inflammatory cascade. Therefore the ADRA2a 

adrenergic receptor would be an ideal target to explore in the context of liver disease and 

portal hypertension  
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The aim of this study was to assess the relevance of the ADRA2a adrenergic receptor in 

the modulation of inflammation in the circulating immune cells and to address the 

hypothesis that the ADRA2a receptor is a valid target for reduction of portal pressure by 

ameliorating inflammation.  

 

5.2 Methods and Materials: 

5.2.1 Study design 

Four weeks after bile duct-ligation or Sham-operation, rats were randomized in to six 

groups. The treatment regime for both placebo (N/Saline) and BRL 44408 (ADRA2a 

antagonist) included daily subcutaneous injection at the rate of 10mg/kg. These injections 

were given once a day from day 18 till day 28 when the haemodynamic experiments were 

carried out. Lipopolysaccharide (E.coli,Sigma Aldrich) was injected at 0.33mg/kg per rat 

as a intra peritoneally 3 hours prior to start of the haemodynamic measurement. The rats 

were monitored in a temperature controlled incubator for three hours and then were 

exsanginated as per prescribed method. The groups that were set up were: 

Sham +N/S         (n=16) 

Sham+LPS         (n=3) 

Sham +BRL       (n=3) 

BDL+ N/S          (n=20) 

BDL+LPS          (n=9) 

BDL+BRL          (n=21) 

BDL+LPS+BRL (n=7) 
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5.2.2  Haemodynamic measurement 

All haemodynamic measurements were undertaken exactly as described previously in 

section 2.3. 

5.2.3. Biochemical Parameters 

All biochemical parameters (ALT, ALP, albumin, total protein, ammonia, bilirubin, urea 

and creatinine) were analyzed using 200μl of respective plasma samples using a Cobas 

Integra 400 multianalyzer with the appropriate kits (Roche-diagnostics, Burgess Hill, 

West Sussex, UK). 

5.2.4  Tissue Cytokine Assays 

All cytokine assays were undertaken in a similar method as described previously in 

section 2.6. 

5.2.5 FACS analysis 

Whole liver tissue was taken and homogenized as per protocol and population studies and 

functional studies on various cell types were conducted after cell isolation. The details of 

the methods used for the FACS analysis in various cell types are described in section 2.15 

till 2.17. 
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5.2.6  Endotoxin Assay 

 The chromogenic limulus amoebocyte lysate kinetic assay (Charles River Laboratories) 

was used for the detection of endotoxin. The method used is described in detail in section 

2.18. 

 

5.3 Results. 

Following surgery all animals continued to gain weight. From the final body weight taken 

before termination, cirrhotic rats were found to be significantly lower than that of sham 

rats (350 ± 5g vs. 472 ± 9g, respectively; P < 0.001). 

5.3.1 Biochemical paramenters in the different groups 

Six groups of animals were studied namely Sham operated (Sham), Sham + BRL, BDL 

and BDL+BRL, BDL+LPS and BDL+LPS+BRL. Bilirubin, creatinine, albumin and 

plasma aminotransferase were measured using standard kits on a Cobas Integra analyser 

(Roche Diagnostics Ltd, West Sussex, UK).  
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Table 5.1 Biochemical pattern in all the groups 

  Sham+N/S Sham+LPS BDL+N/S BDL+LPS BDL+BRL BDL+LPS+BRL 

ALT 

(IU/L) 
70.27±9.07 80.20±7.23 100.1±13.26* 130.3±24.46 82.12±6.26 69.10±5.19 

AST  
131.3±17.3 157.5±11.75 444.5±58.24* 587.5±52.48 406.2±64.82 488.4±8.36 

(IU/L) 

Bil 

(µmol/L) 
44.16±15.4 57.88±7.25 132.2±21.02* 136.2±20.11 123.4±11.61 130.2±16.14 

Albumin 

(gm/L) 

 

32.40±0.76 37.65±3.04 24.41±0.94 24.80±0.80 25.74±1.02 26.61±1.02 

  

Table 5.1: Shows the biochemical parameters in the six groups (Sham+N/S, 

Sham+LPS, BDL+N/S, BDL+LPS,BDL+BRL and BDL+LPS+BRL) ( *p<0.01) 

The alanine aminotransferase (ALT) level was no different between the sham operated 

rats treated with the saline or BRL 44408. However there was a significant increase in the 

plasma ALT levels in the BDL rats as compared with the sham operated rats (100.1 ± 

13.26 v 70.27 ± 9.07 , p<0.01). There was a trend towards a reduction in the plasma ALT 

levels in the BDL rats treated with BRL and with or without LPS as compared to the BDL 

rats treated with saline or LPS. 

The aspartate aminotransferase (AST) level was also no different between the sham 

operated rats treated with saline and BRL. There was a significant increase in the plasma 

AST level in the BDL rats treated with  saline as compared to the sham operated rats 

treated with saline (444.5± 58.24 v 131.3±17.3, p<0.01). However, there was no reduction 

in the plasma AST level in the BDL rats treated with BRL 44408 with or without LPS as 

compared with the BDL rats treated with saline or LPS. 
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Similarly, the serum bilirubin was not difference between the sham operated animals 

treated with saline and BRL44408.There was a significant increase in the serum bilirubin 

the BDL rats as compared with the sham operated rats (132.2±2.02 v 44.16±15.46, 

p<0.01). However there was no difference between the BDL rats treated with saline or 

BRL 44408 or LPS. 

The serum albumin was no different between the sham operated with saline or BRL 

44408.There was a significant reduction in the serum albumin levels in the BDL rats as 

compared to the sham operated rats (24.41.06 ± 0.94 v 32.40 ± 0.76 ,p0.01) . This did not 

alter after treatment with BRL and or LPS. 
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5.3.2 Mean Arterial Pressure 
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Fig 5.1: Mean arterial pressure measurement of all six groups ( Sham + N/S, Sham 

+ BRL, BDL + N/S and BDL +BRL,BDL+LPS,BDL+LPS+BRL ).There is a 

significant increase in the MAP in the BDL rats treated with BRL 44408 as 

compared to the BDL rats treated with saline (p=0.01). (Sham+N/S=16, 

Sham+BRL=3, BDL+N/S = 21, BDL+BRL=20, BDL+LPS=8, BDL+BRL+LPS=7) 

The mean arterial pressure (MAP) was measured in all the groups as described in section 

2.3.The MAP in the bile duct ligated rats is significantly lower than sham operated rats 

(89.64±1.91 mmHg v 103.3±2.75 mmHg, p=0.02).However on treatment with BRL 

44408, there is a significant increase in the MAP in the BDL treated group treated with 

BRL as compared to BDL rats treated with saline (89.64±1.91 mmHg v 94.84±1.8 mmHg, 

p=0.05). There is no difference in the MAP between the rats treated with an additional 

dose of LPS. 
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5.3.3 Portal Pressure Measurements: 
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Fig 5.2: Portal pressure measurement of all six groups (Sham + N/S, Sham + BRL, 

BDL + N/S and BDL +BRL, BDL+LPS and BDL+BRL+LPS).The portal pressure is 

significantly reduced in the BDL rats treated with BRL 44408 as compared with the 

BDL rats treated with saline (p<0.001) .The portal pressure was reduced in the BDL 

rats treated with BRL and LPS as compared to the BDL rats treated with LPS alone 

(p=0.04). There was no difference between the portal pressure in the sham operated 

rats. (Sham+ N/S=16, Sham+BRL=3, BDL+ N/S= 21, BDL+BRL=20, BDL+LPS=8, 

BDL+BRL+LPS=7) 

The portal pressure was significantly increased in the bile duct ligated rat as compared to 

the sham operated rats (14.21±0.43 mmHg v 6.71±0.36 mmHg, p<0.001).The portal 

pressure was significantly reduced in the BDL rats treated with BRL 44408 as compared 

to the BDL treated with normal saline (11.19±0.40 mmHg v 14.20±0.47 mmHg, p<0.001) 

in the study. Furthermore, there was a significant reduction the portal pressure of BDL 

rats treated with LPS and BRL 44408 as compared to the BDL rats treated with LPS alone 

(13.55±0.87 v 9.39±0.82). 
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5.3.4 Endotoxin Assay: 
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Fig 5.3:  Limulus Amebocyte Lysate Assay of the various groups of rats (Sham, BDL, 

BDL+BRL, BDL+LPS and BDL+BRL+LPS). The endotoxin shows a non-significant 

trend towards the improvement of the endotoxin load in the BDL rats treated with 

BRL with or without LPS.  (Sham+N/S=4, BDL+N/S=4, BDL+BRL=4, BDL+LPS=3, 

BDL+LPS+BRL=3) 

The Limulus Amebocyte Lysate Assay is an assay which reacts with bacterial endotoxin 

and lipopolysaccharide (LPS) which is a membrane protein in gram negative bacteria. 

This is used for the quantification of bacterial endotoxin load. In this set of experiments, 

the endotoxin load showed a non statistically significant trend towards the lowering of the 

endotoxin load in the BDL rats  treated with LPS and BRL 44408 treated rats as compared 

to the BDL rats treated with LPS alone (p=0.06). The  assay results described here do not 

show a  significant trend. This may be due to the variability within the assay itself and 

may have been improved if there was increased numbers of rats per group.  Therefore the 

results from this experiment have to be interpreted with caution. 
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5.3.5 Population studies 

 

A. FACS data on cell population in the portal circulation 

 

Sham 

 

BDL 

 

BDL +BRL 
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Sham + LPS 

 

BDL + LPS 

 

BDL + LPS + BRL 

 

Fig 5.4 : Population studies in the various groups. Gated Population study of the 

various cell types. The gated population in the different groups Sham, BDL, 

BDL+BRL, Sham+LPS, BDL+LPS and BDL+LPS+BRL.  

The population studies were done as described in method section 2.15. The Neutrophil 

count is increased in the BDL rats treated with Saline and LPS as compared to the Sham 

rats treated with Saline and LPS respectively. This was significantly reduced in the Sham 

and BDL rats treated with BRL 44408 with or without LPS. 
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5.3.5.1 The neutrophil population in the portal circulation 
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Fig 5.5(A): Neutrophil population in the portal vein in various groups (Sham, BDL, 

BDL+BRL, BDL+LPS, BDL+LPS+BRL). The neutrophil count is elevated 

significantly in the BDL rats as compared to the sham operated animals (p<0.001). 

The neutrophil count is reduced non-significantly in BDL rats treated with BRL 

44408. However, in BDL rats treated with LPS, BRL 44408 reduces the neutrophil 

count significantly (p=0.01). (Sham+N/S=7, BDL+N/S=5, BDL+BRL=5, 

BDL+LPS=5, BDL+LPS+BRL=5) 

The neutrophil population in the portal vein is shown in all the groups. The neutrophil 

population in the portal circulation was calculated by FACS analysis by a method 

described in section 2.15.  It shows that there is significant increase in the neutrophil 

count in the BDL as compared with Sham operated animals 11.12±1.41 v 1.42±0.24, 

p<0.001). However, after treatment with BRL, the neutrophil count is significantly 

reduced in the BDL animals with (6.08±2.03 v 13.86±1.41, p=0.01) or without LPS 

6.98±1.32 v 11.12±1.41, p=0.01)     
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 5.3.5.2 Neutrophil Population in the systemic circulation: 
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Fig 5.5(B): Neutrophil population in the systemic circulation in the various groups 

(Sham, BDL, BDL+BRL, BDL+LPS, BDL+LPS+BRL). The neutrophil count 

increases significantly in the BDL rats as compared to the Sham operated rats. There 

is a non- significant trend towards reduction in the BDL rats treated with BRL 

44408. However, in the BDL rats treated with LPS, BRL 44408 reduces the 

neutrophil counts significantly (p=0.04). (Sham+N/S =7, BDL+N/S =5, BDL+BRL=5, 

BDL+LPS=5, BDL+LPS+BRL=5) 

The neutrophil population in the systemic circulation is calculated in the various groups. 

The neutrophil population in the systemic circulation was calculated by  FACS analysis 

by a method described in section 2.15.  It shows that the neutrophil count significantly 

increases in the BDL animals as compared to the sham operated animals ( 8.86±1.51 v 

1.13±0.23, p=0.003) .However, The BDL rats treated with BRL 44408, there is a 

significant reduction in the rats with (7.16±1.43 v 12.71±1.74, p=0.04) or without LPS 

(5.60±0.85 v 8.86±1.51, p=0.04). 
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5.3.6 Phagocytic capacity of circulating cells: 

5.3.6.1 Phagocytic capacity of circulating neutrophils 

S
ham

+N
/S

S
ham

+L
PS

B
D
L+N

/S

B
D
L+L

PS

B
D
L+B

R
L

B
D
L+B

R
L+L

PS

0

20

40

60

80

100 p=0.006

Groups

c
e
ll
s
/D

A
P

I

 

Fig 5.6(A): Phagocytic capacity of circulating neutrophils. The phagocytic capacity 

increases in the BDL+LPS group treated with BRL44408 as compared to the  rats 

not treated with BRL (P=0.006). (Sham+N/S=7, Sham+LPS=5, BDL+N/S=5, 

BDL+BRL=5, BDL+LPS=5, BDL+LPS+BRL=5) 

The phagocytic capacity of the neutrophils were assessed for all the six groups of rats. 

The  phagocytic capacity of neutrophils was assessed by the method described in Section 

2.16. Although there was no significant difference in the animals treated with saline, there 

was a significant increase in the phagocytic capacity of the neutrophils in the BDL rats 

treated with BRL 44408 and LPS as compared to the BDL rats treated with LPS alone  

(78.70±1.5 v 45.60±8.06, p=0.006) 
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5.3.6.2 Phagocytic capacity of monocytes: 
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Fig 5.6(B): Phagocytic capacity of circulating monocytes (Sham, Sham+LPS, BDL, 

BDL+BRL, BDL+LPS, BDL+LPS+BRL). There is reduction in the phagocytic 

capacity of the BDL as compared to the Sham animals (p<0.001), whereas upon 

treatment with BRL 44408, there is significant improvement in the phagocytic 

capacity in BDL rats treated with (p=0.03) or without LPS (p=0.05)  (Sham+N/S=7, 

Sham + LPS=5,  BDL+N/S=5, BDL+BRL=5, BDL+LPS=5, BDL+LPS+BRL=5) 

The phagocytic capacity of the monocytes in the different groups of rats are shown above. 

The monocyte phagocytic capacity was assessed by the method described in Section 2.16. 

The monocyte phagocytic capacity is reduced in the BDL rats as compared with Sham 

animals (31.26± 4.35 v 73.43±4.82, p<0.001) However, this is increased in the BDL rats 

after treatment with BRL44408 with (85.07±6.67 v 60.65±6.33p=0.03), or without LPS 

(60.32±4.68 v 31.26±4.35, p=0.05). 
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5.3.7 Activation of Kupffer Cells: 
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Fig 5.7: Activated Kupffer cells in the various groups. The activated Kupffer cells 

are gated by the CD68 cell marker against the CD163 positive cells in all the groups 

(Sham, Sham+LPS, BDL, BDL+BRL, BDL+LPS, BDL+LPS+BRL). The kupffer 

cells are activated significant in the BDL rats as compared to the Sham operated rats 

(p=0.01). (Sham+N/S=7, Sham + LPS=5,  BDL+N/S=5, BDL+BRL=5, BDL+LPS=5, 

BDL+LPS+BRL=5) 

The activated kupffer cells are gated by the specific markers in all the groups. It shows 

that the kupffer cells are activated in the BDL animals as compared to the Sham operated 

animals (25.71±1.52 v 15.53±2.49, p=0.01). The BDL rats treated with BRL 44408 

showed a significantly reduced activated Kupffer cells in the rats treated with (9.54±1.69 

v 21.19±2.69, p=0.01) or without LPS (16.73±2.36 v 25.71±1.52, p=0.05)   
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5.3.8 Reduction of Reactive Oxygen Species in Kupffer Cells: 
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Fig 5.8:Reactive Oxygen Species in Kupffer Cells in various groups. The CD163 

gated ROS levels in all six groups (Sham, Sham+LPS, BDL, BDL+ BRL, BDL+LPS, 

BDL+BRL+LPS) . The ROS level is significantly increased in the BDL rats as 

compared to the Sham operated rats (p<0.001). The ROS levels are reduced 

significantly in the BDL rats treated with BRL with (p<0.001) or without LPS 

(p<0.001). (Sham+N/S=7, Sham + LPS=5,  BDL+N/S=5, BDL+BRL=5, BDL+LPS=5, 

BDL+LPS+BRL=5) 

The Reactive Oxidative Species (ROS) levels are done in all the six groups. It shows 

that the ROS level increases significantly in the BDL rats as compared to the sham 

operated rats (308.0±17.32 v 105.8±11.01, p<0.001). However, upon treatment with 

BRL 44408, the BDL rats have significantly reduced level of ROS in the rats treated 

with (127.5±15.56 v 222.5±28.06, p<0.001) or without LPS (79.56±6.49 v 308±17.32, 

p<0.001)  
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5.3.9 Reduction in Inflammatory cytokines with ADRA2a antagonism 

5.3.9.1 Liver Tissue TNFα level 
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Fig 5.9(A): Liver tissue TNF levels in the various groups. The liver tissue TNFα levels 

were increased after administration of LPS (0.33mg/kg) , however, it was reduced 

significantly after treatment with BRL 44408 (p=0.03).There was no significant 

difference in the tissue TNFα levels in all the other groups. (Sham+N/S=7, 

BDL+N/S=6, BDL+BRL=5, BDL+LPS=6, BDL+LPS+BRL=6) 

The liver tissue TNFa levels were measured by cytokine bead array test done on the 

FACS machine as described in section 2.6. The liver tissue TNFa was shown to be 

significantly elevated in the BDL rats treated with LPS. However when treated with BRL 

44408, there was significant reduction in the TNFa levels in the BDL rats treated with 

LPS (111.1±35.32 v 990.6±277.7, p=0.03). 
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5.3.9.2 Liver Tissue IL-6 level 
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Fig 5.9(B):Liver tissue IL-6 levels in various groups. The IL-6 level is highest in BDL 

rats treated with LPS and this was reduced significantly after treatment with BRL 

44408 (p=0.03). (Sham+N/S=7, BDL+N/S=6, BDL+BRL=5, BDL+LPS=6, 

BDL+LPS+BRL=6)  

 

The liver tissue IL-6 levels is calculated in all the groups of animals. It shows that the 

liver tissue IL-6 level goes up in the BDL rats treated with LPS. However, on treatment 

with BRL 44408, there is significant reduction in the BDL rats treated with LPS 

(546.1±279.4 v 1251±198.5, p=0.03).There was no statistical difference in the level in 

the other groups. 
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5.4 Discussion: 

From the data presented I was able to conclude that the modulation of the innate immune 

system by blocking the ADRA2a adrenergic receptor improves the immune function and 

reduces the oxidative stress and inflammatory cytokines. This leads to reduction of the 

portal pressure in the bile duct ligated rats treated with or without lipopolysaccharide. 

The gut liver axis has been being accepted as an important pathophysiological pathway in 

the propagation of liver dysfunction in cirrhosis. It is well documented that there is 

increased bacterial translocation in cirrhosis and this in turn leads to an increased cytokine 

load in the portal circulation(202). The inflammatory reflex controls innate immune 

responses by a mechanism that targets the regulatory transcription factor nuclear factor-

κB (NF-κB). Ligand–receptor interactions activate innate immune responses and induce 

the secretion of pro-inflammatory cytokines. Molecular products of infection activate 

macrophages, monocytes and dendritic cells that interact with Toll-like receptors (TLRs), 

which transduce intracellular signals, ultimately leading to the activation of NF-κB and 

the increased release of pro-inflammatory cytokines (203) 

The results of the recently published CANONIC study shows that inflammation plays an 

important part in the pathophysiology and propagation of acute on chronic liver failure 

(72).  In this study, I show that there is a trend towards increase in the endotoxin load in 

the circulation of the bile duct ligated rats. This was further augmented trend upon 

treatment with LPS. This is complemented by the increase in the liver tissue pro –

inflammatory cytokine (TNF𝛼, IL-6). However, treatment with the ADRA 2a receptor 
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antagonist BRL 44408, there is trend towards reduction in the endotoxin levels in the BDL 

rats treated with LPS. 

From the sepsis literature, there is clear evidence that the pro-inflammatory cytokines in 

the portal circulation activate the migrating macrophages, which in turn produce more 

pro-inflammatory cytokines and reactive oxygen species. In this study I show that the 

macrophages (kupffer cells) gated by the CD163 shows an activated state (CD163 gated 

CD68 cells) in the BDL rats treated with saline. This is also noted to be significantly 

increased in the BDL rats treated by the addition of LPS. This was complimented by the 

significant increased production of Reactive Oxygen Species in the BDL rats and further 

increased in the BDL rats treated with LPS. This was again significantly reduced with 

treatment with BRL 44408.  

Rat lymphocytes and human peripheral blood mononuclear cell (PBMC) both have been 

shown to have increased level of expression of enzymes which results in increased 

production of dopamine, noradrenaline when stimulated(204).   Thus, it now is becoming 

clear that lymphocytes and phagocytes not only possess the ability to produce, store, 

release, and re- uptake catecholamines de novo, but that these cells also are capable of 

exquisitely regulating their catecholamine-synthesis in response to various extracellular 

stimuli. (113). 

In this study, I have assessed the function of the circulating neutrophils and macrophages. 

I show that the functional capacity of phagocytosis of these cells are significantly 

increased in the BDL rats treated with  LPS and BRL 44408 as compared to the BDL 

rats treated with LPS only. . Moreover, I also show that the absolute number of 

neutrophils in the portal and systemic circulation are significantly increased in the BDL 
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rats treated with or without LPS. This was reduced by treatment with BRL 44408 in BDL 

rats treated with or without the LPS. This implies that neutrophil migration to the liver 

that is noted in a setting of acute on chronic liver failure such as alcoholic hepatitis can 

be modified by this specific ADRA2a adrenergic receptor blockade. There is evidence 

of neutrophil dysfunction in cirrhosis and a study from our lab has previously shown that 

the neutrophils present in the setting of alcoholic hepatitis loses its function capacity to 

phagocytose the increased bacteria and bacterial products that are being translocated 

from the gut wall (71).  

 It is already known that the sympathetic nervous activity is increased in sepsis and this 

leads to increased release of norepinephrine. Yang et al has shown that the level of NE 

was lower in pre enterectomised rats where in sepsis was induced by ceacal ligation and 

puncture as compared to the non pre enterectomised rats. They also show that the level 

of pro-inflammatory cytokines TNFα and IL-6 were reduced and attenuated liver 

dysfunction in the pre enterectomised group (110). Furthermore, the increased cellular 

levels of TNF-α in Kupffer cells after in vivo administration of NE was also blocked by 

yohimbine. These results, taken together, suggest that gut-derived NE upregulates TNF-

α production in Kupffer cells through an α2-adrenergic pathway, which appears to be 

responsible at least in part for the increased levels of circulating TNF-α observed during 

early sepsis (111). In my study, I  have demonstrated that the Kupffer cells are activated 

as evidenced by the increased percentage of CD163 gated CD68 cells. This activated 

state also produced significantly more Reactive Oxygen Species in the BDL rats treated 

with or without LPS. However on treatment with BRL 44408, the percentage of activated 

kupffer cells were significantly reduced as well the amount of ROS production. 
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This study suggests that the ADRA2a adrenergic receptor plays an important role in the 

production of pro-inflammatory cytokines and elevation of portal pressure. By using a 

specific ADRA 2a adrenergic receptor antagonist we are able to demonstrate that it 

improves neutrophil and macrophage function, reduces inflammation, reduces activation 

of kupffer cells and its consequent ROS production and thereby reduces portal pressure. 

Based on these results, it can be postulated that ADRA2a adrenergic receptor may be a 

target for the modulation of inflammation and sympathetic tone in order to reduce portal 

pressure. However, further studies are required to validate our findings before clinical 

translation can be considered. 

 

In conclusion for this section of this research, I have been able to show that the ADRA2a 

adrenergic receptor is present in the BDL rat liver more significantly than in sham 

operated rats. By antagonising this particular receptor, I have been able to reduce the 

portal pressure in the BDL rats whilst maintaining their mean arterial pressure. These 

results are accompanied by the significant reduction of the pro-inflammatory cytokines. 

The mechanism of action was also explored and the results show that there is 

improvement in the cyclic AMP levels suggesting a possible vasorelaxing mechanism. 

There is also improvement in the eNOS activity suggesting that there is an improvement 

of endothelial dysfunction. I have also shown that the stellate cell contraction is also 

influenced by the ADRA2a adrenergic receptor pathway and its antagonism will relax 

the contractility of the stellate cells. While all these phenomenon are going on in the 

liver, I also show evidence of reduction of neutrophils from the portal circulation and 
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improvement in the functional capacity of the neutrophils and monocyte with treatment 

with an ADRA2a adrenergic receptor antagonist. This strategy will also reduce the 

activation of the kupffer cells and its consequent ROS production. Overall, these results 

prove that ADRA2a adrenergic receptor antagonism may be an important alternative 

strategy to reduce portal hypertension. 
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                                Chapter 6 

Role of L-Arginine supplementation in the modulation 

of intra hepatic resistance 

6.1 Introduction 

 

Over the past  few  decades, several studies have provided evidence that suggest 

supplementation of L-arginine was considered a logical therapeutic option to restore the 

decreased arginine levels in septic and critical ill patients, as increased arginine 

concentrations may restore the important physiologic processes, including organ 

perfusion, immune function, protein synthesis and wound healing (205), (206).Arginine 

supplementation between three to eight grams per day is very well tolerated but above 

nine milligrams causes patients to have side effects including diarrhoea and vomiting. 

There have been several meta analyses and reviews on this subject of arginine replacement 

in critically ill patients as part of their immune nutrition (207),(208). The results have 

been conflicting and may be compounded by the fact the diets are mixed with other 

compounds such as Omega 3 which will have an impact on the outcome. 

NO is formed by the oxidation of  sole substrate L-arginine, a semi essential amino acid 

by the enzyme Nitric oxide synthetase (NOS) (140). NO has been found be the main 

modulator of intra hepatic vascular tone (16) Since then a growing number of studies have 

proven that there is presence of endothelial dysfunction and low NO levels in cirrhosis 

(25) and that liver sinusoidal endothelial cells modulate NO levels (209).Therefore, it has 

been reasonable strategy to use vasodilators and NO donors to improve the intra hepatic 
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tone. However, most of them have not been accepted in routine clinical practice because 

of the systemic hypotensive effect. 

L-Arginine plays an important role in the modulation of intrahepatic tone by supplying 

NO, which acts as the most important vasodilator in the intra hepatic circulation. It has 

been proven that the increased intra hepatic vascular tone induced by L-NAME, a non-

specific NO inhibitor is reversed when L-arginine is supplemented (16). In cirrhosis and 

various other diseased states, arginine levels have been found to be high or low ((210), 

(211) and therefore supplementation of L-arginine have been reported with contradictory 

outcomes ((212), (213) 

L-Arginine has several metabolic pathways which may have an impact on the availability 

of substrate for NO synthesis (119).Among them Asymmetrical Dimethyl Arginine, 

(ADMA), an endogenous inhibitor of endothelial nitric oxide synthetase (147) and 

Arginase (214) which is an enzyme which converts L-arginine to urea and ornithine as 

part of the urea cycle has been mostly implicated in the regulation of L-arginine. We have 

previously shown in a devascularised porcine model of acute liver failure there is 

increased plasma arginase activity and ADMA levels. However, the arginine deficiency 

in this model was related to arginase related arginine clearance inspite of de novo arginine 

production (215). Therefore, in order to overcome the relative arginine deficiency because 

of increased ADMA levels and arginase activity in diseased states including cirrhosis, it 

was rational to supplement L-arginine exogenously to assess its effect on portal 

hypertension. 
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The aim of this study is to assess whether supplementation of L-arginine in the bile duct 

ligated rats lower their portal pressure. The secondary aim would be to investigation the 

underlying pathway involved in this process and whether there was an anti-inflammatory 

effect. 

6.2 Methods and Materials 

All animal experiments were conducted according to the Home Office guidelines under 

the UK Animals in Scientific Procedures Act 1986. This study was performed in male 

Sprague-Dawley (SD) rats (Charles-rivers), weighing 220–250g, were obtained from the 

Comparative Biological Unit at University College London. All rats were housed in the 

respective unit and given free access (ad libitum) to standard rodent chow and water, with 

a light/dark cycle of 12 hours (the dark phase extended from 1900–0700 hours), at a 

temperature of 22–23°C and humidity of approximately 50%. 

The rats underwent Bile duct ligation and sham operation as described in section 2.1.1 

and 2.1.2 respectively. 

6.2.1  Study design: 

Male Sprague Dawley rats weighing 220-250 g were randomly assigned to receive sham 

or bile duct ligation (BDL) surgery as described previously. Four weeks later 

hemodynamic measurements were performed and samples collected for analysis. For this 

arginine supplementation studies, treatment with either 30gm/kg L-Arginine (Damor 
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Pharma, Italy) dissolved in sterile water or saline (control, equal volume) by oral gavage 

was given on the last 7 days of the study. 

 Rats were randomly assigned to the following treatment groups: 

1.Sham  + N/Saline group: n = 8 

 

2.Sham+ L-Arginine group: n = 11 

 

3.BDL + N/Saline group: n =12  

 

4.BDL+ L-Arginine group: n = 13 
 

All rats were exsanguinated under terminal anaesthesia (2% isofluorane). Within seconds 

blood was withdrawn from the descending aorta and immediately put into ice cold 

heparin/EDTA containing tubes (until full exsanguination), centrifuged at 3000 rpm and 

4oC for 10 min, and the plasma collected and stored at -80°C until assayed. Liver tissue 

was also removed immediately harvested and snap frozen for storage at -80°C until 

analyzed. Liver tissues were also fixed with 10% formalin for further histological 

analysis. 

6.2.2  Haemodynamic measurement 

All haemodynamic measurements were undertaken exactly as described previously in 

section 2.3. 
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6.2.3 Biochemical Parameters 

All biochemical parameters (ALT, AST, albumin,  bilirubin,  ) were analyzed using 200μl 

of respective plasma samples using a Cobas Integra 400 multianalyzer with the 

appropriate kits (Roche-diagnostics, Burgess Hill, West Sussex, UK). 

6.2.4  Plasma and tissue Cytokine Assays 

All cytokine assays were undertaken in a similar method as described previously in 

section 2.6. 

6.2.5 Western Blot 

Proteins were isolated from snap frozen liver tissue using standard techniques as described 

in section 2.7. Equal amounts of protein extract were denatured and separated on 4-12% 

NuPAGE Bis-Tris Gels and transferred on to PVDF membranes (Lifetech, UK), The 

membranes were then incubated with different primary antibodies including a goat anti 

DDAH 1 (1:1,000; in-house preparation), mouse anti-ADMA (1:1,000; Acris Antibodies, 

Herford, Germany), mouse anti-eNOS (1:1000, Cell Signaling Technology, Beverly, 

MA), mouse anti NFkB p65 (1:1000, dilution, 2A12A7,Invitrogen,UK). The bands were 

visualized using an enhanced chemiluminescence detection kit and quantified by 

densitometry. Loading accuracy was evaluated via membrane rehybridization with 

antibodies against mouse and rabbit anti-α tubulin (1:1,000; Upstate Biotechnology, 

Albany, NY). 
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6.3 Results 

6.3.1 Biochemical parameters 

 

 

  
Sham  

(Mean±SEM) 

BDL  

(Mean±SEM) 

BDL + Arg 

(Mean±SEM) 

Significance  

*p<0.01, 

**p<0.001 

ALT 42.08±3.49 118.1±15.47** 81.83±5.54* 

** Sham v BDL  

*BDL v 

BDL+Arg 

AST 

 
76.76±9.45 500.7±81.58** 492.4±39.02 ** Sham v BDL 

Bilirubin 

 
1.75±1.077 118.3±14.61** 117.8±6.43 ** Sham v BDL 

Albumin 

 
32.93±3.10 21.59±1.27** 20.52±1.18 ** Sham v BDL 

 

Table 6.1: Plasma levels of ALT, AST, Bilirubin andAlbuminin the various groups. 

(**p<0.001, *p<0.01) 

The results of the biochemical analysis shows that apart from a significant reduction in 

the serum Alanine Amino Transferase level in the rats treated with L-arginine treated 

BDL rats, there was no significant difference between the groups.  
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6.3.2 Effect of L-Arginine supplementation on the Mean Arterial 

Pressure 
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Fig 6.1: Mean Arterial Pressure in the four Groups of Animals.  This shows that the 

Mean arterial pressure is significantly reduced in the BDL rats as compared to the 

sham rats (p=0.006).There was no change in the MAP after treatment of the BLD 

ratswithL-Arginine.(SHAM+N/S=14,SHAM+ARG=9,BDL+N/S=14, 

BDL+ARG=13) 

 

The results show that there was a  significant reduction in the mean arterial pressure in 

the BDL rats treated with L-Arginine as compared to the sham operated rats (84.96±2.87 

v 97.03±2.67, p=0.006).  However there was no significant difference between BDL rats 

treated with saline as compared to the BDL rats treated with Arginine. 
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6.3.3 Effect of L-Arginine supplementation on the portal pressure 
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Fig 6.2:  Portal Pressure in the four groups of animals. This shows that the portal 

pressure is significantly raised in the BDL rats as compared to the sham operated 

ones (p<0.001).There was reduction in the portal pressure in the BDL rats treated 

with arginine as compared to BDL rats treated with saline (p=0.03). 

(SHAM+N/S=14, SHAM+ARG=9, BDL+N/S=14, BDL+ARG=13) 

The portal pressure was measured on the day of the sacrifice after seven days of Arginine 

or equivalent amount of Normal Saline in sham and BDL rats. The results show that there 

was no significant difference between the sham animals treated with L-arginine or normal 

saline (6.6 ± 0.4 vs.  7.4 ± 0.7 p = 0.4). There was a significant increase in the portal 

pressure in the BDL rats as compared to Sham operated rats treated with saline (5.59 ± 

0.42 vs 15.25 ± 1.02, p <0.0001) However, treatment of the BDL rats with L-arginine 

significantly lowered the portal pressure as compared to the BDL rats treated with normal 

saline (12 ±1.2 vs. 15.8 ± 1.2, P<0.05). 
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6.3.4 Endothelial NOS protein expression: 
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Fig 6.3: eNOS protein expression in the three groups. This shows that the eNOS 

protein expression  is significantly raised in the BDL rats as compared to the sham 

operated ones (p<0.001).There was reduction in the eNOS protein expression in the 

BDL rats treated with arginine as compared to BDL rats treated with saline 

(p<0.001). (SHAM+N/S=5,  BDL+N/S=6, BDL+ARG=6) 

 Western blotting technique was used for the protein expression of eNOS in the various 

groups of animals. The results show that that there is a significant increase in the eNOS 

protein expression in the BDL group (p<0.0001) as compared to the sham group and it 

significantly goes down on treatment with L-arginine ((p<0.001) in the BDL group as 

compared to the BDL group treated with saline. 

e-NOS 
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6.3.5 Endothelial NOS protein activity 

 

Fig 6.4: eNOS protein activity in all the three groups (detected by the radioactive 

method). This shows that there is significant reduction in the eNOS activity in the 

BDL rats as compared to the sham rats (p=0.001). There was a trend towards 

increase in the eNOS activity in the BDL rats treated with L-arginine as compared 

to BDL rats treated with saline. (SHAM+N/S=5, BDL+N/S=6, BDL+ARG=5) 

 

The eNOS activity was measured by the radiometric analysis of hepatic eNOS activity as 

described in section 2.9. This shows that the BDL group has significant reduction in eNOS 

activity as compared to the sham. However upon treatment with L-arginine, the BDL rats 

will regain some of the activity of the enzyme, although this is not statistical significant. 

This was calculated by the radioactive method of conversion from citrulline to arginine 

as described in section 2.9. 
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6.3.6 Protein expression for ADMA 
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Fig 6.5: ADMA protein expression in all the three groups. The ADMA protein 

expression goes up significantly in the BDL rats as compared to the sham operated 

animal. This expression was significantly reduced in the BDL rats treated with L-

arginine. (Sham+N/S=5, , BDL+N/S=6, BDL+ARG=6) 

Western blot technique was used to elicit the protein expression of ADMA. The results 

show that there is a significant increase in the protein expression of ADMA in the BDL 

group (p<0.001) as compared to the sham group. However, on treatment with L-Arginine 

in the BDL group there is a significant reduction of the expression of ADMA as compared 

to BDL rats treated with saline (p<0.05). 

α-tubulin

 

 α-tubulin 

ADMA 
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6.3.7 Protein expression of DDAH1: 
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Fig 6.6: DDAH protein expression in all the groups. The DDAH1 protein expression 

is reduced in the BDL ratsa s compared to the sham operated rats. However, this 

expression is significantly increased in the BDL rats treated with arginine as 

compared to the ones treated with placebo. (SHAM+N/S=5,BDL+N/S=6, 

BDL+ARG=6) 

 The results show that there is a significant decrease in the DDAH1 protein expression in 

the BDL group as compared to the Sham group treated with saline (p=0.04) and on 

treatment with L-Arginine, the protein expression increases significantly in the BDL rats 

as compared to the BDL rats treated with saline(p=0.03). 

DDAH-1 band 
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6.3.8 Protein expression of Nuclear Factor kappa B (NFkB): 
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Fig 6.7: NFkB protein expression in all the three groups. The NFkB protein 

expression goes up in the BDL rats as compared to the Sham operated animal. This 

was however decreased upon treatment of the BDL rats with L-arginine as 

compared to the BDL rats treated with placebo. (SHAM+N/S=5,BDL+N/S=6, 

BDL+ARG=6) 

 The result shows that there is a significant increase in the protein expression of the NFkB 

protein in the BDL group as compared to the Sham group treated with saline(p<0.002). 

On treatment with L-Arginine, there is a significant reduction in the protein expression of 

NFkB in the BDL rats as compared to the BDL animals treated with normal saline 

(p=0.04). 

α tubulin 

NFkB 
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6.3.9 Tumour Necrosis Factor alpha (TNFα) cytokine levels 

S
H
A
M

+N
/S

B
D
L+N

/S

B
D
L+A

R
G

0

200

400

600

800

1000

p=0.01 p=0.06
p

g
/m

L

Groups
 

Fig 6.8: TNFα levels in the hepatic tissue in the various groups. The plasma TNFα 

level is increased significantly in the BDL rats as compared to the sham operated 

animals however this effect is abrogated by the treatment of the BDL rats with L-

arginine as compared to the placebo treated BDL rats. (Sham+N/S=5, , BDL+N/S=6, 

BDL+ARG=6) 

TNFα titre was measured by the BD bioscience Cytometric Bead Assay Kit and analysed 

in the FACS Canto II machine. The results show that there is a significant increase in the 

TNFα level in the BDL rats as compared with the Sham rats treated with saline (p=0.01). 

However the levels of TNFα are reduced in the BDL rats treated with L-Arginine as 

compared to the BDL rats treated with normal saline (p=0.06). 
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6.3.10 Liver tissue Arginase Activity: 
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Fig 6.9: Liver tissue arginase activity in all the group. This shows that the arginase 

activity is significantly increased in the BDL rats as compared to the sham operated 

rats. This was significantly reduced in the BDL rats treated with arginine as 

compared to the BDL rats treated with placebo. (Sham+N/S=5,BDL+N/S=8, 

BDL+ARG=8) 

The arginase activity was measured as per section 2.20. The above results show that the 

liver arginase activity is significantly increased in the BDL rats as compared with the 

sham operated rats treated with saline ( p<0.001) and the arginase activity in the liver is 

decreased significantly in the BDL rats treated with arginine as compared to the BDL rats 

treated with saline (p<0.05). 
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6.3.11 Plasma Arginine to ADMA ratio: 
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Fig 6.10:  Arginine to ADMA ratio between BDL and BDL animals treated with L-

Arginine animals. This shows that the ratio is increased in the BDL rats treated with 

L-arginine as compared to the BDL rats treated with saline ((p<0.05). 

The results show that the ratio of Arginine to ADMA is significantly increased in the BDL 

rats treated with L-Arginine as compared to the BDL rats treated with normal 

saline(p<0.05). The Arginine to ADMA ratio has been implicated in the synthesis of NO 

as a reduction in this ratio implies that there is relative increase in the ADMA level which 

inhibits eNOS and thereby reduces NO production. However on supplementation with L-

Arginine, there is an improvement in this ratio implying increase in the forward reaction 

for NO synthesis.  
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6.4 Discussion 

This result of this study reveals several important observations. Firstly, the results of this 

study show a significant reduction of portal pressure in the BDL rats treated with L-

Arginine as compared to the BDL rats treated with normal saline. This drop in portal 

pressure is noted in the context of the MAP without any significant difference between 

the BDL rats treated with L-arginine as compared to the BDL rats treated with saline. 

Secondly, the results of the protein expression studies reveal the involvement of the 

ADMA-DDAH pathway in the modulation of portal hypertension. Thirdly, the results of 

the biochemistry and the cytokine analysis, together with the NFkB protein expression 

show the involvement of the inflammatory pathway in the modulation of portal 

hypertension. 

Ever since the seminal paper by Mittal and Groszmann about the presence of a reversible 

component in the pathophysiology of portal hypertension in 1994, there has been a 

growing body of evidence about the various mechanistic pathways involved in the 

modulation of portal hypertension {Mittal, 1994 #1892. The focus of these strategies is to 

reduce intra hepatic resistance by modulating the various vasoactive agents but as there is 

no specific tools to assess it, portal pressure and portal blood flow can be taken as a 

surrogate indicators for the change in intra hepatic resistance. 

It is clear from the literature that reduction of portal pressure to below 12 mmHg or 20% 

below the basal reading has shown to have clear benefit in patients outcome by reducing 

the risk of first bleeding episode to less than 10%. Most of the strategies applied earlier 

have been to reduce the increased splanchnic inflow of blood to the liver including beta 
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blockers but recent data emerging suggest that this strategy may not be beneficial to 

patients in end stages of their disease process (10). Endothelial dysfunction has been the 

main feature of the pathobiology of intrahepatic resistance and reduction in the intra 

hepatic NO has been implicated in this process. In this study, I have used L-arginine as a 

treatment for portal hypertension. L-Arginine is the sole substrate for the production of 

NO with the help from the enzyme eNOS (140). L-Arginine metabolism is highly 

regulated and various pathways are compartmentalised (119). The rationale for using 

exogenous L-Arginine supplementation is to provide adequate substrate for eNOS to 

synthesis NO and reduce the intra hepatic resistance. Plasma concentration of L-arginine 

has been shown to have contradictory levels in various studies in humans and animal 

studies ((210), (216)). This suggests that L-Arginine supplementation has other important 

impact in the modulation of intrahepatic resistance. The finding from this study of 

reduction in portal pressure in the L-Arginine treated BDL rats by 18% from the BDL rats 

treated with normal saline is an important one. This finding is complemented by the 

finding that there is no difference between the two groups in terms of mean arterial 

pressure. Many of the  drugs  that have been tested until now to reduce portal pressure in 

animal models and clinical trial settings have not translated into routine clinical practice 

because of concerns with systemic hypotension (217), (218). Although, there is a risk of 

systemic hypotension with L-arginine supplementation, the studies done previously 

showed a significant reduction in MAP within the first thirty minutes of an intravenous 

bolus dose along with a peak plasma level of arginine within the same time. Whereas, 

after an oral dose, the peak plasma levels were reached at ninety minutes and the 
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bioavailability was around 70%, hence showed a less acute change in systemic 

haemodynamics (167) 

Endothelial Nitric Oxide Synthetase (eNOS) is the main enzyme involved in the oxidation 

of L-Arginine to produce NO and citrulline. In this study, I show that the protein 

expression of eNOS is increased in the BDL rats but is reduced upon treatment with L-

arginine. The enzyme eNOS requires cofactors like calcium, calmodulin and 

tetrahydrobiopterin (BH4) as necessary ingredients to function adequately. Therefore the 

finding of an increased protein expression of eNOS with a loss of activity in the BDL is 

not surprising as it suggest that the activity is lost due to a post translational modification. 

Hepatic eNOS activity regulation is multifactorial and literature suggest that impaired akt 

mediated phosphorylation and increased expression of caveolin I are implicated (28).The 

modification that has been shown to be most common is the reduction in the level of BH4 

which is reduced by increased oxidative stress that is known to be present in the diseased 

liver (219).Recently it has been shown that supplementation of BH4 helps to reduce portal 

pressure by increasing the eNOS activity and thereby increasing NO production (220). 

Asymmetrical Dimethyl Arginine is an endogenous inhibitor of eNOS. In normal 

physiological condition, there is a fine balance in the regulation of NO synthesis as it has 

about 10% inhibition effect on eNOS. However in the context of vascular injury which is 

akin to endothelial dysfunction, there is a significant rise in the ADMA levels, which in 

turn inhibit the eNOS mediated vasorelaxation (221). However, it has already been shown 

to have an increased level of ADMA in both patients (222)and animal models of 

cirrhosis(32)and act as marker for poor outcome (78).Elevated ADMA levels inhibit 
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eNOS and disturbs the ratio between the arginine and ADMA. In this study, I have shown 

that the ADMA protein expression is significantly increased in the bile duct legated rat 

but on treatment with L-Arginine, the protein expression is significantly reduced. The 

reason for the raised level of ADMA in the BDL rat may be multi factorial. ADMA is 

metabolised by Dimethylarginine Dimethylaminohydrolase (DDAH) in the intra-cellular 

compartment. In this study, I show that the DDAH protein expression is reduced in the 

BDL rat liver and goes up with treatment with L-Arginine. The reduced DDAH may play 

a significant part in its failure to metabolise ADMA in the BDL rats. There is a suggestion 

from the literature that the regulation of DDAH and L-Arginine may be intricately linked 

by a negative feedback mechanism and this mechanism may regulate the fine balance 

between the arginine and ADMA levels (223) 

In this study, I have conclusive proved that the inflammatory indices including serum 

ALT levels, TNFα pro-inflammatory cytokine and NFkB protein expression are all 

significantly increased in the BDL rats and goes down after L-arginine supplementation. 

This is further proof of earlier experiments wherein TNFα incubated with cultured 

endothelial cells showed a reduction in DDAH activity and increased in ADMA (224) and 

in vivo experiments done in our laboratory previously which showed that using an anti-

TNFα agent in a BDL rat decreased the portal pressure and ADMA protein expression in 

the liver (225). These results could also imply that L-Arginine might have an anti-

inflammatory property.  

Another important metabolic pathway of L-arginine is via the arginase pathway. In this 

study, I show that the arginase activity is increased in the BDL rats and goes down 
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significantly with treatment. There are multiple mechanisms that are involved in the 

modulation of vascular reactivity. The most important pathway for L-Arginine 

metabolism is via arginase and arginase also competes with eNOS for substrate although 

L-arginine has a natural preference of eNOS. Early studies on activated macrophages 

reveal that majority of L-arginine is consumed by arginase to produce urea and L-

ornithine.  The NO bioavailability is only increased by either supplementing L-Arginine 

or inhibiting arginase (130). Depletion of substrate L-Arginine for NO production leads 

to uncoupling of the eNOS leading to free radical formation, which in turn inactivates 

NO, thereby indicating that increase arginase activity indirectly leads to decreased NO 

bioavailability (136) Another alternative mechanism in which arginase works is by 

sensitising ADMA to eNOS either directly (135) or through the presence of inflammatory 

cytokines (226). 

The effect of an elevated ADMA level signifies an alteration in the arginine to ADMA 

ratio. In a recent study using a rat model where rats were randomised to receive normal 

saline as control, ADMA or a combination of arginase and ADMA as infusion shows that 

the group with the low arginine level with high ADMA had the most significant 

haemodynamic deterioration (227). In a previous study done from our group, it has been 

shown that in the presence of inflammation in cirrhosis, there is an increase in the ADMA 

levels and is associated with worse outcome (78). These result suggest that there is an 

alteration in the in the physiological balance between Arginine to ADMA which causes a 

reduction in NO synthesis and consequent haemodynamic abnormalities. The effect of 

this is found on the transporter system present in the transmembranous region. The 

cationic acid transporters are protein which transport the arginine into the intracellular 



184 

 

compartment also transport ADMA. When there is an increase in the level of ADMA, 

though it may be disproportionally small increase, it alters the transport mechanism and 

facilitates the transport of ADMA to the intra cellular compartment instead of arginine. 

Therefore, there is a relative deficiency of arginine in the intra cellular space, which in 

turn leads to reduced production of NO. The phenomenon of altered transport of Arginine 

and ADMA is known as the arginine paradox.  Although there is apparently abundant 

pool of arginine available, since it is all compartmentalised, not enough arginine may be 

available for the production of NO.  It is for this rationale that exogenous replacement 

may play a part in the regulation of intra cellular arginine levels and therefore has been 

used in our experiment. 

In conclusion, the results presented in this section of the thesis suggest that exogenous 

supplementation of L-arginine may be an important alternative therapeutic strategy for 

the treatment of portal hypertension. This has a significant effect on the inflammation that 

prevails in the bile duct ligated model and improvement in the endothelial dysfunction. I 

have been able to prove my hypothesis that L-arginine supplementation can be used an 

anti-inflammatory strategy for treatment of portal hypertension.  
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                                 Chapter 7 

                  Summary and Future Directions 

The modulation of inflammation in the reduction of 

portal hypertension 

7.1 Summary 

The onset of portal hypertension is an important clinical juncture for a patient with 

cirrhosis. This implies that the patient will be at risk of progression to severe and often 

fatal complications like ascites, spontaneous bacterial peritonitis, variceal bleeding and 

hepatic encephalopathy. Their mortality and morbidity with these complications goes up 

significantly. It has become clear that a decrease in portal pressure is not only protective 

against the risk of variceal (re)bleeding but is also associated with a lower long-term risk 

of developing complications and an improved long-term survival. Despite the high 

mortality associated with portal hypertension, there are a limited number of treatment 

options and a lack of consensus amongst physicians on their use. Treatment options for 

portal hypertension remain limited to non selective beta blocker (NSBB). These achieve 

a target reduction of > 20% reduction in hepatic venous pressure gradient (HVPG) in only 

40% of patients. About 20% of patients cannot tolerate the treatment because of easy 

fatigability and hypotension. Many other drugs have been able to show reduction in portal 

pressure in the research setting. However, many of these successes have not translated to 

their use in routine clinical settings. This may be because of the inability of overcoming 

the dichotomy of vasoconstriction in the intrahepatic circulation and vasodilatation in the 

splanchnic and systemic circulation.  
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Inflammation has been highlighted recently to play a major role in the propagation of 

portal hypertension by increasing intra hepatic resistance. This is mainly by inducing 

endothelial dysfunction. Anti-inflammatory strategies in portal hypertension have shown 

improvement in endothelial function and reduction in portal hypertension (228),(71). 

However, the exact mechanisms of these beneficial effects have not been elucidated in 

most of these strategies. There is therefore a significant clinical need to understand the 

impact of inflammatory mechanism on portal hypertension and the benefit of their 

modulation as a therapeutic target. 

The series of studies done as part of this thesis is an attempt to modulate inflammation as 

a strategy to reduce intra hepatic resistance and thereby portal hypertension. In the first 

section of the thesis in Chapter 3, I set out to validate the rodent model of bile duct ligated 

rat as a model suitable for study in this project. Bile duct ligated rats have been used in 

various studies on portal hypertension and cirrhosis. However, there is heterogeneity in 

the establishment of the model with some studies suggesting that there is evidence of 

portal hypertension from end of week 2 post bile duct ligation whereas other studies have 

shown that portal hypertension is fully established at the end of four weeks.  

In my study, this model provides characteristic features of secondary biliary cirrhosis 

induced by the bile duct ligation at the end of four weeks. This induces a significant 

architectural change in the liver with evidence of cholangiocyte proliferation and 

formation of septa, which could be translated to nodule formation in a cirrhotic human 

liver. Biochemically they show a low albumin and a high bilirubin as compared to the 

sham operated rat. The aminotransferase enzymes are raised non significantly in the BDL 
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rats as compared to the sham operated rats. The cytokine profile shows that there is a 

significant increase in the level of TNFα in the BDL rats as compared to sham operated. 

However, on injection of Lipopolysaccharide to the BDL rats, there is a further significant 

increase in the cytokine (TNFα) as well as increase in the aminotransferase levels. This 

indicates that the second hit with LPS injection provokes a more profound inflammatory 

reaction in the BDL rats. This is akin to the recently described concept of Acute on 

Chronic Liver Failure where a superadded infection or inflammatory insult provokes an 

exaggerated Systemic Inflammatory Response 

 There was a significant difference in the haemodynamic features between the sham and 

the BDL rats with the BDL rat having lower mean arterial pressure and higher portal 

pressure as compared to the sham operated animal. The heterogeneity of the model in our 

laboratory was less than 10%. These include the failed BDL rats and also variation in the 

haemodynamic measurements. With all these generated data, it was evident that this 

model would be a good model to undertake the proposed research project. 

Inflammation has been recently recognized as an important precipitant of acute on chronic 

liver failure. It is associated with significantly increased early mortality of patients. It is a 

well-established fact that the presence of inflammation in cirrhotic patients is associated 

with high portal pressure. Recently, we have shown that the presence of inflammation in 

patients with cirrhosis is directly related to the levels of sympathetic activation in these 

patients (229). Given the acknowledged reduction in beta-receptors with cirrhosis and 

evidence from the sepsis literature that suggests the  ADRA2a may be a target for 

reduction of inflammation and liver dysfunction, this lent itself to further study as of 
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potential mechanistic importance in portal hypertension. In my studies, I used the BDL 

rat as the portal hypertension model which also demonstrates an increase in inflammatory 

markers.  

In chapter 4, I demonstrated that there was a significant increase in the ADRA2a receptor 

(mRNA and protein) in the BDL rats as compared to the Sham operated animals.  By the 

use of a specific ADRA2a receptor antagonist, I was able to reduce portal hypertension 

by a clinically significant level. I also showed an increase in the cyclicAMP level and the 

endothelial NOS activity. These provide evidence of a link between increased ADRA2a 

and the development of endothelial dysfunction. In further experiments involving hepatic 

stellate cells, and following their challenge with Guanfacine, an ADRA2a adrenergic 

receptor agonist), there was a significant increase in the contractility of the HSC. This 

implied that antagonism of ADRA2a causes relaxation of the HSC, thereby promoting a 

reduction in intra hepatic resistance. This set of experiments provided a proof of concept 

that there was an alternative pathway for the treatment of portal hypertension other than 

targeting the beta adrenergic preceptor.  

The gut-liver axis has been well established as the main pathway for the propagation of 

inflammation by way of increased gut bacterial translocation. These bacterial products are 

carried by the circulating immune cells to the liver where in inflammatory cytokines are 

produced to affect changes to tissue resident macrophages (Kupffer cells), which in turn 

leads to increased  resistance vessels contraction and intra hepatic resistance.  

In the next set of experimentation in Chapter 5, I studied immune cells and their function 

in the setting of a BDL rat treated with or without LPS, thereby mimicking the clinical 
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picture of ACLF. I was able to demonstrate that there is an increase in the population of 

neutrophils and monocytes within the liver in the BDL rats treated with or without LPS 

as compared to sham operated rats. But more importantly, there is a significant 

improvement of functional capacity of the neutrophils and monocyte as evidenced by the 

improved phagocytosis and reduced Reactive Oxygen Species generated in the BDL rats 

treated with an ADRA2a antagonist. These findings are complemented by reduction in 

the inflammatory cytokine levels and significant reduction in portal pressure in the BDL 

rats treated with saline or LPS. This supports the contention that targeting the ADRA2a 

adrenergic receptor may be a valid target for the treatment of portal hypertension , 

especially in the context of added inflammation.  

Another area of interest is the impact of endothelial dysfunction in the pathogenesis of 

portal hypertension. In physiological conditions, the intact endothelium acts a natural 

barrier to the underlying vascular tissue and helps to maintain vascular equilibrium. The 

term endothelial dysfunction refers to impairment of the various functions of the 

endothelium, the most important amongst them being impaired release of vaso-relaxant 

like Nitric Oxide. L-arginine , an amino acid, is an essential substrate for the enzyme 

endothelial nitric oxide synthetase to produce nitric oxide. However, in the context of 

inflammation in liver cirrhosis, there is evidence of endothelial dysfunction leading to 

reduced intra hepatic nitric oxide and increased intra hepatic resistance. We have 

previously described the decrease in total body nitric oxide level in a devascularised 

porcine model and this may have been contributed by increase production of plasma 

arginase and ADMA levels. 
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 In the second section of my thesis in Chapter 6, my focus was in the importance of 

modulating Nitric oxide in maintaining intra hepatic vascular tone, in the context of 

inflammation. L-Arginine is the sole substrate needed for the production of nitric oxide. 

However, it is well established in the literature that there are multiple factors which alter 

the availability of L-Arginine for the production of NO. The two most important factors 

that have gained importance is that of increased ADMA levels and a more efficient 

arginase metabolic pathway. Both of these factors have been shown to be most activated 

in a  pro-inflammatory environment and it is already known that l-Arginine has significant 

anti-inflammatory properties.  

Therefore, in this section, I undertook a study of supplementation of L-Arginine in the 

BDL rats and explored whether this reduced portal hypertension and the potential 

mechanisms involved. Through this study , I was able to demonstrate that the portal 

pressure is significantly reduced in the BDL rats treated with L-Arginine as compared to 

the BDL rats treated with saline. This was not associated with any significant change in 

the MAP in the two groups. Moreover, there was also a significant drop in the 

inflammatory markers in the BDL rats treated with L-Arginine as compared to the BDL 

rats treated with saline. There was also increased eNOS activity in the arginine treated 

group in the context of decreased liver ADMA demonstrating the proof of concept that 

supplementation of L-arginine reverses the Arginine:ADMA  ratio to a favourable one, 

and thereby reduces portal pressure in these rats. 

Therefore, in conclusion, the studies described in this thesis confirm a clear association 

between inflammation and vascular dysfunction and more importantly increased portal 



191 

 

pressure. Furthermore, it is established that inflammation is a key factor in the propagation 

of portal hypertension. This leads to increased production of pro-inflammatory cytokines 

and significant reduction in eNOS activity. However with these two different anti-

inflammatory strategies, I have been able to show significant improvement of hepatic 

haemodynamics and eNOS activity indicating improvement in endothelial function. 

Based on the results presented in this thesis, both L-arginine supplementation and 

antagonism of ADRA2a provide potential new targets to treat portal hypertension. 

7.2 Limitations of the studies: 

7.2.1. ADRA2a study limitations:  

1).It should be acknowledged that although the data presented in this thesis strongly 

suggest that an anti-inflammatory pathway is definitely implicated in the BDL rats treated 

with a ADRA2a adrenergic receptor antagonist, there are other adrenergic receptors 

including the adrenergic receptor 2 subtypes B and C present in the systemic and portal 

vasculature. . Especially the ADRA2b have opposing physiological vasomotor effect 

which have not been studied in detail in these experiments. There is a potential that 

ADRA2a antagonism may have a significant unintended effect on the ADRA2b receptor 

which has not been accounted for in these studies. ADRA1 is another important receptor 

which has been antagonized in portal hypertension (230). ADRa2a antagonism increases 

the level of noradrenaline which will have a potential unintended effect on the ADRA1 

receptor which has not been studied as part of this thesis.  
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Moreover, as part of this thesis, I have demonstrated that there is presence of ADRA2a 

receptor in the Hepatic stellate cells and endothelial cells. However, there is some 

indication of modulation of inflammation by ADRA2a antagonism via the migrating 

immune cells. The exact contribution of each of these cell types have not been studied in 

detail as part of this thesis. 

2). The second most challenging aspect was the technical limitations of reliable ADRA2a 

adrenergic receptor  antibodies from which western blots and Immunohistochemistry  

analysis could be undertaken. Therefore, these had to be done multiple times in different 

test conditions and with different suppliers, in order to get an interpretable result. 

Ultimately, the most reproducible analysis was based on quantitative Polymerase Chain 

Reaction analysis.  

3). There were also a few logistical challenges in having to do several ex vivo experiments 

including haemodynamic experiments and cell separation assays simultaneously. 

However, I was fortunate enough to be able to avail the help offered by my co -research 

fellow colleagues in helping out at various stages of these studies. 

7.2.2. L-Arginine study limitations:  

1).The biggest limitation in this study was to work out the optimum method for Nitric 

oxide generation. I have attempted to do the Nox method to quantify generation of Nitric 

oxide. However, the results were very difficult to replicate. The eNOS activity assay also 

depends on experimental condition and the integrity of the tissue. The radioactive isotope 
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method is difficult to access and also operator dependent and therefore, difficult to 

generate reproducible results.  

2).Although, I have demonstrated that exogenous supplementation of L-Arginine alters 

the Arginine:ADMA ratio, the role of the cationic amino acid transporters have not been 

explored in this study. It is well established that a number of carrier proteins for amino 

acids have been identified on the molecular level. They belong to different gene families, 

exhibit overlapping but distinctive substrate specificities, and can further be distinguished 

by their requirement for the cotransport or counter-transport of inorganic ions. Uptake of 

amino acids by these transporters therefore depends largely on the intracellular substrate 

composition. Hence, there is a complex crosstalk between transporters for cationic and 

neutral amino acids. The transmembrane transporter Cationic Amino Acid Transporters 

(CAT ) are further divided into subtypes with CAT1, CAT2A/2B and CAT3. The 

transporting properties depend on several important parameters including the pH and 

substrate availability. As part of this study, I did not assess  the role of the individual sub 

type of co transporter in the BDL model and therefore it remains unclear as to the 

contribution it makes to alter the Arginine:ADMA ratio and thereby it’s influence in the 

improvement in endothelial dysfunction.  

However, inspite of these challenges, I have been able to present my finding with  data to 

prove the hypothesis and make an assertion that there is value in pursuing these strategies 

in the near future in the setting of a clinical trial. 
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7.3 Future Directions: 

The two  most important finding in the context of the studies presented in this thesis have 

been the reduction of portal pressure in the BDL rats treated with an ADRA2a receptor 

antagonist with a maintenance of the mean arterial pressure and the supplementation of 

L-arginine as an anti inflammatory strategy for the treatment of portal hypertension. I 

accept that these results have been generated using a single rodent model of secondary 

biliary cirrhosis with evidence of portal hypertension and inflammation. Therefore, it is 

important to address whether the observed findings can be reproduced in another model 

of liver injury such as a Carbon Tetrachloride induced liver injury rodent model. This 

would increase confidence in the data that the findings are more generalizable to 

modulation of inflammation in cirrhosis and not unique to the BDL model.  

There are several experimental questions that have arisen from the observations that have 

been made thus far. They are as follows: 

1).The experiments in these studies have been designed to specifically look at the role of 

ADRA2a in the  modulation of intra hepatic circulation. It is well established that other 

end organs, specifically the kidney and brain are critically involved in the evolution of 

decompensation of cirrhosis with advancing portal hypertension. I have shown some 

preliminary data on improvement in kidney function and brain inflammation in this BDL 

model using an ADRA2a antagonist. It has already been shown that the kidney and the 

brain have got abundance of ADRA2a receptors normally. It would be interesting to 

assess the effect of ADRA2a antagonism in these organs in the BDL model in more detail.  
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In order to address this question a BDL model can be used to particularly focus on the 

kidney and brain. In the kidney, haemodynamic assessment with flow measurements and 

functional assessment with ioxehol infusion can be measured in both the healthy and 

diseased (BDL) states. This is in addition to measuring the urine output from collections 

made in metabolic cages pre and post treatment, plasma creatinine and protein expression 

and  immunohistological assessment of Toll Like Receptor 4 expression as a marker of 

renal inflammation and the effect of treatment with ADRA2a antagonist. 

 In the brain, haemodynamic measurements could be assessed with functional MRI 

techniques which are being validated in animal models in our lab since the time I finished 

my practical experimentation. The functional study could be assessed by Barnes Maze 

experiments wherein working memory and learning could be assessed. This is in addition 

to measurement of brain tissue inflammatory markers and assessment of astrocyte 

swelling by brain water measurement and glutamine protein expression in pre and post 

treatment animals. These experiments will further our knowledge in the affected animals 

of progression of cirrhosis and portal hypertension, and the impact of modulating 

ADRA2a receptor in these models, in relation to effects on these major end organs.  

2).In these sets of experiments, I have  studied the effect of ADRA2a antagonism in portal 

hypertension in the BDL model. I accept that adrenergic antagonism may not completely 

block the effect of the ADRA2a adrenergic receptor. In order to elaborate further on the 

role of adrenergic receptor blockade in more detail, it would be interesting to study the 

impact of hepatic and vascular dysfunction in a heterozygous ADRA2a knockout model 



196 

 

treated with or without LPS. If the injury is non-lethal, it would be important to note if 

the dysfunction can be reversed by using a ADRA2a agonist.  

ADRA2a KO mice are now widely available on a commercial basis and with 

collaborators. These can be acquired so that further studies can be carried out to assess 

level of injury and dysfunction. In particular, all haemodynamic , biochemical and organ 

dysfunction parameters can be collected and analysed in all the groups. More specifically, 

markers of endothelial dysfunction including eNOS and nitric oxide production, 

inflammatory markers (TNFa, IL6) and liver architecture in wild type and diseased 

animals could be assessed. I would expect an abrogation of the inflammatory response 

and possibly improvement in liver architecture as compared to a wild type BDL rats with 

or without LPS.  

3).In these set of experiments , the design of the study was to only look specifically at the 

effect of ADRA2a antagonism. As alluded to previously, there will be some unintended 

effect on the ADRA 2 subtypes including the ADRA2b and ADRA2c adrenergic 

receptors. ADRA1a is a major sub set of adrenergic receptors that are present in 

abundance in the systemic vasculature and heart. The question that needs further 

investigation is  the role of the other adrenoreceptors in the  progression of liver disease. 

Does a specific ADRA2a antagonist have reciprocal effect in the other adrenoreceptors in 

the intra and extra hepatic vascular bed. 

By using the same model of BDL rats , the subtypes of ADRA adrenergic receptors can 

be assessed by protein expression and/or quantative PCR. These analysis could be co-

related to the plasma noradrenaline and haemodynamic results obtained from these studies 
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and specific conclusions regarding the role of these subtype of receptors in this model  can 

be addressed.  

4).In order to progress into the next steps of translating the findings from these 

experiments  into  clinical trial, there are several steps that needs to be achieved. Currently, 

the ADRA2a receptor antagonist is only available as a scientific compound in  powder 

form and therefore will not qualify as an  Investigational Medical Product under the Good 

Manufacturing Practice licence agreement. The closest compound that is already in use in 

the clinical context is Yohimbine (non selective ADRA2 antagonist) which has been 

produced in a GMP approved facility and therefore eligible to be used in man as part of a 

clinical trial. Preliminary data from our laboratory have shown a significant drop in the 

portal pressure in Bile duct ligated rats with preserved mean arterial pressure. These 

promising results appear to  suggest that it might be a suitable alternative to using a 

specific ADRA2a antagonist. 

In the second part of this thesis, I used L-Arginine as an anti-inflammatory agent for 

lowering portal pressure. It is clearly going to be important to validate these findings in 

other forms of liver injury. These observations have given rise to further research 

questions 

1).As previously highlighted, the experiments that have been designed as part of these 

studies focussed in the lowering of intra hepatic resistance by using an anti inflammatory 

strategy. Therefore , it will be important to understand the effect of treatment with L-

arginine on other end organs in this model , more specifically the kidney and brain.  
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To answer these questions,  a similar BDL model of portal hypertension can be used and 

the experimental design specifically focussed on  the kidney and the brain. Kidney and 

brain tissue can be collected and stored as fresh frozen samples. The haemodynamic 

parameters in the kidney can be assessed by flow probes and the function can be assessed 

by ioxehol clearance, as in the ADRA2a experiments, in both treated and untreated 

groups. Tissue based cytokine assays and immunohistochemical assessment of TLR4 

expression can be assessed to probe into the anti-inflammatory properties of L-arginine 

treatment in the kidney in this model.  

Similarly, assessment of haemodynamic parameters and functional activity status of the 

brain can be assessed with similar experiments as highlighted in the ADRA2a studies. It 

is interesting to note  since the end of my practical experiments, other researchers from 

my lab have published an paper using an anti inflammatory strategy in the BDL model 

showing an alteration of the Arginine:ADMA  in the brain tissue (196). Therefore, it will 

important to study the exact mechanism of L-Arginine supplementation which plays a 

role in the modulation of  inflammation in the brain and kidney.  

2).It is clear from the published literature that L-arginine supplementation strategies vary 

widely between studies. The heterogeneity is in relation to route, dose and method of 

supplementation. This has a bearing on the tissue bioavailability of L-arginine. There is 

an alternative strategy which would involve replacing citrulline in place of L-arginine, 

which might be a more effective strategy to increase intra hepatic NO and lower portal 

pressure as compared to direct L-arginine supplementation. 



199 

 

The rational basis of supplementing citrulline to increase arginine availability is that there 

is a significant degradation of arginine by way of first pass metabolism whereas the only 

fate of citrulline is conversion to arginine in the small intestine. Therefore it may be  a 

more efficient strategy to increase plasma arginine levels. A similar experimental model 

of portal hypertension has to be implemented to test this hypothesis. 

3).In order to overcome one of the major issues that I have highlighted in the limitation 

section is to address the best method of measuring Nitric oxide synthetase activity. The 

methods that have already been established have each got its own issues in the 

methodology and the interpretation of the results. I have attempted to do the Nox method 

to quantify generation of Nitric oxide. However, the results were very difficult to 

replicate. The eNOS activity assay also depends on experimental condition and the 

freshness of the tissue. The radioactive isotope method is difficult to access and also 

operator dependant and therefore, difficult to reproduce the results. 

In our lab, we have now used phosphorylated eNOS protein expression by western blot 

as the surrogate marker for Nitric oxide production. This method has previously been 

validated in other published studies. In order to assess this further, it would be ideal to use 

this protein expression study in other animal models to assess if we get the same results. 

4).If the availability of L-arginine can be circumvented, then an ideal clinical trial using 

L-Arginine infusion in cirrhotic patients would be able to be set up to assess if it would 

drop portal pressure by reduce the inflammatory burden in this cohort of patients. All 

involved end organs including the kidney and the brain can be assessed in the same study 
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to understand whether L-arginine supplementation has a beneficial effect in these organs 

too by way of improved hameodynamics and function.  

Overall, in conclusion of this thesis, I have been able to make several important 

observations by providing an alternative strategy to ameliorate portal hypertension. In 

pursuit of these answers to my hypothesis, I have been able to gather a significant amount 

of knowledge and understanding about the pathophysiology of portal hypertension. 

Moreover, as highlighted in the future directions section, these studies have been able to 

generate further important questions that needs to be pursued systemically as part of the 

ongoing studies to develop this area of research. I hope that I will be able to sustain my 

scientific and clinical inquisitiveness to undertake some of these studies and remain an 

integral part of this research group and to continue to contribute actively to achieve ground 

breaking research output. 
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