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Abstract—In this paper, we focus on the multiuser massive
multiple-input single-output (MISO) downlink with low-cost 1-
bit digital-to-analog converters (DACs) for PSK modulation, and
propose a low-complexity refinement process that is applicable to
any existing 1-bit precoding approaches based on the constructive
interference (CI) formulation. With the decomposition of the
signals along the detection thresholds, we first formulate a
simple symbol-scaling method as the performance metric. The
low-complexity refinement approach is subsequently introduced,
where we aim to improve the introduced symbol-scaling perfor-
mance metric by modifying the transmit signal on one antenna
at a time. Numerical results validate the effectiveness of the
proposed refinement method on existing approaches for massive
MIMO with 1-bit DACs, and the performance improvements are
most significant for the low-complexity quantized zero-forcing
(ZF) method.

Index Terms—Massive MIMO, 1-bit quantization, refinement,
constructive interference.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) systems
have been recognized as a promising technology for the
fifth generation (5G) and future wireless communications
[1]. With channel state information (CSI) at the base station
(BS), fully-digital massive MIMO systems can greatly improve
the spectral efficiency by employing simple linear precoding
schemes, where it has been shown that zero-forcing (ZF)-
based precoding approaches are near-optimal when favorable
propagation conditions exist [1]. Nevertheless, with a fully-
digital large-scale antenna array at the BS, the correspond-
ing large number of radio frequency (RF) chains and high-
resolution digital-to-analog converters (DACs) lead to greatly
increased hardware complexity, cost, and power consumption
at the BS, which hinders the implementation of massive
MIMO in practical wireless systems. One popular technique
that achieves a performance-cost compromise is to reduce the
number of RF chains by employing hybrid structures [2]-
[6], where the precoding is divided into the analog domain
and digital domain. With a reduced number of RF chains,
the hardware costs and power consumption at the BS can be
reduced accordingly.

In addition to the hybrid structures, another promising
technique, which is the focus of this paper, is to reduce the
power consumption per RF chain by employing low-resolution
DACs. It is known that the power consumption of DACs
grows exponentially with the resolution and linearly with the

bandwidth [7]. Therefore, employing low-resolution DACs,
especially 1-bit DACs, can greatly alleviate the hardware cost
and the power consumption at the BS in the downlink. Due
to the benefits that 1-bit DACs can provide, in the recent
literature there are an increasing number of contributions
that propose 1-bit transmit precoding designs for the massive
MIMO downlink [8]-[17]. In [8], the 1-bit quantization is
directly applied to the linear ZF precoding and its performance
is analytically studied. In [9][10], linear precoding schemes
based on the minimum-mean-squared error (MMSE) criterion
are proposed. However, the above quantized linear precoding
methods are shown to suffer severe performance losses in the
medium-to-high signal-to-noise ratio (SNR) regime due to the
1-bit quantization.

To further improve the system performance in the presence
of 1-bit DACs, non-linear precoding approaches that directly
design the transmit signals based on the data symbols are
further proposed in [11]-[16], where a symbol perturbation
scheme for QPSK modulation is introduced in [11], [12]
proposes a non-linear precoding method based on the gradient
descend method (GDM), while other non-linear precoding
methods are proposed in [13][14] based on biconvex re-
laxation. More computationally intensive non-linear methods
have been proposed in [15]-[17] that achieve better perfor-
mance, but with a complexity that scales at least as the
square of the number of antennas. While such approaches
offer better performance compared with the low-complexity
quantized linear precoding methods, their complexity may be
too high for practical implementation.

To improve the performance of the more practical low-
complexity quantized linear precoding methods, we propose a
low-complexity refinement method based on the constructive
interference (CI) formulation, which is applicable to any
existing 1-bit precoders for PSK modulation. By decomposing
the data symbols and received signals along the corresponding
detection thresholds, and using an appropriate coordinate
transformation, we first construct a simple symbol-scaling
formulation as our performance metric based on CI. Based on
this metric, we further introduce a refinement that improves
the symbol-scaling metric of existing quantized precoding
schemes by modifying the transmit signal one antenna at a
time. Our numerical results validate the effectiveness of the
proposed refinement method on a number of existing quantized
precoding approaches, and reveal the fact that the performance



improvements are more significant for the quantized linear
methods.
Notations: a, a, and A denote scalar, vector and ma-

trix, respectively. (·)T , (·)H , and tr {·} denote transposition,
conjugate transposition, and trace of a matrix respectively.
|·| denotes the modulus of a complex number, and Cn×n
represents the set of n × n complex matrices. <(·) and =(·)
denote the real and imaginary part of a complex number,
respectively.

Fig. 1: A massive MIMO downlink system with 1-bit DACs

II. SYSTEM MODEL

We consider a multiuser massive MISO downlink with
1-bit DACs employed at the BS, where the BS with Nt

transmit antennas communicates with K single-antenna users
simultaneously in the same time-frequency resource and K ≤
Nt, as depicted in Fig. 1. We focus on transmit precoding
designs with 1-bit DACs, and ideal analog-to-digital converters
(ADCs) with infinite precision are assumed for each receiver.
Following the closely-related literature [8]-[12], the data sym-
bols are assumed to be from a normalized PSK modulation,
denoted as s ∈ CK×1. We denote the quantized transmit signal
vector as xT ∈ CNt×1, and xT can be expressed as

xT = Q{B (s)} . (1)

In (1), B denotes a generic precoding strategy, where for a
linear precoding scheme B is equivalent to multiplication by a
precoding matrix, while for non-linear precoding approaches B
denotes the mapping strategy to form the unquantized signals
based on s. Q denotes the element-wise 1-bit quantization
operation for both the real and imaginary part, and in this
paper we normalize each entry in xT as

xn ∈
{
± 1√

2Nt

± j 1√
2Nt

}
,∀n ∈ N , (2)

where N = {1, 2, · · · , Nt}. The above normalization guaran-
tees that ‖xT ‖F = 1. Subsequently, we express the received
signal for the k-th user as

yk =
√
P · hkxT + nk

=
√
P · hkQ{B (s)}+ nk,

(3)

where hk denotes the flat-fading Rayleigh fading channel
vector for user k with each entry following a standard Gaussian
distribution, nk is the additive Gaussian noise at the receiver
with zero mean and variance σ2, and P denotes the total
available power per antenna, where for simplicity we have
assumed a uniform power allocation.

III. PROPOSED REFINEMENT METHOD BASED ON CI

In this section, the symbol-level performance metric based
on constructive interference is first introduced, followed by the
proposed refinement process.

A. Constructive Interference

We define CI as interference that pushes the received sym-
bols away from the detection thresholds of the modulation con-
stellation [18]-[20]. The exploitation of CI was first introduced
in [18] and further extended in [20] with the introduction of
the constructive region. These papers showed that, as long as
the resulting interfered signals are located in the constructive
region, the distance to the decision thresholds is increased, and
the introduction of the constructive region brings additional
performance gains [20]. While we focus on PSK modulation in
this paper, the extension to QAM modulations are applicable,
and we refer the interested readers to [21]-[22] for a detailed
description.

B. The Symbol-Scaling Performance Metric

Based on the above description for CI, we propose to
consider an alternative symbol-scaling metric for the 1-bit
quantized massive MIMO downlink based on the CI formula-
tion, which characterizes the effect of the interference on each
data symbol in a simple way. To be specific, for a genericM-
PSK modulation, we first express each data symbol as

s(l) = ej·[
2π
M (l−1)+π

4 ], l ∈ {1, 2, · · ·M} , (4)

where s(l) denotes the l-th constellation point which starts
from ej·

π
4 and follows an anti-clockwise direction, as depicted

in Fig. 2 where we employ 8PSK as an example. We then
decompose each data symbol sk along the corresponding
detection thresholds, where without loss of generality we
assume sk = s(l), which leads to

sk = s(l) = sAk + sBk . (5)

Fig. 2: 8PSK as an example for the signal decomposition



Based on the geometry, we can obtain the following expression
for the decomposed signal sAk and sBk

sAk =
ej·[

2π
M ·(l−1)+

π
4−

π
M ]

ρ
= A<k + j ·A=k ,

sBk =
ej·[

2π
M ·(l−1)+

π
4 + π

M ]

ρ
= B<k + j ·B=k ,

(6)

where
(
A<k , A

=
k

)
and

(
B<k , B

=
k

)
denote the coordinates of the

bases sAk and sBk in the real-imaginary plane, respectively, and
ρ = is a scaling factor to ensure the equality of (5):

ρ =
∣∣∣ej·[ 2πM ·(l−1)+π

4−
π
M ] + ej·[

2π
M ·(l−1)+

π
4 + π

M ]
∣∣∣ . (7)

For example, for the constellation point s(1) considered in Fig.
2, we obtain the expressions

sAk =
ej·(

2π
8 ·0+

π
4−

π
8 )∣∣∣ej·( 2π

8 ·0+
π
4−

π
8 ) + ej·(

2π
8 ·0+

π
4 +π

8 )
∣∣∣ = ej·

π
8∣∣∣ej·π8 + ej·

3π
8

∣∣∣ ,
sBk =

ej·(
2π
8 ·0+

π
4 +π

8 )∣∣∣ej·( 2π
8 ·0+

π
4−

π
8 ) + ej·(

2π
8 ·0+

π
4 +π

8 )
∣∣∣ = ej·

3π
8∣∣∣ej·π8 + ej·

3π
8

∣∣∣ .
(8)

Subsequently, we decompose the noiseless received signal
of each user k along the two detection thresholds of sk:

hkxT = αAk s
A
k + αBk s

B
k , (9)

where
αAk ≥ 0, αBk ≥ 0, ∀k ∈ {1, 2, · · · ,K} , (10)

are real scaling factors for sAk and sBk , respectively. A larger
value for αAk or αBk represents a larger distance to the detection
threshold, and accordingly the performance of 1-bit quantized
MIMO systems is dominated by the minimum value of αAk
and αBk . Based on this fact, we employ the minimum value in
the real scaling factors αAk and αBk as the performance metric.

C. Proposed Refinement Method

Before we introduce the refinement method, based on (6)
and (9), we first obtain αAk and αBk as a function of the
quantized transmit signal vector xT . We expand (9) by its
real and imaginary part, expressed as

hkxT = < (hkxT ) + j · = (hkxT )

=
(
h<k x<T − h=k x=T

)
+ j ·

(
h=k x<T + h<k x=T

)
= αAk

(
A<k + j ·A=k

)
+ αBk

(
B<k + j ·B=k

)
,

(11)

where for simplicity we have employed the following notations

x<T = < (xT ) , x=T = = (xT ) , h<k = < (hk) , h=k = = (hk) .
(12)

Accordingly, we obtain [23]

αAk =
B=k h<k −B<k h=k
A<kB

=
k −A=kB<k

x<T −
B=k h=k +B<k h<k
A<kB

=
k −A=kB<k

x=T ,

αBk =
A<k h=k −A=k h<k
A<kB

=
k −A=kB<k

x<T +
A<k h<k +A=k h=k
A<kB

=
k −A=kB<k

x=T .

(13)

By introducing

Ak =
B=k h<k −B<k h=k
A<kB

=
k −A=kB<k

, Bk = − B
=
k h=k +B<k h<k

A<kB
=
k −A=kB<k

,

Ck =
A<k h=k −A=k h<k
A<kB

=
k −A=kB<k

, Dk =
A<k h<k +A=k h=k
A<kB

=
k −A=kB<k

,

(14)

we simplify (13) into

αAk = Akx<T + Bkx=T , α
B
k = Ckx<T + Dkx=T . (15)

By further introducing

Rk =
[

Ak Bk

]
, Ik =

[
Ck Dk

]
, (16)

and
xE =

[ (
x<T
)T (

x=T
)T ]T

,

Λ =
[
αA1 , · · · , αAK , αB1 , · · · , αBK

]T
,

(17)

(15) can be further expressed in a compact form as

Λ = MxE , (18)

where M is given by

M =
[

RT
1 · · · RT

K IT1 · · · ITK
]T
. (19)

In (18), we denote αl as the l-th entry in Λ and we omit the
notations A and B. Accordingly, the symbol-scaling perfor-
mance metric is the minimum value of αl in Λ, which we
aim to improve via the proposed refinement process.

In the following we introduce the proposed refinement
method based on the above formulation, which can be applied
to any existing precoding methods for the 1-bit massive MIMO
downlink to further improve performance. The central idea of
the refinement scheme aims to improve the minimum value of
αl by modifying the transmit signals on the antennas. If we
consider all the possible signal combinations, the refinement
is equivalent to an exhaustive search, which is too computa-
tionally costly to implement. Therefore, to consider a more
practical approach and keep the computational cost as low as

Algorithm 1 The Proposed Refinement Method

input : x0
T in existing 1-bit quantized precoding methods;

output : xT ;

Calculate x0
E =

[
<
(
x0
T

)T =
(
x0
T

)T ]T
via (17);

Calculate M via (5)-(19);
for i = 1 : 2Nt do

Calculate Λ0 = Mx0
E ;

Obtain xi
E =

[
x1E , · · · , x

i−1
E ,−xiE , x

i+1
E , · · · , x2NtE

]T
;

Calculate Λi = Mxi
E ;

if min (Λi) > min (Λ0) then
xiE ← −xiE ;
Update x0

E ;
end if

end for
Obtain xT =

[
I j · I

]
· x0

E .



possible, we propose to only modify the transmit signal on one
antenna at a time. To be specific, we first calculate the scaling
vector Λ0 based on x0

E obtained from some existing algorithm
via (5)-(18), and further obtain the minimum value of αl in
Λ0, which is denoted as min {Λ0}. Subsequently, we perform
an iterative method, where within the i-th iteration, we change
the sign of an entry in xE , and calculate the updated scaling
vector Λi. If the minimum value of αl in the updated scaling
vector, which is denoted as min {Λi}, is larger than min {Λ0},
we update xE accordingly. In the case that the minimum value
of αl becomes smaller, we keep the i-th entry in xE unaltered
and move to the next iteration. While the above approach is
not guaranteed to converge to the global optimum, it will be
shown that the performance improvement is indeed significant,
especially for the quantized linear ZF methods.

Based on the above description, we summarize the refine-
ment algorithm in Algorithm 1.

IV. NUMERICAL RESULTS

To evaluate the performance of the proposed symbol scaling
approach, in this section we present numerical results in terms
of the bit error rate (BER) based on Monte Carlo simulations,
where in each plot the transmit SNR is defined as ρ = P

/
σ2.

Both QPSK and 8PSK modulations are considered in the
simulations. The refinement method is simulated together with
the following existing 1-bit quantized precoding methods:

1) ‘ZF-Unquantized’: the conventional ZF precoding with
infinite-precision DACs (only as reference);

2) ‘ZF 1-Bit (R)’: the 1-bit quantized ZF approach intro-
duced in [8][9];

3) ‘SP (R)’: the 1-bit symbol perturbation precoding tech-
nique in [11] for QPSK;

4) ‘GDM (R)’: GDM-based 1-bit precoding method in [12];
5) ‘C1PO (R)’: the ‘C1PO’ 1-bit precoding method in [14]

based on biconvex-relaxation (equivalent to the ‘Poke-
mon’ method in [13]) implemented with nmax = 20;

6) ‘Constructive (R)’: the 1-bit precoding method based on
CI in [23].

The inclusion of ‘R’ in the above abbreviations denotes the
cases where the proposed refinement method is applied to the
original 1-bit precoding techniques.

In Fig. 3, we present numerical results for a small-scale
MIMO system with Nt = 8 transmit antennas and K = 2
users. When the proposed refinement method is not applied,
we observe that quantized non-linear precoding approaches
generally offer a better BER performance than the quantized
linear methods, and the quantized linear ZF scheme has
the worst BER performance. Specifically, an error floor is
observed for all existing precoding approaches in the high
SNR regime, which is due to the 1-bit quantization. When
the refinement process is applied to the existing algorithms,
we observe significant improvements in the BER performance
for all techniques, and the error floor vanishes for most of
the approaches. Specifically, the proposed refinement process
offers the highest performance improvement for the low-
complexity quantized linear ZF method.
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Fig. 3: BER v.s. transmit SNR, Nt = 8, K = 2, QPSK
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Fig. 4: BER v.s. transmit SNR, Nt = 128, K = 16, QPSK

In the following, we show the numerical results for massive
MIMO systems. In Fig. 4, we present the BER performance
for QPSK modulation with Nt = 128 transmit antennas and
K = 16 users. An improved BER performance is observed
compared to the case of small-scale MIMO systems in Fig.
3, due to the increase in the ratio Nt/K. Again, when the
refinement method is not introduced, the low-complexity quan-
tized linear ZF scheme achieves the worst BER performance
and an error floor is observed. The more complicated non-
linear methods achieve significantly better BER performance.
When the refinement process is further introduced, the BER
performance of all techniques is further improved, and the
scheme with the worst BER performance improves the most.
Specifically, we observe that, with refinement, the quantized
ZF scheme achieves a comparable performance to the non-
linear quantized precoding schemes, where an SNR loss of
only 1.5dB is observed compared to the best BER performance
achieved by ‘Constructive, R’.
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Fig. 5: BER v.s. transmit SNR, Nt = 128, K = 8, 8PSK

In Fig. 5, the BER performance with 8PSK modulation for a
massive MIMO system with Nt = 128 transmit antennas and
K = 8 users is depicted. A similar trend to Fig. 3 and Fig.
4 is observed, where the quantized linear ZF method without
refinement achieves the worst BER performance, while the
refinement process offers the best performance improvement
for the quantized ZF scheme. Specifically, there is an SNR
loss of only 1dB for ‘ZF 1-Bit, R’ compared to the approach
‘Constructive, R’ that returns the best BER performance.

Considering the complexity, the quantized linear ZF method
with the refinement process achieves the best performance-
complexity tradeoff, and is therefore the most promising
technique in a practical 1-bit massive MIMO system.

V. CONCLUSION

In this paper, a low-complexity refinement method is pro-
posed for the massive MIMO downlink with 1-bit DACs,
which is applicable to any existing quantized precoding meth-
ods with PSK modulations. By first formulating the symbol-
scaling performance metric based on constructive interference,
the refinement process modifies the transmit signal on one
antenna at a time and further improves this performance metric
with a low computational cost. Numerical results have shown
that the refinement offers additional performance improve-
ments for existing schemes, especially for the low-complexity
quantized linear ZF method.
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