
Identifying Maximal Perfect Haplotype Blocks

Lúıs Cunha1,2[0000−0002−3797−6053], Yoan Diekmann3[0000−0003−0030−0786],
Luis Kowada1[0000−0002−7975−0060], and Jens Stoye1,4[0000−0002−4656−7155]

1 Universidade Federal Fluminense, Niterói, Brazil
2 Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

3 Department of Genetics, Evolution and Environment, University College London,
London WC1E 6BT, UK

4 Faculty of Technology and Center for Biotechnology, Bielefeld University, Bielefeld,
Germany

Abstract. The concept of maximal perfect haplotype blocks is intro-
duced as a simple pattern allowing to identify genomic regions that show
signatures of natural selection. The model is formally defined and a sim-
ple algorithm is presented to find all perfect haplotype blocks in a set of
phased chromosome sequences. Application to three whole chromosomes
from the 1000 genomes project phase 3 data set shows the potential of
the concept as an effective approach for quick detection of selection in
large sets of thousands of genomes.

Keywords: Population genomics · selection coefficient · haplotype block.

1 Introduction

Full genome sequences are amassing at a staggering yet further accelerating
pace. For humans, multiple projects now aim to deliver numbers five orders of
magnitudes higher than the initial human genome project 20 years ago5. This
development is fuelled by drastic reductions in sequencing costs, by far exceeding
Moore’s law [6]. As a result, the bottleneck in genomics is shifting from data
production to analysis, calling for more efficient algorithms scaling up to ever-
larger problems.

A simple yet highly interesting pattern in population genomic datasets are
fully conserved haplotype blocks (called maximal perfect haplotype blocks in the
following). When large and frequent enough in the population, they may be
indicative for example of a selective sweep. Their simple structure simplifies
analytical treatment in a population genetic framework. To our surprise, we
could not locate any software tool that can find them efficiently.

In this paper, we present a simple and efficient algorithm for finding all max-
imal perfect haplotype blocks in a set of binary sequences. While the algorithm
is not optimal in terms of worst-case analysis, and therefore this paper ends

5 E.g., https://www.genomicsengland.co.uk/the-100000-genomes-project-by-numbers



2 L. Cunha et al.

with an interesting open question, it has the convenient property allowing its
lazy implementation, making it applicable to large real data sets in practice.

The paper is organized as follows: The problem of finding all maximal perfect
haplotype blocks in a set of binary sequences is formally defined in Section 2.
The trie data structure we use and our algorithm are presented in Section 3.
In Section 4 we describe our lazy implementation of the algorithm and show its
applicability to real data. Section 5 concludes with an open problem and two
ideas for alternative algorithmic approaches.

2 Basic Definitions

The input data to our problem are k binary sequences, all of the same length n,
each one representing a chromosome. Each column refers to a biallelic6 single
nucleotide polymorphism (SNP), with entries 0 and 1 corresponding to different
but otherwise arbitrary alleles, although polarised data (where 0 and 1 refer
to ancestral and derived allele, respectively) usually helps the interpretation of
results. Of special interest are large blocks of conservation, that are stretches
of identical alleles present at the same loci in many of the input sequences.
Formally, we define such blocks as follows.

Definition 1. Given an ordered set X = (x1, . . . , xk) and an index set I =
{i1, . . . , i`}, 0 ≤ ` ≤ k, 1 ≤ ij ≤ k, the I-induced subset of X is the set
X|I = {xi1 , . . . , xi`}.

Definition 2. Given k binary sequences S = (s1, . . . , sk), each of length n, a
maximal haplotype block is a triple (K, i, j) with K ⊆ {1, . . . , k}, |K| ≥ 2 and
1 ≤ i ≤ j ≤ n such that

1. s[i..j] = t[i..j] for all s, t ∈ S|K ,
2. i = 1 or s[i− 1] 6= t[i− 1] for some s, t ∈ S|K (left-maximality),
3. j = n or s[j + 1] 6= t[j + 1] for some s, t ∈ S|K (right-maximality), and
4. there exists no K ′ ⊆ {1, . . . , k}, K ′ % K, such that s[i..j] = t[i..j] for all

s, t ∈ S|K′ .

The formal problem we address in this paper can then be phrased as follows.

Problem 1. Given k binary sequences S = (s1, . . . , sk), each of length n, find all
maximal haplotype blocks in S.

The following proposition gives a simple upper bound for the output of this
problem.

6 For convenience, we exclude multiallelic sites which may contain alleles coded as 2
or 3, or merge the minor alleles if they are rare and represent them as 1. These make
up only a small fraction of the total SNPs in real data, and we therefore do not
expect any overall effect.



Identifying Maximal Perfect Haplotype Blocks 3

Proposition 1. Given k binary sequences S = (s1, . . . , sk), each of length n,
there can be only O(kn) maximal haplotype blocks in S.

Proof. We argue that at any position i, 1 ≤ i ≤ n, there can start at most
k − 1 maximal haplotype blocks. This follows from the maximality condition
and the fact that a maximal haplotype block contains at least two sequences
whose longest common prefix it is. ut

As the following example shows, for sufficiently large n the bound given in
Proposition 1 is tight.

Example 1. Consider the family of sequences Sk,n = (s1, s2, . . . , sk), each of
length n, defined as follows: s1 = 0n, s2 = 1n, followed by chunks of sequences
c1, c2, . . . such that chunk ci contains 2i sequences, that are all sequences of
length n which are repetitions of 0i1i and its rotations. The last chunk may be
truncated, so that the total number of sequences is k. For example, for k = 14
and n = 24 we have:

s1 = 000000000000000000000000

s2 = 111111111111111111111111

s3 = 010101010101010101010101
s4 = 101010101010101010101010

}
c1

s5 = 001100110011001100110011
s6 = 011001100110011001100110
s7 = 110011001100110011001100
s8 = 100110011001100110011001

 c2

s9 = 000111000111000111000111
s10 = 001110001110001110001110
s11 = 011100011100011100011100
s12 = 111000111000111000111000
s13 = 110001110001110001110001
s14 = 100011100011100011100011

 c3

Analysis shows that in chunk ci, i ≥ 1, every substring of length i forms a
new maximal haplotype block together with some substring in one of the earlier
sequences. Therefore, for n > k the total number of maximal haplotype blocks
in Sk,n grows as Θ(kn).

3 Algorithm

Our algorithm to find all maximal haplotype blocks in a set of sequences S uses
the (binary) trie of the sequences in S. For completeness, we recall its definition:

Definition 3. The trie of a set of sequences S over an alphabet Σ is the rooted
tree whose edges are labeled with characters from Σ and the labels of all edges
starting at the same node are distinct, such that the concatenated edge labels
from the root to the leaves spell exactly the sequences in S.



4 L. Cunha et al.

A branching vertex in a rooted tree is a vertex with out-degree larger than
one.

Example 2. Figure 1 shows the trie T1(S) of k = 4 binary strings of length n = 6.
It has three branching vertices.

0

0

1

0

0

0

1

0

1

0

1

1

1

1

0

1

1

1

1

s3 s4 s1 s2

Fig. 1. Trie T1(S) of k = 4 binary strings S = (s1, s2, s3, s4) with s1 = 010111,
s2 = 101111, s3 = 001000 and s4 = 010101. Branching vertices are indicated by filled
nodes.

It is well known that the trie of a set of sequences S over a constant-size
alphabet can be constructed in linear time and uses linear space with respect to
the total length of all sequences in S.

Our algorithm to find all maximal haplotype blocks of k binary sequences S,
each of length n, iteratively constructs the trie of the suffixes of the sequences
in S starting at a certain index i, i = 1, 2, . . . , n. We denote the ith trie in this
series of tries by Ti(S).

Observation 1 All branching vertices of T1(S) correspond to maximal haplo-
type blocks starting at index 1 of sequences in S.

This follows from the fact that a branching vertex in T1(S) corresponds to a
common prefix of at least two sequences in S that are followed by two different
characters, thus they are right-maximal. Left-maximality is automatically given
since i = 1.

Example 2 (cont’d). The tree T1(S) in Figure 1 has three branching vertices,
corresponding to the maximal haplotype blocks starting at index 1: the string



Identifying Maximal Perfect Haplotype Blocks 5

0101 occurring as a prefix in sequences s1 and s4; the string 0 occurring as a
prefix in sequences s1, s3 and s4; and the empty string (at the root of the tree)
occurring as a prefix of all four strings.

In order to find maximal haplotype blocks that start at later positions i > 1,
essentially the same idea can be used, just based on the tree Ti(S). The only
difference is that, in addition, one needs explicitly to test for left-maximality. As
the following observation shows, this is possible by looking at the two subtrees
of the root of the previous trie, Ti−1(S).

Observation 2 A haplotype block starting at position i > 1 is left-maximal if
and only if it contains sequences that are in the 0-subtree of the root of Ti−1(S)
and sequences that are in the 1-subtree of the root of Ti−1(S).

Example 2 (cont’d). As shown in Figure 2, trie T2(S) has three branching ver-
tices, corresponding to the right-maximal haplotype blocks starting at index 2:
the string 101 occurring at positions 2..4 in sequences s1 and s4; the string 01
occurring at positions 2..3 in sequences s2 and s3; and, again, the empty string.
The string 101 is not left-maximal (and therefore not maximal), visible from the
fact that s1 and s4 were both in the same (0-) subtree of the root in S1(T ). The
other two right-maximal haplotype blocks are also left-maximal.

0

1

0

0

0

1

1

1

1

1

1

0

1

0

1

s3 s2 s4 s1

Fig. 2. Trie T2(S) for the strings from Figure 1.

The algorithm to find all maximal haplotype blocks in a set of k sequences S,
each of length n, follows immediately. It first constructs the trie T1(S) and locates
all prefix haplotype blocks by a simple depth-first traversal. Then, iteratively for
i = 2, 3, . . . , n, Ti(S) is constructed by merging the 1-subtree into the 0-subtree
of the root of Ti−1(S) during a parallel traversal of the two sister-subtrees. The
former 0-subtree will then be Ti(S). While doing so, branching vertices with



6 L. Cunha et al.

leaves that came from both of these subtrees are reported as maximal blocks
starting from index i. Pseudocode is given in Algorithm 1.

Algorithm 1 (Haploblocks)

Input: k binary sequences S = (s1, . . . , sk), each of length n
Output: all maximal haplotype blocks of S
1: construct T ← T1(S)
2: for each branching vertex v of T do
3: report maximal block at positions 1..d− 1, where d is the depth of v in T
4: end for
5: for i = 2, . . . , n do
6: merge-and-report(T.left, T.right; i, 0)
7: T ← T.left
8: end for

Function merge-and-report(l, r; i, d)
9: if l is empty then

10: l← r B simplification of presentation: implemented through call by reference
11: return
12: end if
13: if r is empty then
14: return
15: end if
16: leftmaximal← not (l.left and r.left are empty or l.right and r.right are empty)
17: if l.left is empty then
18: l.left← r.left
19: else
20: merge-and-report(l.left, r.left; i, d + 1)
21: end if
22: if l.right is empty then
23: l.right← r.right
24: else
25: merge-and-report(l.right, r.right; i, d + 1)
26: end if
27: rightmaximal← not (l.left is empty or l.right is empty)
28: if leftmaximal and rightmaximal then
29: report maximal block at positions i..i + d
30: end if

Analysis. The overall running time of Algorithm 1 is O(kn2). This can be seen
easily as follows. The initial construction of T1(S) takes linear time in the input
size, thus O(kn) time. Similar for the identification of maximal haplotype blocks
starting at index i = 1. Each of the following n − 1 iterations performs in the
worst case a traversal of the complete tree that has size O(kn), thus taking
O(kn2) time in total.



Identifying Maximal Perfect Haplotype Blocks 7

Note that, as presented in the pseudocode of Algorithm 1, the algorithm only
reports the start and end positions i and j, respectively, of a maximal haplotype
block (K, i, j), but not the set of sequences K where the block occurs. This
can easily be added if, whenever in lines 3 and 29 some output is generated,
the current subtree is traversed and the indices of all |K| sequences found at the
leaves are collected and reported. Such a traversal, however, costs O(n · |K|) time
in the worst case, resulting in an overall running time of O(kn2 + n · |output|).
An alternative could be to store at each branching vertex of the trie as witness
the index of a single sequence in the subtree below. This would allow to report,
in addition to start and end positions i and j, respectively, also the sequence of
a maximal haplotype block (K, i, j). If desired, the set K can then be generated
easily using standard pattern matching techniques on the corresponding intervals
of the k input sequences in O(k · (j − i)) time.

4 Results

4.1 Data

To evaluate our algorithm, we downloaded chromosomes 2, 6 and 22 of the 1000
genomes phase 3 data set, which provides phased whole-genome sequences of
2504 individuals from multiple populations world-wide [1]. We extracted biallelic
SNPs and represented the data as a binary matrix with help of the cyvcf2 Python
library [10].

4.2 Our Implementation of Algorithm 1

We implemented Algorithm 1 in C. Thereby we encountered two practical prob-
lems.

First, the recursive structure of Algorithm 1, when applied to haplotype se-
quences that are several hundred thousand characters long, produces a program
stack overflow. Therefore we re-implemented the tree construction and traversal
in a non-recursive fashion, using standard techniques as described, e.g., on the
“Non-recursive depth first search algorithm” page of Stack Overflow7.

Second, the constructed trie data structure requires prohibitive space. For
example, already for the relatively small chromosome 22, T1(S) has 5,285,713,633
vertices and thus requires (in our implementation with 32 bytes per vertex) more
than 157 gigabytes of main memory. However, most of the vertices are in non-
branching paths to the leaves, corresponding to unique suffixes of sequences in
S. Since such paths can never contain a branching vertex, they are not relevant.
They become of interest only later in the procedure when the path is merged
with other paths sharing a common prefix. Therefore we implemented a lazy
version of our data structure, that stops the construction of a path whenever it
contains only a single sequence. During the merge-and-report procedure, then,
whenever an unevaluated part of the tree is encountered, the path has to be

7 https://stackoverflow.com



8 L. Cunha et al.

extended until it branches and paths represent single sequences again. This has
the effect that at any time only the top part of the trie is explicitly stored in
memory. For chromosome 22, the maximum number of nodes that are explicitly
stored at once drops to 5,677,984, reducing the memory footprint by about a
factor of 1,000. In fact, this number is not much larger for any other of the
human chromosomes that we tested, since it depends on the size of the maximal
perfect haplotype blocks present in the data, and not on the chromosome length.

Table 1 contains memory usage and running times for all three human chro-
mosomes that we studied. All computations were performed on a Dell RX815
machine with 64 2.3 GHz AMD Opteron processors and 512 GB of shared mem-
ory.

Table 1. Resources used by our implementation of Algorithm 1 when applied to the
three data sets described in Section 4.1.

data set length memory time

chr. 2 6,786,300 33.67 GB 2h 37min
chr. 6 4,800,101 23.91 GB 1h 51min
chr. 22 1,055,454 5.45 GB 25min

4.3 Interpretation of Results

In order to demonstrate the usefulness of the concept of haplotype blocks and
our algorithm and implementation to enumerate them, we show how our results
can form the efficient algorithmic core of a genome-wide selection scan.

Given a maximal perfect haplotype block (K, i, j) found in a set of k chro-
mosomes, we estimate the selection coefficient s and the time t since the onset of
selection following the approach presented by Chen et al. [3]. Therefore, we first
convert the physical positions corresponding to indices i and j of the block from
base pairs to a genetic distance d quantifying genetic linkage in centimorgan8,
which is the chromosomal distance for which the expected number of crossovers
in a single generation is 0.01. Distance value d in turn is converted to the recom-
bination fraction r – defined as the ratio of the number of recombined gametes
between two chromosomal positions to the total number of gametes produced –
using Haldane’s map function

r =
1− exp(− 2d

100 )

2
. (1)

With r,K, k we can define a likelihood function L(s | r,K, k) allowing to compute
maximum likelihood estimates of the selection coefficient and time since the onset

8 A genetic map required to do so is available for example as part of Browning et
al. [2] at http://bochet.gcc.biostat.washington.edu/beagle/genetic maps.



Identifying Maximal Perfect Haplotype Blocks 9

of selection, ŝ and t̂, respectively. The full derivation from population genetic
theory is outside the scope of this paper, and the subsequent paragraphs merely
intend to provide some basic intuition. For more details, we refer the interested
reader to Chen et al. [3] and the appendix of reference [4].

First, assume a deterministic model for the frequency change of an allele with
selective advantage s, which yields a sigmoidal function over continuous time t
that ignores the stochasticity in frequency trajectories for small s,

yt =
y0

y0 + (1− y0)e−st
, (2)

where y0 is the initial allele frequency at the onset of selection9 and yt = |K|
k

is the observed allele frequency assumed to be representative of the population
frequency. Equation 2 links up the selection coefficient s and the age t of the
allele, for example requiring larger selective advantage to reach a given frequency
if the allele is young.

Next, we exploit the fact that the recombination rate is independent of se-
lection, and if assumed to be constant through time can therefore be seen to
behave as a “recombination clock”. Given a haplotype of length such that its
recombination fraction is r, moreover, with an allele at one end that at time t
segregates at frequency y(t) in the population, the expected number of recom-
bination events C altering that allele in the time interval [0, t] can be obtained
by

C = r

∫ t

u=0

(1− y(u)) du = r

(
t− 1

s
ln(1− y0 + esty0)

)
, (3)

where the second equality follows from substituting in Equation 2. Assuming
that the number of recombination events follows a Poisson distribution, the
probability of no event, i.e. of full conservation of a haplotype after time t,
becomes

e−C = e−rt(1− y0(1− est)) r
s . (4)

Finally, one can define the likelihood of observing a haplotype block for a
given s and t as |K| times the probability of a conserved haplotype (Equation 4)
times the probability of recombination events at the borders (Equation 3). As
usual, the logarithm simplifies the equation, yielding

lnL(s|r,K, k) ∝

− rt+
r

s
ln(1− y0(1− est)) + ln

(
t− 1

s
ln(1− y0(1− est))

)
, (5)

with t being directly derived from Equation 2:

t =
1

s
ln

(
yt(1− y0)

y0(1− yt)

)
. (6)

9 In the following, y0 is arbitrarily fixed at 0.00005, corresponding to 1
2Ne

with an
effective population size Ne = 10,000.



10 L. Cunha et al.

Note that we omit the factor |K| and summands ln(r) for the recombination
fractions at the borders of the haplotype (see Equation 3) that we assume are
small and approximately equal, as they are inconsequential for optimization.
Also, the massive speed gain of our approach trades off with a systematic but
conservative underestimation of ŝ when compared to the original equation in
reference [3] as we do not consider the full varying extent of the individual
haplotypes.

Equation 5 can be evaluated for a range of values to find the (approximate)
maximum likelihood estimate ŝ at a given precision, e.g. s ∈ {0.001, 0.002, . . . }
to estimate ŝ with error below 0.001. Once ŝ has been found, the corresponding
time t̂ is obtained by substituting ŝ into Equation 6.

As the Haploblocks algorithm is able to rapidly scan entire chromosomes,
and estimating ŝ and t̂ requires to evaluate only simple analytical expressions,
one can efficiently generate a genome-wide selection track. Figure 3 illustrates
the results for the locus known to contain one of the strongest signals of selection
detected so far, the lactase persistence allele in modern Europeans -13.910:C>T
(rs4988235). The selection coefficient we compute is consistent with the range of
current estimates (see Ségurel and Bon [11] and references therein).

chr2:131608646−141608646, EUR

pos [bp]

ŝ

131608646 134108646 136608646 139108646 141608646

0
0.004
0.008
0.012
0.016

0.02
0.024
0.028
0.032
0.036

A
R

H
G

E
F

4
FA

M
16

8B
P

LE
K

H
B

2
P

O
T

E
E

LO
C

44
09

10
W

T
H

3D
I

LI
N

C
01

12
0

N
O

C
2L

P
2

T
U

B
A

3D
M

Z
T

2A
M

IR
47

84
LO

C
15

07
76

C
C

D
C

74
A

P
O

T
E

K
P

LI
N

C
01

08
7

C
2o

rf
27

A
C

2o
rf

27
B

A
N

K
R

D
30

B
L

M
IR

66
3B

Z
N

F
80

6
FA

M
20

1B
G

P
R

39
LY

P
D

1
N

C
K

A
P

5
LO

C
10

19
28

18
5

LO
C

10
19

28
16

1
M

IR
36

79
M

G
AT

5
T

M
E

M
16

3
A

C
M

S
D

M
IR

55
90

C
C

N
T

2−
A

S
1

C
C

N
T

2
M

A
P

3K
19

R
A

B
3G

A
P

1
Z

R
A

N
B

3
R

3H
D

M
1

M
IR

12
8−

1
U

B
X

N
4

LC
T

LO
C

10
05

07
60

0
M

C
M

6
D

A
R

S
D

A
R

S
−

A
S

1
C

X
C

R
4

T
H

S
D

7B
LO

C
10

19
28

27
3

H
N

M
T

LI
N

C
01

83
2

S
P

O
P

L
N

X
P

H
2

Y
Y

1P
2

LR
P

1B
M

IR
71

57

Fig. 3. Maximum likelihood estimates of selection coefficients for the locus containing
the lactase gene in European individuals from the 1000 genomes data set. Each block of
weight above 500,000 was converted to a selection coefficient applying Equation 5 on a
set of values {0.0002, 0.0004, . . . } and choosing the (approximate) maximum likelihood
estimate ŝ. Red lines indicate genes annotated in the RefSeq database [9].



Identifying Maximal Perfect Haplotype Blocks 11

5 Conclusion

We presented anO(kn2) time algorithm for finding all maximal perfect haplotype
blocks in a set of k binary sequences, each of length n, that scales well in practice.
Even large human chromosomes can be processed in a few hours using moderate
amounts of memory.

This allowed us to design an analytical approach with enumeration of maxi-
mal perfect haplotype blocks at its core that not only detects selection genome-
wide efficiently, but does so by directly estimating a meaningful and interpretable
parameter, the selection coefficient s.

As a proof of principle, we applied our method and evaluated the results for
a locus known to contain one of the strongest signals of selection detected so far,
and obtained a value for s consistent with current estimates.

It remains an open question if there exists an optimal algorithm for finding
all maximal perfect haplotype blocks, i.e., an algorithm that runs in O(kn) time.

It could be worthwhile to study the bipartite graph (U ∪W,E) in which the
vertices in U = {u1, . . . , uk} correspond to the sequences in S and the vertices in
W = {w1, . . . , wn} to index positions in these sequences. An edge (ui, wj) ∈ E
is drawn if and only if si[j] = 1. Problem 1 is then equivalent to finding all twin
vertices (sets of vertices with identical neighborhood) in intervals of vertices in
W . Figure 4 shows this graph for the sequences from Example 2.

U : s1 s2 s3 s4

W :

Fig. 4. Bipartite graph (U ∪W,E) representing the four binary sequences s1 = 010111,
s2 = 101111, s3 = 001000 and s4 = 010101. Haplotype blocks can be identified as sets
of twins when the vertices in the lower row W are restricted to a consecutive interval.
For example, s1 and s4 are twins in the interval formed by the first four vertices of
W (indicated by thick circles), corresponding to the maximal perfect haplotype block
0101.

Twin vertices of a graph G can be determined by constructing its modular
decomposition tree, where internal nodes labeled as series or parallel correspond
to last descendant leaves which are twin vertices in G. McConnell and Mont-
golfier [7] proposed an algorithm to build a modular decomposition tree of a
graph with |V | vertices and |E| edges that runs in O(|V |+ |E|) time. Since there
are O(n2) necessary subgraphs to detect twin vertices, so far, such strategy is
not better than the one we proposed in Algorithm 1. However, it might be pos-



12 L. Cunha et al.

sible to achieve some improvement using the fact that intervals in W are not
independent.

Another alternative approach could be to use a generalized suffix tree of all
the input sequences or the positional Burrows Wheeler Transform [5, 8].

References

1. 1000 Genomes Project Consortium, Auton, A., Brooks, L.D., Durbin, R.M., Garri-
son, E.P., Kang, H.M., Korbel, J.O., Marchini, J.L., McCarthy, S., McVean, G.A.,
Abecasis, G.R.: A global reference for human genetic variation. Nature 526(7571),
68–74 (2015)

2. Browning, S.R., Browning, B.L.: Rapid and accurate haplotype phasing and
missing-data inference for whole-genome association studies by use of localized
haplotype clustering. The American Journal of Human Genetics 81(5), 1084–1097
(2007)

3. Chen, H., Hey, J., Slatkin, M.: A hidden Markov model for investigating recent
positive selection through haplotype structure. Theoretical Population Biology 99,
18–30 (2015)

4. Chen, H., Slatkin, M.: Inferring selection intensity and allele age from multilocus
haplotype structure. G3: Genes, Genones, Genetics 3(8), 1429–1442 (2013)

5. Durbin, R.M.: Efficient haplotype matching and storage using the positional
Burrows-Wheeler transform (PBWT). Bioinformatics 30(9), 1266–1272 (2014)

6. Hayden, E.C.: Technology: The $1,000 genome. Nature 507(7492), 294–295 (2014)
7. McConnell, R.M., De Montgolfier, F.: Linear-time modular decomposition of di-

rected graphs. Discrete Applied Mathematics 145(2), 198–209 (2005)
8. Norri, T., Cazaux, B., Kosolobov, D., Mäkinen, V.: Minimum Segmentation for

Pan-genomic Founder Reconstruction in Linear Time. In: Proceedings of WABI
2018. LIPIcs, vol. 113, pp. 15:1–15:15 (2018)

9. O’Leary, N.A., Wright, M.W., Brister, J.R., Ciufo, S., Haddad, D., McVeigh, R.,
Rajput, B., Robbertse, B., Smith-White, B., Ako-Adjei, D., Astashyn, A., Badret-
din, A., Bao, Y., Blinkova, O., Brover, V., Chetvernin, V., Choi, J., Cox, E., Ermo-
laeva, O., Farrell, C.M., Goldfarb, T., Gupta, T., Haft, D., Hatcher, E., Hlavina,
W., Joardar, V.S., Kodali, V.K., Li, W., Maglott, D., Masterson, P., McGarvey,
K.M., Murphy, M.R., O’Neill, K., Pujar, S., Rangwala, S.H., Rausch, D., Riddick,
L.D., Schoch, C., Shkeda, A., Storz, S.S., Sun, H., Thibaud-Nissen, F., Tolstoy, I.,
Tully, R.E., Vatsan, A.R., Wallin, C., Webb, D., Wu, W., Landrum, M.J., Kimchi,
A., Tatusova, T., Dicuccio, M., Kitts, P., Murphy, T.D., Pruitt, K.D.: Reference
sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and
functional annotation. Nucleic Acids Research 44(D1), D733–45 (2016)

10. Pedersen, B.S., Quinlan, A.R.: cyvcf2: fast, flexible variant analysis with Python.
Bioinformatics 33(12), 1867–1869 (2017)

11. Ségurel, L., Bon, C.: On the Evolution of Lactase Persistence in Humans. Annual
Review of Genomics and Human Genetics 18, 297–319 (2017)


