
reduced prevalence of disease and pests
in the region.
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Forum
Precipitation as an
Enabling Technology
for the Intensification of
Biopharmaceutical
Manufacture
Michael Martinez,1 Mari Spitali,2

Edith L. Norrant,3 and
Daniel G. Bracewell1,*

Advances in precipitation have
demonstrated the capability of
purifying therapeutic proteins such
as antibodies from biological sour-
ces in a scalable and cost-effec-
tive manner. We discuss the latest
developments in the unit operation
for downstream processing appli-
cations and provide a perspective
on exploring precipitation for bio-
process intensification.
Principles of Precipitation and Its
Role in Bioprocessing
Precipitation has played a vital role in the
industrial purification of important
T

therapeutics,most notably bloodproducts
from plasma fractionation [1]. Whilst pre-
cipitation is widely used for the purification
of low-value products, the method has
gained recent interest for the downstream
processing of high-value biopharmaceuti-
cal products due to higher titres challeng-
ing the efficiency of traditional
chromatographic methods. Protein pre-
cipitation involves convertingproteins from
the soluble state to the insoluble state via
destabilisation inanaqueoussolutionupon
changes in the solution conditions. Submi-
cron-sized particles are formed during the
nucleation phase and primary growth
occurs under Brownian motion. Further
growth is governed via particle–particle
collisions until a stable size is reached,
which depends on the shear field, mixing,
and the individual proteins.

In general, precipitation methods target
the protein of interest, which is recovered
by centrifugation or filtration and subse-
quently resolubilised. Whilst taking this
approach, precipitation can be irrevers-
ible, which prevents dissolution of the
precipitate for further processing, but it
may damage the native structure and
activity of the protein, which are critical
to its therapeutic activity. By contrast,
precipitation can also be applied to
remove impurities in the precipitate whilst
leaving the target molecule in solution in
the native state [2]. Precipitation can be
induced by a wide variety of agents
including neutral salts, organic solvents,
nonionic polymers, polyelectrolytes,
acids, and affinity ligands

Because of the complexity of protein pre-
cipitation phenomena induced, themech-
anisms responsible are not well
understood; in addition, they are strongly
influenced by factors such as tempera-
ture, pH, ionic strength, protein concen-
tration, and protein surface
characteristics (i.e., distribution of polar
and non-polar amino acids) as well as
precipitating agent. Therefore, despite
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Box 1. Patents Claiming Precipitation Processes for Therapeutic Production

From 2010 to 2017, a steady growth of precipitation patents for various therapeutics has been observed
with a total of 246 patent submissions (Figure I). In particular, there has been an increase in the number of
patents concerning antibody and fusion protein precipitation procedures between 2014 and 2017. Many of
the fusion protein precipitation-based patents recorded concern the purification of Fc-fusion-based mole-
cules. An influx of 21 patents for mAb precipitation and 11 patents for fusion protein precipitation occurred in
2017. Given the major contribution of antibody-based products to the current biopharmaceutical market, a
huge investment towards R&D in developing these processes has been made by some biopharmaceutical
companies such as Novartis, Amgen, and Bristol Myers Squibb. In terms of these patents, both product and
impurity precipitation for bioprocessing are described. Several enzyme and hormone patents have also
been published claiming patents for insulin crystallisation, thyroglobulin precipitation, and [121_TD$DIFF]L-asparaginase
precipitation. Plasma protein fractionation patents, by contrast, have appeared to decline, largely due to the
already well-established commercial process (Cohn’s method and adaptations thereof) and hence less
investment from R&D.
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Figure I. Graphical Representation of the Number of Patent Submissions Concerning Ther-
apeutic Purification with Precipitation.
the knowledge gained from earlier stud-
ies, developing a precipitation method for
a specific macromolecule remains an
empirical procedure that requires exten-
sive characterisation.

Developments in Protein
Purification with Precipitation
Bioprocesses implementing precipitation
have already been established for purify-
ing some biological products, including
human serum albumin and erythropoietin
[3]. Recently, many of the precipitation
developments have revolved around
monoclonal antibody (mAb) and Fc-fusion
protein purification as an alternative to
Protein A chromatography. This has led
238 Trends in Biotechnology, March 2019, Vol. 37, No. 3
to an increased number of publications
reporting precipitation strategies as well
as an influx in patent submissions by
some biopharmaceutical companies
(Box 1). Given the complex nature of pro-
tein mixtures in cell culture fluid, this
poses a challenge for precipitation pro-
cesses, which are often less selective
compared with Protein A chromatogra-
phy for antibody capture [4]. Whilst
single-step precipitation using conven-
tional precipitants such as polyethylene
glycol (PEG) [5] and ethanol [6] is capable
of obtaining high antibody yields, an
excess carry-over of impurities such as
host cell proteins (HCPs), DNA, and
aggregates is often observed. To
overcome this, impurity precipitation and
multistep precipitation strategies have
been developed [2,6,7].

Precipitation Strategies Based on
Conventional Precipitants
Calcium chloride (CaCl2) and caprylic
acid have been utilised as effective
agents in impurity precipitation to
remove DNA, HCPs, and high-molecular
weight species whilst obtaining >80%
mAb yields [2,8]. Caprylic acid, for exam-
ple, significantly reduced HCPs from
various Protein A eluate pools containing
13 different mAbs down to 38 ppm at
acidic pH and up to 80 mM concentra-
tion [8]. Hammerschmidt and colleagues
[4] studied a multistep process using
calcium chloride flocculation and cold
ethanol precipitation for mAb purification
from cell culture fluid. The two-step
precipitation process, involving 250 mM
CaCl2 (pH 8.5) at above 5 mM
phosphate for DNA flocculation and
25% v/v ethanol (pH 6.5) for precipitation
of the mAb product from CHO cell
culture, improved DNA removal by up
to 60-fold and additionally removed
HCPs by up to a factor of 6 whilst obtain-
ing >90% mAb yield with short process-
ing times (<10 min) in a batch vessel and
tubular reactor. Repeating this process
for four mAbs gave purities comparable
to Protein A chromatography (>95%) at
the cost of lower yield (<85%) [6].

An alternative precipitation process using
CaCl2 for impurity precipitation in con-
junction with PEG for mAb product pre-
cipitation gave mAb yields in the range of
80–95% and up to a sevenfold and 13-
fold reduction in aggregate and HCP
levels, respectively, depending on the
mAb, PEG size, and PEG concentration
[9]. A sequential application of 3% (w/v)
PEG6000 (pH 4) to precipitate impurities
followed by 14% (w/v) PEG6000 for mAb
precipitation showed >90% mAb yield
and >96% purity for batch and continu-
ous processing [5]. A four-step



Box 2. Reactors and Scaling Considerations for Precipitation Unit Operations

Batch Stirred Tank Reactor
Precipitation processes are often performed in large stirred tanks whereby the precipitant is slowly fed to the protein solution at a constant mixing rate to avoid local
concentration gradients and solution heterogeneity (Figure IA). When precipitation equilibrium or steady state is reached, the suspension is then harvested by
centrifugation or filtration. This reactor configuration is often used for blood plasma fractionation [1].

Continuous Tubular Reactor
In the continuous tubular reactor (CTR) configuration, precipitant and protein solutions are fed continuously through an initial mixer (static or active) at a defined flow
rate and then passed through a long tube whose length is determined by the precipitation kinetics (Figure IB) [14]. Minimal mixing occurs as the reaction proceeds
through the reactor and the suspension progresses in a pluglike flow fashion. Coiling or bending of the tube minimises the use of space required for operation.

Coiled Flow Inversion Reactor
Similar to the CTR, initial mixing of precipitant and protein solution is achievedwith an in-linemixer before proceeding through a series of coiled flow inversion reactors
(CFIRs) [13]. Each CFIR consists of helical coils of tubing, which are bent at equidistant right angles around pipes (Figure IC). The helix configuration induces a
secondary flow pattern called Dean vortices due to centrifugal forces which enhance radial mixing and a sharper residence time distribution. Right-angle bends
further enhance radial mixing and provide even narrower residence time distributions to better emulate plug flow compared with the CTR configuration.

Scaling up
One approach to scale up is the Camp number (NCa), which is the product of the shear rate and aging time [14]. When NCa > 105, precipitates are said to be
mechanically stable to withstand shear forces experienced in industrial separation equipment. Various reactor designs are available, which can or have the potential
to accommodate large-scale precipitation processes. Whilst traditional precipitation is performed in stirred tanks, large amounts of precipitant relative to product will
result in exceedingly large volumes, and mixing becomes more challenging. Scaling-up a batch process is typically based on achieving a constant power per unit
volume, which requires higher energy inputs with increasing volume. To overcome this, alternative reactors – including the CTR and CFIR – have been employed for
continuous precipitation and have shown similar performance to batch precipitation but with significantly higher productivity [4,13]. These reactors also have the
advantage of incorporating in-line monitors to track process conditions in real-time, enabling quick responses to process changes [13]. However, precipitations that
require residence times on the order of several hours may not make much sense for continuous processing as this would involve long tubing and low flow rates
affecting overall productivity and hence be more suitable for batch processing.
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Figure I. Schematic Illustration of Different Reactors. (A) Batch stirred tank reactors, (B) continuous tubular reactors, and (C) coiled flow inversion reactors for
precipitation applications.
precipitation procedure using caprylic
acid (impurity precipitation), PEG (mAb
product precipitation), CaCl2 (impurity
precipitation), and cold ethanol (mAb
product precipitation) directly from cell
culture fluid achieved an overall mAb
yield of 70%, removal of HCPs as low
as 300 ppm, and removal of DNA up to
T

94 ng/mL; besides, there were no
detectable aggregates, all of which
approach the profile of a pharmaceuti-
cal-grade product [7].
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Tag- or Affinity-Based Precipitation
A novel precipitation approach is to use
affinity ligands or peptide tags that can
form complexes with therapeutic prod-
ucts and become precipitated under
certain conditions [10–12]. In one such
example, a pH-responsive short peptide
tag derived from Corynebacterium glu-
tamicum cell surface protein B (CspB)
fused to proinsulins, Teriparatide and
Bivalirudin, enabled a reversible and
potentially cost-effective precipitation
process for unstable therapeutics at
nonphysiological conditions with near
100% recoveries. Similarly, the pH-
responsive polyelectrolyte Eudragit
S-100 fused to Staphylococcus aureus
Protein A could precipitate 89% of mAb
under pH 5.2 and 7 �C with >95% purity
in a single step at a precipitant-to-mAb
ratio of 6:1 [10]. Swartz and colleagues
[11] used Z-domain-elastin-like poly-
peptide (Z-ELP) nanocages containing
an IgG-binding domain to precipitate
mAbs and Fc-fusion proteins with solu-
tion pH. Precipitant-to-target protein
ratios of 3:1 were shown to precipitate
>95% product from cell culture fluid at
ambient temperature with short resi-
dence times (<30 min) and resulted in
>99% removal of HCP and DNA for
some mAbs depending on the pH.

In another study, Handlogten and col-
leagues [12] demonstrated a rapid purifi-
cation procedure for the pharmaceutical
antibodies trastuzumab and rituximab
using a two-step process involving
ammonium sulfate precipitation and affin-
ity-based precipitation using synthetic tri-
valent haptens. In the first step,
ammonium sulfate at 1.2 M was used
for the precipitation of large impurities,
and in the second step, trivalent haptens
were added to the soluble fraction (1.1
haptens per antibody) to form cyclic com-
plexes with bivalently active antibodies
and immediately induce precipitation
without altering the ammonium sulfate
concentration. This method obtained
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>85% yield and >95% purity of bivalent
active antibodies. Classic precipitants can
be challenging to recycle, but affinity tags
could be dissociated from their complexes
using chromatography or filtration and
reused for further purification cycles. The
cost of affinity tags must however be con-
sidered to justify a tag-based precipitation
for a platform process.

Concluding Remarks and Future
Prospects
Given the increased demand for thera-
peutic production, downstream process-
ing methods such as precipitation can
offer a scalable and cost-effective alter-
native. Protein purification with precipita-
tion has the flexibility of using various
cheap precipitating agents for protein
capture, intermediate purification, and
polishing with relatively short process
times, which can be adapted to batch
or continuous processing. To compete
with conventional chromatography, pre-
cipitation methods must undergo exten-
sive development and optimisation,
mostly in terms of impurity removal,
before being considered as alternatives
for an industrial process. High-through-
put process development in combination
with design of experiments approaches
can help to understand and identify the
process conditions that influence precip-
itation performance but remain a labori-
ous task. Because of the large number of
variables, the required process analytical
technology must be identified and imple-
mented to monitor performance and
ensure process robustness in accor-
dance with industry standards. Recent
studies provide more confidence in
the possibility of implementing precipita-
tion in platform processes with precipi-
tants such as PEG, ethanol, caprylic
acid, calcium chloride, and affinity tags.
However, large-scale studies are needed
to determine the performance and eco-
nomic viability of using these agents for
inducing precipitation at commercial
scale.
Applying precipitation in an industrial set-
ting requires a number of considerations
prior to formulating a scale-up strategy
because performance is likely to differ
with scale. Considering the short process
times reported for recent antibody precip-
itation studies, implementing continuous
reactors is appealing. Options for scaling
up these reactors (Box 2) might include
increasing the pipe diameter and flow rate
to have the same residence time [13].
However, yields could potentially differ
as a result of the differences in flow regime
and mixing efficiency. Alternatively, a
scale-out approach could be more desir-
able, which would provide identical flow
patterns and yields, but at the cost of
more pumps and facility space.

Over the longer term, another strategy is
recycling the precipitant with tag- or affin-
ity-based precipitation methods, but the
regulatory burden associated with tag/
ligand robustness or consistent impurity
removal has not been addressed. Affinity-
based precipitation is appealing due to its
potential to provide a platform process
which would be more amenable to rapid
process development. Nonetheless, fur-
ther development is required, and an eval-
uation of the costs is needed.
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