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ABSTRACT:	Drug-target	binding	kinetics	has	recently	emerged	as	a	sometimes	critical	determinant	of	in	vivo	efficacy	and	
toxicity.	Its	rational	optimization	to	improve	potency	or	reduce	side	effects	of	drugs	is,	however,	extremely	difficult.	Molecular	
simulations	can	play	a	crucial	role	in	identifying	features	and	properties	of	small	ligands	and	their	protein	targets	affecting	
the	binding	kinetics,	but	significant	challenges	 include	 the	 long	timescales	 involved	 in	(un)binding	events	and	the	limited	
accuracy	of	empirical	atomistic	force-fields	(lacking	e.g.	changes	in	electronic	polarization).	In	an	effort	to	overcome	these	
hurdles,	we	propose	a	method	that	combines	state-of-the-art	enhanced	sampling	simulations	and	quantum	mechanics/mo-
lecular	mechanics	(QM/MM)	calculations	at	the	BLYP/VDZ	level	to	compute	association	free	energy	profiles	and	characterize	
the	binding	kinetics	in	terms	of	structure	and	dynamics	of	the	transition	state	ensemble.	We	test	our	combined	approach	on	
the	binding	of	the	anticancer	drug	Imatinib	to	Src	kinase,	a	well-characterized	target	for	cancer	therapy	with	a	complex	bind-
ing	mechanism	involving	significant	conformational	changes.	The	results	indicate	significant	changes	in	polarization	along	
the	binding	pathways,	which	affect	the	predicted	binding	kinetics.	This	is	likely	to	be	of	widespread	importance	in	ligand-
target	binding.

Introduction	

Understanding	protein-ligand	binding	mechanisms	
and	their	associated	thermodynamics	and	kinetics	
is	of	paramount	importance	for	the	rational	optimi-
zation	of	 lead	 compounds	 in	drug	discovery.1–3	 In	
computer-aided	 drug	 discovery	 (CADD)	 the	main	
emphasis	has	so	far	been	placed	on	predicting	the	
most	 likely	 binding	pose	 (usually	 by	 docking	 and	
other	 fast	 but	 approximate	methods)4	 and	 deter-
mining	relative	binding	affinity5,6.	In	contrast,	only	
recently,	 it	 has	been	possible	 to	predict	 the	path-
ways	for	binding/unbinding	events	and	their	asso-
ciated	 free	 energy	 profiles	 through	 more	 refined	
computational	methods1,7–11.	However,	it	is	increas-
ingly	recognized	that	protein-ligand	binding	kinet-
ics	 are	 crucial	 for	 understanding	 the	 efficacy	 and	
toxicity	of	 lead	compounds.	Molecular	simulations	
have	now	been	shown	to	be	an	important	tool	for	
the	 investigation	 of	 molecular	 properties	 at	 the	

base	of	kinetic	behaviors	in	a	number	of	cases.	12–14		

Ligand	efficacy	 in	 vivo	 is	 influenced	by	 a	 complex	
network	of	short-	and	long-lived	interactions	with	a	
plethora	 of	 biomolecules	 in	 the	 crowded	 cellular	
and	tissutal	milieu,	where	the	concentration	of	the	
ligand	 itself	 is	 variable	 and	 dependent	 on	 its	 dy-
namics	 and	 kinetic	 properties	 (absorption,	 distri-
bution,	metabolism,	excretion).12	Thus,	 in	addition	
to	 the	binding	affinity	 to	desired	 (and	unwanted)	
targets	 (Kd),	which	has	received	most	attention	in	
rational	 drug	 discovery,	 the	 association/dissocia-
tion	 rate	 constants	 (kon	and	 	 koff)	 or	 the	 residence	
time	(τ	defined	as	1/koff,	the	period	of	occupancy	of	
the	target	binding	site	by	the	ligand)	are	relevant	in	
determining	the	therapeutic	efficacy	and	toxicity	of	
drugs.13,14		Examples	can	be	found	among	many	ap-
proved	drugs,	 some	of	which	have	very	 long	resi-
dence	times,	as	in	the	case	of	finasteride,	an	inhibi-
tor	 of	 5α-reductase	 used	 to	 treat	 benign	prostate	
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hyperplasia,	or	even	bind	irreversibly,	as	for	aspi-
rin.15	More	evidence	of	a	direct	correlation	between	
residence	 time	 (or	on-	 or	 off-rates)	 and	 the	 func-
tional	efficacy	of	drugs,	(as	in	the	exemplary	case	of	
adenosine	A2	agonists,16)	is	emerging.	Also,	shorter	
interaction	 times	 with	 unwanted	 targets	 may	 re-
duce	side	effects	and	toxicity.17		

The	increasing	realization	of	the	importance	of	res-
idence	time	and	binding	kinetics	has	led	to	numer-
ous	 efforts	 to	 develop	 and	 use	 computational	 ap-
proaches	able	to	predict	and	model	them.	Many	are	
based	on	atomistic	molecular	dynamics	(MD)	simu-
lations,	often	complemented	by	Markov	State	Mod-
els,	 e.g.	 combined	 by	 Brownian	 dynamics	 simula-
tions	and/or	applying	milestoning	approaches11,18–
24.	The	potential	of	such	methods	in	modeling	kinet-
ics,	is	clear,	especially	of	ligands	binding	to	surface	
pockets.	 However,	 a	 significant	 limiting	 factor	 is	
that	the	timescales	accessible	in	atomistic	MD	sim-
ulations	 are	 much	 shorter	 than	 most	 unbinding	
events.19,23	Adding	to	this	is	the	limited	accuracy	of	
molecular	 mechanics	 (MM)	 force-fields,	 typically	
used	 in	 the	 for	biochemical	studies.	The	solvation	
environment	of	ligands	changes	significantly	during	
the	binding	and	unbinding	events,	 suggesting	 that	
changes	 in	 electronic	polarization,	 usually	not	 ac-
counted	for	in	such	force-fields,	may	play	a	role	in	
determining	the	kinetics.1,25–27		

Enhanced	sampling	free	energy	methods	have	been	
successfully	used	to	address	the	timescale	problem	
in	ligand	binding	in	a	number	of	cases1,28–30.	By	ac-
celerating	 rare	 events	 and	 facilitating	 the	 estima-
tion	of	binding	free	energies	along	physically	mean-
ingful	association	pathways,	such	methods	allow	to	
identify	the	transition	state	ensemble	and	compute	
its	 associated	 energy.1,31–33	 Among	 these,	metady-
namics-based	methods	with	optimal	path-like	vari-
ables,	such	as	Path	Collective	Variable	(PCV),34	com-
bined	 with	 Parallel	 Tempering	 (PTmetaD),	 have	
proved	particularly	useful	in	predicting	the	mecha-
nisms	and	free	energy	profiles	associated	with	mo-
lecular	recognition.8,21,28,30,35–37		

Tiwari	 et	 al.	 have	 recently	 developed	 a	 protocol	
making	use	of	metadynamics	to	reconstruct	the	ki-
netics	of	binding	events	for	which	a	single	free	en-
ergy	 barrier	 clearly	 separates	 the	 bound	 and	 un-
bound	 states.38	 In	 these	particularly	 simple	 cases,	
the	binding	kinetics	can	be	effectively	predicted	un-
der	the	strict	condition	that	the	transition	over	the	
barrier	is	much	faster	than	the	metadynamics	bias	
deposition	time.39,40	However,	when	(un)binding	is	

characterized	by	a	complex,	diffusive	barrier,	with	
intermediate	metastable	states,	this	condition	is	not	
fulfilled,	making	it	difficult	to	employ	this	method.	
This	 scenario	 arises	when	multiple	 weak	 binding	
sites	are	found	en	route	to	the	final	binding	mode,	
or	when	conformational	changes	in	the	target	upon,	
or	prior	 to,	 the	 interaction	with	 the	 ligand	are	re-
quired	for	a	full	binding.37,41–45	Extra	care	has	to	be	
taken	when	dealing	with	such	systems,	as	both	the	
binding	 and	 the	 conformational	 transition	 terms	
contribute	to	the	kinetics.	Transition	Path	Sampling	
(TPS)46-based	approaches,	such	as	Transition	State-
Partial	 Path	 Transition	 Interface	 Sampling	 (TS-
PPTIS)47	are	better	suited	for	such	systems.		

TS-PPTIS	 combines	PCV34	with	Partial	 Path	 Inter-
face	Sampling.33	It	provides	an	accurate	description	
of	binding	events	belonging	to	either	the	conforma-
tional	selection	or	the	induced-fit	categories	while	
allowing	 for	 an	 efficient	 calculation	 of	 rate	 con-
stants.	 Metadynamics	 is	 first	 used	 in	 conjunction	
with	 the	 optimal	 PCV	 collective	 variables	 to	 dis-
place	the	ligand	from	the	deep	free	energy	minima	
associated	 with	 long	 residence	 times,	 which	 are	
otherwise	 very	 difficult	 to	 overcome	 by	 standard	
MD	or	TPS	approaches,	while	PPTIS	is	used	to	accu-
rately	sample	the	diffusive	barriers,	including	those	
having	 additional	 shallow	 local	minima.	 TS-PPTIS	
builds	on	PPTIS	by	reformulating	the	reactive	flux	
equation,	 to	 allow	 for	 the	 sampling	 of	 small	win-
dows	along	the	binding	pathway	instead	of	the	en-
tire	 trajectory	 from	reagents	to	products,	 improv-
ing	the	convergence	times.	

This	is	an	accurate	but	computationally	expensive	
approach.	Both	a	converged	metadynamics	run	and	
a	 number	 of	 short	 unbiased	 MD	 simulations	 run	
from	 the	 interfaces	 around	 the	 transition	 state,	
must	be	performed.47	It	is	however	expected	to	be	
more	robust	and	accurate	than	other	MD-based	ap-
proaches,	 especially	 when	 the	 non-trivial	 confor-
mational	rearrangements	of	target	play	a	role	in	the	
binding.21	We	have	previously	used	this	method	to	
model	 the	 binding	 mechanism	 of	 the	 anti-cancer	
drug	 imatinib	 to	 the	protein	 tyrosine	kinase	c-Src	
and	to	compute	 its	kinetics.	TS-PPTIS	was	able	 to	
recover	the	experimental	association	kinetics	as	ob-
tained	by	surface	plasmon	resonance	and,	by	mod-
eling	the	target	conformational	dynamics,	to	recon-
cile	 the	 contrasting	 conformational	 selection	 and	
induced-fit	mechanisms	hypothesized	for	this	com-
plex.	21	
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MM	 force-fields	have	been	developed	and	 refined	
over	many	years,	and	can	now	provide	an	excellent	
overall	description	of	protein	structure	and	dynam-
ics,	while	routine	development	of	appropriate	pa-
rameters	 for	 ligands	 requires	 some	 effort.	 26,48–51	
The	 typical	 invariant	 atom-centered	 point	 charge	
MM	model	cannot	provide	a	full	description	of	mo-
lecular	 electrostatic	 properties.	 Potentially	 im-
portant	features	such	as	pi	cloud	interactions52	and	
sigma	holes53	cannot	be	represented	by	models	that	
include	charges	only	an	atomic	centers.	Also,	envi-
ronmental	changes	do	not	affect	the	charges	and	so	
changes	in	electronic	polarization	effects	are	not	in-
cluded;	polarization	 is	 included	 in	 an	average,	 in-
variant	way	(e.g.	charges	giving	an	enhanced	dipole	
moment)	generally	appropriate	for	a	solvated	mol-
ecule.	Such	effects,	however,	may	play	a	significant	
role	 in	 drug	 binding	 and	 unbinding:	 for	 example,	
there	may	be	significant	changes	in	polarization	be-
cause	of	the	change	in	solvation	as	the	ligand	binds.	
Electronic	polarization	can	be	captured	by	more	so-
phisticated	and	physically	realistic	treatments,	ide-
ally	based	on	a	quantum	mechanical	(QM)	level	of	
description.54		

Pioneering	work	by	Gao	et	al.	demonstrated	the	po-
tential	 of	 QM/MM	 simulations	 to	 investigate	 and	
quantify	 electronic	 polarization	 effects	 in	 solva-
tion.55	Gao	also	went	on	to	apply	this	approach	to	
protein−	 ligand	 binding	 affinities,	 e.g.,	 a	 QM/MM	
study	 on	 the	 HIV-1	 protease	 inhibitors	 that	 indi-
cated	that	polarization	contributes	to	binding.56		

On	the	basis	of	such	results,	we	have	thus	developed	
a	method	that	applies	the	Warshel	cycle	with	a	Me-
tropolis-Hastings	algorithm	to	allow	for	a		rigorous	
and	efficient	quantification	of	the	change	in	interac-
tion	energies	of	a	ligand	when	changing	from	an	MM	
to	 a	 QM	 description.57	 The	 result	 of	 transitioning	
from	a	fully	MM	force	field	to	a	QM/MM	represen-
tation	is	quantified	by	means	of	free	energy	simula-
tions	 driven	 by	 a	 reaction	 coordinate	 converting	
from	one	 level	 of	 description	 to	another.	 Efficient	
sampling	 is	 achieved	 through	 replica	 exchange	
across	 values	of	 the	 reaction	 coordinate,	with	 the	
free	energy	for	changing	from	an	MM	Hamiltonian	
to	a	QM	Hamiltonian	calculated	by	thermodynamic	
integration.57,58	 We	 have	 previously	 applied	 this	
method	to	check	the	effects	of	a	QM	description	of	
the	ligand	on	the	binding	affinity57,59.	For	example,	
polarization	effects	on	the	absolute	binding	free	en-
ergy	of	the	cavity	water	molecules	in	Influenza	Neu-
raminidase	were	investigated	in	our	work	of	Ref.	60	

,	where	we	have	shown	that	the	polarization	can	in-
deed	cause	a	notable	increase	in	the	absolute	bind-
ing	free	energy,	up	to	~1.0	kcal/mol.	

To	 address	 both	 the	 timescale	 problems	 and	 the	
force-field	 inaccuracies,	 we	 combine	 here	 TS-
TPPTIS,	to	calculate	binding	pathways,	sample	the	
transition	state	and	provide	 the	most	accurate	ki-
netics	information	at	the	empirical	(MM)	level,	with	
the	improved	accuracy	obtained	from	quantum	me-
chanical	calculations	within	a	QM/MM	framework.	
Although	tested	extensively	on	binding	affinity	pre-
dictions,	our	method	has	never	been	used	to	correct	
the	drug	binding	kinetics	before.	

The	resulting	protocol	is	efficient	while	allowing	for	
electronic	polarization	effects	of	the	ligand	to	be	in-
cluded.57	 Furthermore,	 other	 factors,	 such	 as	 the	
definition	of	π	systems,	and	sigma	holes	are	likely	
to	be	taken	into	account	by	this	correction,	but	their	
effect	along	the	binding	path	is	likely	to	be	negligi-
ble.	

As	 a	 test	 case,	 we	 revisited	 the	 binding	 of	 the	
anticancer	 drug	 imatinib	 to	 Src	 non-receptor	
tyrosine	 kinase.	 Src	 was	 the	 first	 viral	 oncogenic	
protein	to	be	discovered,61,62	and	provides	an	ideal	
system	 for	 mechanistic	 explorations	 of	 complex	
drug	binding	events	due	to	its	high	conformational	
flexibility,63	 biomedical	 importance	 and	 the	
availability	 of	 extensive	 experimental	 and	
computational	 data,21,43,64–67	 including	 high	
resolution	crystal	structures	in	both	the	active	(PDB	
id:	1Y57,	1YI6)68	and	inactive	conformations	(PDB	
id:	 2SRC).69	 Src	 is	 often	 mutated	 in	 a	 variety	 of	
tumors,	 including	 those	 of	 the	 colon,	 liver,	 lung,	
breast,	and	pancreas.	Src	plays	an	important	role	in	
metastasis	 and	 has	 been	 thus	 the	 subject	 of	
numerous	 drug	 design	 studies	 over	 many	 years.	
Inhibitors	 such	 as	 dasatinib,	 saracatinib,	 and	
bosutinib	are	some	of	the	compounds	developed	to	
target	this	protein	which	entered	clinical	tests.70		

A	prototypical	inhibitor	is	imatinib,	a	drug	used	to	
treat	a	number	of	different	tumors:	for	example,	it	
deactivates	 the	 tyrosine	 kinase	 c-Abl,	 the	
autoinhibition	mechanism	of	which	malfunctions	in	
chronic	 myelogenous	 leukemia.71 Imatinib	 also	
binds	to	an	inactive	conformation	of	Src,72	in	which	
the	aspartate	(D404)	of	the	conserved	Asp-Phe-Gly	
motif	(DFG),	located	at	the	end	of	the	activation	loop	
(A-loop),	points	outwards	(DFG-flip)	from	the	ATP	
binding	site	(see	Figure	1).	
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Figure	1.		a)	Structure	of	the	catalytic	domain	of	c-Src,	where	
relevant	 secondary	 structures	 are	 highlighted	 with	 different	
colors.	Imatinib	is	shown	in	blue.	b)	Lewis	structure	of	imatinib.	
c)The	 c-Src	 binding	 site:	 residues	 involved	 in	 the	 conforma-
tional	 rearrangement	upon	binding	of	 imatinib	are	 shown	in	
mauve.		

Imatinib	has	been	proposed	to	exert	its	effect	on	the	
DFG-flip	 conformational	 change	 by	 either	 a	
conformational	 selection	 or	 induced-fit	
mechanisms.19,21,64,66,73,74	 We	 have	 shown,	 by	
combining	 state-of-the-art	 binding	 simulations	
with	 NMR	 and	 surface	 plasmon	 resonance	
experiments,	 that	 at	 room	 temperature,	 the	
conformational	 selection	 path	 is	 dominant,	
although	both	mechanisms	are	possible	(see	Figure	
2).21	

Methods	

The	Src	structures	were	retrieved	from	the	Protein	
Data	 Bank	 (PDB	 entries	2SRC	and	2OIQ).	Missing	
residues	 in	 2OIQ	 were	 added	 using	 the	 software	
Modeller75,	 according	 to	 the	 respective	 UniProt	
sequence	and	using	2SRC	as	a	template.	For	the	apo	
structure,	we	used	the	Amber99SB*-ILDN51,76	force	
field,	 including	backbone	corrections	with	explicit	
solvation	of	TIP3P	water	molecules.	The	ligand	was	
parameterized	with	GAFF77	with	charges	calculated	
at	the	Hartree	Fock	level	using	a	6-31G(d)	basis	set	
with	Gaussian	0978	and	the	dihedrals	ca-ca-n-c	and	
ca-ca-c3-n3	by	DFT	torsional	scans	with	a	step	of	10	
degrees.21	 All	 simulations	 and	 free	 energy	
calculations	were	 performed	 using	 Gromacs	 4.679	
combined	with	the	PLUMED	plug-in80.	The	system	
was	 minimized	 with	 10000	 steps	 of	 conjugated	
gradient	 and	 equilibrated	 in	 the	 isothermal-

isobaric	 (NPT)	 ensemble	 for	 10	 ns,	 using	 a	
Berendsen	barostat	to	keep	the	pressure	at	1	atm.	
The	 temperature	 was	 kept	 at	 305	 K	 with	 the	 V-
rescale	 algorithm.81	 A	 1	 μs	 production	 run	 was	
carried	 out	 for	 all	 the	 systems	 in	 the	 canonical	
(NVT)	ensemble.	The	particle	mesh	Ewald	(PME)-
Switch	 algorithm	 was	 used	 for	 electrostatic	
interactions	with	a	cut-off	of	1	nm.	A	single	cut-off	
of	1.2	nm	was	used	for	van	der	Waals	interactions.	
The	 binding	 free	 energy	 was	 computed	 using	
parallel-tempering	 metadynamics	 (PT-MetaD)82	
with	 5	 replicas	 using	 the	 Well-Tempered	
Ensemble83	with	3	Collective	Variables	(CVs):	the	2	
Path	 Collective	 Variables	 (PCVs)	 s	 and	 z,	 keeping	
track	of	the	progression	and	the	distance	from	the	
unbinding	 path	 respectively,34	 and	 a	 CV	 counting	
the	 number	 of	 water	 molecules	 interacting	 with	
both	the	ligand	and	the	cavity.	The	bias	factor	was	
set	to	15.0	and	the	Gaussians	height	to	1.25	kJ/mol,	
with	 a	 deposition	 rate	 of	 1/2000	 steps.	 The	
Gaussian	width	was	set	to	0.1,	0.005	and	0.1	for	the	
three	 CVs,	 respectively.	 As	 customary	 for	 ligand	
binding7,	 we	 performed	 a	 preliminary	
metadynamics	run	using	a	simple	geometrical	CV	to	
obtain	an	initial	pathway	for	the	setup	of	the	PCVs.	
We	selected	27	frames	from	the	lowest	energy	path	
obtained	in	the	preliminary	run	and	optimized	this	
initial	 guess	 using	 the	methodology	 described	 by	
Branduardi	et	al.34	The	preliminary	metadynamics	
showed	large	rearrangements	of	the	A-loop,	so	we	
included	Cα	atoms	of	the	loop	and	of	the	aC-helix	in	
the	definition	of	the	PCVs.	Two	extra	CVs	defined	as	
the	 distance	 between	 D404	 and	 K295	 and	 the	
distance	 between	 P405	 and	 L317	 were	 used	 to	
describe	the	DFG-flip.64	The	sampling	convergence	
was	checked	by	comparing	 the	reconstructed	free	
energy	 surfaces	 at	 different	 time	 intervals	 during	
the	last	50	ns	of	the	simulations.		

Following	the	enhanced	sampling	MD	simulations,	
we	applied	a	reaction	coordinate,	λ	to	tune	the	QM	
vs	 MM	 descriptions,	 by	 scaling	 the	 Hamiltonian	
from	a	QM	(λ=0)	state	to	an	MM	(λ=1)	state.		The	λ	
coordinate	is	used	in	Replica	Exchange	Thermody-
namic	 Integration	 (RETI)84	 simulations,	 with	 the	
Metropolis-Hasting	Monte	Carlo	method,	 to	accel-
erate	 the	 sampling	 of	 the	 system	with	 a	 QM/MM	
Hamiltonian57	 (for	 a	more	 detailed	 description	 of	
the	 QM/MM	 FEP	 methodology,	 see	 SI).	 All	 the	
QM/MM	 simulations	 were	 performed	 at	 the	
BLYP85,86/VDZ	 level	 of	 theory,	 using	 the	 ‘quan-
tomm’	 application	 for	 QM<->MM	 transformations	
available	 in	 Sire	(www.siremol.org)87,	 using	 Sire’s	
Monte	 Carlo	 engine	 to	 drive	 the	 simulations	 and	
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Molpro88	 for	 QM	 energy	 calculations.	 Previous	
tests89	have	demonstrated	that	the	BLYP	functional	
shows	 good	 consistency	with	different	MM	water	
models.	Shaw	et	al.	showed	that	the	free	energy	cost	
of	perturbing	a	QM	water	molecule	into	an	MM	de-
scription	in	bulk	MM	solvent	is	less	than	1	kcal/mol	
with	BLYP	 (0.5	kcal/mol	 for	QM→TIP3P	and	−0.1	
kcal/mol	for	QM→TIP4P	transformation).89		

All	Monte	Carlo	simulations	were	run	in	the	NPT	en-
semble	at	room	temperature	(300K).	The	same	MM	
Lennard-Jones	 parameters	 used	 for	 the	 MD	 and	
PTmetaD	 simulations	 were	 maintained	 in	 the	
QM/MM	 simulations;	 this	 has	 previously	 been	
shown	to	provide	a	reasonable	description	of	bio-
molecular	 interactions.90,91	 The	 ligand	 confor-
mations	were	indeed	found	to	be	consistently	simi-
lar	 in	 both	 the	 QM/MM	 and	 the	MM	 simulations.	
(see	SI,	figure	S2).				

The	RETI	scheme	was	performed	using	8	different	
λ	widows	and	 the	values:	0.0,	0.142,	0.285,	0.429,	
0.571,	0.714,	0.857	and	1.0	and	we	ran	a	total	of	50	
blocks	 of	 multiscale	 Monte	 Carlo	moves	 for	 each	
window	i.e.	 for	each	lambda	value.	Only	the	inter-
molecular	 component	 of	 the	 QM/MM	 energy	was	
included	for	the	ligand.	This	means	that	the	free	en-
ergy	 correction	 between	 the	 QM/MM	 and	 MM	
model	 captured	 differences	 in	 the	 intermolecular	
interactions	involving	the	ligand	only.	This	particu-
lar	choice	was	made	to	simplify	the	description	and	
avoid	 calculations	 on	 intramolecular	 interac-
tions.92,93	

We	 performed	 2.5	 million	 MC	 moves	 in	 the	 MM	
Hamiltonian	per	lambda	window	and	a	total	of	50	
QM	energy	evaluations	per	lambda	window.	In	to-
tal,	 over	 8	 lambda	 windows,	 20	 million	 MM	 MC	
moves	 and	 400	 QM	 energies	 were	 evaluated.		
In	 all	 the	 QM/MM	 perturbation	 calculations,	 the	
protein	backbone	was	kept	fixed,	while	amino	acid	
side	chains	and	water	molecules	were	free	to	move.		
	

Results	

Free	energy	and	kinetics	 calculations.	The	 free	
energy	 profile	 associated	 with	 the	 binding	 and	
unbinding	 of	 the	 ligand	 (imatinib)	 from	 c-Src	 is	
shown	in	upper	panel	in	Fig.	2.		In	the	lower	panels	
are	representative	snapshots	of	the	unbinding	tra-
jectory.	The	system	presents	two	separate	binding	
poses	(A	and	B),	distinct	only	by	the	position	of	the	
A-loop		covering	the	binding	cavity,	which	through	
a	partial	hinge	motion	opens	and	detaches	from	the	

β3-αC	linker.	This	movement	anticipates	and	is	cru-
cial	to	the	unbinding	of	imatinib	and	was	thus	ex-
plicitly	taken	into	account	during	the	MetaD	simu-
lations.		With	the	exception	of	local	rearrangements	
in	the	residual	chains	in	these	secondary	structures,	
no	noticeable	difference	is	observed	between	A	and	
B	 in	 the	 binding	 conformation,	 in	 the	 level	 of	
solvation	and	in	the	interaction	with	the	cavity	res-
idues.	 The	 difference	 in	 free	 energy	 between	 the	
two	minima	is	less	than	1	kcal/mol	with	A	being	the	
most	 stable	 of	 the	 two	 conformations.	 Looking	 at	
the	ensemble	of	A	and	B	conformations,	we	can	ob-
serve	 that	 they	 are	 close	 to	 the	 reference	 X-ray	
structure	binding	pose.	The	main	body	is	locked	in	
position	 by	 the	 presence	 of	 a	 tight-knitted	 salt	
bridges	 network	 between	D404,	 R409,	 E310,	 and	
K295	(shown	in	mauve	in	Fig.	2	bottom),	while	the	
terminal	piperazine,	 the	only	solvated	moiety	out-
side	 of	 the	 cavity,	 has	more	 freedom	 to	 fluctuate.	
The	 ligand	 interacts	 transiently	 with	 a	 few	 back-
bone	atoms,	mainly	 through	 its	aromatic	rings	ni-
trogens.	 In	 particular	 T338,	 M341	 and	 D404,	 the	
only	 residue	 of	 the	 salt	 bridges	 network	 consist-
ently	interacting	with	the	ligand	via	its	backbone	ni-
trogen.	 A	 few	 aromatic	 residues,	 Y340	 and	 F405	
may	also	help	to	pin	down	the	ligand	by	means	of	π-
stacking.	

The	 transition	 toward	the	unbound	state	(TS),	 re-
quires	the	breaking	of	the	salt	bridges	network	by	
means	 of	 steric	 hindrance,	 justifying	 the	 high	 en-
ergy	barrier	separating	the	two	states.	In	Fig.	2	top,	
TS	 is	 located	at	Spath	~	12,	 and	 is	 indeed	16	±	1.5	
kcal/mol	higher	than	the	main	binding	pose	A.	The	
A-loop	opens,	as	mentioned	previously,	to	allow	for	
the	 passage	 of	 the	 ligand,	 causing	 local	 defor-
mations	in	the	residues	belonging	to	the	A-loop	it-
self,	the	D-loop,	β3,	αC	and	their	linker.	The	confor-
mations	assumed	by	imatinib	forcibly	cut	D404	out	
of	the	salt	bridges	network	and	prevents	it	from	in-
teracting	with	R409	and	K295.	A	partial	unfolding	
of	the	αG-helix	is	also	observed	in	this	ensemble,	in	
agreement	 with	 observed	 folding	 free	 energy	
changes	 obtained	 from	 H/D	
exchangeexperiments21	.		
	
Before	reaching	a	fully	solvated	state,	a	pre-binding	
conformation	(C	or	encounter	complex)	is	observed	
at	Spath	around	15–16	where	imatinib	is	wedged	un-
der	αC	 in	what	is	known	as	“deep	pocket”21.	Here	
the	terminal	amino	rings	of	the	ligand	still	affect	the	
salt	 bridges	 network,	 by	 transiently	 breaking	 the	
bond	 between	 K295	 and	 E310	 only.	 This	 can	 be	
seen	as	a	preliminary	step	to	the	full	binding,	useful	
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in	helping	the	ligand	find	its	way	to	the	binding	site	
and	 in	 lowering	 the	 energy	 penalty	 of	 the	 salt	
bridges	disruption.	The	free	energy	of	this	basin	is	
approximatively	4	kcal/mol	higher	 than	 the	main	
basin	A.		
	

	

Figure	 2.		 Top:	 Binding	 free	 energy	 profile	 obtained	 with	
metadynamics	simulation	using	the	MM-only	force	field,	along	
the	 path	 variable,	 which	 defines	 an	 optimal	 association	 and	
dissociation	 coordinate.	 The	 most	 relevant	 minima	 and	 the	
transition	state	are	labeled	and	discussed	in	the	text.	The	area	
of	the	transition	state	is	represented	as	a	dashed	line.	The	two	
profiles	in	the	region	from	s	(PCV	1)	=16	to	s	=	27	(i.e.	from	the	
secondary	 pocket	 to	 the	 unbound	 state)	 correspond	 to	 the	
conformational	selection	mechanism	(cyan	line,	‘flip-bind’)	and	
to	an	induced	fit	mechanism	(orange	line,	‘bind-flip’).	Bottom:		
exemple	snapshots	of	an	unfolding	event.	As	before,	the	protein	
is	 shown	 as	 a	 white	 cartoon,	 the	 ligand	 in	 blue	 licorice,	 the	
residues	taking	part	of	the	salt	bridges	network	are	in	mauve	
and	the	remaining	residues	interacting	with	the	ligand	are	in	
cyan.	

NMR	experiments	have	confirmed	the	presence	of	
this	 minimum,	 which	 is	 suggestive	 of	 a	 two-step	
binding	 process,	 in	 which	 a	 fast	 binding	 event	 is	
followed	 by	 a	 slower	 conformational	
rearrangement.21	TS-PPTIS	was	developed	to	deal	

with	particularly	difficult	cases	such	as	this,	where	
the	 complexity	 of	 the	 unbinding	 mechanisms	
lowers	 the	 transmission	 coefficient	 well	 below	
1.21,47	 In	 order	 to	 evaluate	 the	 kinetics,	 the	
transition	pathway	was	first	divided	into	a	number	
of	 non-overlapping	 interfaces,	 from	 which	 more	
than	 10000	 short	 unbiased	MD	 trajectories	 were	
initiated.	As	expected,	 the	computed	 transmission	
coefficient	 proved	 to	 be	 much	 smaller	 than	 1,	
leading	to	a	dissociation	rate	of	0.0114	s−1	,	or	from	
0.001	to	0.139	s−1,	when	the	sampling	error	on	the	
free	 energy,	 estimated	 at	 0.593	 kcal/mol,	 is	
accounted	 for.	 The	 predicted	 rate	 is	 in	 fair	
agreement	with	that	measured	by	surface	plasmon	
resonance	(SPR)	at	pH	7.4,	0.11±0.08	s−1.21	

QM/MM	 corrections.	We	 computed	 the	 QM/MM	
binding	free	energy	corrections	on	four	representa-
tive	structures	extracted	from	the	PTmetaD	simula-
tions:	 in	 three	 of	 them,	 imatinib	 was	 complexed	
with	 c-Src	 (A,	 TS,	 C,	 corresponding	 to	 the	 fully	
bound	 complex,	 transition	 state	 and	 encounter	
complex,	respectively),	while	in	the	fourth	the	lig-
and	is	unbound	and	fully	solvated	(see	Fig.	3).	The	
binding	pose	in	state	B	shown	in	Fig.	2	was	found	to	
be	similar	to	 the	bound	state	A	in	terms	of	 ligand	
orientation	 and	 its	 interactions	 with	 water	mole-
cules	and	the	protein	and	was	thus	neglected	in	this	
calculation.		

The	results	are	shown	in	Table	1.	It	is	apparent	that	
the	MM	to	QM/MM	free	energy	correction	changes	
significantly	 in	 the	 different	 environments:	 it	 is	
largest	in	solution	(4.7±0.4	kcal/mol),	and	smallest	
when	imatinib	is	fully	bound	(1.9±0.3	kcal/mol).	As	
expected,	this	seems	to	suggest	that	MM	predictions	
on	ligand	binding	kinetics	may	have	significant	lim-
itations	 as	 the	 MM	 model	 may	 not	 capture	 im-
portant	effects	and	changes	along	the	binding	path-
way,	notable	changes	in	ligand	polarization.		

	
The	calculated	difference	in	the	free	energy	correc-
tions	between	the	bound	(A)	and	the	unbound	state	
is	2.8	kcal/mol	and	could	be	explained	by	the	differ-
ent	level	of	 ligand	burial	 in	the	hydrophobic	envi-
ronment	of	the	pocket.	In	the	bound	state,	the	lig-
and	is	deep	in	the	cavity	and	only	its	piperazine	ring	
is	exposed	to	the	solvent	(see	Fig.	3),	allowing	only	
a	few	water	molecules	around.	On	the	other	hand,	
the	correction	value	(4.7	kcal/mol)	in	the	solvated	
state,	 much	 larger	 than	 in	 the	 bound	 state	 (1.9	
kcal/mol),	 is	 consistent	 with	 the	 polar	 environ-
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ment,	surrounding	the	molecule.	Furthermore,	dif-
ferent	 conformation	 sampled	by	 the	 ligand	 in	 the	
solvated	state	may	also	affect	the	correction	(see	SI,	
figure	S2).		

The	free	energy	correction	at	the	TS	is	2.4	kcal/mol,	
still	 larger	 than	 that	 of	 the	 bound	 state	 by	 0.5	
kcal/mol.	 In	 this	 state,	 imatinib	 is	 detached	 from	
the	hinge	region	of	c-Src	and	has	moved	toward	the	
DFG	motif,	allowing	a	layer	of	water	molecules	be-
tween	the	ligand	and	the	protein.	A	large	portion	of	
the	ligand	is	thus	accessible	to	the	solvent,	forming	
a	 solvation	 shell.	 In	 the	 TS,	 the	 polar	 groups	 of	
imatinib	form	numerous	hydrogen	bonds	with	wa-
ter,	while	only	the	positively	charged	R154	residue	
from	the	protein	forms	a	salt	bridge	with	the	ligand	
(see	Fig.	2	and	3).	Similarly,	 to	what	observed	 for	
the	unbound	state,	the	ligand	moves	to	a	less	hydro-
phobic	region	when	going	for	A	to	the	TS	justifying	
the	 increase	 in	 free	 energy	 correction.			
Following	this	trend,	the	QM/MM	to	MM	correction	
to	the	free	energy	for	the	encounter	complex	(C)	is	
relatively	 large,	 intermediate	between	 the	TS	 and	
the	 fully	solvated	state.	Here	 the	correction	 is	3.9	
kcal/mol,	with	2	kcal/mol	of	difference	from	state	
A.	 Here,	 the	 nitrogen	 atom	 of	 the	 pyridine	 head	
group	of	the	ligand	faces	outward	and	is	more	sol-
vent	 accessible	 than	 in	 previous	 conformations	
along	the	unbinding	path,	while	the	rest	of	the	lig-
and	body	is	found	between	the	positively	charged	
Arg154	and	Met59;	an	 interaction	 	with	 the	methio-
nine	sulphur	atom	could	also	affect	the	polarization	
of	this	intermediate	state	and	help	increase	the	cor-
rection	factor52.					

	
					Basin	 ∆∆GQM/MM→

MM	

[kcal/mol]	

∆GMM		
[kcal/mol]	

∆G+∆∆G	
[kcal/mol]	

A	
TS	

-1.9±0.3	
-2.4±0.3	

-7.0±1.0	
9.0±1.5	

-4.2±0.9	
11.3±1.2	

C	 -3.9±0.3	 -3.4±1.0	 -2.6±0.9	
Unbound	 -4.7±0.4	 0.0±0.0	 0.0±0.0	
	

Table	1:	QM/MM	to	MM	correction	to	the	free	energy	cal-
culated	 for	 selected	conformations	along	 the	minimum	
free	 energy	 pathway.	The	QM/MM	 free	energy	 correc-
tion	is	calculated	with	BLYP/VDZ	level	of	theory.		The	en-
ergies	are	in	kcal/mol.	The	statistical	error	is	estimated	
from	the	standard	deviation	of	the	free	energy	average.	
In	the	final	column,	the	final	values	of	∆G	corrected	are	
shown	relative	to	the	unbound	state	(set	at	zero).	

	

	Figure	3:	Schematic	 representation	of	 the	bound	state	
(A),	the	transition	state	(TS)	and	the	encounter	complex	
(C)	 of	 the	 imatinib/c-Src	 system	 used	 to	 calculate	
QM/MM	 to	 MM	 free	 energy	 corrections.	 Imatinib	 is	
shown	 in	 blue	 licorice.	 Residues	 R154	 and	 M59	 are	
shown	 in	 magenta	 licorice.	 The	 water	 molecules	 are	
shown	 as	 red	 spheres	 excluding	 hydrogen	 atoms.	 The	
backbone	of	c-Src	is	shown	as	a	white	cartoon. 
In	all	cases,	both	in	the	bound	states	(A,	TS	and	C)	
as	well	as	in	the	solvated	(unbound)	state,	the	MM-
QM	free	energy	change	is	positive,	highlighting	how	
the	ligand	is	more	solvated	or	more	strongly	bound	
at	 the	 QM	 level	 rather	 than	 in	 the	 MM	 one.	 The	
QM/MM	free	energy	correction	is	significant	in	all	
the	complexes,	ranging	from	1.9	kcal/mol	(bound)	
to	4.7	kcal/mol	(unbound),	increasing	as	the	degree	
of	solvation	of	the	ligand	increases.	

The	change	in	QM/MM	free	energy	along	the	path	is	
the	most	important	factor	from	the	point	of	view	of	
predicting	 the	 effect	 of	 polarization	 changes	 on	
binding	kinetics.	The	largest	difference	in	the	cor-
rection	 free	 energy	 is	 2.8	 kcal/mol	 between	 the	
bound	(A)	and	unbound	state,	i.e.	the	unbound	state	
is	more	stable	relatively	to	 the	bound	state	at	the	
QM/MM	level.	The	TS	and	the	encounter	complex	
(C)	have	smaller	differences	in	the	correction	free	
energies	relative	to	the	bound	state	(A):	0.5	and	2.0	
kcal/mol,	for	the	TS	and	state	C,	respectively.	From	
the	fully	bound	state	to	the	TS,	the	difference	in	cor-
rection	free	energy	is	quite	small,	0.5	kcal/mol.	This	
indicates	 that	 the	 structure	 of	 the	 TS	 ensemble	
would	not	be	significantly	different	at	the	QM/MM	
level,	meaning	that	the	MM	TS	ensemble	remains	a	
good	representation	of	the	TS	itself.		

The	 difference	 in	 QM/MM	 correction	 energy	 be-
tween	 the	 TS	 and	 the	 intermediate	 (C)	 is	 larger,	
~1.5	kcal/mol,	because	of	the	larger	change	in	solv-
ation	between	these	states,	as	outlined	above.	This	
means	that	the	free	energy	of	the	state	C	is	lowered	
relative	to	the	TS,	which	in	turn	would	have	the	ef-
fect	 of	 slowing	 the	 transition	 from	 the	 encounter	
complex	 to	 the	 fully	bound	 state.	The	 rate	of	 for-
mation	 of	 the	 encounter	 complex	 (C)	 however	
should	be	reduced	slightly	with	respect	to	the	MM	
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prediction,	given	the	0.8	kcal/mol	FE	correction	dif-
ference	between	this	basin	and	the	unbound	state.			

From	these	results,	we	can	conclude	that	the	net	ef-
fect	 of	 the	 QM/MM	 corrections	 is	 to	 stabilize	 the	
more	 solvated	 forms	of	 the	 ligand,	 relative	 to	 the	
more	bound	forms.	As	a	consequence,	the	effective	
free	 energy	 barrier	 to	 the	 binding	 (both	 starting	
from	solution,	and	from	the	encounter	complex)	is	
increased	and	the	barrier	to	unbinding	is	reduced.	
While	dynamical	effects	are	significant	in	determin-
ing	 rates	 for	 binding,	 as	 our	 calculations	 have	
shown,	to	a	first	approximation	we	can	assume	that	
they	would	be	similar	at	the	MM	and	QM/MM	lev-
els;	with	this	assumption,	the	change	in	rate	can	be	
estimated	 by	 simple	 transition	 state	 theory.	 The	
QM/MM	results	suggest	that	kon	would	be	reduced,	
while	would	be	koff	increased	when	compared	to	the	
predictions	obtained	from	the	MM	force-field.	Fol-
lowing	 this	 approach,	 the	 corrected	 dissociation	
rate	for	imatinib	is	improved	to	0.0260	s-1,	closer	to	
the	experimental	value	of	(0.11±0.08	s–1,	obtained	
SPR.21	

Conclusions  

The	use	of	an	 invariant	point	charge	model	(as	 in	
standard	MM	force-fields)	may	have	significant	lim-
itations	in	predicting	protein-ligand	binding	kinet-
ics	(on-	and	off-rates).	The	results	presented	in	this	
paper	 show	 that	 there	 are	 significant	 changes	 in	
QM/MM	correction	energies,	thus	changes	in	elec-
tronic	polarization	of	the	imatinib	ligand	during	the	
process	of	(un)binding	to	Src	that	should	not	be	ne-
glected.	The	QM/MM	correction	free	energy	is	sig-
nificantly	dependent	on	the	level	of	solvation	of	the	
ligand,	 with	 its	 minimum	 being	 observed	 in	
hydrophobic	 environments	 (bound	 state)	 and	 its	
maximum	in	hydrophilic	areas	(solvated	state).	The	
multiscale	approach	presented	here,	combining	TS-
PPTIS	and	our	Monte	Carlo	based	QM/MM	correc-
tion	method	provides	a	practical	route	to	assessing	
the	 contribution	of	 ligand	polarization	 changes	 to	
drug-target	binding	kinetics.		
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