
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

An algorithm for model fusion for
distributed learning

Dinesh Verma, Supriyo Chakraborty, Seraphin Calo,
Simon Julier, Stephen Pasteris

Dinesh Verma, Supriyo Chakraborty, Seraphin Calo, Simon Julier, Stephen
Pasteris, "An algorithm for model fusion for distributed learning," Proc. SPIE
10635, Ground/Air Multisensor Interoperability, Integration, and Networking for
Persistent ISR IX, 106350O (4 May 2018); doi: 10.1117/12.2304542

Event: SPIE Defense + Security, 2018, Orlando, Florida, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10/23/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Ib

An Algorithm for Model Fusion for Distributed Learning
 Dinesh Verma*a, Supriyo Chakrabortya, Seraphin Caloa , Simon Julierb, Stephen Pasterisb

aIBM TJ Watson Research Center, 1110 Kitchawan Road, Yorktown Heights, NY, USA 10598,
 bDept. of Computer Science, University College London, London WC1E 6BT, UK

ABSTRACT

In this paper, we discuss the problem of distributed learning for coalition operations. We consider a scenario where
different coalition forces are running learning systems independently but want to merge the insights obtained from all the
learning systems to share knowledge and use a single model combining all of their individual models. We consider the
challenges involved in such fusion of models, and propose an algorithm that can find the right fused model in an efficient
manner.

Keywords: distributed learning, coalition operations, federated learning, data efficiency

1. INTRODUCTION
Artificial Intelligence [1] and machine learning in particular is anticipated to play a significant and expanded role in all
aspects of future technology, including coalition operations. Most algorithms for machine learning rely on the existence
of training data in a centralized location where time-consuming training of machine learning models can be performed.
However, in coalition environments, many situations arise when data needs to remain distributed and cannot be moved to
a central location. In those cases, the only practical solution is to train several models independently and combine them
together. However, the combination of independently trained models is non-trivial. In this paper, we propose an algorithm
for distributed learning that can perform the task of fusion of different models in an effective manner.

We begin this paper with an overview of the system environment and assumptions underlying distributed learning. We
then discuss the challenges associated with distributed learning in coalition contexts, followed by a review of previous
work in the area of distributed learning. We propose two alternative architectures for distributed learning and compare
their performance to the base case of centralized learning. Finally, we propose a distributed algorithm for combining
different trained models, and discuss its effectiveness.

2. DISTRIBUTED LEARNING ENVIRONMENT
In a coalition environment, many countries collaborate together as part of a coalition. However, the trust between different
countries is not necessarily absolute. As a result, coalition partners may not be willing to share all the data that they may
have collected with one other. However, depending on the level of trust available between partners, they may be willing
to share insights gleaned from their data. In addition to the level of trust, other impediments may restrict the sharing of

Figure 1. The environment for Distributed Learning

Local Data Local Data

Local Data
Location A Location B

Location C

Constrained/Intermittent
Network

Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR IX,
edited by Michael A. Kolodny, Dietrich M. Wiegmann, Tien Pham, Proc. of SPIE Vol. 10635,

106350O · © 2018 SPIE · CCC code: 0277-786X/18/$18 · doi: 10.1117/12.2304542

Proc. of SPIE Vol. 10635 106350O-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10/23/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

-A

Ib

data among partners. These include the lack of reliable network connectivity, or just that the data size may be too big to

transfer over the available bandwidth.

Similar situations can arise in civilian environments as well as military environments. Many companies operate
internationally, but data generated in one country may not be allowed to be moved across national boundaries. Industries
like telecommunications and finance are subject to many such restrictions. Even if the regulations allowed the movement
of data, such movement may be too time-consuming or too expensive. The cost and time taken to transfer the terabytes of
data that a bank, insurance company or telecommunications operator has across countries, e.g. from Singapore to United
States could be prohibitive. At the same time, banks may want to get insights that combines the knowledge available from
all of the data located at many different sites that they may have.

The problem environment is as shown in Figure 1. There are several locations where data is available from which insights
can be drawn, i.e. a machine learning model can be built. However, the network between the different locations is less
than perfect. The network imperfection depends on the specifics of the environment. In some cases, the network may not
have enough capacity to transfer the data across in a reasonable amount of time. In some cases, the network may be
unreliable and have intermittent connectivity. This could happen if data is in the tactical battlespace arena, or be located
on moving platforms, e.g. ships or planes that only connect at limited points in time. In other cases, the network may be
always connected and have good bandwidth, but just may be too expensive. If the data is at a remote area and
cellular/satellite connectivity is the only one available, the charges for transferring data on such links may be prohibitive.

If we had a perfect network connecting the different sites, the preferred approach for gleaning insights from the data would
be to perform the steps shown in Figure 2. We would first copy all of the data from each of the local sites to a central
location, and run a learning algorithm on the data that is collected. This would result in an model which can be used in
subsequent applications.

However, as explained above, the approach shown in Figure 2 is not viable in a coalition environment. Instead, the
approach that we need to take is to train models at each of the sites on the local data, and then try to combine and merge
those models into a larger aggregate. The approach is as shown in Figure 3. With this approach, we only try to transfer the

Figure 2. The desired way to learn models with perfect network connectivity

Local Data Local Data

Model

Local Data
Location A Location B

Location C

Collected Data

Proc. of SPIE Vol. 10635 106350O-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10/23/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Ib

models over the poor network. Since the model is expected to be much smaller than the actual data, it is faster and cheaper
to transmit on the network.

3. RELATED RESEARCH
The challenge of distributed learning in coalition environments was identified in [2] in which several scenarios where
distributed learning is required were highlighted. An architecture for coordinating the models that were learnt at each local
site was presented, and the needs for algorithms that can fuse neural networks together was highlighted.

When models are represented as decision tables or rules, they can be merged together by finding partitions of the feature
space where the different models intersect. In partitions where only a single ruleset of table applies, those are used. In
partitions where multiple rulesets/tables intersect, the one with higher confidence are selected. Other merging and selection
strategies can also be used [3]. Decision trees can also be merged by converting them to equivalent decision tables and
converting them back to decision trees once merging has been completed. However, this approach cannot be used for
decision rules which cannot easily expressed as tables. Neural networks, for example, often have decision boundaries
which are implicitly encoded in the network but are not explicitly known and would have to be found through exhaustive
search.

Another approach to merge models is to view them as functions over the input features space, and to transform the
functions into a frequency domain by taking their Fourier Transform [4]. The fusion of models can then be done by adding
their transform coefficients, and then inverting them. The challenge with this approach is that it can be applied only to a
very limited set of machine learning models, i.e. those that can be easily and naturally expressed as functions. In models
such as neural networks, features are latent in intermediate layers of the network, and expressing the model as a function
may be non-trivial. Converting these models to a frequency spectrum is difficult.

By limiting neural networks to a very specific domain like optical character recognition, it has been shown that evidential
reasoning can be used to combine neural networks in an ensemble [5], provided training data is available. The combination
of neural networks is done by viewing them as classifiers, and then creating an ensemble of classifiers using different
ensemble methods available in the literature [6] [7]. However, most ensemble methods require access to training data in
order to do the proper combination, an assumption which is not viable in the coalition environment.

A parameter sharing solution for distributed learning, assuming each location uses the same model has been proposed [8].
At each location, a model is trained using local data, where a model is simply a parameterized function representing the
mapping from the input to the labeled outputs. After a fixed number of training rounds, parameters from the local models
are shared with a centralized fusion server, which performs aggregation of these parameters and sends the aggregated
parameters back to the different locations. The models at different locations are re-instantiated using the received
aggregated parameters, and their training with the local data is re-initiated. The process continues till the aggregated
parameters converge. The parameterized representation is typically a lossy compression of the information in the raw data,
and the size of the parameter set is smaller than the size of the raw data. This approach requires a network which is always
connected (not intermittent) and an ability to coordinate the different nodes to learn the same model. With some
modifications, the approach can also protect the privacy of underlying data [9].

Figure 3. The approach for Distributed Learning

Learning

Model
Local Data

Learning

Model
Local Data

Learning

Model
Local Data

Model Fusion

Location A Location B

Location C

Proc. of SPIE Vol. 10635 106350O-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10/23/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Ib

Another algorithm [10] to combine multiple models trained on disjoint datasets relies on an auxiliary unlabeled public
dataset. The trained models act as teachers, and in combination with an aggregator (which perform majority voting), are
used to label samples from the public dataset. A student model is then trained using the labeled public dataset and learns
to predict data, similar to the teacher models without being directly exposed to the models. However, this approach requires
that we have a training data set available for the fusion operation.

In this paper, we propose an algorithm that can work in environments which are not always connected, and therefore deal
with the situation where the models being combined are different.

4. SYSTEM ARCHITECTURES FOR DISTRIBUTED LEARNING
A system architecture refers to the type of services and components that are required in order to perform the task of

distributed learning. The choice of the system architecture can have a strong influence in the performance of the learning
algorithm. The system architecture can also include the components and standards required for communication and
interaction among the different nodes.

For the task of distributed learning, there are two alternative system architectures that can be used. The first system
architecture is that of a distributed peer to peer architecture. In this approach, one of the locations will train the model
using their local data. It can then pass the trained model to another location, which uses its data to perform additional
training and to modify the model. The updated model is passed to the third location and so on, until it has made a pass
through all of the locations. At each of the locations, the system can either update the training model or combine that model
with a local pre-trained model. In order to be able to pass the model along in a ring linking the locations, we do need to
assume that the network connecting each of the locations is always available, or at least available for the time-frame when
models need to be exchanged.

Since we need to assume that all the locations are always connected, the training process can be optimized. The training
can be done by dividing the local training data into mini-batches. The model is passed to the next locations after each mini-
batch, and the models flow into a cycle until each node has completed its batches of data. Nodes that have completed their
training would simply pass the model along unchanged in this cycle. When the model makes one complete loop without
any updates, it is completely trained.

Passing the model along in this manner has the advantage that it does not require establishing any entity other than the
sites which have the local data. Communication among the different locations can be done using web-services, or the sites
may even use a distributed block-chain based protocol like Hyperledger [11] to exchange the models. However, this
protocol may require several passes through the chain, which may result in degraded performance compared to the situation
where we use a centralized system that all the locations trust.

The system architecture which uses a centralized server, which we call the fusion server, to help out the coordination of
all locations to learn their data is shown in Figure 5. The fusion server could operate in either a connected or a disconnected
mode. When it is operating in a connected mode, each location sends their model to the fusion server after training on a
mini-batch of data. The fusion server combines them and sends them back to each of the nodes for training on the next
mini-batch. The process continues till each node has completed training on their data. There are approaches which can

Figure 4. A Peer to Peer Approach for Distributed Learning

Learning

Model Local Data

Location A
Learning

Model
Local Data

Learning

Model
Local Data

Location B

Location C

Proc. of SPIE Vol. 10635 106350O-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10/23/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Ib

further optimize how frequently the mini-batches need to communicate with the fusion server to minimize the overhead
of communication [12].

When the network is intermittently connected, the fusion server maintains a local copy of the fused model. When new
locations connect to it, it gets the fully trained model from the newly connected locations and combines it with the existing
fused model. The advantage of this approach is that the locations can connect and disconnect as dictated by their operating
environments, and the fusion server is always available to provide them with the models learnt from the locations that it
has seen previously. However, this requires the locations to trust the fusion server.

The relative time for training the data in the two different system architectures in the fully connected mode can be computed
and would depend on the latency of network communication, and the time taken to train the model on each mini-batch. If
there are N locations, and each location has equal amounts of data which is divided into K mini-batches each containing B
Mbytes, network connectivity is C Mbytes per second, the model is M Mbytes, and the training for each mini-batch takes
T seconds, we can obtain the expected time for training the model using each of the two system architectures for distributed
learning, as well as for the centralized approach shown in Figure 2.

For the centralized architecture shown in Figure 2, the total time would be K.B/C + N.K.T.

For the peer to peer architecture shown in Figure 4, the total time would be K.N.M/C + N.K.T.

For the fusion server architecture shown in Figure 5, the total time would be K.M/C + K.T.

This assume that the fusion server or the central server in the location can handle concurrent communications with all of
the learning nodes at the same time. In most real-life scenarios, B >> M, the two approaches for distributed learning should
take smaller time for overall training than trying to move the data to a central location. Furthermore, the central fusion
architecture is N times faster than the peer to peer architecture, where N is the number of different locations.

In addition to the performance, an important question is whether the fusion server architecture shown in the diagram above
can be as accurate as the centralized architecture. In the next section, we look at the algorithm for distributed learning and
fusion of models.

5. FUSION ALGORITHM
The fusion algorithm that we propose assumes that the local systems have trained the model completely and that the
completed system is available at the fusion server for combination. This assumption is necessary in order to support
disconnected operations. If we could assume a fully connected network then an incremental learning approach, which gets
the agents to agree to the same type of model e.g. a neural network with same number of layers and nodes in each layer,
[2], and use parameter aggregation [8] with or without optimization [9], where training is done in mini-batches. However,
when we have a disconnected network, incremental training cannot be used, and we have to combine fully trained models,
that potentially may have different set of parameters.

Figure 5. A Centralized Fusion Server Approach for Distributed Learning

Learning

Model Local Data

Location A

Learning

Model
Local Data

Learning

Model
Local Data

Location B Location C

Fusion Server

Proc. of SPIE Vol. 10635 106350O-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10/23/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

We propose that the fusion server create an ensemble of all the fully trained models. However, the challenge with creating
the ensemble is that most of the common techniques for ensemble building, e.g. boosting, Bayesian parameter estimation,
Bayesian parameters, stacking, require access to the original training data. When we do not have access to the training
data, only bagging approaches which take a majority vote for combining outputs are the ones that can be used. However,
these also happen to be the ensemble approaches that perform worse than the ones where access to training data is available.
Therefore, the main challenge at the fusion server would be to determine what weight to assign to the results of each
individual model when combining them, without any access to either training data or to a test data.

Our approach therefore is a multi-step process in which the fusion server maintains the definition of a common model (e.g.
a neural network with a given number of layers and a set of nodes per layer) which combines the concepts of weighted
averaging and parameter aggregation:

• Step 1: All the local agents that have current connectivity with the fusion server provide it with their trained
network model

• Step 2: The fusion server creates an ensemble model consisting of the models provided by the currently connected
agents, and the fused model that exists at the fusion server. In the ensemble model, each input sent to the system
for inference is passed through each of the models, and their results combined using a weight assigned to each of
the ensembles. The weights at this point assigned to the newly provided models are undetermined.

• Step 3: Each of the agents use their local data to compute the best weights for the ensemble available on their
training data. One approach to compute the weights is for each agent to run each of the models from the other
agents on its local data, find the accuracy of the other model when used on its own local data, and propose that
as the ensemble weight to the fusion server.

• Step 4: The fusion server averages the weights from all of the ensembles to create a new fused ensemble network
which is provided to each local agent. When averaging the weights, the number of agents that have contributed
to the fused model is used to determine the relative importance of existing models and newly provided models.

We tested the resulting accuracy from the ensemble approach accuracy that can be achieved in this manner by
implementing and running the algorithm on the MNIST data set [14]. The relative accuracy is the accuracy of each of the
approaches compared to training the same model on all of the data in a central location. We assumed that the training data
was divided equally in a random manner among all the different local sites, and each site was training a simple
convolutional network with two convolutional layers using rectified linear unit activation followed by two fully connected
layers, the first one using rectified linear unit activation and the second one using softmax. The fusion server had no data,
but simply acted as a coordination point. Each site used the accuracy of other models on its data as a measure of the weight
to be assigned to the other model, and the fusion server provided the aggregation capability for the same. As the number
of sites decreases, with each site having access to only a fraction of the data, their relative accuracy decreases. The fusion
process can increase the relative accuracy by a few percentage points.

The result of this algorithm, when run between 2 and 10 sites with distributed data is shown in Figure 6. While the ensemble
approach improves the accuracy of the resulting fusion, especially when the data is distributed across a larger number of

Figure 6. Performance of the Fusion Algorithm with Ensembles

90%

92%

94%

96%

98%

100%

0 2 4 6 8 10

R
el

at
iv

e
A

cc
ur

ac
y

Fusion Approach

Site Average

Number of Local Sites

Proc. of SPIE Vol. 10635 106350O-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10/23/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

0.9

0.8 -

0.7 -

° 0.6

f6

E, 0.5

0.3 -
a v

0.2 -

0.1 -
f Fused Model Accuracy

40 60
Number of iterations

100

sites, the increase in accuracy is relatively modest and the simple ensemble based averaging approach is relatively
inaccurate compared to the approach of collecting all the data into a single location for training.

In order to address this limitation, we propose a different algorithm for fusing the models. In this approach, we assume
that one of the local sites can act as the fusion server, and it has a data set available for validation. We further assume that
the fusion server can ask each of the local agent to train a specific type of model, which have the same parameters across
all of the sites. The new algorithm therefore becomes as follows:

• Step 1: All the local agents that have current connectivity with the fusion server provide it with their trained
network model, which they have trained with a mini-batch size parameter specified by the fusion server

• Step 2: The fusion server computes the predictions of each model against its validation data. It then minimizes
the squared error between the weighted linear combination of the predicted outputs (from each model) and the
actual labels of the validation dataset. The weights obtained from the optimization are used to combine the
parameters of the models for that iteration.

• Step 3: Each of the agents is sent back the model with the fused parameters, and they use the next mini-batch to
train a new set of model weights to be shared with the fusion server.

• Step 4: Each such iteration continues till all the mini-batches are used for training by each of the local agents.

Figure 7 shows the accuracy of this result when 6 agents were connected to the fusion server, and the training data was
divided randomly among the different agents, so that each agent had access to one sixth of the training data. This approach
provides for a much higher accuracy in the distributed fusion process, and a small number of iterations (less than 10), the
distributed process approaches the overall accuracy as if it was trained on a centralized data.

The ensemble-based approach, which has worse performance as shown in Figure 6, allows for each location to use an
independent form of model, as long as each node has the ability to execute the models provided by the other nodes. The
parameter fusion approach has much better accuracy but requires that the locations coordinate the model being learnt and
trained. Both of these approaches can be applicable depending on the operational environment in a coalition.

6. SUMMARY
In this paper, we have discussed the need for having distributed fusion algorithms, specially in the context of coalition
operations. We have compared two different architectures for distributed fusion, and shown that the use of a fusion server
can significantly improve overall system performance compared to a completely distributed peer to peer approach. We
have proposed algorithms for creating a fusion of models trained independently, and shown that one of the algorithms can
approach the accuracy of a centralized learning model very rapidly.

The algorithms described in this paper are just the early stage of exploration for distributed learning algorithms that can
apply to the many challenging requirements of a coalition network. In future work, we intend to develop algorithms which

Figure 7. Performance of the Fusion Algorithm

Proc. of SPIE Vol. 10635 106350O-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10/23/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

can further reduce the assumptions inherent in distributed fusion, and study the performance of the algorithms under
different conditions, including situations where training data for some classes is only available at selected sites.

.

7. ACKNOWLEDGEMENTS
This research was sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of Defence under Agreement
Number W911NF-16-3-0001. The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Army Research
Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K. Government. The U.S. and U.K.
Governments are authorized to reproduce and distribute reprints for Government purposes notwithstanding any copy-
right notation hereon.

REFERENCES

[1] Rasch, R., Kott, A., & Forbus, K. D., "AI on the battlefield: An experimental exploration," Proc. AAAI Conference
on Innovative Applications of Artificial Intelligence, 906-912 (2002).

[2] Verma, D., & Julier, S., "Dynamic network based learning systems for sensor information fusion," In International
Society for Optics and Photonics Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent
ISR VIII, 10190- (2017)

[3] Strecht, P., "A Survey of Merging Decision Trees Data Mining Approaches," Proc. 10th Doctoral Symposium in
Informatics Engineering, 36-47 (2015).

[4] H. Kargupta and B. Park, “A fourier spectrum-based approach to represent decision trees for mining data streams in
mobile environments,” IEEE Transactions on Knowledge and Data Engineering, 16(), 216–229 (2004).

[5] Rogova, G., "Combining the results of several neural network classifiers," Neural networks 7(5), 777-781, (1994).
[6] Opitz, D., & Maclin, R., "Popular ensemble methods: An empirical study," Journal of Artificial Intelligence Research,

vol 11, pp. 169–198, (1999).
[7] Rokach, L., "Ensemble-based classifiers". Artificial Intelligence Review. 33 (1-2): 1–39, (2010).
[8] McMahan, H. B., and Moore, E., and Ramage, D., and Hampson, S., and Arcas, B. A., “Communication-Efficient

Learning of Deep Networks from Decentralized Data”, https://arxiv.org/pdf/1602.05629.pdf
[9] Bonawitz, K., et. al., “Practical Secure Aggregation for Privacy-Preserving Machine Learning,” Proc. Conference on

Computer and Communications Security, 1175-1191, URL https://eprint.iacr.org/2017/281.pdf (2017).
[10] Papernot, N., Abadi, M., Erlingsson, U., Goodfellow, I., and Talwar, K., “Semi-Supervised Knowledge Transfer for

Deep Learning from Private Training Data,” Proc. International Conference on Machine Learning (2017).
[11] Cachin C., "Architecture of the Hyperledger blockchain fabric,” Proc. Workshop on Distributed Cryptocurrencies and

Consensus Ledgers, (2016).  
[12] Wang, S., Tuor, T., Salonidis, T., Leung, K., Makaya, C., He, T. and Chan, K., “When Edge Meets Learning: Adaptive

Control for Resource-Constrained Distributed Machine Learning,” Proc. IEEE International Conference on Computer
Communications – INFOCOM, (2018).

[13] Hastie, T., Rosset, S., Zhu, J., and Zou, H., “Multi-class adaboost,” Statistics and its Interface, 2(3), 349-360 (2009)
[14] Yann, L., Corinna, C. and Christopher, J., “The MNIST database of handwritten digits”, URL

http://yann.lecun.com/exdb/mnist/, (1998)

Proc. of SPIE Vol. 10635 106350O-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10/23/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

