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Abstract

Non-inferiority designs have been increasingly used in randomised clinical trials in

recent years. However, there remain several key issues with this design that can have

important implications for the primary analysis and its interpretation. Specifically,

choosing the population for inclusion in the primary analysis and how to deal with

missing values, remains unclear.

This thesis tackles three related methodological issues in tuberculosis (TB) clinical

trials: (i) a lack of clear guidance on design and reporting; (ii) the need for a valid

approach to missing data and (iii) how to perform sensitivity analysis.

First, widely available guidance documents on non-inferiority trials are critiqued,

highlighting differences in recommendations between them on fundamental issues.

These differences are reflected in inconsistent reporting from a systematic review we

conducted, and make suggestions for improvements.

Second, using data from two recent TB non-inferiority trials, we compare and contrast

(i) different imputation approaches, (ii) inverse probability weighting with marginal

models, and (iii) multi-state Markov models, for handling missing outcome data

under the missing at random assumption. We find a form of multiple imputation is

the best practical approach.

Third, we explore sensitivity analysis to the missing at random assumption, and show

how a “reference based” method provides an accessible, practical approach.

In conclusion, more appropriate guidelines and analyses for non-inferiority trials in

TB are needed, and some proposals are made to this end. Based on these findings, it

is proposed that missing data in TB non-inferiority trials should be handled using the

“two-fold” multiple imputation algorithm for imputing the missing data. By imputing

the data in this way uses all the information available and allows for the trials defined

primary outcome to be determined for each patient. Following this, reference based

sensitivity analysis should be utilised.
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Chapter 1

Introduction

1.1 Non-inferiority

Non-inferiority trials are designed to show that when compared to an active control

an alternative treatment is not much worse by a pre-specified, acceptable, margin.

These trials are only appropriate if the alternative treatment has some other benefit

that a standard treatment (or care) does not, for example a less intensive treatment1.

This design differs from the more familiar superiority trials, where the aim is to

discover a treatment which performs better compared with placebo or active control.

Over the last 10 years, there has been a vast increase in the number of trials that use a

non-inferiority design. In PubMed using the search term “non-inferiority trial” or

“noninferiority trial” in titles and abstracts and filtering the publication date from 1st

January 2007 to 31st December 2007, yields a record of 46 articles compared with 222

records from 1st January 2017 to 31st December 2017 (search done on 12th June 2018).

The increasing use of non-inferiority trials highlights the importance for

non-inferiority trials being well designed and appropriately analysed.

The focus of this thesis is on tuberculosis non-inferiority trials. However

non-inferiority trials in general pose design challenges since there are more statistical

issues to consider than for superiority trials. This introductory chapter focuses on

some critical elements when designing non-inferiority trials in a general setting. The

second chapter investigates how the research community are reporting these types of
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trials. After drawing out some recommendations, we then introduce tuberculosis

trials; these studies are our motivating examples of non-inferiority studies.

In this chapter, currently available guidelines for non-inferiority trials are reviewed and

critiqued. Particular issues within non-inferiority trials that could influence the results

and conclusions are discussed, and we highlight some key differences in the advice

given within these guidelines. Finally, the objectives of this thesis are set out.

1.1.1 Existing guidelines on non-inferiority

The guidelines critiqued here include those from the International Council for

Harmonisation of Technical Requirements for Registration of Pharmaceuticals for

Human Use (ICH), which are related to all clinical trials. The European Medicines

Agency (EMA) provides guidance for the evaluation and safety of medicines in the

European Union2 and the Food and Drug Administration provide guidance for the

United States of America (U.S. FDA). In the U.S. the FDA oversee medicinal products

and tobacco, foods, global regulatory operations and policy3. The Consolidated

Standards of Reporting Trials (CONSORT) involves different groups of researchers,

depending on their expertise, working to improve inadequate reporting of

randomised controlled trials4. The Standard Protocol Items: Recommendations for

Interventional Trials (SPIRIT) provides guidance for trial protocols with the aim of

improving how clinical trials are conducted, from the design stage onwards5.

The following, currently available guidelines contain information on the design and

analysis of non-inferiority trials to assist researchers that may choose this design (in

order of publication date):

ICH Harmonised Tripartite Guideline Statistical Principles for Clinical Trials E9 (ICH E9

1998)6

Explanations and recommendations have been given within this guideline for all

trials. That is for: superiority, equivalence and non-inferiority trials. Guidance is given

surrounding the population to include in analyses, type of outcomes to consider

(primary/secondary), and ways to avoid bias. Methods for analysts to consider are

also explained within this document. This is the earliest formal guideline available
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which considers the statistical and design aspects of clinical trials and which provides

some information about non-inferiority.

ICH Harmonised Tripartite Guideline Choice of Control Group and Related Issues in Clinical

Trials (ICH E10 2001)7

The ICH E10 guidelines focus on choosing the control group for different trial designs.

This document also contains some important guidance on how to determine the

non-inferiority margin based on historical evidence of test drugs.

Committee for Proprietary medicinal products (CPMP) Points to Consider on Switching

Between Superiority and Non-inferiority (EMA 2000)8

The focus of this document is how to extend and interpret a non-inferiority trial as a

superiority trial, and vice versa. This document also contains some information with

regards to the design and interpretation of non-inferiority trials.

Committee for Proprietary medicinal products (CPMP) Guideline on the choice of the

non-inferiority margin (EMA 2006)9

Details of the non-inferiority margin and points to consider when determining the

margin are included here along with interpretations of non-inferiority.

Reporting of Noninferiority and Equivalence Randomised trials. An Extension of the

CONSORT statement. (CONSORT 2006)1

The CONSORT 2006 statement describes specific items to be reported in medical

journals for non-inferiority trials. Justifications for each and examples are also

provided.

Reporting of Noninferiority and Equivalence Randomised trials. Extension of the CONSORT

2010 statement. (CONSORT 2012)10

The CONSORT 2012 statement provides some additional clarification on the original

CONSORT 2006 document.

CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group

randomised trials. (CONSORT 2010)11

This document provides guidance for superiority trials but has been included for
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review as it is linked with the CONSORT 2006 and CONSORT 2012 statements. The

CONSORT 2010 is favoured over the original CONSORT statement12 for superiority

studies as this is the most recent document.

Non-inferiority clinical trials to establish effectiveness. Guidance for industry (November

2016). (U.S. FDA 2016)13

This document focuses completely on trials that have a non-inferiority design. All

aspects and issues of non-inferiority designs are discussed and considered, such as the

choice and calculation of the non-inferiority margin, sample size, hypotheses for

non-inferiority trials, rationale for choosing a non-inferiority design and potential

biases in non-inferiority studies are addressed. As this document was finalised in

November 2016, the guidance has been updated in this chapter accordingly. There are

however some references to the draft U.S. FDA guidance written in 201014 since this

was referred to by researchers until 2016. This document is also relevant for the

research reported in this thesis.

SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials (SPIRIT

2013)15

This document is written for protocols for all study designs, including non-inferiority.

This guidance has been included in the review as these are the most recent guidelines

which contain up-to-date methods, some of which are relevant to non-inferiority

studies.

1.1.2 A brief note on non-inferiority and equivalence

Non-inferiority and equivalence are often used interchangeably. Although there are

some similarities, they actually relate to two different designs with some subtle

differences. Equivalence trials are designed to show that a new intervention performs

not much worse and not much better than a standard intervention. The ICH E96, ICH

E107 and SPIRIT15 guidelines encompass superiority, equivalence and non-inferiority

study designs, while the CONSORT 2006 and 20121,10, EMA 2000 and 20068,9 and

FDA 201613 guidelines consider equivalence and non-inferiority study designs. In all

guidelines, methods for equivalence are discussed alongside non-inferiority for ease

of relating one to the other as the two concepts are similar. Equivalence and
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non-inferiority studies are very similar in design in terms of margins and bounds of

confidence intervals, but they answer different questions. Discussing two very similar

methods interchangeably may be the cause of confusion between the two. In terms of

interpretation of the analysis, the most important difference is that equivalence

considers two margins and therefore conclusions are based on both sides of the

confidence interval, whereas one margin and one bound of the confidence interval are

used for conclusions of non-inferiority. This thesis will only be considering

non-inferiority studies.

1.2 Issues to consider surrounding non-inferiority studies

There are several statistical issues to consider when designing any trial, but there are

more challenges for non-inferiority studies which are more susceptible to bias. Poor

trial quality can bias trial results towards achieving no difference between treatments14.

This creates more challenges in non-inferiority trials than for superiority trials as this

bias can produce false positive results for non-inferiority.

1.2.1 Non-inferiority margin

For superiority trials, when looking at differences in treatment effects, the aim is to

reject the null hypothesis that a treatment is equal to an active control/placebo. For

non-inferiority trials, the aim is to reject the null hypothesis that a new treatment is

some pre-specified amount worse than the standard treatment. This “pre-specified

amount” is the non-inferiority margin denoted by ∆ or δ.

All guidance documents state that the non-inferiority margin should be specified,

reported and justified on clinical grounds. ICH E10 20007, EMA 20069 and the U.S.

FDA 201613 are the only guidelines which explicitly state that statistical justifications

should also be considered alongside clinical justifications. The U.S. FDA (2016)

guideline gives two detailed approaches to how the non-inferiority margin can be

calculated. The first FDA recommendation is the fixed margin approach. Here the

margin is pre-determined based on historical evidence comparing the standard of care

treatment with placebo, and using clinical judgement. The second is the synthesis

approach13. The synthesis approach entails a combination of the estimate of the
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treatment effect relative to the standard of care from an ongoing non-inferiority trial

with the estimate of the standard of care from a meta-analysis of historical trials13.

The confidence interval of the two estimates after combining them is then used to test

the non-inferiority hypothesis; pre-specification of an acceptable fraction of the

control therapy’s effect that should be retained by the new treatment being tested is

judged on a clinical basis13. This approach is not often used because the margin is

calculated during research and cannot be pre-specified13. The CONSORT (2006 &

2012) statements1,10 imply through examples that clinical and/or statistical

justifications for the margin need to be considered. Justification on how the margin

was determined is not explicitly requested in other guidelines, and so it can be hard to

judge in studies whether or not a margin has been arbitrarily chosen16.

1.2.2 Population included in analyses

Most guidelines1,6,8,10,13 agree that an intention-to-treat (ITT) analysis is defined as all

patients who were randomised into a study, where patients are analysed based on

what treatment was allocated at the time of randomisation regardless of what may

occur afterwards. Most guidelines agree that the per-protocol (PP) analysis contains

one or more exclusions. There are some other definitions of who should be included

in analyses. Of note, the draft U.S. FDA 201014 guidelines suggested an “as-treated”

analysis but failed to provide a definition. Other literature suggests that an as-treated

analysis means analysing treatment differences based on what patients had actually

received in treatment rather than according to their randomised treatment17–19. This

terminology has since been removed in the final U.S. FDA (2016) guidelines so that no

particular analysis is formally recommended.

The ICH E9 1998 guidelines6 propose another type of analysis; a full analysis set. This

is similar to the ITT definition, but can exclude patients provided that the reasons for

exclusion are not treatment dependent. This seems to be similar to how the newly

emerging modified intention-to-treat (mITT) analysis is defined, although consistent

definitions are lacking15.

The explanation of “full analysis set” provided by ICH E9 (1998) is confusing. What

ICH E9 (1998) consider to be acceptable exclusions while maintaining the ITT

definition (i.e. a “full analysis set”) intertwines with their list of PP exclusions:
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eligibility violations could be regarded as major protocol violations and so could fit

into the PP definition; failure to take at least one dose of trial medication could fit into

a PP population where “exposure to treatment” is considered; missing outcome data,

for example, could fit into the ICH E9 (1998) definition of “full analysis set” as this is a

“lack of post randomisation data”, but equally could fit into the PP definition of “the

availability of measurements”.

The very first CONSORT statement, published in 200112, defines ITT as all patients

randomised with an outcome. It is later acknowledged in the CONSORT 2010

guidelines, that an ITT population where all patients have an outcome is rarely

achievable due to missing data. These guidelines “favour a clear description of exactly

who was included in each analysis”11. The difference between the two definitions has

led to SPIRIT classing all randomised patients that have an outcome, where any

missing outcome data are resolved, as a “classic” ITT and ITT as all patients

randomised regardless of adherence.

It is unclear in guidelines which analysis is most appropriate for non-inferiority trials.

ICH E9 19986 state: “preservation of the initial randomisation is important in

preventing bias and in providing a secure foundation for statistical tests”; whereas

CONSORT 2006 & 20121,10 state: “non-ITT analyses might be desirable as a protection

from ITTs increase in the Type I error”. For non-inferiority trials, both the ITT and PP

analysis have their biases. The ITT analysis can bias towards the null treatment effect,

which may lead to false claims of non-inferiority20. The PP analysis, which excludes

patients, fails to preserve a balance of patient numbers between treatment arms (i.e.

randomisation) that ITT analysis does, and so may cause bias in either direction,

depending on who the analysis excludes21. It is, therefore, often recommended for

both a PP analysis and an ITT analysis to be analysed for primary analyses in

non-inferiority trials with any disagreements investigated.

Given that both the ITT and PP analysis are recommended, it is unclear whether one

analysis ought to take precedence over the other. The EMA 2000 guidelines8 state that

analyses on both an ITT analysis and PP analysis are equally important and the same

is implied in the SPIRIT 2013 guidelines15. However, CONSORT 20061 appear to give
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the researcher a choice into whether an ITT analysis, PP analysis or both should take

precedence in the primary analysis to determine non-inferiority, but emphasise that

whatever is chosen should be clearly stated.

Although the U.S. FDA (2010) guidelines no longer recommend a particular analysis14,

issues relative to the widely used PP analysis such as loss to follow-up or treatment

switching are highlighted. The advice in the final U.S. FDA (2016) guidelines13 is to

minimise these potential problems while planning a study without really providing a

useful solution. They do suggest imputing missing data for patients whose outcome

data are missing, and this will be explored throughout this thesis.

1.2.3 Confidence intervals

In superiority studies, conclusions are determined based on where the treatment effect

and its confidence interval lie relative to the null. For non-inferiority, only one bound

of the confidence interval is required for inference and conclusions are determined

based on where the confidence interval for the treatment effect lies relative to the

pre-defined non-inferiority margin10.

All guidance documents1,6–10,13,15 clearly state that inferences for non-inferiority

should be made on one bound of the confidence interval. The ICH E9 1998 and E10

20006,7 documents are the only guidelines that do not inform the reader at what level

the confidence interval should be set. All other guidelines recommend two-sided 95%

confidence intervals, where conclusions of non-inferiority are based upon the upper

(or lower) bound of the two-sided 95% confidence interval. The CONSORT 2006

guidelines mention that 90% confidence intervals may be appropriate in certain

situations1.

There is some ambiguity around whether 90% confidence intervals or 95% confidence

intervals should be reported for non-inferiority trials. The emphasis on reporting 95%

two-sided confidence intervals seems to have originated from the EMA guidelines

20008, where “if a one-sided confidence interval is used then the 97.5% should be

used”. This is further explained in the EMA 2006 guidelines9 “statistical significance

is generally assessed using the 0.05 level of significance (or one-sided 0.025). An
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alternative way of stating this requirement is that the lower bound of the two-sided

95% confidence interval (or one-sided 97.5% confidence interval) for the difference

between active and [control] should be above [the non-inferiority margin]” for a

positive outcome. This is supported in the CONSORT 2006 statement1 and endorsed

in all other subsequent guidelines.

The EMA (2000) explain that the two-sided confidence interval “should lie entirely on

the right side of delta”. This is reiterated again in the later 2006 EMA guidelines

where inferences should be made on the lower bound of the confidence interval (for a

control minus treatment comparison). On the other hand, U.S. FDA (2016) suggest the

upper bound of the two-sided confidence interval is used for inference relative to the

margin: “the upper bound of the 95% confidence interval is typically used to judge the

effectiveness of the test drug in the non-inferiority study” and “the 95% confidence

interval upper bound for control minus treatment, is used to provide a reasonably

high level of assurance that the test drug does, in fact, have an effect greater than

zero”13.

There is some inconsistency between the EMA (2000 & 2006) and the FDA (2016)

guidelines, and therefore perhaps some lack of clarity about which side of the

confidence interval to use (to the left or right of delta) to make inferences on. The

answer to this depends on the question a researcher is asking. Assume a treatment

minus control comparison. In a superiority study, if the way an outcome is defined is

a success (e.g. better quality of life or decrease in hospital admissions) a result less

than 0 would indicate that the treatment is unfavourable. If the outcome is defined as

failure (e.g. worse quality of life or increase in hospital admissions) then a result

greater than 0 would indicate that the treatment is unfavourable. The same rationale

can be applied to non-inferiority studies. Taking increase in hospital admissions as an

example, the non-inferiority margin would be a value greater than 0 as this value

would indicate how much of an increase in hospital admissions is “acceptably worse”.

Therefore, conclusions would be made on the upper bound of the confidence interval,

relative to the margin. An outcome which is defined as a success (e.g. better quality of

life or decrease in hospital admissions) the pre-defined non-inferiority margin would

be less than 0. Therefore, conclusions would be made on the lower bound of the
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confidence interval, relative to the margin. Recently, JAMA have introduced a policy

of presenting the lower bound of the confidence interval with the upper bound

tending towards infinity22. Their rationale being that the results are distinguished

from a superiority or equivalence study and since only one bound of the confidence

interval is used for inference, the other bound of the confidence interval does not

matter for making conclusions about non-inferiority. This policy has been put into

practice in recent non-inferiority trials23–26.

1.2.4 Missing data

If one or more values were not recorded on collected data but were intended to be,

then this is classed as missing data. Missing data results in loss of information: high

amounts of missing data results in the conclusions of a study losing validity.

The discussion of the issues raised by missing data that addresses non-inferiority

trials is sparse. The ICH E9 1998 guideline6, suggests single imputation techniques,

such as last observation carried forward (LOCF) to handle missing data. The guideline

also suggests “complex mathematical models” but does not suggest what those could

be. The U.S. FDA 2016 guidelines13 acknowledge that “Conducting any poor quality

studies should always be avoided, but with non-inferiority studies, sloppiness in

study design/conduct is particularly problematic, because it introduces bias towards

the alternative hypothesis of non-inferiority”. The guideline suggests imputation of

missing data without suggesting a particular method to counteract any bias due to

missing observations. It fails to highlight that imputation methods also carry

assumptions that ought to be reported.

Last observation carried forward assumes that the average of the unobserved

outcomes in each randomised group do not change over time27. This is a quite a

strong and definitive assumption to make on the unobserved data of patients who are

lost to follow up and so needs to be carefully thought of before being used. Over time,

post-1998, the LOCF method is no longer recommended as a favourable analysis and

instead has been cautioned against due to the underlying assumptions made. A

simulation study performed by Cook et al28 assessed the bias, empirical standard

errors, and type I and type II error rates and coverage probabilities including
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investigation of LOCF. The authors found that there was severe bias in the estimates

and inflation of the type I error rate. A contributing factor to these biases was due to

observed response and withdrawal: “the most influential [factor] appear to be

whether there is a trend in the responses over time, and whether the conditional

probability of drop-out is different for those in the treatment and control groups”28.

Molenberghs et al29 used three anti-depressant clinical trials as case studies to assess

the impact simple imputation methods have on the overall conclusions. The authors

found that these imputation methods altered the conclusions of the case studies used,

and conclude: “there is little justification for analysing incomplete data from

longitudinal clinical trials by means of such simple methods such as LOCF and

complete case”29.

Other simplistic analyses that are considered in clinical trials to address the issue

surrounding missing data include the best case/worst case scenario (§3.4.3). The best

case method replaces missing values in the reference arm with the worst value and

treatment arm(s) with the best value. The worst case method replaces missing values

in the reference arm with the best value and the treatment arm(s) with the worst

value. However, imputing the data in this way replaces the missing values with

certainty and can therefore bias the standard error downwards if uncertainty of the

imputed value is ignored30. Unnebrink et al31 performed a simulation study based on

a two-arm osteoporosis trial to assess what impact the best case and worst case

analysis has on the significance and power between the treatment regimen and

control. The authors found when a worst case scenario was used the power decreased

with increasing rate of withdrawal and the type I error rate also decreased. This

means that using the worst case scenario biases towards the null hypothesis,

favouring the control treatment arm. Assuming a best case scenario showed that with

increasing rates of withdrawal, the type I error rate and power increased, therefore

biasing towards the alternative hypothesis favouring the treatment regimen. The

authors note that using a worst case and best case scenario are “too extreme”31.

Inverse probability weighting (IPW), a conceptually simple method can also be used

to account for missing data based on the availability of patient observations. Two

models are required for IPW; a model relating the outcome to the explanatory
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variables and a model for the probability of missing observations32. IPW then

calculates a weighted average, allocating more weight to patients with a lower chance

of being observed. However, IPW is restricted for monotone missing data patterns

(i.e. a patient who is missing data over follow-up is never observed in the future)33.

Chapter 4 investigates this approach in more detail.

A more advanced approach to deal with the issue of missing data is multiple

imputation34. For multiple imputation, a model for the distribution of the missing

data given the observed data is specified. Missing values are replaced several times

with random values from this model to create several imputed data sets. By replacing

missing values several times and creating multiple imputed datasets accounts for the

uncertainty of the imputed value. This methodology is investigated in detail in

Chapter 3.

There are several methods that make more reasonable assumptions than those

considered within the guidelines reviewed here and therefore may be preferable. We

investigate some of these methods within this thesis. Regardless of what method is

used each carry assumptions which should be stated, investigated and reported in

publications.

1.2.5 Sensitivity analyses

In the context of missing data, sensitivity analyses explore how robust conclusions

from the primary analysis are to different assumptions about the missing data. If

conclusions of the sensitivity analysis are similar to that of the primary analysis, then

this enhances confidence in the results of a trial as they are robust to a range of

plausible assumptions about the missing data.

ICH E9 19986 state for all trials: “an investigation should be made concerning the

sensitivity of the results of analysis to the method of handling missing values,

especially if the number of missing values is substantial”. The SPIRIT 2013

guidelines15 support this: “sensitivity analyses are highly recommended to assess the

robustness of trial results under different methods of handling missing data”. EMA

(2000) follow the ICH E9 (1998) guideline where, to show sensitivity of a study, it is
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suggested that both a full analysis set and analysis on the PP population should be

done to enhance the integrity of results. CONSORT 201210 do not suggest sensitivity

analyses but imply that if an ITT or PP analysis is chosen, the other counts as a

sensitivity analysis. CONSORT (2012) guidelines for non-inferiority suggest through

an example that if one analysis is on either an ITT or PP population, then an analysis

of the other would be a sensitivity analysis: “Study endpoints were analysed

primarily for the per protocol population and repeated, for sensitivity reasons, for the

intention-to-treat (ITT) population”6–9

The ITT and PP analysis actually ask different questions about the behaviour of

patients in the analysis and do not test the assumptions made about the missing data.

As pointed out by Carpenter and Kenward35, “focus[ing] on comparing results of

certain methods, which can make similar assumptions about the missingness

mechanism, rather than comparing the sensitivity of the conclusions to varying the

assumptions about the missingness mechanism misses the point of using sensitivity

analysis and can led to misleading conclusions”.

1.2.6 Other considerations

Other important criteria to consider for non-inferiority studies include blinding,

randomisation, assay sensitivity and biocreep.

Blinding and randomisation

Blinding is a method that can protect against bias since the knowledge of what

treatment has been allocated to participants can create bias36. Randomisation also

protects against potential bias as the method ensures random allocation of treatment

to patients37.

Assay sensitivity

Assay sensitivity is the ability to detect an effective treatment from a less effective

treatment7. The impact of missing data can lead to false conclusions of

non-inferiority38. This impact depends on the missingness mechanism (see §3.3). In

cases where the data are MCAR or MAR, the impact is marginal as the missingness

reason is known39. Therefore in cases where patients are lost to follow-up for reasons
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due to the administered treatment, collecting follow-up data for these patients can

maintain assay sensitivity40. In non-inferiority studies, it is often assumed that an

active control is superior compared to placebo41.

Biocreep

If a treatment is found to be “non-inferior”, then the treatment is acceptably worse.

This slightly inferior treatment may become an active control for the next generation of

non-inferiority trials and so on until the active control is no better than a placebo20.

1.2.7 Summary

The statistical guidelines reviewed show that the suggestions made to deal with some

of the issues that arise in non-inferiority trials are inconsistent, particularly

surrounding the choice of the primary analysis. This is concerning given the increase

of non-inferiority trials being performed. Following this review of the guidelines, a

systematic review of selected journals was conducted described in Chapter 2. The

rationale being that the inconsistency highlighted within this Chapter between the

guidelines are highly likely to have some impact on the design and reporting of

published non-inferiority trials.

1.3 Thesis objectives

The overarching goal of this thesis is to find better methods for analysing the primary

outcome of non-inferiority clinical trials. The PP analysis is often preferred since the

analysis emphasises patients who adhered to the protocol. As a consequence, patients

who deviate from the protocol or who miss a follow-up visit may be excluded from

the primary analysis. The recommended “conservative” methods to handle missing

outcome data for all trials proposed by regulators (and used by trialists), such as the

best case/worst case scenario30 and used by trialists are simplistic and require strong

assumptions about the nature of the missing data31. Building on the review in

Chapter 2, the specific objective of this thesis is therefore to find alternative methods

to include these missing observations within the primary analysis of non-inferiority

trials, thereby providing a valid, more powerful analysis.
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The methods we will investigate make the untestable missing at random assumption

(defined in §3.3) about the missing data, and so a further aim is to look at sensitivity

analyses to investigate departures from this assumption made.

For the last 5 years, tuberculosis (TB) has been classed as the leading cause of death

from an infectious disease by WHO42. Due to the intensity of the treatment over 6

months, some patients struggle to take the full course of treatment. In some cases,

patients feel much better very quickly after receiving treatment and therefore do not

feel the need to take the full course of treatment. In both cases, this leads to them

contracting TB again. There is a real need to shorten these treatment regimens. The

two datasets used in this thesis, the REMoxTB and RIFAQUIN trials, aimed to do this

but failed to show non-inferiority. It is possible that the exclusion of patients who

seemed to be disease-free but were missing their last follow-up visits at the end of a

study could have impacted on the trial results, since the proportion of patients lost to

follow-up (around 10-15%) is larger than the 6% non-inferiority margin chosen for

these studies. This thesis will investigate this. Additionally, the definition of the

primary outcome for TB trials requires a confirmatory result to indicate a patient is

cleared of TB over 18 months of follow-up. Unobserved results add an extra

complexity to determining the outcome of a patient and so any missing results are

usually ignored in the analysis. This means only a small proportion of patients will

have completed data. TB trials could benefit substantially by including information

from patients with missing observations within the primary analysis, in a statistically

valid way.

Although the focus of this thesis is on tuberculosis trials, there are very few phase III

non-inferiority trials that exist within that disease area. Therefore in Chapter 2 the

systematic review was performed for non-inferiority trials across multiple disease

areas. Chapters 3-6 then take two phase III tuberculosis studies which are used as

motivating examples to assess the implications of missing data in these non-inferiority

studies. Chapter 3 investigates different patterns of the missing data within the

exemplar datasets and uses different multiple imputation techniques to include

missing observations, resulting in “completed” datasets. Chapter 4 applies

Generalised Estimating Equations and uses inverse probability weighting to account
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for the missing data within these models. Chapter 5 introduces multi-state Markov

models, focussing on hidden Markov models, and applies them to the two TB

datasets. The results are compared to those produced from multiple imputation and

from the original analysis. Reference-based sensitivity analysis via multiple

imputation is introduced in Chapter 6 and we extended the methodology for use of

binary outcome data. These methods are then illustrated in the REMoxTB and

RIFAQUIN datasets. We finish with a summary and discussion in Chapter 7.
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Chapter 2

Systematic review

2.1 Introduction

The inconsistency between statistical guidelines discussed in Chapter 1 and

summarised in Table 2.1, led to the hypothesis that poor reporting would be

associated with demonstrating non-inferiority. Given these inconsistencies between

the guidelines, we explore what guidance is taken on board by researchers using a

non-inferiority design for clinical trials that have been conducted, what is being

ignored and what can be improved on. A systematic review is appropriate to

summarise the methods that are currently adopted by researchers43. This review

investigates the quality of conduct and reporting in a selection of high impact journals

over a 5 year period for non-inferiority trials. This work was jointly done with Tim

Morris, Katherine Fielding, James Carpenter and Patrick Phillips. At the time this

review was performed, the U.S. FDA guidelines for non-inferiority13 were not

finalised and so in this chapter we refer to the draft U.S. FDA (2010) guidelines for

non-inferiority clinical trials14. The results of this review have been published in BMJ

Open44.

2.2 Methods

Medical journals (general and internal medicine) with an impact factor greater than

10 according to the ISI web of knowledge45 were included in the review (correct at

time of search on 31th May 2015), the rationale being that articles published in these

journals are likely to have the highest influence on clinical practice and be the most
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rigorously conducted and reported due to the thorough editorial process. The search

terms “noninferior”, “non-inferior”, “noninferiority” and “non-inferiority” were used

in Ovid (Medline) in titles and abstracts between 1st January 2010 and 31st May 2015

in New England Journal of Medicine with an impact factor of 54.4; Lancet with an

impact factor of 39.2; JAMA with an impact factor of 30.4; British Medical Journal with

an impact factor of 16.4; Annals of Internal Medicine with an impact factor of 16.1;

PLOS medicine with an impact factor of 14.0 and Archives of Internal Medicine with

an impact factor of 13.2. From 2013, Archives of Internal Medicine was renamed JAMA

Internal Medicine, and therefore both journals have been included in this review. This

search was cross checked with the PubMed database using the same search terms in

titles/abstracts between 1st January 2010 and 31st May 2015.

2.2.1 Inclusion/exclusion criteria

Tim Morris and I independently assessed the eligibility of articles by reviewing the

abstracts of articles. Articles included were non-inferiority randomised controlled

clinical trials. Articles were excluded if the primary analysis was not for

non-inferiority. Systematic reviews, meta-analyses and commentaries were also

excluded. A few trials were designed and analysed using Bayesian methods, and

were therefore excluded for consistent comparability between trials that analysed

according to frequentist methods, which were the vast majority.
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Table 2.1: Summary of non-inferiority guidelines.

Guideline Justification of margin Who is included in analysis Confidence interval Missing data Sensitivity analysis

CONSORT

2006 1

“Margin should be specified and preferably

justified on clinical grounds”

“Non-ITT analyses might be desirable as a protection from

ITTs increase in type I error. There is greater confidence

in results when the conclusions are consistent.”

Intent-to-treat: “Analysing all patients within their

randomized groups, regardless of whether they completed

allocated treatment is recommended”

Per-protocol: “Alternative analyses that exclude patients

not taking allocated treatment or otherwise not protocol

-adherent could bias the trial in either direction. The terms

on-treatment or per-protocol analysis are often used but

may be inadequately defined.”

“Many noninferiority trials based their

interpretation on the upper limit of a 1-

sided 97.5% CI, which is the same as

the upper limit of a 2-sided 95% CI.”

“Although both 1-sided and 2-sided CIs

allow for inferences about

noninferiority, we suggest that 2-sided

CIs are appropriate in most

noninferiority trials. If a 1-sided 5%

significance level is deemed acceptable

for the noninferiority hypothesis test (a

decision open to question), a 90% 2

-sided CI could then be used.”

CONSORT

2012 10

“Should be indicated if conclusions are related to PP

analysis, ITT analysis or both and if the conclusions

are stable between them.”

“The two-sided CI provides additional

information, in particular for the

situation in which the new treatment is

superior to the reference treatment”

Sensitivity analysis is discussed

through an example: “Study

endpoints were analysed primarily

for the per protocol population and

repeated, for sensitivity reasons,

for the intention-to-treat (ITT)

population.”

Draft U.S. FDA

2010 14

“Whether M1 (the effect of the active

control arm relative to placebo) is based

on a single study or multiple studies, the

observed (if there were multiple studies)

or anticipated (if there is only one study)

statistical variation of the treatment effect

size should contribute to the ultimate

choice of M1, as should any concerns about

constancy. The selection of M2 (the largest

clinically acceptable difference of the test

treatment compared to the active control)

is then based on clinical judgement

regarding how much of the M1 active

comparator treatment effect can be lost.

The exercise of clinical judgement for the

determination of M2 should be applied

after the determination of M1 has been

made based on the historical data and

subsequent analysis”

“It is therefore important to conduct both ITT and ’as-

treated’ analyses in non-inferiority studies.”

Intent-to-treat: “preserve the principle that all patients are

analyzed according to the treatment to which they have

been randomized even if they do not receive it”

“Typically, the one-sided Type I error is

set at 0.025, by asking that the upper

bound of the 95% CI for control-treat

be less than the NI margin. If multiple

studies provide very homogeneous

results for one or more important

endpoints it may be possible to use the

90% lower bound rather than the 95%

lower bound of the CI to determine the

active control effect size”

“Poor quality can reduce the

drug’s effect size and

undermine the assumption of

the effect size of the control

agent, giving the study a ’bias

towards the null”.
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ICH E9 6
“This margin is the largest difference that

can be judged as being clinically

acceptable”

“In confirmatory trials it is usually appropriate to plan to

conduct both an analysis of the full analysis set and a per

protocol analysis In an equivalence or non-inferiority

trial use of the full analysis set is generally not

conservative and its role should be considered very

carefully.”

Intent-to-treat: “subjects allocated to a treatment group

should be followed up, assessed and analysed as

members of that group irrespective of their compliance

to the planned course of treatment”

Full analysis set: “The set of subjects that is as close as

possible to the ideal implied by the intention-to-treat

principle. It is derived from the set of all randomised

subjects by minimal and justified elimination of subjects.”

Per-protocol: “The set of data generated by the subset of

subjects who complied with the protocol sufficiently to

ensure that these data would be likely to exhibit the

effects of treatment, according to the underlying

scientific model. Compliance covers such considerations

as exposure to treatment, availability of measurements and

absence of major protocol violations.”

“For non-inferiority trials a one-sided

interval should be used. The choice of

type I error should be a consideration

separate from the use of a one-sided or

two-sided procedure.”

“Imputation techniques,

ranging from LOCF to the use

of complex mathematical

models may be used to

compensate for missing data”

“An investigation should be

made concerning the sensitivity

of the results of analysis to

the method of handling

missing values, especially

if the number of missing

values is substantial.”

ICH E10 7
“The determination of the margin in a non-

inferiority trial is based on both statistical

reasoning and clinical judgement”

SPIRIT 15

Use an example where “non-inferiority would be claimed if

both ITT and PP analysis show conclusions of NI.”

Intent-to-treat: “In order to preserve the unique benefit of

randomisation as a mechanism to avoid selection bias, an

“as randomised” analysis retains participants in the group

to which they were originally allocated. To prevent

attrition bias, out-come data obtained from all participants

are included in the data analysis, regardless of protocol

adherence.”

Per-protocol and modified intention-to-treat: “Some trialists

use other types of data analyses (commonly

labelled as modified intention to treat or “per protocol”)

that exclude data from certain participantssuch as those

who are found to be ineligible after randomisation or who

deviate from the intervention or follow-up protocols. This

exclusion of data from protocol non-adherers can

introduce bias, particularly if the frequency of and the

reasons for non-adherence vary between the study

groups.

“Multiple imputation can be

used to handle missing data

although relies on untestable

assumptions”

“Sensitivity analyses are highly

recommended to assess the

robustness of trial results under

different methods of handling

missing data”
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EMA 2006 9
“The choice of delta must always be

justified on both clinical and statistical

grounds”

“A two-sided 95% CI (or one-sided

97.5% CI) is constructed. The interval

should lie entirely on the positive side

of the margin. Statistical significance is

generally assessed using the two-sided

0.05 level of significance (or one-sided

0.025)”

EMA 2000 8
“ITT and PP analyses have equal importance and

their use should lead to similar conclusions

for robust interpretation”

“A two-sided confidence interval should

lie entirely to the right of delta. If one-

sided confidence is used then 97.5%

should be used”

“It will be necessary to pay

particular attention to

demonstrating the sensitivity of

the trial by showing similar

results for the full analysis set

and PP analysis set”
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2.2.2 Data extraction

Before performing the review, a data extraction form (see Appendix A) was developed

to extract information from articles. The form was tested by two reviewers (Tim

Morris and I) on articles, included in this review, until agreement was achieved

between both reviewers. The form was standardised to collect information on year of

publication, non-inferiority margin (and how the margin was justified),

randomisation, type of intervention, disease area, sample size, analysis performed

(how this was defined and what was classed as primary/secondary), primary

outcome, p-values (and whether this was for a superiority hypothesis), significance

level of confidence intervals (and whether both bounds were reported), imputation

techniques for missing data, sensitivity analyses, conclusions of non-inferiority and

whether a test for superiority was pre-specified.

Non-inferiority margin

The size of the margin chosen was recorded and justification of the margin was noted

according to what the authors reported. Any attempt the authors made at justifying

the margin was recorded as a justification. These were subsequently classed according

to what basis the margin was justified by two reviewers (Patrick Phillips and I), due to

the subjectivity of classifications.

Analysis chosen by authors

Participants to be included in analyses were classed according to what was stated

within articles along with how the analysis for the population was defined by authors

within the main text (if available). Definitions of the analysis was summarised

according to authors definition. If the type of analysis was not explicitly defined

within articles, the definition was recorded according to what was shown in the

CONSORT flow chart or otherwise implicitly. ITT, PP, mITT and as-treated were

considered to be the most well-known. If the analyses was defined by authors but did

not include a classification then they were categorised in the following way:

• All patients randomised into the study were analysed was classed as an intention-

to-treat analysis;
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• Patients who were excluded after administration of treatment (e.g. withdrawals,

loss to follow up, compliance) was classed as a per-protocol analysis;

• Patients who were excluded after administration of treatment, but the exclusion

was not treatment related (e.g. patients who did not have the disease of interest)

was classed as a modified intention-to-treat analysis; and

• Analysis based on what treatment patients actually received as opposed to the

treatment that was allocated at the time of randomisation was classed as an as-

treated analysis.

Information on whether the analysis was considered as a primary analysis or

secondary analysis (for the same primary outcome) was collected. The analysis was

assumed primary if only one analysis was reported. If more than one analysis was

performed but it was not clearly described which was to be taken as the primary

and/or secondary analysis, the primary analysis was assumed to be whatever was

presented in the results section of the abstract and secondary if not presented in the

abstract but stated elsewhere within the article. If all results were presented for all

populations in the abstract, then both were assumed as primary unless non-inferiority

was concluded on only one analysis. Analysis was assumed secondary if the patient

population was stated but not defined or if the results of the analysis were not

presented in the article.

Sample size

Power and significance levels were recorded according to the planned sample size

calculation from the methods section of articles, and whether the significance level

was calculated for a one-sided or two-side test.

Confidence intervals

The significance level of the confidence interval was recorded and whether the

judgement about non-inferiority was made on the upper or lower bound of a

confidence interval. We also recorded whether the interval was presented for both

bounds or for one bound.

47



Missing data

The amount of missing data in the primary outcome was recorded, either from the

text, tables or the CONSORT flow chart. A range of missing data, or a

minimum/maximum was taken if the exact amount of missing data could not be

determined. Whether or not any imputation techniques to handle missing data were

considered for the primary outcome was recorded along with the technique used. If

multiple imputation was used, then whether the number of repetitions was stated and

whether authors stated assumptions made about missing data according to Rubin’s

Rules34 were recorded.

Sensitivity analysis

We recorded whether sensitivity analyses were considered for the primary outcome,

what they were and if they were performed to test assumptions made about the missing

data for primary analyses.

Hypothesis

A quality grading system was developed based on whether the margin was justified

(yes vs. no/poor), how many analyses were performed on the primary outcome (<2

vs. ≥2) and whether the type I error rate was consistent with the significance level of

the confidence interval (yes vs. no/unclear). Articles were classed as “excellent” if all

these criteria were fulfilled and were classed as “poor” if none were fulfilled. Articles

which satisfied one criterion were classed as “fair” and articles that provided two of

the three criteria were classed as “good”. The results of this grading were compared

to inferences on non-inferiority to assess if the quality of reporting was associated with

concluding non-inferiority.

Subgroup of trials with published protocols

Additional supplementary content was only accessed if it specifically referred to the

information we were extracting within articles. As a sub-study, all statistical methods,

outcomes and sample sizes from protocols and/or supplementary content were

reviewed from New England Journal of Medicine as the journal is known to

specifically request and publish protocols and statistical analysis plans alongside

accepted publications.
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Assessments

If more than two arms were compared, information was taken from the first

comparison that was presented in the abstract, unless the comparison was for

superiority (e.g. placebo vs. standard treatment vs. experimental arm). For articles

that reported more than one trial, information was captured from the trial whose

results were presented first in the abstract. If more than one primary outcome was

assessed, information was recorded based on the primary outcome that was presented

first in the results of the abstract.

I performed all the assessments and a random selection of 5% of articles were

independently reviewed by Patrick Phillips. Any assessments that required a second

opinion were independently reviewed by Tim Morris. Any discrepancies were

resolved by discussion between the reviewers. All analyses were conducted using

Stata version 14.

2.3 Results

The search found 252 articles. After 35 duplicate publications were removed, 217 were

screened for eligibility using their titles and abstracts. A total of 46 articles were

excluded (Figure 2.1) leaving 171 articles to be reviewed. Three articles were excluded

during the full-text review: one was a meta-analysis; one presented results of follow

up data from a study which had already been included in the review and one was a

cohort study. Therefore, a total of 168 articles were reviewed.

General characteristics are shown in Table 2.2. Most articles (164; 98%) specified the

threshold of the margin to determine non-inferiority. Almost half of the articles

defined a composite primary outcome 78 (46%). Non-inferiority trials were most

common for those investigating heart disease 30 (18%), followed by HIV 18 (11%),

cancer 16 (10%), bleeding 14 (8%) and diabetes 11 (7%). Statistical power used for

sample size calculations ranged between 71 and 99%, with 80% or 90% power being

more common: 61 (36%) and 65 (39%) trials respectively.
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Figure 2.1: Flow chart of eligibility of articles.

50



Table 2.2: General characteristics.

All articles Including NEJM

n=168 protocols (n=61)

Characteristics n (%) n(%)

Journal

NEJM 61 (36%) 61

Lancet 64 (38%)

JAMA 19 (11%)

BMJ 8 (5%)

Annals of Internal Medicine 5 (2%)

PLOS Medicine 7 (4%)

Archives of Internal Medicine 2 (1%)

JAMA of Internal Medicine 2 (1%)

Year of publication

2010 26 (15%) 9 (15%)

2011 27 (16%) 9 (15%)

2012 29 (17%) 8 (13%)

2013 39 (23%) 19 (31%)

2014 27 (16%) 10 (16%)

2015 20 (12%) 6 (10%)

Type of intervention

Drug 112 (67%) 44 (72%)

Surgery 22 (13%) 7 (11%)

Other 34 (20%) 10 (16%)

Randomisation

Patient 163 (97%) 59 (97%)

Cluster 5 (3%) 2 (3%)

Margin specified

Yes 164 (98%) 58 (95%)

No 4 (2%) 3 (5%)

Power

80% 61 (36%) 19 (31%)
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85% 11 (7%) 5 (8%)

90% 65 (39%) 26 (43%)

71 to 99% (Excluding the above) 21 (12%) 11 (18%)

Not reported/unclear 10 (6%) 0

Composite outcome

Yes 78 (46%) 37 (61%)

No 90 (54%) 24 (39%)

Disease

Heart disease 30 (18%) 13 (21%)

Blood disorder 19(11%) 6 (10%)

Cancer 16 (10%) 8 (13%)

Diabetes 11 (7%) 2 (3%)

Thromboembolism 6 (4%) 6 (10%)

Skin infection 3 (2%) 2 (3%)

Urinary tract infection 3 (2%) 0

Arthritis 3 (2%) 1 (2%)

Ophthalmology 3 (2%) 1 (2%)

Pneumonia 3 (2%) 1 (2%)

Complications in pregnancy 3 (2%) 0

Stroke 3 (2%) 2 (3%)

Testing method 3 (2%) 1 (2%)

Appendicitis 2 (1%) 1 (2%)

Depression 2 (1%) 0

Other Non-infectious disease 18 (11%) 7 (11%)

HIV 18 (11%) 2 (3%)

Tuberculosis 6 (4%) 4 (7%)

Malaria 4 (2%) 1 (2%)

Skin infection 2 (1%) 0

Hepatitis C 2 (1%) 2 (3%)

Other infectious disease 8 (5%) 1 (2%)
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Table 2.3: Justification of choice of margin, total number

of patient populations considered for analyses and patient

population included in analysis.

All articles Including NEJM

(n=168) protocols (n=61)

n (%) n(%)

Justification of NI margin

Made no attempt for justification 90 (54%) 22 (36%)

Clinical basis. No evidence for consultation with external

expert group, and no reference to previous trials of the

control arm

32 (19%) 11 (18%)

Preservation of treatment effect based on estimates of

control arm effect from previous trials
13 (8%) 14 (23%)

Expert group external to the authors. No reference to

previous trials of the control arm
6 (4%) 3 (5%)

The same margin as was used in other similar trials 5 (3%) 2 (3%)

10-12% recommended by disease specific U.S. FDA

guidelines
4 (2%) 1 (2%)

General comment that margin was decided according to

U.S. FDA/regulatory guidance
4 (2%) 0

Clinical basis and based on previous similar trial. No

evidence for consultation with external expert group, and

no reference to previous trials of the control arm

3 (2%) 0

Based on registry/development program 0 2 (3%)

Based on previous trial. No evidence for consultation with

external expert group, and no reference to previous trial of

the control arm

1 (1%) 1 (2%)

Based on unpublished data. No evidence for consultation

with external expert group, and no reference to previous

trials of the control arm

1 (1%) 0
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Clinical basis and based on previous trials and guidelines.

No evidence for consultation with external expert group,

and no reference to previous trials of the control arm

1 (1%) 0

Clinical basis. Attempted to justify based on preservation

of treatment effect, but were unable to do so due to paucity

of previous trials

1 (1%) 0

Expert group external to the authors and previous trial. No

reference to previous trials of the control arm
1 (1%) 0

Justified based on treatment effect of control, but margin

actually bigger than control arm treatment effect
1 (1%) 1 (2%)

Placebo controlled study. Clinical basis, previous trials and

literature review
1 (1%) 0

Preservation of treatment effect. Reference to separate

paper justifying margin
1 (1%) 1 (2%)

Regulatory guidelines (WHO), but recommendation is for

superiority. No evidence for consultation with external

expert group, and no reference to previous trials of the

control arm

1 (1%) 0 (0%)

Synthesis approach 1 (1%) 0 (0%)

Unclear 1 (1%) 0 (0%)

General comment that margin was decided according to

U.S. FDA request
0 1 (2%)

Preservation of treatment effect based on estimates of

control arm effect from previous trials and clinical basis
0 1 (2%)

Preservation of treatment effect based on estimates of

control arm effect from previous trials, clinical basis and

according to U.S. FDA guidelines

0 1 (2%)

Number of analyses

One 65 (39%) 15 (25%)

Two 91 (54%) 38 (62%)

Three 10 (6%) 7 (11%)
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Not defined 2 (1%) 1 (2%)

Analysis

ITT 129 (77%) 44 (72%)

PP 90 (54%) 35 (57%)

mITT 34 (20%) 17 (28%)

As-treated 4 (2%) 6 (10%)

Other 20 (12%) 10 (16%)

Unclear 2 (1%) 2 (3%)

Justification of the non-inferiority margin

The non-inferiority margin was justified in less than half of articles 76 (45%). The most

common justification was on a clinical basis (32 (19%)) which was often worded

ambiguously and with little detail. A total of 13 (8%) used previous findings from past

trials or statistical reviews to justify the choice of the margin (Table 2.3).

Analyses performed

Over a third of articles 65 (39%) performed only one analysis (Table 2.3) rather than

presenting both an ITT and PP analyses as recommended in most guidelines. A total

of 129 (77%) articles presented at least one ITT analysis, of which 68/129 (53%)

defined ITT analysis as “all patients randomised into the study” and 21/129 (16%)

defined the ITT population as “all patients randomised who took at least one dose of

treatment/intervention” (whichever was appropriate; Table 2.4). The number of

studies that performed only an ITT analysis or both ITT and PP analyses was about

the same: 54 (32%) and 56 (33%) respectively (Table 2.5). PP analyses were performed

in 90 (54%) trials (Table 2.3) of which 11 (12%) did not define what was meant by

“per-protocol” (Table 2.4). Definitions of the PP population contained various

exclusions, mostly regarding errors in randomised treatment or treatment received.

Some exclusions were with respect to protocol adherence or deviations, other

exclusions were due to missing outcome data, ineligibility, withdrawals or errors in

randomisation. There were a variety of other definitions 20 (12%), including a

modified per-protocol analysis which excluded all but one of the protocol deviations;

the per-protocol analysis excluded all protocol deviations. The majority of studies
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classed ITT analysis as primary and PP analyses as secondary (Figure 2.2). There were

10 (6%) studies that chose to perform three or more analyses on different patient

populations.

Type I error rate

Consistency between the type I error rate and confidence intervals reported was

moderate at 95 (57%): 11 (42%) in 2010; 15 (56%) in 2011; 15 (52%) in 2012; 24 (62%) in

2013; 19 (70%) in 2014 and 11 (55%) by May 2015 (Table 2.6). Most articles, 69 (41%),

used a one-sided 2.5% or (numerically equivalent) two-sided 5% significance level

(Table 2.7) and some used a one-sided 5% significance level or (numerically

equivalent) two-sided 10% significance level, 48 (28%). The majority of articles

presented two-sided confidence intervals (147; 88%) and 19 (11%) articles presented

one-sided confidence intervals. Most two-sided confidence intervals were at the 95%

significance level: 125 (74%).

Missing data

Imputation techniques to account for missing primary outcome data were carried out

for 57 (34%) trials. A total of 99 (59%) trials did not report whether or not any

imputation was done and only 12 (7%) explicitly declared that no imputation was

used. Assuming a worst-case scenario or multiple imputation were the most common

methods used, 19/57 (33%) and 11/57 (19%) respectively (Table 2.8). The number of

imputations used for multiple imputation was specified in 8/11 articles and 4/11

stated at least one of the assumptions from Rubin’s rules34.

Table 2.4: Definition of analysis

Analysis Definition n (%)

ITT 129

All patients randomised 68 (53%)

All patients randomised who received at least one dose of treatment/intervention 21 (16%)

All patients randomised excluding missing data 7 (5%)

All patients randomised excluding errors in randomisation 3 (2%)

All patients randomised who received at least one dose of

treatment/intervention, excluding missing data
1 (1%)

All patients randomised with exclusions from one centre which was removed due

to misconduct
1 (1%)
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Other 17 (13%)

Unclear 1 (1%)

Not defined 10 (8%)

PP 90

Patients who received allocated treatment/intervention 8 (9%)

Excluding patients with major protocol violations 5 (6%)

Patients who completed allocated treatment/intervention as intended 4 (4%)

Patients who adhered to treatment 2 (2%)

Excluding patients with protocol deviations 2 (2%)

Patients with no exclusion criteria and who received specific amount of

treatment/intervention
2 (2%)

Patients who received allocated treatment/intervention, no major protocol

violations with outcome
2 (2%)

Excluding patients who switched treatment 1 (1%)

Patients who received at least one dose of treatment/intervention 1 (1%)

Patients who adhered to the protocol 1 (1%)

Patients who completed the assigned study regimen or adhered to treatment

before an event
1 (1%)

Patients who received correctly allocated treatment/intervention excluding

withdrawals
1 (1%)

Patients who received specific amount of treatment/intervention and adhered to

protocol
1 (1%)

Patients who received allocated treatment/intervention, excluding non-

adherence
1 (1%)

Patients who adhered to protocol excluding withdrawals 1 (1%)

Excluded patients with protocol deviations in addition to mITT definition 1 (1%)

Excluded patients that received rescue medication and protocol violations 1 (1%)

Patients who received at least one dose of drug/intervention and received

allocated treatment/intervention excluding missing outcome data
1 (1%)

All patients who received at least one dose of treatment/intervention and did not

have major protocol violations and were followed for event while receiving drug
1 (1%)

All patients who received at least one dose of treatment/intervention and did not

have major protocol violations
1 (1%)

Excluding patients who were ineligible, excluding patients who were

administered the incorrect dose of medication and excluding patients who were

allocated the incorrect treatment

1 (1%)

All patients randomised who received at least one dose of treatment/intervention

with an outcome, completed the study and complied with protocol
1 (1%)

Non-adherence, patients who declined follow up, errors in randomisation,

recurrent atrial fibrillation before randomisation were excluded
1 (1%)
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The per-protocol population (which consisted of the modified intention-to-treat

population with the exclusion of patients with major protocol deviations and a

compliance rate of <80%) was of primary interest, since a noninferiority analysis

that is based on the modified intention-to-treat population is deemed to be not

conservative

1 (1%)

Patients were not eligible for per-protocol analysis for the following reasons: no

follow-up visit; systemic treatment with other antimicrobial drugs up to day 28

(visit three); or missing more than one dose of the study drug during the first

week of treatment or more than two doses during the whole treatment period

1 (1%)

Excluded missing inclusion criteria; incorrect dosing; received prohibited

medication; missing assessments
1 (1%)

Per-protocol analyses excluded participants who had missing data at 1 month or

who had major protocol violations (e.g., death, pregnancy, withdrawal from the

study, loss to follow-up, or noncompliance). NB: Two results were presented for

PP where compliance was included and excluded.

1 (1%)

Per-protocol prespecified analyses included children with complete follow-up or

a confirmed treatment failure, and excluded those treated for malaria without

confirmatory microscopy, those for whom the alternative Plasmodium species

was detected, and those who defaulted from follow-up despite repeated attempts

at contact Flow chart includes: “and followed protocol”

1 (1%)

Patients who, during the intended treatment period, had a venogram adjudicated

as assessable, who developed confirmed deep vein thrombosis or pulmonary

embolism, or who died from any cause); patients who had important protocol

violations were excluded from the per-protocol analysis.

1 (1%)

The per-protocol population was defined as all patients included in the ITT

analysis, excluding those who did not receive the regimen as prescribed. These

were patients who received less than 6 weeks of treatment (42 days of daily

treatment or 36 days of 6-days-a-week treatment) or more than 9 weeks of

treatment (63 days of daily treatment or 54 days of 6-days-a-week treatment) in

the intensive phase and those who received less than 42 doses (ie, 4 weeks of

missed treatment) or more than 60 doses (ie, 2 weeks of extra treatment) in the

continuation phase (the protocol requirement is that patients receive 18 weeks

of 3- times-weekly treatment, ie, 54 doses). Also excluded were patients whose

treatment was modified for reasons other than bacteriological failure or relapse

(including patients changing treatment for adverse drug reactions, following

return after default, or attributable to concomitant HIV infection).

1 (1%)

Per-protocol snapshot analysis, which included all participants who were

enrolled, received at least one dose of study drug, and did not meet any of the

following pre-specified criteria: discontinuation of study drug before week 48

or HIV RNA data missing in week 48 analysis window (accounting for 80% of

excluded patients), and adherence in the bottom 2.5th percentile (accounting for

20% of the excluded patients)

1 (1%)

The perprotocol group consisted of all patients who were enrolled, had no major

protocol deviation, received the full treatment, and were assessed at day 15 or 31,

day 45, and 6 months (−2 to +6 weeks).

1 (1%)
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Criteria to exclude patients from this set were violation of major in- or exclusion

criteria, change of treatment arm, early treatment discontinuation or relevant

dose deviations of chemo- or radiotherapy unless caused by death or progression,

radiotherapy without PET panel recommendation or omission of radiotherapy

against recommendation, PET panel decision to take the patient off protocol

treatment, or missing documentation of treatment

1 (1%)

The per-protocol analysis set additionally excludes patients with change of

treatment arm, early treatment discontinuation or relevant dose deviations of

chemo- or radiotherapy unless caused by death or progression, or missing

documentation of treatment

1 (1%)

The perprotocol analysis was based on all participants who received 3 doses of

vaccine according to 1 of the studys vaccine dosing schedules, were seronegative

to the relevant HPV type at baseline, and had a valid serology result after the

third dose of the HPV vaccine

1 (1%)

Not defined. Taken from flow chart: Patients not meeting the definition of

having received adequate treatment provided they have not already had an

unfavourable response to treatment. Other exclusions done as well, but are not

defined in flow chart

1 (1%)

All patients who underwent randomization, completed a full treatment course or

had early treatment failure before treatment was completed, had outcome data

for the primary efficacy end point on day 28, and complied with the protocol to

the extent that would allow efficacy evaluation

1 (1%)

We also conducted a perprotocol analysis, which included those who completed

the 2-month visit while receiving treatment (108 oral, 113 intratympanic) because

intention-to-treat analyses may bias toward noninferiority. Flow chart also

shows patients who withdrew before the 2m follow up, those who discontinued

treatment but completed follow up and those who completed treatment but

missed 2m follow up were excluded.

1 (1%)

Which consisted of participants who received all three doses of vaccine within 1

year, did not have the HPV type being analyzed (i.e., were seronegative on day 1

and PCR-negative from day 1 through month 7), and had no protocol violations

1 (1%)

A total of 12 (10%) patients in each group did not undergo PEG for anatomical

reasons. Between the PEG procedure and the follow-up visit, five patients

died, one patient pulled out the PEG catheter without ensuing complications,

three patients were lost to follow-up, and one patient who was randomised to

cefuroxime received co-trimoxazole instead.

1 (1%)

Will include all subjects in the MITT population grouped by randomized

treatment assignment regardless of treatment received with the exception of the

following additional exclusions

1. Subjects not meeting the definition of having received an adequate amount of

their allocated study regimen (see below for definition), provided they have not

already been classified as having an unfavourable outcome

2. Subjects lost to follow-up or withdrawn before the Month 6 visit, unless they

have already been classified as having an unfavourable outcome.
1 (1%)
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3. Subjects whose treatment was modified or extended for reasons (e.g. an

adverse drug reaction or pregnancy) other than an unfavourable therapeutic

response to treatment, unless they have already been classified as having an

unfavourable outcome

4. Subjects who are classified as “major protocol violations” (see section 6.5),

unless they have already been classified as having an unfavourable outcome on

the basis of data obtained prior to the protocol violation

The per-protocol analysis excluding the 6 patients who were lost to follow-up

and the 3 patients who received postoperative corticosteroids (including the 4

patients who experienced primary bleeding events)

1 (1%)

Excluded patients who received a platelet transfusion for reasons not

recommended in the protocol
1 (1%)

We also did a per-protocol analysis of the medical outcomes, excluding

outpatients discharged more than 24 h after randomisation and inpatients

discharged 24 h or less after randomisation.

1 (1%)

The perprotocol population was defined as intention-to-treat patients with (1)

successful procedure outcome, (2) treatment solely with the zotarolimus-eluting

stent, (3) dual antiplatelet therapy according to randomization, and (4) complete

clinical follow-up information.

1 (1%)

Not defined. Flow chart shows the following exclusions: had another histology

or malignancy; withdrew informed consent; had an allergic reaction on first

rituximab infusion and consecutively other treatment; only had radiotherapy;

received incorrectly allocated treatment; did not meet inclusion or exclusion

criteria; no therapy; death before therapy

1 (1%)

Not defined. Flow chart suggests patients were excluded if they did not receive

the protocol and withdrawals
1 (1%)

Censoring of events if any component of the initial randomised trial treatment

was stopped
1 (1%)

Not defined. Flow chart shows inclusion/exclusion criteria violated, non-

adherence, prohibited medication and missing results were excluded
1 (1%)

Participants who did not follow protocol and/or were seropositive or polymerase

chain reaction-positive for HPV-16, HPV- 18, HPV-6, or HPV-11 at enrolment

were excluded from the per-protocol population analysis but retained for the

intention-to-treat population analysis. Participants were eligible to continue

with the 18- and 36-month follow-up if they had all of their doses of vaccine

and a 7-month blood sample collected. If participants were excluded from the

per-protocol population analysis at 7 months, they remained excluded for the

remainder of the study but were retained for intention- to-treat analysis.

1 (1%)

The per-protocol population included all patients who completed the study (1

year), and for whom the second reading of a CT-scan confirmed the diagnosis of

uncomplicated appendicitis.

1 (1%)

60



For analyses based on the per-protocol population, patients were analysed

according to their randomly assigned treatment group. To be included in the

perprotocol population, a patient was required to meet the following criteria:

Had a mean baseline hemoglobin ≥ 8.0 and <11.0 g/dl; Completed the study

through at least week 36, and at least 5 hemoglobin values were obtained during

the evaluation period; Had no missing administrations of study medication

between weeks 21 and 35, inclusive; Had not received any RBC or whole blood

transfusions within the 12 weeks prior to randomization; Had not received any

RBC or whole blood transfusions for reasons other than lack of effect of study

medication (lack of effect of study medication was documented as “Anemia of

CRF” on the case report form) between weeks 21 and 35, inclusive; Had not

received any ESA other than the assigned study treatment between weeks 21 and

35, inclusive; Had adequate iron status at baseline and during the evaluation

period (defined as serum ferritin ≥ 100 ng/ml and TSAT ≥ 20% during weeks

24, 28, and 32)

1 (1%)

Not defined. Flow chart shows exclusions: caesarean section or forceps; short

umbilical cord or nuchal cord; need for resuscitation; team became unavailable;

weight scale malfunctioned; parent withdrew consent

1 (1%)

Completers (observed cases; included patients in the full analysis set who did not

have important protocol violations, completed at least 684 days of treatment, and

had HbA1c measured at week 104)

1 (1%)

For analyses based on the per-protocol population, patients were analyzed

according to their randomly assigned treatment group. To be included in the per-

protocol population, a patient was required to meet the following criteria: Had a

mean baseline hemoglobin≥ 10.0 and≤ 12.0 g/dl; Completed the study through

at least week 36, and at least six haemoglobin values were obtained during

the evaluation period.; Received 75% of total prescribed (i.e., expected) doses

of study medication between weeks 25 and 35, inclusive (detailed algorithms

for this determination were specified in the Statistical Analysis Plan).; Had not

received any RBC transfusions within the 12 weeks prior to randomization.; Had

not received any RBC transfusions for reasons other than lack of effect of study

medication (lack of effect of study medication was documented as “Anemia of

CRF” on the case report form) between weeks 25 and 36, inclusive.; Had not

received any ESA other than the assigned study treatment between weeks 25 and

35, inclusive.; Had adequate iron status at baseline and at week 36 (defined as

serum ferritin ≥ 100 ng/ml and TSAT ≥ 20%).

1 (1%)

This population included all patients who underwent randomisation and who

completed the study procedures to month 6.
1 (1%)

We also performed a per-protocol analysis, which notably excluded patients in

the antibiotic group who had been switched from amoxicillin plus clavulanic acid

to another antibiotic.

1 (1%)

We did a per-protocol snapshot analysis, which included all participants who

were randomly assigned treatment, received at least one dose of study drug, and

did not meet any of the following prespecified criteria: discontinuation of study

drug before week 48 or HIV RNA results missing in the week 48 analysis window,

and adherence in the bottom 2.5th percentile.

1 (1%)
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Patients were included in the per-protocol population if they met the criteria

for inclusion in the modified intention-to-treat population, underwent an

adequate assessment of venous thromboembolism not later than 2 days after

administration of the last dose of study drug, and had no major protocol

violations.

1 (1%)

The perprotocol population comprised patients in the modified intention-to-treat

group who received treatment for at least 3 days (in the case of patients with

treatment failure) or at least 8 days (in the case of patients with clinical cure),

had documented adherence to the protocol, and underwent an end-of-therapy

evaluation.

1 (1%)

The per-protocol analysis set consisted of participants with exposure to treatment

for at least 12 weeks who did not have any major protocol violations that could

affect the primary endpoint and had a valid glycated haemoglobin (HbA1c)

assessment at baseline and at (or after) 12 weeks.

1 (1%)

Not defined 11 (12%)

mITT 34

All patients randomised who received at least one dose of treatment/intervention 10 (29%)

All patients randomised who received at least one dose of

treatment/intervention, excluding missing data
6 (18%)

All patients randomised with at least one dose of treatment/intervention

excluding patients/site with violations of GCP
2 (6%)

All randomised patients who received at least one dose of treatment/intervention

excluding patients without disease or excluding patients resistant to one of the

drug combinations. Excluding patients whose death was not related to the

disease or had reinfection after being cured or patients who were classed as

unassessable at the endpoint

1 (3%)

Patients were excluded if they were resistant to two of the treatment

combinations and patients who were unassessable and had not reached endpoint
1 (3%)

On-treatment which included events that occurred within 30 days after the last

dose of study medication was administered
1 (3%)

Patients were excluded if they had missing/contaminated outcome data or could

not produce an assessment or were lost to follow up or had death not related to

disease or had confirmed reinfection

1 (3%)

Excluded if consent withdrawn, non-compliance, moved and other (other not

defined)
1 (3%)

Other 11 (32%)

As-treated 4

All patients randomised who received intervention 1 (25%)

Not defined 3 (75%)

Other 20

Full analysis set 4 (20%)

On treatment analysis 3 (15%)

Complete follow up data 1 (5%)

ITT efficacy 1 (5%)
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PP and modified PP 1 (5%)

Should be classed as PP. All patients who completed study with no major protocol

deviations
1 (5%)

Should be classed as mITT 2 (10%)

Should be classed as mITT (ITT with no exclusion criteria) 1 (5%)

Should be as treated (treatment received) 1 (5%)

Other 5 (25%)

Unclear 2

Table 2.5: Type of primary analysis chosen.

All articles Including NEJM

(n=168) protocols (n=61)

Analysis n (%) n(%)

ITT only 54 (32%) 12 (20%)

PP only 3 (2%) 0

mITT only 8 (5%) 3 (5%)

ITT & PP 56 (33%) 17 (28%)

ITT & mITT 3 (2%) 2 (3%)

ITT & as-treated 4 (2%) 4 (7%)

ITT & other definition 6 (4%) 2 (3%)

PP & mITT 17 (10%) 9 (15%)

PP & other definition 4 (2%) 2 (3%)

PP & other definition 4 (2%) 2 (3%)

mITT & as-treated 0 1 (2%)

mITT & other definition 1 (1%) 1 (2%))

ITT, PP & mITT 1 (1%) 1 (2%)

ITT, PP & as-treated 0 1 (2%)

ITT, PP & other definition 5 (3%) 5 (8%)

ITT,PP & other definition 4 (2%) 0

Unclear 2 (1%) 1 (2%)

NB: One study performed ITT and PP analyses but it was unclear which of the two was taken as primary

and secondary
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Figure 2.2: Chosen analysis by primary or secondary analysis.
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Table 2.6: Consistency of type I error rate with significance

levels of confidence intervals over year.

2010 2011 2012 2013 2014 2015 Total

All articles

N=168

Yes 11 (42%) 15 (56%) 15 (52%) 24 (62%) 19 (70%) 11 (55%) 95

No 5 (19%) 4 (15%) 4 (14%) 5 (13%) 5 (19%) 3 (15%) 26

Not reported 10 (38%) 8 (30%) 10 (34%) 10 (26%) 3 (11%) 6 (30%) 47

NEJM subgroup

N=61

Yes 7 (78%) 6 (67%) 5 (63%) 14 (74%) 8 (80%) 4 (67%) 44

No 1 (11%) 2 (22%) 2 (25%) 3 (16%) 2 (20%) 1 (17%) 11

Not reported 1 (11%) 1 (11%) 1 (13%) 2 (11%) 0 1 (17%) 6
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Table 2.7: Significance level of a) type I error rate and b)

confidence intervals for all articles.

a) Type I error rate

One sided Two sided Not reported

0.8 0 1 (1%) 0

1.25 3 (2%) 0 0

2.45 1 (1%) 0 0

2.5 40 (24%) 2 (1%) 2 (1%)

5 46 (27%) 29 (17%) 15 (9%)

10 1 (1%) 2 (1%) 0

Not reported 3 (2%) 0 23 (14%)

b) Significance level of confidence interval

One sided Two sided Not reported

90 1 (1%) 14 (8%) 1 (1%)

95 14 (8%) 125 (74%) 0

97.5 4 (2%) 7 (4%) 0

Other 0 1 (1%) 0

Not reported 0 0 1 (1%)
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Table 2.8: Reporting of a)missing data and b)sensitivity

analyses.

n (%)

a) Imputation performed

Yes 56 (33%)

Worst case scenario 19 (34%)

Multiple imputation 11 (20%)

Last observation carried forward 8 (14%)

Complete case analysis 6 (11%)

Best case scenario 2 (4%)

Last observation carried forward and worst case scenario 2 (4%)

Best case/worst case scenario 3 (5%)

Mean imputation 1 (2%)
Complete case analysis, multiple imputation using propensity scores

and multiple imputation using regression modelling
1 (2%)

Other and worst case scenario 1 (2%)

Other 1 (2%)

No 12 (7%)

Not reported 99 (59%)

Unclear 1 (1%)

Including NEJM protocols (N=61)

Yes 22 (36%)

No 7 (11%)

Not reported 31 (51%)

Unclear 1 (2%)

b) Sensitivity analyses performed

Yes 64 (38%)

Patient population 13 (20%)

Competing risks 2 (3%)

Statistical modelling 2 (3%)

Adjusted for baseline variables 1 (2%)
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Excluded protocol violations 1 (2%)

On-treatment 1 (2%)

Patient population/other 1 (2%)

Unclear 2 (3%)

Other 15 (23%)

Missing data 27 (42%)

Best case/worst case scenario 5

Complete case analysis 3

Imputation of missing values 3

Multiple imputation 3

Worst case scenario 3

Baseline observation carried forward 1

Baseline observation carried forward and complete case analysis 1
Complete case analysis, multiple imputation using propensity scores

and multiple imputation using regression modelling
1

Complete case analysis and missing not at random 1

Complete case analysis and best case scenario 1

Different methods 1

Last observation carried forward 1

Modelling 1

Observed-failure 1

Worst case scenario and last observation carried forward 1

No 103 (61%)

Unclear 1 (1%)

Including NEJM protocols

Yes 38 (62%)

No 23 (38%)

Sensitivity analyses

A total of 64 (38%) trials reported using sensitivity analyses to test robustness of

conclusions of the primary outcome; of these 27/64 (42%) were related to assumptions

about the missing data (Table 2.8). Performing additional analyses on a patient

population was considered as a sensitivity analysis in 13/64 (20%).
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Study conclusions

There were 7 (4%) articles that could not make definitive conclusions (noted as

“other”, Table 2.9). For example, if all analyses conducted had to demonstrate

non-inferiority to conclude a treatment was non-inferior, and only one of the analyses

did, then non-inferiority could not be concluded and could not be rejected.

Non-inferiority was declared in 132 (79%) articles. 10 of these had some association

with equivalence. Of the articles that were designed as non-inferiority trials, two

articles stated the trial was non-inferiority, but had drawn equivalence graphs with

two thresholds denoting margins; one article stated the trial was for non-inferiority

but then calculated the sample size to determine equivalence; one article concluded

that their study did not show equivalence; one concluded equivalence; one article

stated that the margin was an equivalence margin; one stated that they would test for

equivalence; one concluded non-inferiority as the confidence interval was within

±margin; one concluded equivalence in the abstract but non-inferiority in the main

paper and one stated that “results were consistent with showing non-inferiority (i.e.

equivalence)”.

Superiority analyses were performed in 37 (22%) trials after declaring non-inferiority,

of which 27/37 (73%) had explicitly pre-planned for superiority analyses. P-values

were reported in 98 (58%) articles, of which 29/98 (30%) were actually testing a

superiority hypothesis.

Subgroup of trials with published protocols

Additional information from protocols published by NEJM was extracted for 57 of 61

articles. Including this additional information provided by NEJM improved the

reporting of results across all criteria: 39 (64%) articles justified the choice of the

non-inferiority margin compared to 19 (31%); most planned two or more analyses 45

(74%) compared to 37 (61%) (there were a couple of cases where two analyses were

planned in the protocol but only one was stated in the published article); consistency

between type I error rates and confidence intervals was 44 (72%) compared with 36

(59%); imputation techniques were considered in 29 (48%) compared with 17 (28%)

articles and sensitivity analyses were considered in 38 (62%) articles compared with 25

(41%). The majority of articles concluded non-inferiority with 8 (13%) not determining
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non-inferiority. A total of 14 (23%) articles concluded superiority, of which most were

pre-planned; 9/14 (64%). Few articles 8/40 (20%) presented superiority p-values.

Association between quality of reporting and conclusions

Trials that were classed as having some “other” conclusion about non-inferiority were

excluded from the analysis. Overall, there was a suggestive difference between the

quality of reporting and concluding non-inferiority: χ2
1 = 3.76; p = 0.05∗

(Cochran-Armitage test; Table 2.9). Trials classed as “Excellent” or “Good” (66

articles) were just as likely to conclude non-inferiority than those classed as “Fair” or

“Poor” (66 articles). However, those classed as “Excellent” concluded non-inferiority

more often (11; 73% compared to 2; 13% that did not) than those classed as “Poor” (18;

62% compared to 10; 34%). The numbers are however too small to make definitive

conclusions.

Table 2.9: Quality of reporting of trials associated with

conclusions of non-inferiority.

Yes (n=132) No (n=29) Other (n=7) Total (n=168)

Grade n (%) n (%) n (%) n (%)

Excellent1 11 (73%) 2 (13%) 2 (13%) 15

Good2 55 (86%) 9 (14%) 0 (0%) 64

Fair3 48 (80%) 8 (13%) 4 (7%) 60

Poor4 18 (62%) 10 (34%) 1 (3%) 29

χ2
1=3.76; p=0.05∗ (Cochran-Armitage test), excluding trials that concluded “other”.

1. Excellent if margin justified, ≥ 2 analyses on patient population performed, type I error rate consistent with

significance level of confidence interval.

2. Good if fulfilled two of the following: margin justified, ≥ 2 analyses on patient population performed, type I

error rate consistent with significance level of confidence interval.

3. Fair if fulfilled one of the following: margin justified, ≥ 2 analyses on patient population performed, type I

error rate consistent with significance level of confidence interval.

4. Poor if margin not justified,< 2 analyses on patient population performed, type I error rate not consistent with

significance level of confidence interval.
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2.4 Discussion

Reporting of non-inferiority trials is poor and is partly due to disagreement between

guidelines on vital issues. There are some aspects that guidelines agree on, such as a

requirement for the non-inferiority margin to be justified, but the results showed that

this recommendation is completely neglected by most authors. It is remarkable that

several authors performed only one analysis for the primary outcome and the lack of

consistency between the significance level chosen in sample size calculations and the

confidence interval reported further highlights confusion of non-inferiority trials. Not

knowing how to deal with missing data nor appropriate sensitivity analyses, also adds

to the confusion. The combination of these recent findings taken from high impact

journals and the inconsistency in guidelines indicate:

1. The non-inferiority design is not well understood by those using the design, and

2. Methods for non-inferiority designs are yet to be optimised.

We anticipated that poor reporting of articles would bias towards concluding

non-inferiority, however, the poorly reported trials were less likely to demonstrate

non-inferiority. This is somewhat reassuring. Nevertheless, it is essential to ensure

that what is reported at the end of a trial was pre-specified before the start of a trial:

scientific credibility and regulatory acceptability of a non-inferiority trial rely on the

trial being well-designed and conducted according to the design46.

Almost 80% of studies concluded non-inferiority, although it is unclear whether this is

due to how these studies have been reported or publication bias. It appears that

positive results (i.e. alternative hypotheses) are published more often, regardless of

trial design, as this number is consistent with other studies that found that more than

70% of published superiority trials demonstrated superiority47.

More than half of articles reported p-values, of which approximately a third reported

p-values for a two-sided test for superiority. P-values, if reported, should be

calculated for one-sided tests corresponding to the non-inferiority hypothesis; that is,

with H0: δ = margin. P-values for superiority should not be presented unless

following demonstration of non-inferiority, where a pre-planned superiority

hypothesis is tested48.
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2.4.1 Comparison with other studies

The value of the non-inferiority margin was almost always reported but more than

half of articles made no attempt to explain how the choice was justified. While

justification of the margin is low, this is actually an improvement from Schiller et al

who reported 23% articles made a justification49, although this difference could be

because only high impact journals were included in this review. This result is

consistent with a more recent review performed by Althunian et al, published after

our systematic review, which found that reporting the choice of the non-inferiority

margin had not improved over time50. The authors included articles from 1966 to

2015 and only investigated double-blinded randomised controlled trials. There were

equally as many articles that planned and reported an ITT analysis compared with

articles that performed ITT and PP analyses. This is surprising given that CONSORT

2006 state that an ITT analysis can bias non-inferiority trials towards showing

non-inferiority1. These results were lower than found by Wangge et al51 who reported

55% used either an ITT or PP and 42% used both ITT and PP. Most articles presented

two-sided 95% confidence intervals which is consistent with results from Le Henanff

et al52.

2.4.2 Non-inferiority margin

This review showed that the value of the non-inferiority margin was almost always

reported, but surprisingly, less than half of articles justified the margin. Those that did

and stated that the choice of the margin was based on clinical considerations1,6,7,9,10,14

often had poor justifications, such as “deemed appropriate” or “consensus among a

group of clinical experts” without any detail on how consensus was achieved or how

clinical experts were selected. In one article, included in the review, the authors

justified the choice of the margin on unpublished data, but had not provided any

additional information with regards to the nature of the data. The authors could have

included details of the unpublished data within the supplementary content to provide

more clarity of the choice of the margin as well as providing additional information

for other studies. Non-inferiority is only meaningful if it has strong justification in the

clinical context and so should be reported. Guidelines recommend that the choice of
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margin should be justified primarily on clinical grounds, however, previous trials and

historical data should also be considered if available. For example, Gallagher et al53

justified the choice of the margin providing as much information as possible by

including references to all published reports and providing data from the institution

where the senior author is based.

A statement often used in articles reviewed was “the choice of the margin was

clinically acceptable”. This statement does not contain enough information to justify

the choice of the non-inferiority margin. If the choice of the margin is based on a

group of clinical experts, authors should provide information on how many experts

were involved and how many considered the choice of the margin being acceptable: a

consensus among a group of 3 clinicians from one institution is different from a

consensus of 20 clinicians representing several institutions. Radford et al54 justify the

choice of the non-inferiority margin after performing a delegate survey at a

symposium. This method may be a way forward for researchers to obtain clinical

assessment from a large group of clinicians. Even better would be to obtain formal

assessments, using for example the Delphi method55 which has been used in the

COMET initiative56, after presenting the proposed research at a conference or

symposium for clinicians to really engage with the question at hand.

There were very few articles that referred to preserving the treatment effect based on

estimates of the standard of care arm from previous trials. It is vital that this is

acknowledged when reporting non-inferiority studies to ensure the standard of care is

effective. If the control were to have no effect at all in the study then finding a small

difference between the standard of care and new intervention would be

meaningless14.

2.4.3 Analyses

Definitions provided by authors were inconsistent under what they classed as ITT, PP,

mITT and as-treated, for example “all patients randomised who received at least one

dose of treatment” was defined at least once in each classification. According to the

guidelines, the PP definition excludes patients from the analysis but it is unclear what
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those exclusions are. The ambiguity of how per-protocol is defined was evident in this

review as definitions provided by authors could not be succinctly categorised. Some

defined per-protocol as “patients who received the allocated treatment” while others

stated “patients who received the allocated treatment and no major protocol

violations”. The SPIRIT guidelines encourage authors to avoid the “ambiguous use of

labels” and favour for definitions to be clearly defined within the trial protocol15. This

would avoid other ambiguous classifications found such as “on treatment analysis”,

“treatment received analysis” and in one case a “modified per-protocol analysis”.

Many articles performed only one analysis, despite most guidelines recommending at

least two analyses1,6,8,10,14. Unfortunately, guidelines differ in their advice on which of

the two analyses should be chosen to base conclusions on. This regrettable state of

affairs was clearly reflected in our review where some chose ITT to be the primary

analysis, others chose PP as the primary analysis.

Both the ITT and PP analyses have their biases and so neither can be taken as a “gold

standard” for non-inferiority trials. The analysis of the primary outcome is the most

important result for any clinical trial, and so the per-protocol analysis, only including

patients in the analysis who take treatment as they were supposed to, is what is of

interest in non-inferiority trials. It should be pre-defined in the protocol what patients

should adhere to and should be considered at the design stage what can be done to

maximise adherence. It should be made clear exactly who is included in analyses

given the variety of definitions provided by various authors, particularly for

per-protocol analyses where definitions are subjective. Most authors included

treatment related exclusions such as “received treatment”, “completed treatment” or

“received the correct treatment”. Such differences in definitions may be may be

superficially small but could in fact make critical differences to the results of a trial.

2.4.4 Significance level

Poor reporting of whether the hypothesis test was one-sided or two-sided or absence

of the type I error rate in the sample size calculation meant over a quarter of articles

were not clearly consistent with regards to the type I error rate and corresponding
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confidence interval. Most guidelines advise presenting two-sided 95% confidence

intervals and this is what most articles presented. However, this recommendation

may cause some confusion between equivalence and non-inferiority trials. A 5%

significance level is maintained using 95% confidence intervals in equivalence trials

for two-sided hypotheses whereas non-inferiority takes a one-sided hypothesis and so

a two-sided 90% confidence interval should be calculated. If a one-sided type I error

rate of 2.5% is used in the sample size calculation then this corresponds to the stricter

two-sided 95% confidence intervals, not a one-sided 95% confidence interval57.

The power and type I error rate should be clearly reported within sample size

calculations and whether α is for a one-sided or two-sided test. For example, the

CAP-START trial used a one-sided significance test of 0.05 with two-sided 90%

confidence intervals and the authors provide exact details of the sample size

calculation in the supplementary appendix58.

2.4.5 Missing data

Most trials reported ITT analyses but had not considered imputation techniques to

test missing data assumptions. Most trials that used multiple imputation stated the

number of imputations used but few discussed the assumptions made, which are

particularly critical in this context. Some missing data are inevitable, but naı̈ve

assumptions and/or analysis threaten trial validity for both ITT and per-protocol

analyses15, particularly in the non-inferiority context where more missing data can

bias towards demonstrating non-inferiority59.

Trials should report whether imputation was or was not performed. If imputation was

used it should be clearly stated what method was used along with any assumptions

made, following the guidelines of Sterne et al60.

2.4.6 Sensitivity analyses

Only about a third of articles reviewed reported using sensitivity analyses. There was

some confusion between sensitivity analyses for missing data, and secondary analyses.

Sensitivity analyses for missing data should keep the primary analysis model, but vary
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the assumptions about the distribution of the missing data, to establish the robustness

of inference for the primary analysis to the inevitably untestable assumptions about the

missing data. By contrast, secondary analysis with regards to excluding patients for the

primary outcome tries to answer a separate, secondary question61. Thus, while EMA

20008 and CONSORT 201210 describe this as sensitivity analysis (and many papers we

reviewed followed this), in general this will not be the case, and conflating the two

inevitably leads to further confusion.

2.4.7 Subgroup of trials with published protocols

The mandatory publication of protocols taken from NEJM publications improved

results for all criteria assessed. This reiterates the findings from Vale et al62 who

evaluated the risk of bias assessments in systematic reviews assessed from published

reports, but had also accessed protocols directly from the trial investigators and found

that deficiencies in the medical journal reports of trials does not necessarily reflect

deficiencies in trial quality. Given this, it is clear that a major improvement in the

reporting of non-inferiority trials would result if all journals followed the NEJM

practice. Since publication of e-supplements is very cheap, there appears to be no

reason not to do this.

Supplementary content should also be taken advantage of and explicitly referred to

within articles as this provides the opportunity for authors to provide and describe the

details of important methods and rationale for criteria which cannot be included in the

main publication due to word limits in journals.

2.4.8 Strengths and limitations

This research demonstrates the inconsistency in the recommendations for

non-inferiority trials provided by the available guidelines, which was also reflected

within this review. We have highlighted the importance of missing data and using

sensitivity analyses specific to non-inferiority trials. There are also some limitations in

this review. Firstly, a justification of the choice of the margin was recorded as such if

any attempt was made to do so, and so one could argue that inadequate attempts

were counted as a “justification”, however there was good agreement between

reviewers when independently assessed. Secondly, only one reviewer extracted
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information from all articles and therefore assessments may be subjective. However,

there was good agreement when a random 5% of papers were independently

assessed, and the categorisation of the justification of the non-inferiority margin was

also independently assessed in all papers where a justification was given. Thirdly, an

update of the CONSORT statement for non-inferiority trials was published during the

period of the search in 201210, which could improve the reporting of non-inferiority

trials over the next few years. However, the first CONSORT statement for

non-inferiority trials published in 20061 was released well before the studies included

in our search and we have found that reporting of non-inferiority trials remains poor.

2.5 Conclusion

This review shows a lack of clear reporting that address some key statistical issues for

non-inferiority trials. Although it is unclear whether poor reporting largely impacts

on the conclusions made about non-inferiority, trials that fail to clearly report the

items discussed above should be interpreted cautiously. It is essential that justification

of the choice of the non-inferiority margin becomes standard practice, providing the

information early on when planning a study including as much detail as possible. If

the choice of the non-inferiority margin changes following approval from an ethics

committee, justification for the change and changes to the original sample size

calculation should be explicit. If journals enforced a policy where authors must justify

the choice of the non-inferiority margin prior to accepting publication, this would

encourage authors to provide robust justifications for something so critical given that

clinical practice may be expected to change if the margin of non-inferiority is met.

Sample size calculations include consideration of the type I error rate, which should

be consistent with the confidence intervals as these provide inferences made for

non-inferiority when compared against the margin. Inconsistency between the two

may distort inferences made, and stricter confidence intervals may lack power to

detect true differences for the original sample size calculation. If any imputation was

performed then this should be detailed along with any underlying assumptions,

supplemented with sensitivity analyses under different assumptions about the

missing data.
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Information that is partially pre-specified before the conduct of a trial may

inadvertently provide opportunities to modify decisions that were not pre-specified at

the time of reporting without providing any justification. A compulsory requirement

from journals to publish protocols as e-supplements and even statistical analysis plans

along with the main article would avoid this ambiguity.

2.6 Summary

The findings from this review presented in this chapter suggest clear violations of

available guidelines. This includes the CONSORT 2006 statement (published four

years before the first paper in this review) which concentrates on improving how

non-inferiority trials are reported and is widely endorsed across medical journals,

particularly surrounding analyses conducted.

2.7 Overview of thesis

As a result of the systematic review in this chapter it was clear that the primary

analysis chosen from non-inferiority trials and definitions for it varied between

published articles, particularly for the PP analysis. For non-inferiority trials, the

interest is to obtain estimates from patients who behaved the way they were supposed

to in the trial and the PP analysis is key to answering this. This is due to the ITT

analysis potentially being anti-conservative; including patients who fail to reach the

end of follow-up and therefore do not complete the full course of treatment including

all patients in the analysis as defined by ITT can make the treatment look similar to

the standard of care arm (or vice versa) therefore biasing towards demonstrating

non-inferiority20. It was apparent from the review that there is a real need to find a

way to deal with missing data in the PP analysis rather than excluding these

observations from patients who failed to reach the end of the study.

Many articles reviewed failed to acknowledge and discuss the implications of missing

outcome data in relation to the primary outcome and articles rarely performed

sensitivity analyses to investigate the assumptions made about the missing data.
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Often, patients were excluded from analyses due to protocol deviations but some of

these patients excluded could have had some information contributing to the primary

outcome prior to deviating and this was rarely addressed in the articles reviewed.

Although there was some improvement when protocols from articles published in

NEJM were also reviewed in our subgroup analysis, reporting still remained poor.

This further supports the need to find a more appropriate analysis in non-inferiority

trials that includes missing observations for analyses and adequately tests for the

assumptions made about the missing data. The remainder of this thesis aims to do

this using data sets as examples from TB trials.

From Chapter 3 onwards, we focus on two non-inferiority trials that aimed to shorten

treatment regimens for patients diagnosed with tuberculosis. These datasets are used

to help find better analyses for non-inferiority trials, that is, to recover patient

information within the primary analysis, in a statistically valid way. In tuberculosis

trials, patients are excluded due to loss of follow-up from the modified

intention-to-treat analysis and per-protocol analysis depending on completion of

treatment. Given that patients can be excluded from the modified intention-to-treat

analysis and per-protocol analysis due to loss of follow up, the general aim is to

include all patients in these analysis without imposing extreme assumptions about the

missing data under an intent-to-treat type of analysis. Chapter 3 investigates single

imputation methods and multiple imputation to impute trial participants’ outcome

data that are missing and these are then applied to our two example datasets. Patterns

of missing data are explored in our datasets splitting observations into separate

observation times. The partitioned visits are kept to investigate a simpler approach to

multiple imputation using inverse probability weighting with Generalised Estimating

Equations in Chapter 4. We then explore using multi-state Markov models in Chapter

5 as a possibly new and alternative analysis to re-capture missing observations using

two datasets from tuberculosis trials. Chapter 6 introduces reference-based sensitivity

analyses, extending the methods for applicability to binary data and applying these

methods to the two exemplar datasets. We end with an overview of the results

presented in this thesis in Chapter 7 and discuss some ideas for future research.
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Chapter 3

Missing data

The results from the systematic review in Chapter 2 demonstrated some confusion

surrounding the choice of the primary analysis and how it should be defined for

non-inferiority trials. Missing outcome data were rarely considered in the articles

reviewed, and when considered that missing data could be problematic for a trial,

patients were often excluded from the PP analysis to deal with the issue. This

demonstrates that there is some uncertainty of how to deal with missing data within

non-inferiority trials.

In this chapter, we investigate tuberculosis (TB) non-inferiority trials. These trials are

particularly interesting since patient outcomes are collected at multiple visits and

determination of the primary outcome requires a confirmatory result. A consequence

of patients who are lost to follow-up leads to uncertainty of whether they are free of

the disease at the end of follow-up. Such patients are commonly dealt with in primary

analyses by total exclusion if perceived to be disease free prior to being lost to

follow-up, irrespective of the history of their outcomes before being lost to follow-up.

The aim is to recover this information within the primary analysis.

We proceed by first defining the algorithm commonly used to calculate the primary

outcome in TB trials with the aim of shortening treatment regimens. We then

introduce the REMoxTB and RIFAQUIN studies which will be used as examples for

subsequent analyses. We then investigate single imputation methods and more

complex imputation methods used to handle missing observations, and apply some of
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these methods to our two example datasets. Doing so, will result in a complete dataset

that can be used to determine the overall outcome for each patient randomised into

the study.

3.1 Definition of the primary outcome for tuberculosis studies

To assess whether a patient is cured from TB or not, sputum samples are taken from

patients to determine a patient’s culture result and repeated over several weeks, until

study completion. These samples are sent to laboratories and inserted into machines

to determine whether patients have a positive culture result (i.e. presence of TB) or a

negative result (i.e. absence of TB)63. Sometimes a result may be contaminated.

Typically a contaminated result arises from within the sample itself due to non-TB

commensal bacteria. Other reasons can include clerical errors, contamination of

clinical equipment or laboratory cross-contamination. In terms of analyses, these

contaminated results are considered missing since a clear-cut result cannot be

determined from a contaminated result.

Generally in TB trials, the intensive phase can be anywhere between 2 to 8 months

and the continuation phase can be between 4 to 18 months. In the TB trials that are

used in this thesis the intensive phase is 4 or 6 months (depending on allocated

treatment) and the continuation phase from 4 or 6 months to 18 months of treatment.

The intensive phase administers several drugs for treatment to kill most of the TB

bacteria living within the patients lungs. However, some of these bacilli may still

remain and so the second phase of treatment aims to kill any remaining TB bacteria

still present within a patient using fewer drugs.

The primary outcome for TB trials is a binary composite outcome of treatment failure

and relapse. In order for a patient to be classed as a success i.e. cured from TB, they

must achieve two consecutive negative cultures at two different visits thereby

reaching stable negative culture conversion. Patients who achieved two consecutive

negative (-) cultures at separate visits but then have two consecutive positive (+)

cultures at different visits after treatment are classed as relapses (i.e. −,−,+,+) and

therefore are considered as “failures” unless able to achieve two consecutive negative

cultures at separate visits again (i.e. −,−,+,+,−,−). Isolated positive culture results
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are not indicative of relapse and are therefore assumed to be classed as “negative” if

patients were successful before having a single positive result provided they have a

negative culture after the single positive result. Contaminated results which are

re-classed as “missing” and missing culture results due to loss of follow up across

visits are ignored and therefore do not influence whether a patient is classed overall as

a success or failure at the end of follow up.

3.2 Datasets

Non-inferiority trials are appropriate in TB to shorten treatment duration64 where the

standard care involves patients taking several drugs for at least 6 months. In 2014,

three major phase III non-inferiority trials were published that aimed to shorten

treatment duration from 6 months to 4 months, however all failed to show that a 4

month treatment regimen was non-inferior65–67. We use two of these studies as

example datasets. A summary of the REMoxTB and RIFAQUIN studies follow and

different imputation methods that can deal with missing data are explored and

applied. Finally, we investigate patterns of missing data within visit windows. This is

to see whether patients mostly have negative cultures towards the end of the study

(and are therefore “successful”) are similar for different missing data patterns. Data

from the REMoxTB and RIFAQUIN studies were accessed from TB-PACTS68, a

publicly available data repository, following an application that I applied for and was

granted.

3.2.1 The REMoxTB study

The REMoxTB study65 was a double-blind, placebo controlled non-inferiority trial

that aimed to shorten treatment regimens in patients with newly diagnosed

mycobacterium tuberculosis. A total of 1931 patients were randomised to receive one

of: a combination of rifampicin (R), isoniazid (H), pyrazinamide (Z) and ethambutol

(E) for 8 weeks followed by 18 weeks of HR (control group; 2EHRZ/4HR); a

combination of R, H, Z and moxifloxacin (M) for 17 weeks followed by 9 weeks of

placebo (isoniazid group; 2MHRZ/2MHR) or a combination of R, M, Z and E for 17

weeks followed by 9 weeks of placebo (ethambutol group); 2EMRZ/2MR. The
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primary endpoint was to find a difference in proportions for patients with an

unfavourable outcome. An unfavourable outcome was defined as treatment failure or

relapse, within 18 months of treatment. The results were compared to a 6%

non-inferiority margin. A per-protocol analysis and modified intention-to-treat

analysis were performed and the results of the per-protocol analysis were considered

primary. Patients who were lost to follow up before the 6 month visit were treated as

unfavourable outcomes in the modified intention-to-treat analysis. Additionally,

patients who were lost to follow up after the 6 month visit until the end of the study

(at 18 months) were excluded, unless already classed as unfavourable. For the

per-protocol analysis, any patients lost to follow up were excluded. Patients who were

positive when last seen were considered to be treatment failures (unless they were a

relapse). Sensitivity analyses to the missing data were performed for the modified

intention-to-treat analysis to assess the impact of missing data at the final visit (i.e.

patients lost to follow up), first assuming complete case analysis where these patients

were excluded from analyses, second assuming a worst case scenario where patients

were classed as having an unfavourable outcome and third assuming a best case

scenario where patients were classed as having a favourable outcome. For both the

modified intention-to-treat and per-protocol populations, analyses were adjusted for

weight and centre.

3.2.2 The RIFAQUIN study

The RIFAQUIN study66 was an open-label non-inferiority trial that investigated two

new treatment regimens replacing isoniazid used in the control regimen (a

combination of rifampicin, isoniazid, pyrazinamide and ethambutol for 2 months

followed by 4 months of isoniazid and rifampicin) with moxifloxacin for 2 months of

treatment followed by different doses of rifapentine either at 2 months (i.e. total

treatment duration of 4 months) or 4 months (a total treatment duration of 6 months)

in patients with newly diagnosed smear positive drug sensitive tuberculosis. The

primary composite endpoint was to find a difference in proportions for patients with

an unfavourable outcome, defined as treatment failure or relapse, comparing the

results to a 6% non-inferiority margin. Per-protocol and modified intention-to-treat

analyses were performed; non-inferiority was concluded if both analyses

demonstrated non-inferiority. Patients who were lost to follow up were excluded from
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both analyses if they reached stable negative culture conversion when last seen.

Sensitivity analyses to the missing data were performed by classing those excluded

from analyses due to reinfection and separately those who died during the study as

unfavourable for both PP and mITT analyses. A worst case scenario for the mITT

analysis was performed for all patients except those who were classed as a screening

failure. For both the modified intention-to-treat and per-protocol populations,

analyses were adjusted for centre only. Unlike the REMoxTB study, weight was not

adjusted for.

In both studies, patients could have been seen outside of the scheduled follow up

during the study. Some of these unscheduled visits occurred after the final 18 month

scheduled visit in these studies. Therefore, for all analyses explored in this thesis,

visits up to the final scheduled visit observed in the study will be included. Any

unscheduled visits that occur after the final 18 month scheduled follow-up visit will

be ignored.

Next, we describe single imputation and multiple imputation methods (§3.3 to §3.5.4),

used to result in a “completed” dataset, before describing the pattern of missing data

within the REMoxTB and RIFAQUIN datasets (§3.6 to §3.5.4).

3.3 Methods used for imputation of missing data

We now describe different imputation methods to impute the positive or negative

sputum culture results that are missing. Using a statistically valid method that allows

us to use all the information within a dataset, will inevitably result in a “completed”

dataset that will then allow us to determine each patient’s outcome of treatment

failure (§3.1). These methods (described in §3.4 to §3.5.4) are then applied to the

REMoxTB and RIFAQUIN datasets. Imputation of missing data involves methods to

replace data that were meant to be collected but for some reason were not. One of the

more common reasons for this in clinical trials is loss to follow up or withdrawals.

Several imputation methods exist to handle missing observations in trial data, but in

order to apply these methods, it is important to think about how the data collected are

missing to ensure assumptions made concerning the data are valid. There are three

missing data mechanisms to consider:
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Missing completely at random (MCAR)

The probability of missing data does not depend on any unobserved or observed

variable relevant to the analysis. For example, if sputum was collected from patients

to determine whether they had TB but the machine to detect tuberculosis was broken

then the outcome is MCAR as the probability of the machine breaking is equal for all

patients.

Missing at random (MAR)

The probability of data being missing is independent of the unobserved data,

conditional on the observed data. For example, if culture results are taken from

patients and males are less likely to have a culture result but this does not depend on

the culture result itself, after accounting for gender. In other words, culture results are

MAR dependent on gender.

Missing not at random (MNAR)

The probability of missing data depends on an unobserved variable, after accounting

for observed variables. For example, if culture results are taken from patients and it is

more likely for younger patients to have an outcome, but age is not recorded, then

culture results are MNAR as the reason for patients missing culture results depends

on data that has not been observed (age).

In this thesis, the analyses explored between Chapters 3-5 assume MAR which is an

untestable assumption. We therefore also look at departures from this assumption

under MNAR in Chapter 6 using sensitivity analyses.

For TB studies, missing data can occur due to loss of follow-up, missed visit, a

contaminated result which is re-classed as missing or because the patient is unable to

produce a sputum sample. For a patient who is unable to produce a sputum sample at

a visit is considered to have a negative culture result. Given that persistent coughing

is a major symptom of TB, if following treatment a patient is no longer able to cough

and is therefore unable to produce a sputum sample then they are clinically

considered as not having TB bacteria at that visit. As a result, if a patient is missing a
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result at a visit but it is known that the patient was unable to produce sputum, the

missing result is considered to be negative. If a culture result is missing because the

sputum sample is contaminated, it is reasonable to assume MAR because the reason

for the result being missing depends on the sputum sample that was produced by the

patient. If a patient happens to be missing a visit but is observed again in the future,

MAR is assumed since it is likely that the missing visit occurred by chance. For

instance, this might occur if a patient is seen a few days later outside of the scheduled

visit window. If a patient is lost to follow-up and the visit is related to what occurred

previously (e.g. relapse) or if the missing visit is related to other variables collected

within the data (such as an adverse event or a withdrawal reason), then the missing

data are classed as MAR. This is a reasonable assumption since the reason for a patient

being lost to follow-up is observed within the data. In instances where it is unknown

why a patient is lost to follow-up or if they are not observed for many months, the

reason for missing a visit might not be so clear. This means that the missing data are

MNAR. This aspect of missing data is explored in Chapter 6 of this thesis.

Having defined various assumptions that can be made about the distribution of the

missing data, we now describe single imputation methods and multiple imputation

methods that can be used to impute the missing data. These methods are then used for

the REMoxTB study and RIFAQUIN study.

3.4 Single imputation methods

The use of single imputation methods imputes missing observations with one value.

The values imputed are considered as if they were known with certainty. We consider

the complete case analysis, last observation carried forward and best case/worst case

scenarios discussing the assumptions made for each.

3.4.1 Complete case analysis

One of the simplest methods to handle missing data is a complete case analysis. Here,

patients with missing data are completely excluded from analyses. This can be a valid

analysis provided that the reason for having a missing outcome does not depend on

85



observed or unobserved data, i.e. the missing mechanism is MCAR. If a baseline

covariate contains missing data, then a complete case analysis can be valid under the

MAR assumption as long as the probability of outcome data being missing is

independent of the observed data, conditional on the baseline covariate69.

Under MAR, a complete case analysis can be problematic for longitudinal data, where

patients are followed up several times over a study for outcomes. The long sequence of

data collected means patients are more likely to have at least one observation missing

over time. A complete case analysis would exclude those patients, wasting all other

information collected about a patient and severely decreasing the sample size (and

therefore power) in a study.

3.4.2 Last observation carried forward

For longitudinal data, last observation carried forward (LOCF) assumes that the last

observation seen is unchanged over time for future observations, which were

expected but unseen, during a study. The method works by taking the result of the

last observation recorded for a patient and replaces missing observations in the future

using that observation. LOCF can be unbiased if the average observed and

unobserved outcomes in each randomised group do not change over time27.

3.4.3 Best case/worst case scenario

Using a best case or worst case scenario, often produces extreme results70. A best case

scenario replaces missing observations with the best value observed in the treatment

arms and the worst values in the control arm.

A worst case scenario is analogous to this, replacing missing values with the worst

value observed in the treatment arms and the best value in the control arm.

The above definitions are a more accurate reflection of a best case and worst case

scenario to take into account the behaviour within treatment regimens rather than

using blanket statements imputing all patients with the best or worst value regardless

of treatment arm. These methods assigning all patients to a best or worst value
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regardless of treatment administered are commonly recommended in statistical

guidelines, but do not accurately reflect a best case or a worst case scenario.

The methods described so far from §3.4.1 to §3.4.3 assume decisive decisions which

are rarely, if ever, plausible. Another method to consider when accounting for missing

observations for longitudinal data are mixed effects models.

Mixed effects models

For longitudinal data, a mixed effects regression model can be valid under MAR to

predict missing outcomes from a model based on observed data. This model can be

used to model observed outcomes within each patient while allowing for correlation

between patient outcomes observed. For a mixed effects model, using interim follow

up data of an outcome for patients who withdraw before the final follow up visit can

can make best use of the MAR assumption as the interim data informs the

measurement at the final time point71.

For TB trials, the outcome is determined based on an accumulation of the whole data

collected rather than at a singular time point (i.e. at the last visit), and therefore a

mixed effects regression analysis would not be able to determine whether a patient

should be classed as a success or a failure. Instead a statistically valid method that

imputes all missing observations so that we have a complete dataset of negative and

positive culture results is necessary to then implement the algorithm for the primary

outcome that determines whether patients were or were not cured of TB.

We now consider multiple imputation methods which take into account the uncertainty

of the imputed value.

3.5 Multiple imputation methods

The single imputation approaches described above make strong assumptions about

the missing data mechanism and this often leads to extreme results. Methods that are

based on multiple imputation, assuming the distribution of the missing data is MAR,

impute the data accounting for the uncertainty of the result imputed under a range of
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possible values. These values are then combined for each imputed set using Rubin’s

rules34, outlined in §3.5.1.

3.5.1 Multiple imputation

Multiple imputation was introduced by Donald Rubin34. The concept of multiple

imputation is that missing data are imputed more than once based on the distribution

of the observed data, and includes randomness to reflect the uncertainty about the

missing values27, replacing the missing value with an estimated value. Multiple

imputation assumes data are MAR. That is, data are missing conditional on the

observed data. For one imputation, the imputations are drawn from the joint posterior

predictive distribution f(Ymis|Yobs) for missing observations for variable Y (Ymis)

conditional on those observed (Yobs) of a Bayesian model. Common practice is to

create more than one imputation to give I completed datasets. The datasets are

analysed individually but identically to give I estimates and I estimates of the

variance of the model. These estimates are then combined to get an overall estimate

and variance using Rubin’s rules34.

Rubin’s rules are applied after creating an imputed dataset34. Let Comp equal the

imputed complete-data estimates that range from 1 to I imputations. Then the mean is:

CompI =
1

I

I∑
v=1

Compv (3.1)

Let W equal the within imputed complete-data variances that range from 1 to I

imputations. The within variance is:

W I =
1

I

I∑
v=1

Wv (3.2)

Let Betw equal the between variance among the “I” complete-data estimates, then:

BetwI =
1

I − 1

I∑
v=1

(Compv − CompI)2 (3.3)

The total variance combines 3.2 and 3.3 such that:

V ar(Comp) = W I + (1 +
1

I
)BetwI (3.4)
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For TB trials (see §3.2) where the sputum test result is binary, a logistic regression model

is used such that:

logit(ρk) = log( ρk
1−ρk ) =β0 + β1X1,1+...+βvXk,v, (3.5)

where ρ represents the probability of having a “yes” or “no” outcome for patient k =

1, 2, ..., N . β are a vector of logistic regression parameters:

β =


β0

β1
...

βv

 (3.6)

and X are a vector of observed covariates:

X =


1 X1,1 X1,2 · · · X1,v

1 X2,1 X2,2 · · · X2,v

...
...

...
. . .

...

1 Xk,1 Xk,2 · · · Xk,v

 (3.7)

where v is the vth covariate for the kth patient. From this model, the posterior mean

(β̂) and the variance-covariance matrix (V (β̂)) of the estimate (β) is approximated. The

posterior distribution of βk follows a multivariate normal distribution.

To impute one dataset to obtain the primary outcome of interest, (for the TB data this

would be the sputum test culture results, described in §3.3), assuming covariates have

no missing data34:

1. Draw a random parameter βk from ∼ N(β̂, V (β̂)).

2. Impute from the inverse logit function using the values drawn from βk for each

missing observation z̃:

logit−1(βkXk,v) =
exp(βkXk,v)

1 + exp(βkXk,v)
(3.8)

3. Independently draw random numbers, Randk, from a uniform probability

distribution, U(0,1).

(a) If Randk > logit−1(βkXk,v), 0 is imputed for the missing observation,

otherwise 1 is.
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The process is iterated for I imputations and combined using Rubin’s Rules (3.1 to

3.4), assuming normal approximation as is common practice34.

While multiple imputation can be easily implemented in statistical software in Stata72,

SAS73 and R74, difficulties may still occur for binary longitudinal data, particularly

where patients are followed up for several visits. In TB data for example, there are

often long sequences where the probabilities tend to 0 or 1 and so this can create

numerical problems for calculations. Different approaches must also be considered to

analyse these types of data. First we consider a non-parametric approach using hot

deck imputation, then we describe a simple version of the fully conditional

specification (FCS) method before using an extension of this method the two-fold FCS

multiple imputation. The final consideration is ordinal imputation, stepping back

from classing culture results as “positive” or “negative”.

3.5.2 Hot Deck Imputation

Hot-deck imputation is a non-parametric imputation procedure which fills in missing

patient observations with observations from patients who are retained by matching

on variables that are observed in both types of patients, such as matching covariates.

Hot deck imputation avoids distributional assumptions, instead the imputed values

will have the same distribution as the observed data34. Hot deck imputation is quite

often used to handle binary outcome data as it avoids computational issues since a

missing value will always be imputed assuming MCAR or MAR75. However, hot deck

imputation underestimates variability as the method treats the imputed values as if

they were known with certainty. Another disadvantage of hot deck imputation is that

it is inappropriate for data that are longitudinal as the procedure does not condition on

the rest of the data. This method will therefore not be considered any further since the

primary outcome for TB depends on repeated observations from patients.

3.5.3 Two-fold fully conditional specification multiple imputation

The two-fold fully conditional specification (FCS) method may be a useful alternative

for imputing longitudinal missing observations. Briefly, the method works by

iteratively taking each visit and imputing missing observations for that visit based on
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observations either side of that visit, at a specified length, for all follow up visits in a

study.

The two-fold FCS approach first introduced by Nevalainen, Kenward and Virtanen

constructs the joint distribution for missing observations conditional on those

observed for the outcome on a flexible selection of univariate imputation distributions

without needing to formally specify the joint multivariate density76. Before describing

this method in §3.5.3, we first describe the fully conditional specification approach

which is then extended to the two-fold FCS multiple imputation.

Fully conditional specification

In TB studies, where the sputum culture result (Y) is imputed by treatment arm (Xtrt)

which has no missing values, the multiple imputation model can be denoted by

f(Ymis,I , Yobs, Xtrt)I for I imputed data sets where Ymis and Yobs corresponds to

missing and observed positive or negative sputum test results and Xtrt corresponds to

the fully observed treatment covariate that we include for imputation. To impute

missing observations, using z̃ to represent the imputed values, for one imputed

dataset as follows:

1. For a vector of unknown parameters, say φ̂, calculate the posterior distribution

p(φ̂|Yobs, Xtrt).

2. Draw a random parameter, φ̂∗, from the multi-variate normal distribution: φ̂∗ ∼

N(φ̂, V ar(φ̂)).

3. Set φ̂ = φ̂∗ and draw a value ,z̃, from the conditional posterior distribution of

p(Ymis|Yobs,Xtrt , φ̂ = φ̂∗).

The FCS algorithm proposed by van Bureen et al samples iteratively to account for

any dependence on the estimated model parameters77. For multivariate Y , which is

incomplete, using FCS imputes the missing data one variable at a time. This is an

iterative process cycling through all variables, possibly with different conditional

specifications, several times78. For one cycle, the joint model multiple imputation is

approximated by regressing the observed part of the sputum test result (Yobs) on all

other remaining variables which are of interest. Following this first cycle, the initial
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starting values are replaced by imputed values79. A number of cycles are run and the

imputations are taken from one final cycle through univariate models76.

The use of FCS only means that the missing values of the variable itself are not

substituted for use at the next point of imputation and so the regression model is

estimated using only those patients whose outcome is observed at that time point.

There are several disadvantages to using a simple FCS method. Imputing separately

for each visit does not take into account correlations between observations per patient

and for several follow up visits the model may be over-fitted76. Therefore, this

method has been proposed using a “two-fold” approach by Nevalainen et al76 and

validated by Welch et al78 to account for the correlation of observations between

patients using a two-fold approach, described below.

Two-fold fully conditional specification

Two-fold FCS assumes data are MAR (see 3.3). It is doubly iterative, taking imputed

values from the imputation model to only condition on previous (t − ν) and

subsequent (t + v) time points, t where v∈1, 2, ..., V . The length, v, is specified at the

user’s discretion, thus allowing for imputation within smaller visit windows of the

data. This approach is useful in situations where, using standard multiple imputation

(see §3.5.1) may be computationally impossible. For instance, the underlying

distribution to the observed data cannot be fitted across all time points at once because

there is insufficient data (often at later follow-up times due to withdrawal) over

several follow-up visits. Therefore, using the two-fold methodology to impute the

data may be an attractive approach. For the TB datasets we use, the previous (t − 1)

and next (t+ 1) scheduled follow-up visit at each time t is used. Then to impute Y 78:

1. Having cycled around the imputation model using the standard FCS method

(§3.5.3), within-time (bW ) iterations are calculated at (i.e. within) each time point

t, using logistic regressions, to create an imputation set (z̃) for each patient k in

Yk,t by treatment arm (Xtrt) until the last visit, regress:

Yk,t,obs on Yk,t−1, Yk,t+1, Xk,trt, (3.9)

The missing values of Yk,t is imputed conditional on values of the sputum test
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results within the specified window. This is:

Yk,t,mis|Yk,t−1,obs, Yk,t+1,obs, Yk,t,obs, Xk,trt. (3.10)

2. The between-time (bBm) iteration is calculated applying the within-time iteration

forwards over time for values at the t+ 1 visit until the final follow-up visit. This

algorithm is then repeated for bBm iterations76 to form one imputed dataset.

This process is then repeated for I imputations, propagating the observed and imputed

values forwards at time t from the previous t − 1 visit. The imputations are combined

using Rubin’s rules34 for z̃ imputations resulting in a completed data set. The first visit

collected at the time of randomisation only has one immediate visit afterwards and

the final 18 month visit only has one immediate visit preceding it. Therefore, missing

observations in the first and last visit can only be imputed based on the next visit and

prior visit respectively.

3.5.4 Ordinal Imputation

In TB studies, patients are classed depending on counts of bacteria seen on a sputum

sample. If no bacteria are seen on the sputum sample produced by a patient then they

are considered to have a negative culture result. If bacteria are seen, each sample is

graded 1, 2 or 3 depending on the amount of bacteria seen. Any bacteria means the

patient has TB, and patients are therefore recorded as having a “positive” culture

result and these outcomes are taken for statistical analyses. However, since the smear

results are graded, ordinal multiple imputation and ordinal two-fold FCS can be

considered where the gradings of each culture result follow a natural order to

potentially enrich the results as an alternative to imputing the determined positive or

negative culture results.

The remainder of this chapter is as follows. First, we describe patients who will remain

in our analyses in order to impute missing observations resulting in a complete dataset

to determine each patient’s primary outcome. We then describe single imputation and

multiple imputation methods and use some of these methods for the REMoxTB data.

The results are compared to the original results presented in the REMoxTB study to

investigate whether these imputation methods have a large impact on the conclusions
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of the study. We then look at patterns of missing data, splitting visits into windows

to see how the proportion of negative culture results differ over time. We then repeat

these analyses for the RIFAQUIN study.

3.6 Application to the REMoxTB study

In tuberculosis phase III trials, the aim is to shorten treatment and the overall outcome

is determined through an algorithm of longitudinal outcomes collected over many

weeks using risk differences (see §3.1 for details). Given the intensity of treatment,

patients may withdraw or change treatment and are either completely excluded from

primary analyses or treated as failures (unless classed as a failure beforehand).

To investigate the impact of missing data, methods described above in §3.5.1 that deal

with missing data are explored on data from the REMoxTB study. Patients who had

contaminated results were re-classed as having missing results, as defined in the trial

protocol.

3.6.1 Patients included in REMoxTB analyses

In TB trials, there are certain situations where patients need to be excluded from

analyses, for example, resistance to treatment drug or patients who never had TB but

had very similar symptoms of the disease. For the analyses presented in this thesis,

patients are excluded for reasons not related to treatment. For our intention-to-treat

analyses, we exclude patients if they were resistant to rifampicin and/or

fluroquinolones as the interventions used in the study were not intended for this

group of patients (Table 3.1). Other standard drugs exist to cure these patients80.

Patients who had no confirmed positive culture results within 2 weeks after

randomisation were also excluded from analyses as it would be unclear whether or

not patients truly had TB at all at the start of the study. Protocol violations at

enrolment were also excluded as patients were withdrawn from the study prior to

taking any medication after enrolment. Patients who were enrolled at Pinetown and

Mexico were also excluded from the analysis due to inaccurate testing of culture

results at those centres. These patients were withdrawn prior to completing treatment

and follow up. Therefore a total of 146 patients were excluded from the imputation

analyses.
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Table 3.1: Tabulation of patients to be excluded from future

analyses, by treatment arm for REMoxTB.

Control Isoniazid Ethambutol Total

(N=640) N= (655) (N=636) (N=1931)

Pinetown/Mexico 10 (2%) 8 (1%) 18 (3%) 36

Resistant to rifampicin

/fluroquinolone
23 (4%) 20 (3%) 18 (3%) 61

Protocol violations

at enrolment
5 (1%) 7 (1%) 8 (1%) 20

No positive cultures ≤2

weeks from randomisation
12 (2%) 11 (2%) 6 (1%) 29

Total 50 (8%) 46 (7%) 50 (8%) 146

Total not to be excluded 590 609 586 1,785

3.6.2 Imputation analyses for the REMoxTB study

For reasons described in §3.4.2, LOCF will not be investigated. Before applying

multiple imputation methods we consider a complete case analysis and best

case/worst case scenarios.

Brief note on using a mixed effects regression model for tuberculosis trials

Another model to assess binary outcomes with longitudinal data is a logistic mixed

effects regression model which would account for missing data. However, this model

is inappropriate for tuberculosis trials as a mixed effects regression model does not

readily take into account the necessary requirement of patients achieving two

consecutive negative culture results at separate visits (i.e. cure) and will not be

considered any further.

Complete case analysis

For the complete case analysis, patients were included only if culture results were

reported for all visits. Patients missing any one or more culture results

post-randomisation were excluded from this analysis. After excluding patients who
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had at least one observation missing during their scheduled follow up and an extra 8

patients according to the exclusion criteria in Table 3.1, a total of 259 patients were

included in the analyses (Table 3.2). The risk difference model did not converge when

adjusting for centre and weight, therefore 100 iterations were used for this adjusted

model. The results from this analysis are consistent with that of the primary analysis

and non-inferiority is not shown; the upper bound of the 97.5% confidence interval

crosses the 6% margin and therefore non-inferiority cannot be concluded.

Best case scenario

For the best case scenario, patients were only excluded if they were randomised at

Pinetown/Mexico, were resistant to rifampicin, had protocol violations or did not

have any positive cultures within 2 weeks of randomisation (Table 3.1). Missing

culture results were imputed as positive for patients randomised to the control arm

and negative otherwise. We then proceeded to determining whether or not patients

reached stable negative culture conversion. A total of 1785 patients were included in

this analysis. The results in Table 3.2 demonstrate how extreme these results are,

showing a strong case for non-inferiority in the ethambutol regimen (upper bound of

the 97.5% CI: -23.8%) and an even stronger case for non-inferiority in the isoniazid

regimen (upper bound of the 97.5% CI: -26.8%).

Worst case scenario

Missing observations for patients randomised to the control regimen were imputed as

negative and imputed positive for patients randomised to the treatment regimens. A

total of 1785 patients were included in this analysis after applying our exclusion

criteria from Table 3.1. The results from this analysis (Table 3.2) show extreme results,

where the upper bound of the 97.5% confidence interval fails to demonstrate

non-inferiority in both treatment regimens (upper bound of the 97.5% CI: 49.3% for

the isoniazid regimen and 49.7% for the ethambutol regimen).

Multiple imputation

Scheduled visits were used for multiple imputation. Following imputation,

unscheduled visits with an observed sputum test result that may have occurred from

randomisation until the final 18 month follow-up visit are then included to determine
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the primary outcome (§3.1). Unscheduled visits were not included for imputation for

two reasons. Firstly unscheduled visits were specific to patients and so including

them in the imputation model would unnecessarily impute results for patients who

did not need to have extra visits. Secondly, because unscheduled visits could occur at

any time between the 17 scheduled visits over the 78 weeks of scheduled follow up

patients would not necessarily be seen at the same time. This would result in an even

longer sequence of data to be imputed increasing the risk of the imputation model

failing to converge.

Imputing positive and negative culture results across all visits using multiple

imputation failed due to perfect prediction. That is, the imputation failed to include a

random element to take into account the uncertainty about the missing values. Even

after accounting for perfect prediction in the model, imputing for all 17 scheduled

visits was computationally impossible. Instead, we proceeded to the two-fold fully

conditional specification multiple imputation method (see §3.5.3) to impute scheduled

visits for 1785 patients (see Table 3.1).

Two-fold fully conditional specification multiple imputation

A total of 50 imputations were used. Data were imputed at each visit based on results

on either side of that visit. For example, imputations at week 2 would rely on

observed data from week 1 and week 3. Patients who were lost to follow up had their

missing data imputed at expected visits based on patients who had outcome data at

that visit and at either side of the missing visit. Imputations were performed

separately within each of the three treatment groups and the resulting analyses were

compared to the standard of care arm. A total of 1785 patients were included in this

analysis after applying our exclusion criteria from Table 3.1. The results from this

analysis were consistent with the primary ITT and PP analyses failing to demonstrate

non-inferiority since the upper bound of the 97.5% CI was 10.03% for the isoniazid

regimen (5.25%; 97.5% CI: 0.48% to 10.03%) and 12.3% for the ethambutol regimen

(7.07%; 97.5% CI: 1.84% to 12.3%).
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Table 3.2: Difference in proportions of unfavourable

outcome using different imputation methods for the

REMoxTB study

Analysis Isoniazid Ethambutol

Risk difference (97.5% CI) Risk difference (97.5% CI)

Primary analysis (PP)

from REMoxTB

(n=1548)∗

Unadjusted results 6.74% (2.25% to 11.24%) 11.61% (6.81% to 16.40%)

Adjusted results1 6.09% (1.71% to 10.47%) 11.36% (6.70% to 16.10%)

Primary analysis (mITT)

from REMoxTB

(n=1674)∗

Unadjusted results 7.56% (2.30% to 12.83%) 8.28% (2.94% to 13.63%)

Adjusted results1 7.80% (2.70% to 13.0%) 9.01% (3.80% to 14.20%)

Complete case analysis

(n=259)∗

Unadjusted results 7.46% (-3.66% to 18.57%) 12.32% (0.37% to 24.27%)

Adjusted results1,2 12.49% (1.29% to 23.68%) 14.97% (2.41% to 27.53%)

Best case scenario

(n=1785)∗

Unadjusted results -32.97% (-38.49% to -27.44%) -30.06% (-35.78% to -24.34%)

Adjusted results1 -32.30% (-37.85% to -26.76%) -29.59% (-35.32% to -23.85%)

Worst case scenario

(n=1785)∗

Unadjusted results 44.29% (39.21% to 49.38%) 44.76% (39.59% to 49.92%)

Adjusted results1,2 44.39% (39.46% to 49.33%) 44.69% (39.67% to 49.72%)

Two-fold FCS MI3

(n=1785)∗
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Unadjusted results 5.44% (0.58% to 10.30%) 7.62% (2.44% to 12.80%)

Adjusted results1 5.25% (0.48% to 10.03%) 7.07% (1.84% to 12.30%)

∗Number of patients included in the analysis.

1Adjusted for weight and centre;

2Model did not converge, therefore 100 iterations were used;

3Fully Conditional Specification (FCS) Multiple imputation (MI).

Ordinal multiple imputation

We proceeded to ordinal imputation, where the bacteria seen on samples were graded

1, 2 or 3. Bacteria that are not seen will always result in a negative culture result and

culture results graded 1, 2 or 3 will always be classed as positive. Some patients had

more than one sample collected at the same visit and so a condition is required within

the imputation model to account for these patients. Grades were averaged for more

than one sample at the same follow-up visit and the result rounded up to 1, 2 or 3 to

enable imputation across all scheduled visits, otherwise there would be very few

patients with different proportions of grading, making imputation difficult to

perform. Again, the imputation failed due to perfect prediction and therefore we

proceeded to the two-fold FCS multiple imputation where the data were ordered as 0,

1, 2 or 3 according to the number of bacteria present in each sample and imputed

missing observations using observed data either side of that visit as above (§3.6) using

50 imputations.

It was computationally impossible to impute the REMoxTB data for all 17 scheduled

visits with an ordinal regression model, even after accounting for issues relating to

perfect prediction. The two-fold FCS multiple imputation algorithm also failed where

the outcome was ordinal and therefore no results have been presented for this nor the

preceding ordinal imputation analyses.

3.7 Discussion

So far, we have investigated single imputation methods and multiple imputation

methods for the REMoxTB study. The results from the complete case analysis were

consistent with that of the primary analysis. However the exclusion of over 1000
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patients resulted in a huge loss of information which was reflected in the wider

confidence intervals and consequently created greater uncertainty surrounding the

estimates. The inflation of the estimates and the upper bounds of the confidence

interval indicates potential bias towards favouring the control regimen. If the primary

analysis marginally demonstrated or failed to demonstrate non-inferiority the

complete case analysis would not assist with the conclusions of the study, due to the

increase in uncertainty of the estimates as a consequence of deleting such a large

amount of data. Therefore, using a complete case analysis is inefficient as patients

have been excluded from the analysis in spite of having data that, clearly, contributes

to the primary outcome.

The results from the best case scenario and worst case scenario produced inflated

results in either direction. These scenarios differ from those performed in the original

study since we imputed according to treatment arm. That is, for a best case scenario

patients randomised to the control arm were imputed as “treatment failures” and

those randomised the treatment arms were classed as reaching stable negative culture

conversion. The worst case scenario is analogous to this. The best case scenario

showed a strong case for non-inferiority in both treatment regimens and the worst

case scenario failed to demonstrate non-inferiority in the treatment regimens, where

the estimates of the upper bound of the 97.5% confidence intervals were over 3 times

wider than those shown for the primary analysis of the study. These analyses

demonstrate the effect such strong assumptions about the missing data can have, and

clearly alternative methods to explore the nature of missing data without inferring

such extreme assumptions are necessary.

The two-fold fully conditional specification multiple imputation method seemed to

work well for the REMoxTB data, producing consistent results with that of the main

study. However, the results from this method were not as extreme as those from the

original PP and mITT analyses, as demonstrated by the upper bound of the 97.5% CI.

Regressing back to bacterial culture results and using ordinal imputation failed when

imputing for all scheduled visits and when using the two-fold FCS imputation

method. At the beginning of TB treatment, most patients are expected to have grades
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of 1, 2 or 3; a positive culture result which indicates that they have TB and towards the

end of treatment most patients are expected to have negative culture results indicating

no presence of TB or “cure”. A small number of patients have negative culture results

in the first few weeks of the study, which then diminishes over time. This means that

patients are mostly positive in the first few weeks of follow up and are mostly

negative towards the end, and so the fitted probabilities from using a logistic

regression model for multiple imputation are very close to either 1 or 0 resulting in

perfect prediction81. Therefore, by splitting patients’ positive results into grades of 1,

2 or 3 has dichotomised an already sparse group of patients into even smaller groups

by the end of follow-up. Ordinal imputation is not an approach that will work for TB

studies and will not be considered any further.

Next we summarise the proportion of missing data by treatment arm to see whether

there are any major differences between the missing data patterns by treatment. We

then investigate patterns of missing data for the REMoxTB study to see how the

proportion of negative culture results differ over time.

3.8 Investigating patterns of missing data for the REMoxTB

study

In tuberculosis (TB) trials, the interest is in whether a patient is cured of TB (i.e. are

successful) or not. To be classed “successful” patients need to produce a confirmatory

negative culture result, immediately following a negative result at separate visits.

Patients are followed up at several visits over the course of 18 months over two

phases; 1) the treatment phase and 2) the follow up phase. The combination of

collecting results, repeatedly, over the 18 months and the requirement of a

confirmatory negative culture result provide plenty of opportunity for patients to

miss one or more visits (and are therefore missing outcome results) at any point

during a study. This can be problematic for patients missing one or more visits as it

can create uncertainty around whether a patient maintains stable negative culture

conversion, particularly where there are sporadic results missing or more than one

consecutive missing result.
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Per-protocol analyses often exclude patients with missing data, for example, patients

who fail treatment, patients who are not assessable at the last follow up visit or

patients who never enter into the continuation phase. The aim is to include such

patients in analyses therefore providing an alternative analysis to the customary

per-protocol analysis, often ambiguously defined, used in non-inferiority trials while

making best use of the data collected.

A natural intuition is to use multiple imputation to “fill in” outcomes of patients who

are unobserved at visits who should have been observed. Multiple imputation

assumes the data are MAR (§3.3). Using data from the REMoxTB study as an example,

different patterns of missing data are investigated to support the assumption that the

data are MAR. As previously discussed, using multiple imputation across many

different visits for binary data causes severe issues within the data, especially perfect

prediction. As the REMoxTB study has a total of 17 visits, the visits are now grouped

into four clinically meaningful visit windows to reduce the vast number of different

patterns that may occur, before performing any further analyses. This will provide an

overview of how the culture results for patients behave within these trials.

3.8.1 Summary of culture results for the REMoxTB study

A total of 1785 patients were included having applied the exclusion criteria (see

Table 3.1) in the REMoxTB study. Table 3.3 shows the total number of culture results

collected at each scheduled visit week. The total number of patients that died at each

week are cumulative over time. Patients were followed weekly up to week 8 from

baseline (week 0). The remaining visits for the treatment phase were at week 12, 17, 22

and 26 and additionally at weeks 39, 52, 65 and 78 during the follow up phase.

Table 3.3: Summary of culture results for 1785 patients

who are included after applying the exclusion criteria for

REMoxTB.

Week Culture result Control Isoniazid Ethambutol

(N=590) (N=609) (N=586)

Negative 37 (6.27%) 27 (4.43%) 35 (5.97%)
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0 Positive 529 (89.66%) 558 (91.63%) 534 (91.13%)

Missing 23 (3.90%) 24 (3.94%) 17 (2.90%)

Died 1 (0.17%) 0 0

Negative 74 (12.54%) 46 (7.55%) 59 (10.07%)

1 Positive 407 (68.98%) 492 (80.79%) 445 (75.94%)

Missing 108 (18.31%) 71 (11.66%) 82 (13.99%)

Died 1 (0.17%) 0 0

Negative 89 (15.08%) 79 (12.97%) 87 (14.85%)

2 Positive 388 (65.76%) 429 (70.44%) 421 (71.84%)

Missing 111 (18.81%) 99 (16.26%) 78 (13.31%)

Died 2 (0.34%) 2 (0.33%) 0

Negative 115 (19.49%) 136 (22.33%) 119 (20.31%)

3 Positive 339 (57.46%) 369 (60.59%) 370 (63.14%)

Missing 134 (22.71%) 102 (16.75%) 97 (16.55%)

Died 2 (0.34%) 2 (0.33%) 0

Negative 167 (28.31%) 185 (30.38%) 181 (30.89%)

4 Positive 284 (48.14%) 328 (53.86%) 298 (50.85%)

Missing 136 (23.05%) 94 (15.44%) 106 (18.09%)

Died 3 (0.51%) 2 (0.33%) 1 (0.17%)

Negative 217 (36.78%) 247 (40.56%) 226 (38.57%)

5 Positive 235 (39.83%) 234 (38.42%) 239 (40.78%)

Missing 135 (22.88%) 125 (20.53%) 119 (20.31%)

Died 3 (0.51%) 3 (0.49%) 2 (0.34%)

Negative 273 (46.27%) 305 (50.08%) 289 (49.32%)

6 Positive 176 (29.83%) 173 (28.41%) 183 (31.23%)

Missing 137 (23.22%) 128 (21.02%) 111 (18.94%)

Died 4 (0.68%) 3 (0.49%) 3 (0.51%)

Negative 334 (56.61%) 359 (58.95%) 367 (62.63%)

7 Positive 114 (19.32%) 110 (18.06%) 104 (17.75%)

Missing 138 (23.39%) 135 (22.17%) 112 (19.11%)

Died 4 (0.68%) 5 (0.82%) 3 (0.51%)

Negative 362 (61.36%) 405 (66.50%) 411 (70.14%)

8 Positive 82 (13.90%) 75 (12.32%) 61 (10.41%)
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Missing 142 (24.07%) 124 (20.36%) 111 (18.94%)

Died 4 (0.68%) 5 (0.82%) 3 (0.51%)

Negative 404 (68.47%) 471 (77.34%) 467 (79.69%)

12 Positive 26 (4.41%) 13 (2.13%) 21 (3.58%)

Missing 156 (26.44%) 120 (19.70%) 93 (15.87%)

Died 4 (0.68%) 5 (0.82%) 5 (0.85%)

Negative 436 (73.90%) 452 (74.22%) 452 (77.13%)

17 Positive 17 (2.88%) 13 (2.13%) 21 (3.58%)

Missing 133 (22.54%) 137 (22.50%) 108 (18.43%)

Died 4 (0.68%) 7 (1.15%) 5 (0.85%)

Negative 435 (73.73%) 426 (69.95%) 404 (68.94%)

22 Positive 11 (1.86%) 16 (2.63%) 29 (4.95%)

Missing 139 (23.56%) 159 (26.11%) 146 (24.91%)

Died 5 (0.85%) 8 (1.31%) 7 (1.19%)

Negative 435 (73.73%) 403 (66.17%) 408 (69.62%)

26 Positive 10 (1.69%) 34 (5.58%) 49 (8.36%)

Missing 140 (23.73%) 163 (26.77%) 121 (20.65%)

Died 5 (0.85%) 9 (1.48%) 8 (1.37%)

Negative 438 (74.24%) 416 (68.31%) 394 (67.24%)

39 Positive 24 (4.07%) 50 (8.21%) 61 (10.41%)

Missing 119 (20.17%) 133 (21.84%) 123 (20.99%)

Died 9 (1.53%) 10 (1.64%) 8 (1.37%)

Negative 424 (71.86%) 414 (67.98%) 423 (72.18%)

52 Positive 19 (3.22%) 28 (4.60%) 33 (5.63%)

Missing 133 (22.54%) 155 (25.45%) 122 (20.82%)

Died 14 (2.37%) 12 (1.97%) 8 (1.37%)

Negative 426 (72.20%) 407 (66.83%) 411 (70.14%)

65 Positive 14 (2.37%) 29 (4.76%) 24 (4.10%)

Missing 136 (23.05%) 161 (26.44%) 143 (24.40%)

Died 14 (2.37%) 12 (1.97%) 8 (1.37%)

Negative 443 (75.08%) 428 (70.28%) 429 (73.21%)

78 Positive 11 (1.86%) 22 (3.61%) 18 (3.07%)

Missing 121 (20.51%) 146 (23.97%) 130 (22.18%)
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Died 15 (2.54%) 13 (2.13%) 9 (1.54%)

NB: Missing includes contaminated results re-classed as “missing”.

Table 3.3 shows that there are higher proportions of patients missing culture results

early on in the study on the control arm, however this imbalance levels out after week

22. The number of patients missing culture results is generally consistent during the

follow up phase (weeks 39 to 78) at around 20-25%. At 6 weeks, the number of negative

culture results exceeds the number of positive culture results. It is at this time point

where most patients begin to culture convert.

3.8.2 Patterns of missing data for the REMoxTB study

We now investigate principal patterns of missing data to get a sense of how the

proportion of negative culture results varies between the different patterns of missing

data, if at all, and to see how the probability of negative culture results differs across

time between patients. As there were a vast amount of scheduled visits in the

REMoxTB study, the 17 scheduled visits were grouped into clinically meaningful visit

windows, smoothing the data as follows:

• Weeks 0 to 4 includes weeks 0, 1, 2, 3, 4;

• Weeks 5 to 8 includes weeks 5, 6, 7, 8;

• Weeks 12 to 26 includes weeks 12, 17, 22 and 26;

• Weeks 39 to 78 includes weeks 39, 52, 65, 78.

To get a sense of the missingness pattern for the REMoxTB study and to group more

patients into similar missing data patterns, the culture results within each visit

window for patients were grouped into the following pattern types: “completers”

(indicated by “O”), “intermittent” (indicated by “∆”) or “missing” (indicated by “.”).

Patients were allocated one of these patterns depending on how frequently a patient

was observed within that visit window and on how many consecutive results were

observed. If within a visit window, patients only missed one of their scheduled visits,

they were considered to be “completers” since most of the results were complete in

that window. Similarly, if a patient was only observed at one of their scheduled visits
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within a visit window, they were considered to be “missing” since the majority of the

patient’s results was missing. For weeks 0 to 4, which has 5 visits within that visit

window, a patient with three observations was considered to be “intermittent” if the

patient was missing results between any of those three observations. If the patient had

three consecutive observations between 0 to 4 weeks, the pattern was classed as

“completers”, since there no missing observation occurred between observed results.

Similarly, a patient with three missing results was classed as “intermittent” if a result

was observed between those missing results at any visit and “missing” if a patient

was missing at three consecutive visits between weeks 0 to 4. This is done to reflect

that the patient was not re-observed within that visit window for a long period.

Formally, for for weeks 0 to 4:

• “Completers” if a result was observed at all visits, or if one visit was missing

at any one of the scheduled visits within the visit window. Patients were also

classed as “completed” if patients were observed at any three consecutive visits

within the visit window;

• “Intermittent” if there were two or three results missing intermittently between

the 5 scheduled visits;

• “Missing” if all results were missing, or if only one result was observed between

weeks 0 to 4. Patients were also classed as “missing” if patients were missing

results at any three consecutive visits within the visit window.

For the remaining visit windows (weeks 5 to 8; 12 to 26 and 39 to 78), patients were

classed as follows:

• “Completers” if a result was observed at all visits, or if one visit was missing at

any one of the scheduled visits within the grouped visit;

• “Intermittent” if two results were missing;

• “Missing” if all results were missing or if only one result was observed within the

visit window.
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Table 3.4 shows the total number of patients within each pattern (in descending order)

for all 1785 patients. The table also shows the total number of negative culture results

in each pattern and the final column shows how many patients were classed overall as

“successful” at the end of the study (by week 78).

Table 3.4 summarises patients whose overall missingness pattern includes patients

who have most of their culture results observed across the visit windows (i.e.

“completers” or a combination of “completers” and “intermittent”), or patients who

are “missing” most of their results or those who died (indicated with a “D”). Table 3.5

describes missing data patterns for patients whose missingness pattern is mostly

“intermittent” across visit windows. Table 3.6 summarises patients who have various

combinations of “completers” pattern, “intermittent” pattern, “missing” or death

across visit windows.

The proportion of patients with negative culture results at each visit window was also

calculated for each treatment arm (Appendix B) according to each pattern as follows:

1. The proportion of negative cultures in each pattern at each week per patient was

calculated by taking the total number of negative culture results and dividing

over the total number of culture results observed;

2. The proportion of patients being negative in each pattern at each week was

averaged over visit windows;

3. Those classed as “missing” had very little data and therefore were assumed as

having no observations within that visit window.
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Table 3.4: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with most culture results observed (i.e. completers’) over visit windows for

REMoxTB1 .

Number of negative culture results Total number Treatment success

Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 Total (N=1785) Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 of negative n/no. patient

culture results per pattern

O O O O 879 (49.24%) 799/4188 = 19.08% 2261/3307 = 68.37% 3142/3260 = 96.38% 3147/3336 = 94.33% 9349 790 (89.87%)

O O ∆ O 106 (5.94%) 79/483 = 16.36% 238/379 = 62.80% 198/212 = 93.40% 353/381 = 92.65% 868 92 (86.79%)

O O O . 86 (4.82%) 70/417 = 16.79% 214/318 = 67.30% 272/309 = 88.03% 0/60 = 0% 556 15 (17.44%)

O O O ∆ 79 (4.43%) 69/377 = 18.30% 192/296 = 64.86% 272/284 = 95.77% 148/158 = 93.67% 681 68 (86.08%)

O ∆ O O 67 (3.75%) 52/302 = 17.22% 94/134 = 70.15% 218/231 = 94.37% 229/247 = 92.71% 593 57 (85.07%)

∆ O O O 50 (2.80%) 22/141 = 15.60% 134/179 = 74.86% 170/178 = 95.51% 179/188 = 95.21% 505 46 (92%)

O O . . 35 (1.96%) 40/166 = 24.10% 91/130 = 70% 0/13 = 0% 0/8 = 0% 131 0

. . . . 35 (1.96%) 0/44 = 0% 0 0/1 = 0% 0/1 = 0% 0 0

. . O O 31 (1.74%) 0/30 = 0% 0/10 = 0% 108/110 = 98.18% 108/113 = 95.58% 216 26 (83.87%)

O . O O 28 (1.57%) 29/117 = 24.79% 0/22 = 0% 101/104 = 97.12% 96/107 = 89.72% 226 22 (78.57%)

O O . O 27 (1.51%) 23/127 = 18.11% 61/96 = 63.54% 0/24 = 0% 92/94 = 97.87% 176 21 (77.78%)

O . . . 22 (1.23%) 23/82 = 28.05% 0/5 = 0% 0/1 = 0% 0/1 = 0% 23 0

. O O O 15 (0.84%) 0/22 = 0% 48/53 = 90.57% 56/59 = 94.92% 57/58 = 98.28% 161 13 (86.67%)

O D D D 7 (0.39%) 10/32 = 31.25% 3/4 = 75% 0 0/0 = 0 13 0

O . . O 6 (0.34%) 6/27 = 22.22% 0/5 = 0% 0/4 = 0% 16/22 = 72.73% 22 3 (50%)

O O O D 5 (0.28%) 2/24 = 8.33% 5/19 = 26.32% 16/19 = 84.21% 2/4 = 50% 25 0

. . . O 5 (0.28%) 0/7 = 0% 0/1 = 0% 0/2 = 0% 19/19 = 100% 19 1 (20%)

O . O . 4 (0.22%) 4/14 = 28.57% 0/1 = 0% 11/14 = 78.57% 0/1 = 0% 15 1 (25%)

. . O . 4 (0.22%) 0/5 = 0% 0/1 = 0% 11/12 = 91.67% 0/2 = 0% 11 0

D D D D 4 (0.22%) 2/5 = 40% 0 0 0 2 0

. O O . 2 (0.11%) 0/3 = 0% 5/7 = 71.43% 6/6 = 100% 0/1 = 0% 11 0

O O D D 2 (0.11%) 0/9 = 0% 7/8 = 87.50% 2/2 = 100% 0 9 0

. O . D 1 (0.06%) 0/2 = 0% 4/4 = 100% 0/1 = 0% 0 4 0

. . O D 1 (0.06%) 0/1 = 0% 0/1 = 0% 3/3 = 100% 0 3 0

. O . . 1 (0.06%) 0/2 = 0% 4/4 = 100% 0 0/1 = 0% 4 1 (100%)

O O . D 1 (0.06%) 1/4 = 25% 2/3 = 66.67% 0/1 = 0% 0 3 0

O . . D 1 (0.06%) 0/3 = 0% 0 0/1 = 0% 0 0 0

. . D D 1 (0.06%) 0/2 = 0% 0 0 0 0 0

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window; D=Death or .=Missing.
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Table 3.5: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with most culture results intermittently observed over visit windows for REMoxTB1 .

Number of negative culture results Total number Treatment success

Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 Total (N=1785) Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 of negative n/no. patient

culture results per pattern

∆ ∆ O O 24 (1.34%) 21/64 = 32.81% 37/48 = 77.08% 81/84 = 96.43% 85/89 = 95.51% 224 22 (91.67%)

O O ∆ ∆ 22 (1.23%) 12/108 = 11.11% 55/78 = 70.51% 42/44 = 95.45% 41/44 = 93.18% 150 19 (86.36%)

∆ O ∆ O 13 (0.73%) 6/38 = 15.79% 23/41 = 56.10% 26/26 = 100% 49/49 = 100% 104 13 (100%)

O ∆ ∆ O 12 (0.67%) 3/52 = 5.77% 14/24 = 58.33% 22/24 = 91.67% 41/42 = 97.62% 80 10 (83.33%)

O ∆ O ∆ 9 (0.50%) 7/40 = 17.50% 17/18 = 94.44% 28/29 = 96.55% 16/18 = 88.89% 68 8 (88.89%)

∆ . . . 8 (0.45%) 3/22 = 13.64% 0/3 = 0% 0/1 = 0% 0 3 0

∆ ∆ ∆ O 6 (0.34%) 3/17 = 17.65% 9/12 = 75% 12/12 = 100% 23/23 = 100% 47 5 (83.33%)

∆ ∆ ∆ . 3 (0.17%) 0/8 = 0% 0/6 = 0% 6/6 = 100% 0/2 = 0% 6 1 (33.33%)

O ∆ ∆ ∆ 3 (0.17%) 3/14 = 21.43% 4/6 = 66.67% 5/6 = 83.33% 6/6 = 100% 18 3 (100%)

∆ . ∆ ∆ 2 (0.11%) 0/6 = 0% 0/1 = 0% 4/4 = 100% 4/4 = 100% 8 2 (100%)

∆ . ∆ . 2 (0.11%) 0/4 = 0% 0/1 = 0% 2/4 = 50% 0 2 0

∆ O O ∆ 2 (0.11%) 0/5 = 0% 5/7 = 71.43% 7/7 = 100% 4/4 = 100% 16 2 (100%)

. . ∆ ∆ 2 (0.11%) 0/4 = 0% 0/1 = 0% 4/4 = 100% 3/4 = 75% 7 1 (50%)

∆ ∆ . . 2 (0.11%) 2/4 = 50% 3/4 = 75% 0/2 = 0% 0/1 = 0% 5 1 (50%)

∆ ∆ O ∆ 1 (0.06%) 1/3 = 33.33% 1/2 = 50% 3/3 = 100% 2/2 = 100% 7 1 (100%)

∆ ∆ ∆ ∆ 1 (0.06%) 1/3 = 33.33% 2/2 = 100% 2/2 = 100% 2/2 = 100% 7 1 (100%)

∆ ∆ . ∆ 1 (0.06%) 2/3 = 66.67% 0/2 = 0% 0 1/2 = 50% 3 0

∆ . . ∆ 1 (0.06%) 1/3 = 33.33% 0 0 2/2 = 100% 3 0

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window or .=Missing.
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Table 3.6: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with a mixture of observed, intermittent and missing culture results within visit

windows for REMoxTB1 .

Number of negative culture results Total number Treatment success

Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 Total (N=1785) Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 of negative n/no. patient

culture results per pattern

Mixture of completed culture results, hit and miss culture results and missing results

O O ∆ . 23 (1.29%) 6/102 = 5.88% 35/83 = 42.17% 43/46 = 93.48% 0/12 = 0% 84 2 (8.70%)

O . ∆ O 18 (1.01%) 15/77 = 19.48% 0/9 = 0% 34/36 = 94.44% 55/63 = 87.30% 104 14 (77.78%)

O ∆ . . 10 (0.56%) 4/45 = 8.89% 11/20 = 55% 0/3 = 0% 0/1 = 0% 15 0

. ∆ O O 8 (0.45%) 0/6 = 0% 16/16 = 100% 29/29 = 100% 30/30 = 100% 75 8 (100%)

O ∆ . O 8 (0.45%) 5/34 = 14.71% 9/16 = 56.25% 0/8 = 0% 27/29 = 93.10% 41 4 (50%)

O ∆ O . 8 (0.45%) 7/36 = 19.44% 10/16 = 62.50% 24/28 = 85.71% 0/5 = 0% 41 2 (25%)

O O ∆ D 7 (0.39%) 6/32 = 18.75% 20/25 = 80% 14/14 = 100% 2/2 = 100% 42 0

∆ O O . 7 (0.39%) 8/20 = 40% 20/24 = 83.33% 22/26 = 84.62% 0/2 = 0% 50 0

O O . ∆ 7 (0.39%) 5/33 = 15.15% 21/26 = 80.77% 0/5 = 0% 14/14 = 100% 40 6 (85.71%)

. . ∆ O 6 (0.34%) 0/8 = 0% 0/1 = 0% 12/12 = 100% 22/22 = 100% 34 5 (83.33%)

O . ∆ . 6 (0.34%) 2/25 = 8% 0/5 = 0% 12/12 = 100% 0/4 = 0% 14 0

∆ . O O 6 (0.34%) 6/16 = 37.50% 0/5 = 0% 21/21 = 100% 23/23 = 100% 50 6 (100%)

∆ ∆ O . 6 (0.34%) 4/16 = 25% 8/12 = 66.67% 16/20 = 80% 0/5 = 0% 28 0

O . O ∆ 5 (0.28%) 3/20 = 15% 0/4 = 0% 18/18 = 100% 10/10 = 100% 31 5 (100%)

O ∆ ∆ . 4 (0.22%) 5/18 = 27.78% 5/8 = 62.50% 7/8 = 87.50% 0/1 = 0% 17 0

O . . ∆ 4 (0.22%) 2/17 = 11.76% 0/2 = 0% 0/1 = 0% 7/8 = 87.50% 9 0

∆ ∆ . O 4 (0.22%) 3/10 = 30% 5/8 = 62.50% 0/4 = 0% 12/13 = 92.31% 20 3 (75%)

∆ O ∆ . 3 (0.17%) 3/9 = 33.33% 8/10 = 80% 5/6 = 83.33% 0/1 = 0% 16 1 (33.33%)

∆ O . O 3 (0.17%) 1/9 = 11.11% 8/11 = 72.73% 0/2 = 0% 9/10 = 90% 18 3 (100%)

∆ O . . 3 (0.17%) 5/8 = 62.50% 10/11 = 90.91% 0/1 = 0% 0 15 0

. ∆ O . 3 (0.17%) 0/5 = 0% 5/6 = 83.33% 8/11 = 72.73% 0/3 = 0% 13 1 (33.33%)

∆ . D D 2 (0.11%) 1/5 = 20% 0/2 = 0% 0 0 1 0

. . O ∆ 2 (0.11%) 0/2 = 0% 0/1 = 0% 4/7 = 57.14% 4/4 = 100% 8 1 (50%)

O . ∆ ∆ 2 (0.11%) 7/9 = 77.78% 0 4/4 = 100% 4/4 = 100% 15 2 (100%)

∆ O . ∆ 2 (0.11%) 1/6 = 16.67% 5/6 = 83.33% 0/2 = 0% 3/4 = 75% 9 1 (50%)

O ∆ . ∆ 2 (0.11%) 6/9 = 66.67% 4/4 = 100% 0/2 = 0% 4/4 = 100% 14 2 (100%)

∆ . ∆ O 2 (0.11%) 2/5 = 40% 0/1 = 0% 4/4 = 100% 6/6 = 100% 12 2 (100%)

∆ . . O 2 (0.11%) 0/4 = 0% 0 0/2 = 0% 7/7 = 100% 7 0

∆ O O D 2 (0.11%) 4/5 = 80% 5/6 = 83.33% 6/8 = 75% 1/1 = 100% 16 0

∆ . O ∆ 1 (0.06%) 0/2 = 0% 0 4/4 = 100% 2/2 = 100% 6 1 (100%)

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window or .=Missing.
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Figure 3.1: Proportion of negative culture results for completers’ in REMoxTB.
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Table 3.4 shows that almost half of patients (49%) had complete results, most of whom

were successful (Tables B1 to B7 in Appendix B show these patterns for each treatment

arm). Patients who are missing culture results towards the end of the study (i.e. in the

follow-up phase) are not so successful in achieving two negative culture results. This

is due to the definition of the primary outcome for REMoxTB where these patients

who are unobserved are classed as “unassessable” if culture results are not observed

before the final 78 week visit.

Figures 3.1 to 3.10 show the most common missing data patterns by treatment arm for

patients who have mostly completed/missing results across all four visit windows,

intermittent/missing results across all four visit windows or a mixture of results

across all four visit windows. Completers are define as patients who only had one

result within the visit window that was not a negative culture result. Figure 3.1 shows

that the proportion of negative culture results for patients who have completed results

at all four visit windows (from weeks 0 to 78) are very similar between treatment

regimens. The proportion of negative culture results levels at around 95% over weeks

12 to 26 and drops slightly a year later, over weeks 39 to 78.
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Figures 3.2, 3.3 and 3.4 show the remaining patients whose missingness pattern have

the majority of their culture results observed within each visit window and also those

who are “missing” between week 0 to 78. The lines in blue indicate which patterns

were mostly missing culture results across all visits during the study. The different

lines in these graphs correspond to the same missing data pattern in different

treatment groups. This is for ease of comparing each different missingness pattern

between treatment arms. Numbers noted within the graphs relate to the number of

patients that follow a particular pattern. Figures 3.5 to 3.7 is a graphical representation

of Table 3.5 by treatment arm, showing the most common patterns for patients whose

culture results are mostly intermittent. Figures 3.8 to 3.10 is a graphical representation

of patients in Table 3.6 by treatment arm whose pattern has a mixture of “completers”,

“intermittent”, “missing” or death across visit windows.

The left hand panel in Figure 3.2 shows that before withdrawal (i.e. the 19 patients

who are missing results between weeks 39 to 78) have a very similar pattern to the 99

patients in the other patterns who do reach the end of the study. The right hand panel

in Figure 3.2 show similar proportions of negative culture results between different

patterns during follow up at weeks 39 to 78, irrespective of whether or not patients are

observed beforehand. Figures 3.3 to 3.10 show similar trends. The ethambutol arm in

Figure 3.4 shows the 36 patients who are mostly observed within each visit window

up to week 26 and are missing results between weeks 39 to 78 have slightly lower

proportions of negative cultures between weeks 12 to 26 in comparison to the

remaining patterns for patients who had completed results between weeks 39 to 78.

Patients who were randomised to the control arm that have intermittent patterns of

missing data from weeks 0 to 8 and have completed results from weeks 12 to 78

(Figure 3.5) have lower proportions of negative culture results compared to the

treatment arms (Figures 3.6 and 3.7).
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Figure 3.2: Proportion of negative culture results for completers’ pattern in REMoxTB.
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NB: Due to the vast number of patterns, graphs are split into two for ease of viewing each pattern.

Figure 3.3: Proportion of negative culture results for completers’ pattern in REMoxTB.
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NB: Due to the vast number of patterns, graphs are split into two for ease of viewing each pattern.
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Figure 3.4: Proportion of negative culture results for completers’ pattern in REMoxTB.
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NB: Due to the vast number of patterns, graphs are split into two for ease of viewing each pattern.

Figure 3.5: Proportion of negative culture results for intermittent pattern in REMoxTB.
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Figure 3.6: Proportion of negative culture results for intermittent missing results in

REMoxTB.
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Figure 3.7: Proportion of negative culture results for intermittent missing results in

REMoxTB.
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Figure 3.8: Proportion of negative culture results for a mixture of results in REMoxTB.
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Figure 3.9: Proportion of negative culture results for a mixture of results in REMoxTB.
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Figure 3.10: Proportion of negative culture results for a mixture of results in REMoxTB.
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3.8.3 Discussion

In this section we investigated the proportion of missing data between treatment arm

and then explored patterns of missing culture results by treatment arm. This was done

splitting the data into visit windows to reduce the amount of missing data patterns

while looking at the trend of the missing data over time. We found that the proportion

of patients having negative culture results is similar between patients irrespective of

the pattern and is also similar between treatment arms. Patients whose data are mostly

missing generally follow similar patterns to those that have data observed within the

same visit window. Even patients who are missing culture results before the follow-up

phase (weeks 39 to 78) have similar proportions towards the end of follow up as those

that have completed data. This suggests that the reason for patients being missing does

not depend on treatment received. The methods applied here thus far for the REMoxTB

study are now applied to the RIFAQUIN study.
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3.9 Application to the RIFAQUIN study

Analyses from the REMoxTB study (§3.6.1 to §3.8.2) are applied similarly to the

RIFAQUIN study (see §3.2.2). Even though both the PP and mITT analysis were used

to determine non-inferiority for the RIFAQUIN study, we focus on the PP analysis. We

first define patients who will be included in analyses for this study, impute patients’

sputum culture results that are missing and then focusing on these patients we

describe patients who were missing outcome observations at each scheduled

follow-up visit. We then investigate analyses to impute the missing observations of

patient outcomes using single imputation methods (complete case analysis, best

case/worst case scenarios) and then we explore multiple imputation and the two-fold

fully conditional specification multiple imputation method. As the RIFAQUIN data is

much smaller than that for the REMoxTB data, we do not explore ordinal multiple

imputation. We then investigate different patterns of negative culture results splitting

the scheduled follow-up visits into windows.

3.9.1 Patients included in analyses for the RIFAQUIN study

Table 3.7 shows patients who are excluded from subsequent analyses. As for REMoxTB,

we aim for an ITT analysis where patients who were resistant to the drugs used in

the study and those whose diagnosis of TB were not confirmed within the first two

weeks of randomisation were excluded. Patients who might have been screened for

TB, but were subsequently found as not having TB much later were also excluded.

This can sometimes occur due to the lag in time attaining confirmation of TB after

sending sputum samples to laboratories. A total of 730 patients will be included in our

analyses suggesting that more information is to be gained from the 216 patients who

were excluded from the primary analysis due to the PP criteria.

Table 3.7: Tabulation of patients to be excluded from

analyses, by treatment arm for RIFAQUIN.

Control 4 month regimen 6 month regimen Total

(N=275) (N=275) (N=277) (N=827)

Late screening failure, 1 (0.4%) 0 0 1

previous TB resistance
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Resistant to rifapentine/ 12 (4%) 16 (6%) 13 (5%) 41

isoniazid/moxifloxacin

No positive cultures ≤2 22 (8%) 20 (7%) 13 (5%) 55

weeks from randomisation

Total 35 (13%) 36 (13%) 26 (9%) 97

Total not to be excluded 240 239 251 730

Table 3.8 shows the proportion of patients that will be included in our analyses who

have a positive, negative or missing culture result or who died at each scheduled

follow up visit. Patients who were recorded to be “contaminated” were assumed to be

missing. The proportion of patients with negative culture results was consistently

lower for patients who were randomised to the 4 month regimen in comparison to the

control and for the 6 month regimen from month 3 onwards. The proportion of

patients who are missing culture results is slightly higher on the treatment regimens

at 4 months but then levels out by month 7. The proportion of patients missing is

slightly higher on the 6 month regimen at month 11 and 12, but again levels out

towards the end of the study.

Table 3.8: Summary of culture results for 730 patients

who are included after applying the exclusion criteria for

RIFAQUIN.

Visit Culture result Control 4 month regimen 6 month regimen

(N=240) (N=239) (N=251)

Month 0 Positive 240 (100%) 239 (100%) 251 (100%)

Negative 188 (78.33%) 196 (82.01%) 203 (80.88%)

Month 2 Positive 31 (12.92%) 17 (7.11%) 21 (8.37%)

Missing 20 (8.33%) 26 (10.88%) 26 (10.36%)

Died 1 (0.42%) 0 1 (0.40%)

Negative 208 (86.67%) 197 (82.43%) 211 (84.06%)

Month 3 Positive 3 (1.25%) 8 (3.35%) 7 (2.79%)

Missing 28 (11.67%) 34 (14.23%) 32 (12.75%)

Died 1 (0.42%) 0 1 (0.40%)

Negative 214 (89.17%) 204 (85.36%) 213 (84.86%)
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Month 4 Positive 4 (1.67%) 5 (2.09%) 3 (1.20%)

Missing 21 (8.75%) 30 (12.55%) 34 (13.55%)

Died 1 (0.42%) 0 1 (0.40%)

Negative 203 (84.58%) 193 (80.75%) 207 (82.47%)

Month 5 Positive 5 (2.08%) 3 (1.26%) 2 (0.80%)

Missing 30 (12.50%) 42 (17.57%) 41 (16.33%)

Died 2 (0.83%) 1 (0.42%) 1 (0.40%)

Negative 194 (80.83%) 174 (72.80%) 204 (81.27%)

Month 6 Positive 6 (2.50%) 12 (5.02%) 1 (0.40%)

Missing 38 (15.83%) 51 (21.34%) 45 (17.93%)

Died 2 (0.83%) 2 (0.84%) 1 (0.40%)

Negative 183 (76.25%) 168 (70.29%) 196 (78.09%)

Month 7 Positive 3 (1.25%) 17 (7.11%) 2 (0.80%)

Missing 51 (21.25%) 51 (21.34%) 52 (20.72%)

Died 3 (1.25%) 3 (1.26%) 1 (0.40%)

Negative 178 (74.17%) 167 (69.87%) 192 (76.49%)

Month 8 Positive 2 (0.83%) 20 (8.37%) 2 (0.80%)

Missing 57 (23.75%) 49 (20.50%) 56 (22.31%)

Died 3 (1.25%) 3 (1.26%) 1 (0.40%)

Negative 184 (76.67%) 163 (68.20%) 195 (77.69%)

Month 9 Positive 3 (1.25%) 13 (5.44%) 4 (1.59%)

Missing 50 (20.83%) 59 (24.69%) 50 (19.92%)

Died 3 (1.25%) 4 (1.67%) 2 (0.80%)

Negative 174 (72.50%) 169 (70.71%) 182 (72.51%)

Month 10 Positive 4 (1.67%) 5 (2.09%) 4 (1.59%)

Missing 58 (24.17%) 60 (25.10%) 62 (24.70%)

Died 4 (1.67%) 5 (2.09%) 3 (1.20%)

Negative 164 (68.33%) 156 (65.27%) 182 (72.51%)

Month 11 Positive 4 (1.67%) 4 (1.67%) 4 (1.59%)

Missing 68 (28.33%) 72 (30.13%) 62 (24.70%)

Died 4 (1.67%) 7 (2.93%) 3 (1.20%)

Negative 169 (70.42%) 166 (69.46%) 192 (76.49%)

Month 12 Positive 5 (2.08%) 2 (0.84%) 2 (0.80%)
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Missing 61 (25.42%) 64 (26.78%) 54 (21.51%)

Died 5 (2.08%) 7 (2.93%) 3 (1.20%)

Negative 153 (63.75%) 147 (61.51%) 167 (66.53%)

Month 15 Positive 4 (1.67%) 5 (2.09%) 2 (0.80%)

Missing 78 (32.50%) 79 (33.05%) 78 (31.08%)

Died 5 (2.08%) 8 (3.35%) 4 (1.59%)

Negative 138 (57.50%) 129 (53.97%) 152 (60.56%)

Month 18 Positive 4 (1.67%) 6 (2.51%) 2 (0.80%)

Missing 93 (38.75%) 95 (39.75%) 90 (35.86%)

Died 5 (2.08%) 9 (3.77%) 7 (2.79%)

NB: Missing includes contaminated results re-classed as “missing”.

3.10 Analysis using imputation methods for the RIFAQUIN

study

As for the REMoxTB analyses, we analyse the RIFAQUIN study by using a complete

case analysis and best case/worst case scenarios (§3.3) followed by multiple

imputation (§3.5.1) over 18 months of treatment and then apply the two-fold FCS

multiple imputation method (§3.5.3). Table 3.9 shows the results of these analyses,

along with the results for the PP and mITT analysis of the original study.

Table 3.9: Difference in proportions of unfavourable

outcome using different imputation methods for the

RIFAQUIN study.

Analysis 4 month regimen 6 month regimen

Risk difference (95% CI) Risk difference (95% CI)

Primary analysis (PP)

from RIFAQUIN

(n=514)∗

Unadjusted results 13.27% (6.52% to 20.03%) -1.68% (-5.86% to 2.49%)

Adjusted results1 13.60% (7.0% to 20.20%) -1.80% (-6.90% to 3.30%)
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Primary analysis (mITT)

from RIFAQUIN

(n=593)∗

Unadjusted results 12.58% (4.56% to 20.60%) -0.68% (-7.50% to 6.14%)

Adjusted results1 13.10% (5.60% to 20.60%) -0.40% (-5.70% to 6.60%)

Complete case analysis

(n=182)∗

Unadjusted results 3.22% (-7.26% to 13.70%) -2.85% (-11.25% to 5.54%)

Adjusted results1,2 7.47% (-5.42% to 20.36%) 2.16% (-10.33% to 14.64%)

Best case scenario

(n=730)∗

Unadjusted results -43.70% (-51.22% to -36.18%) -52.25% (-58.94% to -45.56%)

Adjusted results1 -43.63% (-51.11% to -36.14%) -52.40% (-59.0% to -45.80%)

Worst case scenario

(n=730)∗

Unadjusted results 60.69% (54.10% to 67.28%) 49.20% (42.49% to 55.91%)

Adjusted results1,2 63.09% (56.80% to 69.39%) 51.54% (45.09% to 57.98%)

Two-fold FCS MI3

(n=730)∗

Unadjusted results 9.80% (2.36% to 17.24%) -3.30% (-8.60% to 1.99%)

Adjusted results1 10.26% (2.71% to 17.81%) -2.69% (-7.98% to 2.60%)

∗Number of patients included in the analysis.

1Adjusted for centre.

2Model did not converge, therefore 100 iterations were used.

3Fully Conditional Specification (FCS), Multiple imputation (MI).

The complete case analysis, patients were included only if culture results were

reported for all visits. Patients missing any one or more culture results

post-randomisation were excluded from this analysis. A total of 182 patients are

included in the analysis, excluding an extra patient who had no positive culture

results within 2 weeks of randomisation, a vast reduction from the 514 patients
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included in the PP analysis. The adjusted results from the complete case analysis and

worst case scenario failed to converge, due to there being few patients within each

centre, and so 100 iterations were used. The results from the adjusted analysis for the

four month treatment regimen (Table 3.9) are consistent with that of the primary

outcome even though there are far fewer patients in the complete case analysis;

non-inferiority cannot be concluded on the 4 month regimen as the upper bound of

the 95% confidence interval (around 20% for the PP, mITT analyses and complete case

adjusted analyses) exceeds that of the pre-defined 6% non-inferiority margin.

Non-inferiority can be concluded on the 6 month regimen for the unadjusted analysis

since the upper bound of the 95% confidence interval lies below the 6% non-inferiority

margin; 3.3% for the primary PP adjusted analysis and 5.54% for the complete case

analysis.

A total of 730 patients were included in the best case scenario and worst case scenario

analyses after applying the exclusion criteria in Table 3.7. The best case scenario

shows the 4 month treatment regimen and 6 month treatment regimen are

non-inferior since the upper bound of the 95% confidence interval lies far below the

6% non-inferiority margin (upper bound of the 95% CI adjusted analysis: -36.14% for

the 4 month regimen and 45.8% on the 6 month regimen). The worst case scenario

fails to demonstrate non-inferiority in the 4 month regimen (95% CI: 69.39%) and in

the 6 month treatment regimen (95% CI: 57.98%) for the adjusted analyses.

Multiple imputation was performed for all patients with an outcome and excluded 97

patients described in Table 3.7. As for the REMoxTB study, performing multiple

imputation for across all 14 scheduled visits was computationally infeasible even after

accounting for issues with perfect prediction. We therefore proceeded with the

two-fold FCS multiple imputation, taking each scheduled visit in turn and imputing

missing observations based on outcomes observed adjacent either side of that visit.

The results from the two-fold FCS multiple imputation (Table 3.9) were consistent

with that of the primary analysis; non-inferiority cannot be concluded on the 4 month

regimen but can be concluded on the 6 month regimen since the upper bound of the

95% CI is 2.6% on the adjusted analyses which lies below 6%. The result from the
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two-fold FCS multiple imputation show that the control regimen performs slightly

worse in comparison to the two treatment regimens as the estimates are less than that

of the primary outcome; 10.26% on the 4 month regimen and -2.69% on the 6 month

regimen after imputation compared with 14.30% on the 4 month regimen and -1.07%

on the 6 month regimen from the primary analysis for adjusted analyses.

3.11 Missing data patterns for the RIFAQUIN study

To investigate trends of negative culture results for patients in the RIFAQUIN study,

scheduled visits were split into windows for an overview of the missing data pattern

and to reduce the number of possible sequences for patient profiles. Even though the

timings of the treatment phase and follow-up phase differed by treatment regimen,

patients were split into the same four visit windows:

• Months 0-3: month 0, month 2 and month 3;

• Months 4-6: month 4, month 5 and month 6;

• Months 7-10: month 7, month 8, month 9 and month 10;

• Months 11-18: month 11, month 12, month 15 and month 18.

The data were split in this way to reduce the number of missingness patterns across

the whole dataset, allowing us to obtain a general overview of the missingness

patterns while ensuring the windowing is clinically meaningful. Each visit window

has a maximum of 4 visits in a visit window for ease of classing observed results

within each window. As for the REMoxTB study (§3.8.2), culture results were grouped

as “completers” (indicated by “O”), “intermittent” (indicated by “∆”) or “missing”

(indicated by “.”) within each visit window. If within a visit window, patients only

missed one of their scheduled visits, they were considered to be “completers” since

the majority of the results were complete in that window. Similarly, if a patient was

only observed at one of their scheduled visits within a visit window, they were

considered to be “missing” since most of the patient’s results are missing within that

visit window.
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Patients were classed as as follows:

• “Completed” if a result was observed at all visits, or if one visit was missing at

any one of the scheduled visits within the grouped visit;

• “Intermittent” if two results missing;

• “Missing” if all results were missing or if only one result was observed within the

visit window.

Tables 3.10 to 3.12 shows the proportion of patients with negative culture results

across different patterns of missing data in each visit window, and also shows the

proportion of patients who achieved culture negative status at the end of the study in

each missing data pattern. Table 3.10 describes patients who have most of their

culture results observed across all visit windows (i.e. “completers” or a combination

of “completers” and “intermittent”), or patients who are “missing” most of their

results or those who died (indicated with a “D”). Table 3.11 summarises patients

whose missing data pattern is mostly “intermittent” across visit windows. Table 3.12

summarises patients whose overall missingness pattern contains a mixture of

“completers”, “intermittent”, “missing” or death across the four visit windows. A

total of 384 (53%) patients were “completers” across all four visit windows of which

353 (92%) had achieved culture conversion by the end of the study.
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Table 3.10: Number of negative culture results and proportion of all patients who achieved negative

culture conversion for patients with most culture results observed (i.e completers’ over visit windows for

RIFAQUIN1 .

Number of negative culture results Total number Treatment success

Months 0-3 Months 4-6 Months 7-10 Months 11-18 Total (N=730) Months 0-3 Months 4-6 Months 7-10 Months 11-18 of negative n/no. patient

culture results per pattern

O O O O 384 (52.60%) 695/1124 = 61.83% 1088/1112 = 97.84% 1415/1458 = 97.05% 1383/1415 = 97.74% 4581 353 (91.93%)

O O O ∆ 60 (8.22%) 108/176 = 61.36% 173/177 = 97.74% 215/225 = 95.56% 115/120 = 95.83% 611 56 (93.33%)

O O O . 42 (5.75%) 76/122 = 62.30% 119/120 = 99.17% 139/146 = 95.21% 29/29 = 100.00% 363 38 (90.48%)

O O . . 40 (5.48%) 73/118 = 61.86% 99/106 = 93.40% 9/11 = 81.82% 9/9 = 100.00% 190 17 (42.50%)

O . . . 31 (4.25%) 45/84 = 53.57% 15/15 = 100.00% 1/1 = 100.00% 4/5 = 80.00% 65 3 (9.68%)

. . . . 26 (3.56%) 0/26 = 0.00% 0/0 = .% 0/0 = .% 2/3 = 66.67% 2 0 (0.00%)

O ∆ O O 22 (3.01%) 40/65 = 61.54% 42/44 = 95.45% 83/84 = 98.81% 82/83 = 98.80% 247 21 (95.45%)

∆ O O O 19 (2.60%) 17/38 = 44.74% 53/54 = 98.15% 68/74 = 91.89% 67/69 = 97.10% 205 16 (84.21%)

O O ∆ O 13 (1.78%) 22/37 = 59.46% 34/35 = 97.14% 23/26 = 88.46% 46/47 = 97.87% 125 12 (92.31%)

O . O O 8 (1.10%) 14/23 = 60.87% 6/6 = 100.00% 27/27 = 100.00% 28/29 = 96.55% 75 6 (75.00%)

. O O O 4 (0.55%) 0/4 = 0.00% 10/10 = 100.00% 15/15 = 100.00% 14/14 = 100.00% 39 4 (100.00%)

O . . O 3 (0.41%) 4/8 = 50.00% 2/2 = 100.00% 2/2 = 100.00% 9/9 = 100.00% 17 2 (66.67%)

O O O D 3 (0.41%) 6/9 = 66.67% 8/8 = 100.00% 10/10 = 100.00% 0/0 = .% 24 3 (100.00%)

O O D D 2 (0.27%) 4/6 = 66.67% 4/4 = 100.00% 0/0 = .% 0/0 = .% 8 0 (0.00%)

O D D D 2 (0.27%) 4/6 = 66.67% 2/2 = 100.00% 0/0 = .% 0/0 = .% 6 0 (0.00%)

. . . O 2 (0.27%) 0/2 = 0.00% 0/0 = .% 1/1 = 100.00% 8/8 = 100.00% 9 0 (0.00%)

O O . D 2 (0.27%) 3/5 = 60.00% 6/6 = 100.00% 2/2 = 100.00% 0/0 = .% 11 1 (50.00%)

O O . O 2 (0.27%) 4/6 = 66.67% 6/6 = 100.00% 2/2 = 100.00% 6/6 = 100.00% 18 2 (100.00%)

. . O O 2 (0.27%) 0/2 = 0.00% 2/2 = 100.00% 7/7 = 100.00% 7/7 = 100.00% 16 0 (0.00%)

D D D D 2 (0.27%) 0/2 = 0.00% 0/0 = .% 0/0 = .% 0/0 = .% 0 0 (0.00%)

. . . D 1 (0.14%) 0/1 = 0.00% 0/0 = .% 0/0 = .% 0/0 = .% 0 0 (0.00%)

. O O . 1 (0.14%) 0/1 = 0.00% 3/3 = 100.00% 3/3 = 100.00% 1/1 = 100.00% 7 0 (0.00%)

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window; D=Death or .=missing.
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Table 3.11: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with most culture results intermittently observed over visit windows for RIFAQUIN1 .

O O ∆ ∆ 9 (1.23%) 16/26 = 61.54% 26/26 = 100.00% 16/18 = 88.89% 18/18 = 100.00% 76 8 (88.89%)

∆ O O ∆ 8 (1.10%) 6/16 = 37.50% 21/22 = 95.45% 28/29 = 96.55% 16/16 = 100.00% 71 7 (87.50%)

O ∆ O ∆ 3 (0.41%) 6/9 = 66.67% 6/6 = 100.00% 12/12 = 100.00% 6/6 = 100.00% 30 3 (100.00%)

∆ O ∆ O 1 (0.14%) 1/2 = 50.00% 3/3 = 100.00% 2/2 = 100.00% 3/3 = 100.00% 9 1 (100.00%)

∆ ∆ O O 1 (0.14%) 1/2 = 50.00% 2/2 = 100.00% 4/4 = 100.00% 4/4 = 100.00% 11 1 (100.00%)

∆ ∆ O ∆ 1 (0.14%) 1/2 = 50.00% 2/2 = 100.00% 4/4 = 100.00% 2/2 = 100.00% 9 1 (100.00%)

. . ∆ ∆ 1 (0.14%) 0/1 = 0.00% 1/1 = 100.00% 2/2 = 100.00% 2/2 = 100.00% 5 0 (0.00%)

O ∆ ∆ O 1 (0.14%) 1/3 = 33.33% 2/2 = 100.00% 2/2 = 100.00% 3/3 = 100.00% 8 1 (100.00%)

∆ ∆ ∆ O 1 (0.14%) 1/2 = 50.00% 2/2 = 100.00% 2/2 = 100.00% 4/4 = 100.00% 9 1 (100.00%)

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window or .=missing.

Table 3.12: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with a mixture of observed, intermittent and missing culture results over visit

windows for RIFAQUIN1 .

O O ∆ . 12 (1.64%) 23/36 = 63.89% 33/33 = 100.00% 24/24 = 100.00% 4/4 = 100.00% 84 11 (91.67%)

O . ∆ O 5 (0.68%) 8/15 = 53.33% 4/4 = 100.00% 9/10 = 90.00% 19/19 = 100.00% 40 4 (80.00%)

O O . ∆ 3 (0.41%) 6/9 = 66.67% 9/9 = 100.00% 2/2 = 100.00% 6/6 = 100.00% 23 3 (100.00%)

O . . ∆ 2 (0.27%) 3/5 = 60.00% 2/2 = 100.00% 1/1 = 100.00% 4/4 = 100.00% 10 2 (100.00%)

O . O ∆ 1 (0.14%) 1/3 = 33.33% 1/1 = 100.00% 3/3 = 100.00% 2/2 = 100.00% 7 1 (100.00%)

O ∆ O D 1 (0.14%) 2/3 = 66.67% 2/2 = 100.00% 3/3 = 100.00% 0/0 = .% 7 1 (100.00%)

∆ . O O 1 (0.14%) 1/2 = 50.00% 1/1 = 100.00% 3/3 = 100.00% 3/3 = 100.00% 8 1 (100.00%)

O ∆ O . 1 (0.14%) 2/3 = 66.67% 2/2 = 100.00% 4/4 = 100.00% 1/1 = 100.00% 9 1 (100.00%)

. O O ∆ 1 (0.14%) 0/1 = 0.00% 3/3 = 100.00% 1/4 = 25.00% 2/2 = 100.00% 6 0 (0.00%)

O O ∆ D 1 (0.14%) 1/2 = 50.00% 3/3 = 100.00% 2/2 = 100.00% 0/0 = .% 6 1 (100.00%)

∆ ∆ O . 1 (0.14%) 1/2 = 50.00% 2/2 = 100.00% 4/4 = 100.00% 1/1 = 100.00% 8 1 (100.00%)

∆ . . O 1 (0.14%) 1/2 = 50.00% 1/1 = 100.00% 1/1 = 100.00% 3/3 = 100.00% 6 1 (100.00%)

O ∆ . ∆ 1 (0.14%) 2/3 = 66.67% 2/2 = 100.00% 0/0 = .% 2/2 = 100.00% 6 1 (100.00%)

O ∆ D D 1 (0.14%) 2/3 = 66.67% 2/2 = 100.00% 0/0 = .% 0/0 = .% 4 0 (0.00%)

O ∆ . . 1 (0.14%) 2/3 = 66.67% 2/2 = 100.00% 0/0 = .% 0/0 = .% 4 0 (0.00%)

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window; D=Death or .=missing.
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Figures 3.11 to 3.20 describe the proportion of patients who had negative culture

results over different missing data patterns over each visit window between treatment

arms. The numbers in each of the figures show how many patients followed a type of

missingness pattern.

Figure 3.11: Proportion of negative culture results for completers in RIFAQUIN.

127
123

134

⇑
Number

of observations

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

Pr
op

or
tio

n 
of

 n
eg

at
iv

e
cu

ltu
re

 r
es

ul
ts

 Months 0-3 Months 4-6 Months 7-10 Months 11-18
Visit

Control 4 month regimen 6 month regimen

Proportion of negative cultures
for completers

The proportion of negative culture results for completers, i.e. those with one or fewer

missing culture results in a visit window, (Figure 3.11) shows that the 4 month

regimen starts off as performing slightly better than the 6 month and control

regimens, but worsens over the next two periods.

Figures 3.12 to 3.20 show the most common missing data patterns for patients who

have the majority of their culture results observed/missing results,

intermittent/missing culture results or a mixture of “completers”, “intermittent” or

“missing” results across visit windows. Figures 3.12 to 3.14 is a graphical

representation of Table 3.10 by treatment arm, showing the most common patterns for

patients who are nearly always observed. Figures 3.15 to 3.17 show the most common

patterns from Table 3.11 by treatment arm for patients whose culture results are

mostly intermittent. Figures 3.18 to 3.20 is a graphical representation of patients in
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Table 3.12 by treatment arm whose pattern has a mixture of “completers”,

“intermittent”, “missing” or death across visit windows. Numbers noted within the

graphs relate to the number of patients that follow a particular pattern.

Figures 3.12 to 3.20 are consistent with what we found in the REMoxTB study, where

patients whose pattern includes observations that are either missing or intermittently

missing within one or more visit windows generally have similar proportions of

negative culture results with the other treatment arms when observed. This finding

suggests that using the worst case analysis, as recommended by regulators, may be an

overly conservative analysis for these data. These figures also suggest that the MAR

assumption is reasonable. That is, to assume that a patient’s observed culture result

towards the end of the study given what they were at the beginning is different from

other patients within treatment arms.

Figure 3.12: Proportion of negative culture results for completers’ pattern in

RIFAQUIN.
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NB: Due to the vast number of patterns, graphs are split into two for ease of viewing each pattern.
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Figure 3.13: Proportion of negative culture results for completers’ pattern in

RIFAQUIN.
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NB: Due to the vast number of patterns, graphs are split into two for ease of viewing each pattern.

Figure 3.14: Proportion of negative culture results for completers’ pattern in

RIFAQUIN.
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NB: Due to the vast number of patterns, graphs are split into two for ease of viewing each pattern.
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Figure 3.15: Proportion of negative culture results for intermittent missing pattern.
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Figure 3.16: Proportion of negative culture results for intermittent missing pattern in

RIFAQUIN.
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Figure 3.17: Proportion of negative culture results for intermittent missing pattern in

RIFAQUIN.
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Figure 3.18: Proportion of negative culture results for a mixture of results in

RIFAQUIN.
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Figure 3.19: Proportion of negative culture results for a mixture of results in

RIFAQUIN.
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Figure 3.20: Proportion of negative culture results for a mixture of results in

RIFAQUIN.
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3.11.1 Discussion

In this section we applied different imputation methods to the RIFAQUIN dataset

resulting in a “completed” dataset for this study. This enabled us to impute each

patient’s culture result. We began with single imputation methods using a complete

case analysis and best case/worst case scenarios. We then used multiple imputation

and two-fold fully conditional specification multiple imputation. Following this, we

investigated the proportion of missing data for the RIFAQUIN study by treatment

arm. We then explored different patterns of missing culture results by treatment arm,

grouping visits into visit windows.

Although the results from the complete case analysis were consistent with that of the

primary analysis, the exclusion of 78% of patients who were randomised clearly

creates greater uncertainty surrounding the estimates and therefore greater

uncertainty as to whether non-inferiority was met. The unadjusted results from the

complete case analysis lean towards failing to demonstrate non-inferiority, suggesting

the analysis is biased towards favouring the standard of care regimen. The results

from the best case and worst case scenario show extreme estimates and confidence

intervals demonstrating and failing to demonstrate non-inferiority respectively. While

the worst case scenario bears more weight according to regulatory guidelines, and is

consistent with the primary results of the RIFAQUIN study, the results may be overly

extreme. This is supported by the figures showing the proportion of negative culture

results for different patterns of missingness, since patterns which show patients who

are missing most of their results within a visit window (and comparing these to

results observed for other patterns) suggest that it is most likely they would have had

a high proportion of having negative culture results if they were actually observed.

Following two-fold FCS multiple imputation, including all patients within the

analysis was consistent with the primary results found by the study. For both

treatment regimens, the analyses from the two-fold FCS suggest the results are not as

extreme as those found from the primary analyses, although there is not a huge gain

in information when using this method.
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3.12 Summary

In this chapter, we applied different imputation methods to the REMoxTB and

RIFAQUIN datasets. Doing so resulted in a “completed” dataset for each study,

including more patient information. This enabled us to impute each patient’s sputum

culture result as a treatment failure or as reaching stable negative culture conversion.

It is clear from both these studies, that the complete case analysis creates extreme

confidence intervals. This is due to excluding patients, and therefore information that

clearly contributes to the primary outcome, who are missing a culture result from at

least one of their follow-up visits from the analysis. Even though the complete case

failed to demonstrate non-inferiority, which is broadly consistent with the primary

analysis, the resulting confidence intervals are misleading are they are more extreme

compared to the primary analysis.

The best case and worst case scenario analyses provide a threshold for the very best

and worst circumstances, however, the results are extreme. These analyses

demonstrate a need for better methods to deal with missing data rather than using

implausible assumptions about the missing observations.

Using standard multiple imputation on both datasets to impute missing observations

at all follow-up visits was problematic due to issues with perfect prediction. This is

perhaps not surprising for TB trials, where patients are unlikely to be cured in the first

few weeks of treatment and therefore most (if not all) patients have a positive culture

result. This causes problems when trying to impute the data computationally as the

perfect prediction leads to infinite regression parameters81. Therefore, we proceeded

with an alternative imputation method; two-fold fully conditional specification

multiple imputation. This method takes each follow-up visit in turn, imputing results

based on observations either side of that visit and propagating that information

forwards for future imputations. The results from the two-fold FCS multiple

imputation were similar to results from the primary analysis in both studies, but

showed a lack of benefit using this method. By using a smaller window of observed

visits that surround the visit we wish to impute culture results for may have inflated

the confidence intervals slightly. More investigation is required to ensure whether the
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two-fold fully conditional specification multiple imputation model used here is

satisfactory to impute missing observations, and consequently determine the primary

analysis.

The missing data patterns explored for the REMoxTB study and RIFAQUIN study

suggest that even if patients were missing culture results over the duration of

follow-up, the probability of having a negative culture is likely to be much higher

than 0 if a patient was actually observed. For sensitivity analyses, regulators

recommend using a worst case scenario where patients who are lost to follow-up and

therefore missing observations are considered “unfavourable”. This assumption

means it is assumed that the probability of missing patients having a negative culture

result is 0. However, the figures presented in this chapter that show different missing

data patterns by treatment arm suggest that this recommended sensitivity analysis is

overly conservative. It is most likely that the probability for having a negative result if

missing is similar to other patients who were actually observed at that missing visit

and is therefore greater than 0.

The figures plotted in this chapter for the REMoxTB and RIFAQUIN studies showed

that missing data patterns across visits were similar between the treatment arms. The

figures generally showed that within each visit window the proportion of negative

culture results were similar for each pattern. Therefore, the MAR assumption is a

reasonable primary assumption for the REMoxTB and RIFAQUIN studies since there

appears to be no particular reason why the probability that patients’ observed culture

results towards the end of the study given what they were at the beginning of the

study is different from other patients within treatment arms.

Next we explore using inverse probability weighting (IPW) as an alternative analysis

to handle missing data in REMoxTB. The data are kept within visit windows as the

long sequence of data leads to issues with perfect prediction. That is that the fitted

probabilities are very close to 1 at the start of follow up as most patients have a

positive result or 0 towards the end of follow up where most patients become disease

free and have a negative culture result. IPW is arguably a simpler method than

multiple imputation which up-weights those with a higher probability of being
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missing relative to those who have a lower probability of being missing. IPW is

conceptually simpler as the method is marginal and so does not condition on previous

observations in a dataset like multiple imputation does82. IPW assumes data follow a

monotone missing pattern where patients who withdraw from a study are never

observed again at future visits. Given that data from the REMoxTB study does not

follow this pattern, a monotone pattern is imposed. Next, multiple imputation is

investigated where the missingness pattern is non-monotone. Generalised estimating

equations (GEEs) are used with IPW, providing an alternative to maximum likelihood

based methods applied and discussed here in this chapter.

Since the visits are grouped into blocks of visits, another analysis is to count the

number of negative culture results within each visit window. This is investigated

using a multilevel mixed-effects Poisson regression model to analyse the number of

negative culture results within each of the four visit windows. These analyses are then

repeated for the RIFAQUIN study.
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Chapter 4

Inverse probability weighting

In this Chapter, we explore a different analysis using inverse probability weighting

(IPW), assuming MAR, to try and correct for the missing data. In the context for

longitudinal data, this means that the probability of a missing response is independent

of its current and future responses conditional on the observed past responses and

covariates83. This is a reasonable assumption as described in §3.8.3. Each observation

is weighted by the conditional probability of that observation being observed:

P(seen at T) =
T∏
t=1

P(rk,t = 1|Xk,t−1, Yk)−1 (4.1)

where rk,t = 1 if the outcome, yk,t is observed and 0 otherwise for each patient k at

time t,...,T. This is the probability of being observed at time t given a patient was

observed at the previous time point, t− 1.

IPW can be used provided that data follow a monotone missing pattern84. In

longitudinal analyses, a monotone pattern describes the pattern of missingness for

patients within a study as those who are missing an observation at a visit and at all

future visits and/or patients who complete the study with all visits observed. An

example of this would be patients who are lost to follow up where patients would

never be re-observed at future visits.

For the studies investigated here, the data are kept within visit windows. Given the

issues of perfect prediction in Chapter 3 when trying to multiply impute the missing

observations across all visit windows, the data are kept within our clinically
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meaningful visit windows to ensure that the weights are more stable within each

window. Doing so will allow for a simpler approach to analyse these studies.

Before applying IPW to the REMoxTB study, we investigate any possible predictors of

failure on the primary outcome and from patient withdrawal. Any predictors will

then be included within the weights for the IPW model. We then explore Generalised

Estimating Equation (GEE) models with and without weighting, imposing a

monotone missingness pattern to our data before exploring a Poisson regression

model as an alternative analysis.

4.1 Predictions of outcome failure and withdrawals for the

REMoxTB study

First, to better represent the population sample within the REMoxTB study, we

investigate different predictors for outcome failure in addition to withdrawal to

account for the fact that outcome failure is dependent on being observed. Variables

that are predictive of both outcome failure and withdrawal will be included within the

weighting. If weights are included from variables which are only predictive of

withdrawal and not related to the effect of the treatment (i.e. the chance of outcome

failure), then using inverse probability weighting will be ineffective because patient

probability weights that increase or decrease are independent of whether or not a

patient is going to fail treatment or not. However, if important predictors of both

withdrawal and outcome failure are found, then using inverse probability weighting

and including those variables could improve the weighting and impact the results

compared to when no weighting is used. Therefore including predictors from both

outcome failure and withdrawal will account for the fact that the proportion of

patients who withdraw from a study may influence the overall outcome by the end of

the study.

By the definition of the primary outcome, patients who are missing culture results

towards the end of the study are classed as “unfavourable”. Each patient is classed as

a “success” or “failure” within each visit window. Outcome failure was defined as

follows:
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• Patients who were never “successful” (i.e. never achieved two consecutive

negative culture results at separate visits);

• Patients who had more than two positive culture results and did not culture

convert back to a stable negative status during the treatment phase (weeks 0 to

26).

Patients who had a positive culture result followed by a negative culture result and

preceded by at least two consecutive negative culture results when last seen were

classed as treatment success. This definition is amended slightly to that of the primary

outcome where patients whose last positive result was not followed by at least two

negative results when last seen were considered as “unfavourable”. For analyses in

this chapter, we only look at results collected at the time of scheduled follow-up. All

unscheduled results are ignored since not all patients have an unscheduled result and

the number of unscheduled results vary from patient to patient. This enables the

results to be more comparable within visit windows.

Reasons for withdrawing permanently from follow up included:

• Patients who did not reach the end of the treatment phase (week 26);

• Patients who died (either due to non-violent death or due to TB/respiratory

distress);

• Patients who withdrew from the study due to pregnancy;

• Patients who moved away or withdrew consent.

Logistic regression models were used to identify variables that predicted outcome

failure and withdrawals. Baseline covariates included in the model were time to

positivity, weight band (≤40kg, 40-45kg, ≥45-55kg or ≥55kg-≥75kg), age (years),

x-ray cavitation (yes or no), smoking status (never, past or present), race (Asian, black,

mixed race or other), HIV (positive or negative), sex (male or female) and grouped

centre (Stellenbosch, Cape Town, Other South African centre, India,

Kenya/Zambia/Tanzania or Other (East Asia)). Other covariates included were

production of sputum samples taken from patients (yes or no) and time to not

producing sputum. Patients were classed as not being able to produce sputum if they
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had at least one occurrence of not being able to produce a sputum sample at any time

over their follow-up. Time to not producing sputum was taken from the time of

randomisation until the first occurrence of not being able to produce sputum. For

patients who were able to produce sputum, without any occurrence of not being able

to produce sputum, time was taken until they were last observed in the study.

Patients who had not produced sputum and were lost to follow-up were assumed to

have not produced sputum, and their time to not producing sputum was taken up to

the point they were last observed. The Nelson-Aalen estimate of time to not

producing sputum was taken. The Nelson-Aalen estimate is a cumulative hazard

function (Ĥ(t)) which is used to predict how censored patients evolve over the

remaining duration of a study. This estimate looks at time from being able to produce

sputum to no longer being able to produce sputum. The estimate is denoted by:

Ĥ(t) =
∑
tk<t

gk
nk
, (4.2)

where gk is the number of events that occur and nk is the total number of patients

included in the analysis for time tk.

Body Mass Index (BMI) was also collected at baseline but was not included within the

model due to strong correlation with weight. Covariates were removed from the

regression model using the backward stepwise technique, using a 5% level of

significance.

A total of 212 (12%) patients were classed as failures and a total of 98 (5%) patients

withdrew from the study. Table 4.1 and Table 4.2 show estimates from our final model

of covariates that could be included in our weights model for IPW. These models

show predictions of outcome failure and predictions of withdrawals. Unadjusted and

adjusted results from all covariates included in the models are shown in Appendix D.
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Table 4.1: Final model showing adjusted odds ratios (OR)

and confidence intervals (CI) for predicting outcome failure

for REMoxTB.

Covariate Adjusted OR1 95% CI P-value

Treatment

Isoniazid 1.800 (1.279, 2.532) 0.001

Ethambutol 1.970 (1.403, 2.766) 0.000

Centre2

Cape Town 0.853 (0.521, 1.398) 0.529

Other South Africa 0.394 (0.811, 2.433) 0.226

India 3.134 (1.982, 4.957) 0.000

Kenya/Zambia/Tanzania 1.445 (0.911, 2.293) 0.118

Other East Asia 1.099 (0.642,1.882) 0.732

Sex

Female 0.674 (0.480, 0.947) 0.023

Smoking status3

Past 1.948 (1.355, 2.801) <0.001

Current 1.912 (1.287, 2.840) 0.001

Sputum produced

No 0.231 (0.150, 0.358) <0.001
Time to not producing

sputum (weeks)
0.082 (0.037, 0.181) <0.001

1Adjusted for all other covariates in the model.

2Likelihood-ratio test for centre P< 0.001.

3Likelihood-ratio test for smoking status P= 0.001.
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Table 4.2: Final model showing adjusted odds ratios (OR)

and confidence intervals (CI) for variables predictive of

withdrawals for REMoxTB.

Covariate Adjusted OR 95% CI P-value

Sputum produced

No 0.018 (0.007, 0.042) <0.001
Time to not producing

sputum (years)
0.0004 (0.0001, 0.002) <0.001

Predictions of failure include treatment, centre, sex, smoking status, inability to

produce sputum and time to not producing sputum and for withdrawals inability to

produce sputum and time to not producing sputum were predictors (Table 4.2). We

can see that treatment, smoking status and most centres all increase the chance of

outcome failure. Interestingly, being female was associated with a reduction of around

33% in outcome failure (OR: 0.67; 95% CI: 0.48 to 0.95) which is similar to what

Phillips et al found where being male was predictive of an unfavourable outcome85.

Patients randomised in Cape Town had less chance of failing treatment compared to

patients randomised in Stellenbosch. Not being able to produce sputum reduces the

chance of outcome failure by around 98% (OR: 0.018; 95% CI: 0.007 to 0.042). A shorter

time to not producing sputum is associated with a decrease in the chance of

withdrawing by 99.96% (OR:0.0004; 95% CI: 0.01 to 0.04).

4.2 Discussion

In this section we investigated predictors of outcome failure and loss to follow-up.

Predictions of outcome failure were treatment, centre, sex, smoking status, inability to

produce sputum and time to not producing sputum. For withdrawal, not producing

sputum and time to not producing sputum were predictors. Having investigated

important predictions for outcome failure and withdrawals, we need to include

covariates that predict both outcome failure and withdrawal since outcome failure is

dependent on withdrawal. Therefore, inability to produce sputum and the

Nelson-Aalen estimate for time to not producing sputum will be included as weights

in our IPW model. We now investigate using IPW for the REMoxTB data. First, we
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impose a monotone missing data pattern and then investigate Generalised Estimating

Equations (GEEs) without weights and then with IPW. We then use multiple

imputation, without imposing a monotone pattern to the data.

4.3 Application of inverse probability weighting to the

REMoxTB study

For the REMoxTB study we use IPW (see Chapter 4) to calculate the probability of a

patient being observed within each visit window, and then weight each observation in

the analysis by the inverse of that conditional probability. This method could

potentially improve the efficiency of the estimates since the method allows us to

include the missing observations in the analysis. The REMoxTB study actually follows

a non-monotone missing data pattern where patients are missing visits but are

observed at future visits. To explore IPW, we first need to impose a monotone missing

pattern. Patients were classed as a success (i.e. achieving two consecutive negative

culture results) or a failure within each visit window (see §3.8.2), thus creating binary

observations within each visit window. Patients were assumed to be missing future

visits from the first point of withdrawal, even if patients were subsequently

re-observed at future visits. In instances where there were two consecutive negative

culture results in different visit windows, patients were classed as a success at the

point of achieving culture negative status. For example, patients who have their first

negative result at week 4 and a negative result at week 5 would be classed

“successful” between weeks 0 to 4.

Table 4.3 shows the proportion of patients in each treatment arm in each visit window.

At weeks 5 to 8, the proportion of patients who are successful in the ethambutol arm

is 75.4% and is slightly lower in the control arm (402 (68.1%)). A total of 92 (15.6%)

patients are missing culture results in the control arm. A total of 82 (13.5%) and 73

(12.5%) patients are missing in the isoniazid and ethambutol treatment arms

respectively between 5 to 8 weeks. These differences settle towards the end of

treatment by week 78 with the control and ethambutol regimens achieving around a

69% proportion of success. The proportion of success is slightly lower for the isoniazid

regimen at around 66%. The proportion of patients who are missing between weeks 39
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to 78 are similar between treatment arms, ranging between 26% to 29%, but the

proportion of failure is over twice as high in the two treatment regimens than in the

control regimen (over 4% vs. 1.86%). Although, it is important to note that there are a

small proportion of patients within these groups.

Table 4.3: Proportion of patients considered to be a

“success”, “failure” or “missing” imposing a monotone

missingness pattern in REMoxTB.

Visit Outcome Control Isoniazid Ethambutol

Success 171 (28.98%) 191 (31.36%) 185 (31.57%)

Week 0 to 4 Fail 381 (64.58%) 375 (61.58%) 364 (62.12%)

Missing 38 (6.44%) 43 (7.06%) 37 (6.31%)

Success 402 (68.14%) 452 (74.22%) 442 (75.43%)

Week 5 to 8 Fail 96 (16.27%) 75 (12.32%) 71 (12.12%)

Missing 92 (15.59%) 82 (13.46%) 73 (12.46%)

Success 456 (77.29%) 466 (76.52%) 462 (78.84%)

Week 12 to 26 Fail 7 (1.19%) 17 (2.79%) 22 (3.75%)

Missing 127 (21.53%) 126 (20.69%) 102 (17.41%)

Success 410 (69.49%) 404 (66.34%) 407 (69.45%)

Week 39 to 78 Fail 11 (1.86%) 24 (3.94%) 25 (4.27%)

Missing 169 (28.64%) 181 (29.72%) 154 (26.28%)

Table 4.4 shows the proportion of patients who have negative culture results over time

within each treatment according to their monotone pattern. Patients who are observed

are denoted as “O” within the table. The majority of patients are observed across all

visit windows (over 70%) for all treatment arms.
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Table 4.4: Monotone missing data pattern for patients with

negative results in REMoxTB, by treatment arm.

Treatment Week Week Week Week Number of patients1

0 to 4 5 to 8 12 to 26 39 to 78 n(%)

O O O O 421 (71.36%)

O O O . 42 (7.12%)

Control O O . . 35 (5.93%)

(N = 590) O . . . 54 (9.15%)

. . . . 38 (6.44%)

O O O O 428 (70.28%)

O O O . 55 (9.03%)

Isoniazid O O . . 44 (7.22%)

(N = 609) O . . . 39 (6.40%)

. . . . 43 (7.06%)

O O O O 432 (73.72%)

O O O . 52 (8.87%)

Ethambutol O O . . 29 (4.95%)

(N = 586) O . . . 36 (6.14%)

. . . . 37 (6.31%)

1at the end of the study.

Figures 4.1 to 4.3 show similar trends of negative culture results within each monotone

missing pattern for the control and ethambutol regimens, although the proportion of

negative culture results are slightly lower in the ethambutol regimen for those observed

between weeks 12 to 26. In the isoniazid regimen, the proportion of patients with

negative culture results for patients that are missing at week 12 to 26 and week 39 to

78 is slightly lower at around 62% compared with the control and ethambutol regimen

which has around 70% negative culture result, and is slightly higher for patients who

are fully observed or are fully observed until the final visit window.
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Figure 4.1: Proportion of negative culture results in control regimen imposing a

monotone missing pattern for REMoxTB.
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Figure 4.2: Proportion of negative culture results in isoniazid regimen imposing a

monotone missing pattern for REMoxTB.
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Figure 4.3: Proportion of negative culture results in ethambutol regimen imposing a

monotone missing pattern for REMoxTB.
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4.3.1 Discussion

Having imposed a monotone pattern on the REMoxTB data, failure decreases over

time but the amount of missing data increases. The proportion of negative culture

results within each monotone missing pattern are similar between treatment arms.

Next, generalised estimating equations (GEEs) are used to provide a flexible approach

for modelling the average population using the observed data from the REMoxTB

study, keeping patients classed as “success” or “failure” within each visit window.

First, patients are only included if observed at all four visit windows and then all

patients with an observed outcome over visit windows are included in the analysis.

Secondly, inverse probability weighting is investigated within the GEE models

including baseline covariates that were predictive of both outcome failure and

withdrawal while imposing a monotone pattern to the data. In this model, we

estimate the probability of patients being observed or withdrawing at each visit

window given that they were observed at the previous visit window, and this

probability will be incorporated into the IPW GEE analysis. We then use multiple
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imputation without imposing a monotone pattern to the data. Doing so reflects the

true structure of the data and so we investigate whether imposing a monotone pattern

to the data has major implications in the results of these analyses.

4.4 Generalised Estimating Equations

Generalised estimating equations (GEEs) provide an alternative to maximum

likelihood based methods, which model the population-average (or marginal) effect of

covariates. GEE models are more flexible as they do not assume a particular type of

distribution for repeated outcomes observed over time. Instead, the method links each

marginal mean to a linear predictor and provides a working assumption about the

correlation for the variance-covariance structure of the repeated outcomes observed

over time. The sandwich estimator of the variance can be used so that even if the

working assumption is misspecified, then the standard errors are still reasonably

estimated provided there is enough data.

In relation to our two example trial datasets, the GEE model extends the logistic

regression model (see equation 3.5) and is denoted by:

log
(

πk,t
1−πk,t

)
= log

(
p(failk,t=1)

1−p(failk,t=1)

)
= β0 + β1trtk + β2timek,t + β3trtktimek,t (4.3)

for patient k at time t. The correlation structure needs to be specified in the model to

account for the correlated observations for repeated outcome measurements. We

specify independent and unstructured working correlation matrices which makes

different assumptions about the relationship between the repeated observations. See

Appendix E for other correlation matrices.

1. Independence which assumes repeated observations are independent.

Rk,t =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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2. Unstructured which assumes the correlation structure cannot be appropriately

modelled and each correlation must be estimated.

Rk,t(ρ) =


1 ρ21 ρ31 ρ41

ρ21 1 ρ32 ρ42

ρ31 ρ32 1 ρ43

ρ41 ρ42 ρ43 1


If the missing data are MCAR (§3.3), and if the working correlation is incorrectly

specified the resulting estimates remain consistent provided the marginal model is

correct, although there will be some loss in efficiency reflected in the larger standard

errors. In this case independence is often assumed and the sandwich estimator of the

variance is assumed. Otherwise, we could assume a simple structure such as first

order autoregression (see Appendix E) and use the sandwich estimator of the

variance. However, if there is missing data then the choice of the variance-covariance

matrix is no longer a nuisance parameter and is therefore no longer something where

if incorrect the correct inferences will be drawn from the data asymptotically. When

patients withdraw from a study, the way information on those patients from their

initial visits flows through to the treatment estimates is critically dependent on the

variance-covariance matrix. The variance-covariance matrix becomes important and is

no longer a nuisance parameter. If the sandwich estimator is incorrect, then the wrong

inferences will be drawn from the data even asymptotically due to patient

withdrawal. We therefore try to use IPW in addition to the GEEs to take into account

the missing data86.

4.4.1 Calculation for risk differences

For comparison to the original results reported in the studies we explore here we

convert the odds ratios estimated by the GEE models (4.3) and calculate them as risk

differences. To convert the odds ratios into risks, the inverse of the log odds ratio is

calculated as follows:

RD =

[
eβ0+β1trt

1 + eβ0+β1trt
− eβ0

1 + eβ0

]
(4.4)

where β0 represents the log odds of treatment failure for patients randomised to the

control regimen and β1 is the difference in the log odds of treatment failure comparing

treatment trt (where trt=isoniazid or ethambutol for REMoxTB and trt=4m regimen

or 6m regimen for RIFAQUIN) to the control regimen.
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4.4.2 Application to REMoxTB

For the REMoxTB study, visits were kept in visit windows (see §3.8.2) and analyses

were performed within each visit window to investigate the difference between the

treatment regimens and standard of care over time to focus on the trend of treatment

failure over 78 weeks of follow-up, and this was done for all subsequent analyses.

Patients are excluded for reasons not related to treatment (Table 3.1). Treatment effects

are estimated only from patients who had, by definition (§3.8.2), completed results

from randomisation to week 78. GEE models are then used without including weights

using all the information from all patients from randomisation to week 78. An

unstructured variance-covariance matrix is used as it assumes no two pairs of

observations are equally correlated and also allows for different variance terms along

the diagonal of the matrix87. Finally IPW is used to include observed weights within

the GEE model. GEE models were fitted using a binomial distribution and a logit link

and were back-transformed into risk differences (see §4.4.1) to compare these results

with the results from the REMoxTB study. Results from all analyses were compared to

a 6% non-inferiority margin to assess how the effect of treatment changes over time.

Results

For all GEE analyses performed, a total of 118/1785 (6.6%) patients had no

observations at any of the four visit windows and were therefore excluded from all

analyses.

The GEE model that included patients who were observed at all visit windows (i.e.

completers) is shown in Table 4.5. The risk differences are presented for treatment

failure and relapse by treatment arm at each visit window from the GEE model

assuming an unstructured variance-covariance matrix. This analysis includes

1281/1667 (77%) patients. Non-inferiority is met between weeks 5 to 8 and weeks 12

to 26 and can be concluded for patients randomised to the ethambutol arm between

weeks 0 to 4 since the upper bound of the 97.5% CI is 4.8%. In the final visit window

non-inferiority cannot be concluded since the upper bound of the 97.5% CI just lies

above the 6% pre-determined non-inferiority margin.
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Table 4.5: GEE model for a difference in proportions

of treatment failure including “completers” assuming an

unstructured variance-covariance matrix, by treatment arm

for REMoxTB.

Risk difference SE 97.5% CI

Week 0 to 4

Isoniazid -0.007 0.032 (-0.078, 0.065)

Ethambutol -0.024 0.032 (-0.096, 0.048)

Week 5 to 8

Isoniazid -0.036 0.025 (-0.091, 0.020)

Ethambutol -0.044 0.025 (-0.099, 0.011)

Week 12 to 26

Isoniazid 0.011 0.009 (-0.009, 0.032)

Ethambutol 0.018 0.010 (-0.004, 0.040)

Week 39 to 78

Isoniazid 0.030 0.014 (-0.0004, 0.060)

Ethambutol 0.032 0.014 (0.001, 0.062)

Table 4.6 presents the results from using a GEE model that includes all patients who

had at least one outcome during follow up. Table 4.6 shows the risk difference of

treatment effects from the control regimen for failure, that is patients who did not

reach culture negative status (§4.1), at each visit window from the GEE model

assuming an unstructured variance-covariance matrix. The results from this analysis

draw similar conclusions to the GEE analysis which included patients observed across

all four visit windows (Table 4.5). That is, at the 6% margin, non-inferiority could be

concluded between weeks 0 to 4 on the ethambutol regimen, weeks 5 to 8 for both

treatments and non-inferiority failed to be demonstrated in the final visit window

(weeks 39 to 78). The association between outcome failure and treatment arm when all

patients are included in the analysis, decreases between weeks 5 to 8 and then

increases until the end of the study. Between weeks 12 to 26, the upper bound of the

97.5% confidence intervals tend more towards failing to demonstrate non-inferiority

(4.3% for isoniazid and 5.5% for ethambutol) compared to 3.2% for isoniazid and 4.0%

for ethambutol when patients are fully observed in all four visit windows (Table 4.5).
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Table 4.6: GEE model for a difference in proportions

of treatment failure including all patients in the analysis

assuming unstructured variance-covariance matrix, by

treatment arm for REMoxTB.

Risk difference Robust SE’s 97.5% CI

Week 0 to 4

Isoniazid -0.028 0.028 (-0.090, 0.035)

Ethambutol -0.027 0.028 (-0.090, 0.036)

Week 5 to 8

Isoniazid -0.050 0.023 (-0.103, 0.018)

Ethambutol -0.054 0.023 (-0.107, -0.002)

Week 12 to 26

Isoniazid 0.020 0.010 (-0.003, 0.043)

Ethambutol 0.030 0.011 (0.006, 0.055)

Week 39 to 78

Isoniazid 0.030 0.014 (-0.0005, 0.060)

Ethambutol 0.032 0.014 (0.001, 0.062)

Having looked at the differences between treatment arms within each window, we are

able to see whether demonstrating or failing to demonstrate non-inferiority changes

over the course of follow-up. The results show that at earlier follow up visits, patients

randomised to either the isoniazid or ethambutol treatment arms are associated with

fewer failures in comparison to the standard of care arm. This changes, after week 8,

where patients who were randomised to either the isoniazid or ethambutol treatment

arm were associated with an increase in failure over time. The results up to week 26

demonstrate non-inferiority when compared to a 6% non-inferiority margin, however

there is a large decrease in the upper bound of the resulting CI between week 12 - 26

from the previous visit window (week 5 to 8) on both treatment regimens. By week 39

to 78, patients randomised to the isoniazid regimen are associated with higher failures

(3%: 97.5% CI; -0.05% to 6%) and similarly for patients randomised to the ethambutol

regimen (3.2%: 97.5% CI; 0.1% to 6.2%). Non-inferiority cannot be concluded as the

upper bounds of the two-sided 97.5% CIs are only just greater than the 6%

non-inferiority margin between weeks 39 to 78.
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4.4.3 Discussion

The results from the GEE model that includes patients who were observed in all four

visit windows (i.e. “completers”) and the results where all patients were included

irrespective of completeness were very similar. However, when concluding

non-inferiority the results from the GEE model only including patients who were

observed at all visits fluctuated between concluding and failing to conclude

non-inferiority at the 6% margin at that time point. Assuming an unstructured

variance-covariance matrix can create more noise surrounding the parameter

estimates or may not even be able to provide sensible estimates for our data, however

the results are consistent with the conclusions made from the study.

Next, we add in weights to the GEE model to better represent the patients included in

the REMoxTB study.

4.5 Weighted Generalised Estimating Equations

Weights are included in the GEE model using inverse probability weights. As

explained in §4.3, IPW weights complete records by the inverse probability of

observing the data. We assign patients different weights at each visit rather than at

patient level across all visits, and the probabilities are calculated for the weights based

on predictions of failure and loss to follow up found in §4.1. These covariates are

included in the model so that patients with similar characteristics are weighted

according to this. Including the covariates assumes the observations and therefore the

correlation between any repeated measurements at each time point are independent

of each other. Given this assumption of independence when weights from covariates

are included, an independent structure sandwich estimator of the variance also needs

to be specified to reflect this. Consider the following marginal mean model for the

REMoxTB study:

log
(

πk,t
1−πk,t

)
= β0 + β1trtk + β2weekk,t + β3trtkweekk,t

for patient k. Visit windows 0 to 4 weeks, 5 to 8 weeks, 12 to 26 weeks and 39 to 78

weeks are represented as 1-4 for each window, t. To obtain weights for this model
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consider the following logistic regression model for patients who are missing culture

results:

logit(yk,t−1) = γ + γ1rk,t−1 + γ2treatk,iso + γ3trtk,eth + γ4nosputumk,t−1 + γ5timenosputumk,t−1

where yk,t−1 represents the observed response (i.e. success or failure) at the previous

visit window t-1 for each patient k; where if patients are observed on the control arm

then treatk,iso=0 and treatk,eth=0, if patients are observed on the isoniazid arm then

treatk,iso=1 and treatk,eth=0 and if patients are observed on the ethambutol arm then

treatk,iso=0 and treatk,eth=1 for each patient k; nosputumk,t−1 represents the observed

response of not being able to produce sputum at the previous visit window t-1 for

each patient k and timenosputumk,t−1 is the Nelson Aalen estimate for time to not

producing a sputum result at the previous visit window t-1 for each patient k.

We only include covariates that were significant from both loss to follow up and

outcome failure to take into account patients who fail treatment. That is not producing

sputum and time to not producing sputum. Even though treatment was not a

significant predictor for patients who withdrew (§4.1), it is an important covariate and

we therefore keep this in the model. Predictions were obtained from the marginal

model at weeks 5 to 8 (pr8), 12 to 26 (pr26) and 39 to 78 (pr78). Observation weights

were calculated as follows:

1. Weeks 0 to 4: all patients are observed and therefore the weight equals to 1 for all

patients included in the analysis,

2. Weeks 5 to 8: 1/pr8 where pr8 is the probability of being observed between weeks

5 to 8 given patients were observed between weeks 0 to 4,

3. Weeks 12 to 26: 1/(pr8*pr26) where pr8*pr26 is the probability of being observed

between weeks 12 to 26 given patients were observed between weeks 0 to 4 and

5 to 8,

4. Weeks 39 to 78: 1/(pr8*pr26*pr78) where pr8*pr26*pr78 is the probability of being

observed between weeks 39 to 78 given patients were observed between weeks 0

to 4, 5 to 8 and 12 to 26.

An independent variance-covariance matrix is used since the weights created for the

observations within the dataset assume independence. Figures 4.4 to 4.6 summarises
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the probability weights calculated, by treatment arm and by outcome

(success/failure) at each week. The probability weights calculated for patients who

are classed as success are consistent across the visit windows at around 0.9. However,

for patients classed as failures, the probability weights between week 39 to 78 are

much lower at around 0.7 in comparison to failures in other weeks which have

weights at around 0.9. This is expected since there are mostly successes towards the

end of the study between weeks 39 to 78.

Figure 4.4: Histogram of probability weights between weeks 5 to 8 given weeks 0 to 4

for REMoxTB.
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Figure 4.5: Histogram of probability weights between weeks 12 to 26 given weeks 0 to

4 and weeks 5 to 8 for REMoxTB.
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Figure 4.6: Histogram of probability weights at week 39 to 78 given week 0 to 4, week

5 to 8 and week 12 to 26 for REMoxTB.
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Table 4.7 shows the results from the GEE model including observed weights

calculated by using predicted probabilities from the logistic regression model. The

results from this model and conclusions made about non-inferiority are similar to the

GEE model when including all patients in the analysis without weights;

non-inferiority can be concluded at the 6% margin up to week 26 but non-inferiority

can no longer be concluded between week 39 to 78. Looking at the upper bound of the

97.5% confidence intervals, results from weeks 39 to 78 show that we are less likely to

conclude non-inferiority (6.6% for isoniazid and 6.8% for ethambutol) compared to

the GEE model including all patients without including weights (6.0% for isoniazid

and 6.2% for ethambutol; Table 4.6).

Table 4.7: GEE model for a difference in proportions

using estimated weights from data observed assuming an

independent variance-covariance matrix, by treatment arm

for REMoxTB.

Risk difference SE 97.5% CI

Week 0 to 4

Isoniazid -0.028 0.028 (-0.090, 0.035)

Ethambutol -0.027 0.028 (-0.090, 0.036)

Week 5 to 8

Isoniazid -0.050 0.023 (-0.103, 0.002)

Ethambutol -0.055 0.023 (-0.107, -0.003)

Week 12 to 26

Isoniazid 0.020 0.010 (-0.002, 0.043)

Ethambutol 0.031 0.011 (0.006, 0.056)

Week 39 to 78

Isoniazid 0.033 0.015 (-0.0001, 0.066)

Ethambutol 0.035 0.015 (0.002, 0.068)

4.5.1 Discussion

Having investigated using GEE models we have demonstrated that inclusion of

patients who have complete observations, that is patients who are observed at every
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single visit, rather than including patients who are observed at least once over the

follow-up of the study can lead to different conclusions. This is perhaps unsurprising

since excluding patients who have information contributing to an analysis will always

result in loss of information reflected in the wider confidence intervals. As a

consequence of the greater uncertainty, the ability to conclude non-inferiority

decreases since the wider confidence intervals are more likely to include the value of

the pre-determined margin. The observed weights that included weighting on

sputum production and the Nelson-Aalen estimate for time to not producing sputum

which predicted outcome failure and withdrawals were added into the GEE model

along with treatment. The results from this model are consistent with results from the

GEE model including all patients in the analysis without weights and are consistent

with conclusions made with regards to non-inferiority with a 6% margin.

Next multiple imputation is investigated keeping the data monotone to check the

results with the GEE models performed in this section. Data from the REMoxTB study

follow a non-monotone pattern and so multiple imputation imposing a non-monotone

missingness pattern will also be performed.

4.6 Multiple Imputation for monotonic and non-monotonic

missing patterns

Multiple imputation is used to confirm the results produced from the GEE models used

above in §4.4 to §4.5. To do this we keep the data in a monotone pattern. We then revert

back to the original structure of the data and investigate whether there is any gain of

information by using multiple imputation for a non-monotone pattern where follow-

up visits are kept within windows.

4.6.1 Monotone pattern

To check on the validity of the results from the GEE model, data were imputed by

treatment arm keeping the pattern of missing data monotone within visit windows

using multiple imputation. Data were imputed using logistic regression and 100

imputations were used. As presented for the original study, risk differences for

treatment failure between the treatment and control regimens were calculated using a
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generalised linear model with an identity link for treatment failure. The results

following imputation are shown in Table 4.8 and are similar to the GEE model that

includes all patients who had at least one observed outcome with and without

weighting (Table 4.6 and 4.7).

Table 4.8: Difference in proportions for treatment failure

following multiple imputation, by treatment arm for

REMoxTB.

Risk difference SE 97.5% CI

Week 0 to 4

Isoniazid -0.028 0.028 (-0.090, 0.035)

Ethambutol -0.027 0.028 (-0.090, 0.036)

Week 5 to 8

Isoniazid -0.055 0.023 (-0.106, -0.003)

Ethambutol -0.056 0.023 (-0.109, -0.004)

Week 12 to 26

Isoniazid 0.020 0.010 (-0.003, 0.043)

Ethambutol 0.030 0.011 (0.005, 0.055)

Week 39 to 78

Isoniazid 0.031 0.015 (-0.002, 0.064)

Ethambutol 0.035 0.015 (0.002, 0.069)

Figure 4.7 shows imputed results of positive culture results for each monotone

missing pattern from the imputation model. The average number of positive culture

results imputed were calculated by treatment arm and missingness pattern for each of

the 100 imputed datasets created. Figure 4.7 shows the imputation model has imputed

sensible results in each treatment arm for each missingness pattern since the imputed

values are closely fitted to the observed values, and there are no outliers.
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Figure 4.7: Imputed results of mean positive cultures where a monotone pattern is

imposed for REMoxTB.
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Data used for these models had a monotone missingness pattern imposed whereas

the data from REMoxTB actually follow a non-monotone missingness pattern. To see

whether there is any more information to be gained, multiple imputation where a non-

monotone missingness pattern is imposed.

4.6.2 Non-monotone pattern

The REMoxTB study follows a non-monotone missing pattern, where patients who are

observed and are missing follow-up visits are then observed again at later visits as

described in §4.3. Table 4.9 shows the proportion of patients in each treatment arm in

each visit window where a non-monotone missing pattern is imposed on the data.

Table 4.9: Proportion of patients with a non-monotone

missingness pattern imposed for REMoxTB.

Visit Outcome Control Isoniazid Ethambutol

Success 171 (28.98%) 191 (31.36%) 185 (31.57%)

Week 0 to 4 Fail 381 (64.58%) 375 (61.58%) 364 (62.12%)
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Missing 38 (6.44%) 43 (7.06%) 37 (6.31%)

Success 414 (70.17%) 460 (75.53%) 452 (77.13%)

Week 5 to 8 Fail 96 (16.27%) 75 (12.32%) 71 (12.12%)

Missing 80 (13.56%) 74 (12.15%) 63 (10.75%)

Success 508 (86.10%) 509 (83.58%) 511 (87.20%)

Week 12 to 26 Fail 11 (1.86%) 18 (2.96%) 23 (3.92%)

Missing 71 (12.03%) 82 (13.46%) 52 (8.87%)

Success 485 (82.20%) 460 (75.53%) 464 (79.18%)

Week 39 to 78 Fail 16 (2.71%) 29 (4.76%) 27 (4.61%)

Missing 89 (15.08%) 120 (19.70%) 95 (16.21%)

The proportion of patients who are successes, failures or missing are similar to the

proportion of patients who are successes, failures or missing following a monotone

pattern up to week 8 (Table 4.3). Between week 12 to 26 and week 39 to 78, there are

more patients who are successful across all treatment regimens when a monotone

missing pattern is not imposed compared to when a monotone missing pattern is

imposed in Table 4.3. Given there are in fact 10% more patients who achieve culture

negative status in the study, the monotone pattern may be producing biased treatment

effects at later visits given that this data has been thrown away, wasting resources.

Table 4.10: Difference in proportions for treatment failure

following multiple imputation where the pattern is non-

monotone, by treatment arm for REMoxTB.

Risk difference SE 97.5% CI

Week 0 to 4

Isoniazid -0.026 0.028 (-0.089, 0.036)

Ethambutol -0.026 0.028 (-0.090, 0.037)

Week 5 to 8

Isoniazid -0.054 0.020 (-0.105, -0.002)

Ethambutol -0.057 0.015 (-0.109, -0.005)

Week 12 to 26

Isoniazid 0.013 0.010 (-0.011, 0.037)

Ethambutol 0.021 0.011 (-0.004, 0.046)
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Week 39 to 78

Isoniazid 0.030 0.014 (-0.001, 0.061)

Ethambutol 0.027 0.014 (-0.004, 0.058)

Figure 4.8: Imputed results for the mean rate of positive culture results following

principal patterns of non-monotone data for REMoxTB.
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Data were imputed by treatment arm using logistic regression and with 100

imputations. Table 4.10 shows the difference in proportions for treatment failure

between treatment and control regimens from imputing the data following a

non-monotone missing pattern. The difference in proportions were calculated using a

general linear regression model with an identity link function in each visit window.

The results show a similar trend to when a monotone missing pattern is imposed,

where the upper bound of the 97.5% confidence intervals are slightly lower in

comparison. Figure 4.8 shows the imputed results of positive culture results for each

monotone missing pattern from the imputation model. The average number positive

culture results imputed were calculated by treatment arm and each non-monotone

missingness pattern for each of the 100 imputed datasets created. We can see that the

imputation model has imputed sensible results in each treatment arm for each

missingness pattern since the imputed values are closely fitted to the observed values,

and there are no outliers.
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4.7 Discussion

The results from keeping a non-monotone missing pattern are broadly similar to the

imputation results when a monotone missing pattern is imposed; the ethambutol

regimen is associated with fewer failures in comparison to the control arm whereas

the isoniazid regimen is associated with slightly higher failures between weeks 0 to 4.

Between weeks 5 to 8 the treatment regimens have a lower associated risk of failure in

comparison to the control arm when not imposing a monotone missing pattern to the

data. However, this effect is reversed by weeks 12 to 26 and further worsens by weeks

39 to 78. Non-inferiority is demonstrated during the treatment phase between weeks 0

to 4, 5 to 8 and 12 to 26 but not during the follow up phase (weeks 39 to 78) which is

consistent with the primary analysis originally performed for REMoxTB. The

confidence intervals from the non-monotone imputation are not as extreme as those

when a monotone missingness pattern is imposed, and seem to work better. A

plausible reason for this is because a non-monotone pattern better reflects the data

than imposing a monotone pattern which removes information. Therefore, the results

from the non-monotone imputation show that there is some useful information when

a non-monotone pattern is followed which needs to be included within the analysis.

We now apply the methods used here for the REMoxTB study to our second dataset,

the RIFAQUIN study. We begin by exploring predictions of outcome failures and

withdrawals before proceeding with our GEE models with and without weights.

Next, we check the results from the weighted GEE model using multiple imputation.

We then use multiple imputation where the data are non-monotone, reflecting the true

nature of the data for the RIFAQUIN study.

4.8 Application to the RIFAQUIN study

The methods used for the REMoxTB study (from §4.1 to 4.6.2) are applied to the

RIFAQUIN study and visits are kept within visit windows for analysis. Results from

all analyses were compared to a 6% non-inferiority margin to assess how the effect of

treatment changes over time. Covariates that predict outcome failure and withdrawals

are included as weights for inverse probability weighting. Marginal GEE models are
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explored as they have more flexibility in their assumptions, imposing a monotone

missingness pattern to the data. Weighted GEE models are also used including IPW,

so that the population sample is more accurately represented of the whole study. We

then confirm the results found in the GEE models using multiple imputation keeping

the pattern of missing data monotone before investigating any gains in information

with a non-monotone structure.

4.9 Predictions of outcome failure and withdrawals

The following tables show predictions for outcome failure and withdrawals.

Unadjusted results are in Appendix F. A backwards stepwise procedure was used and

covariates were excluded at the 5% significance level. Covariates included in the

model were randomised treatment, x-ray cavitations (0, 1 or 2), sex (male or female),

ethnicity (black or other), age (years), HIV (positive or negative), baseline time to

positivity, centre (Johannesburg, Cape Town or other), weight band (≤40kg, 40-45kg,

≥45-55kg or ≥55kg), smoking status (never, past or present), production of sputum

sample taken from patients (yes or no) and the Nelson Aalen estimate of time to not

producing sputum. Patients were censored at the first instance of not being able to

produce a sputum sample.

Treatment, sex, not producing sputum and the Nelson-Aalen estimate of time to not

producing sputum were significant predictors of outcome failure (Table 4.11). Patients

randomised to the 6 month regimen were about 35% less likely to fail treatment (OR:

0.649; 95% CI: 0.362 to 1.162) in comparison to those randomised to the 4 month

regimen who were 58% more likely to fail (Table 4.11). Being female seemed to have a

protective effect against outcome failure (i.e. treatment failure or relapse); female

patients are half as likely to fail treatment and a similar result was also found for the

REMoxTB study. The odds of patients who did not produce sputum at any time

during the study decreased by 76% for outcome failure (OR: 0.024; 95% CI: 0.006 to

0.094). Patients who are unable to produce sputum quicker than those who did not

led to a reduction of association with outcome failure.
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Table 4.11: Final model showing adjusted odds ratios (OR)

and confidence intervals (CI) for predicting outcome failure

for RIFAQUIN.

Covariate Adjusted OR 95% CI P-value

Treatment1

4 month regimen 1.581 (0.938, 2.663) 0.085

6 month regimen 0.649 (0.362, 1.162) 0.146

Sex

Female 0.490 (0.299, 0.804) 0.005

Sputum produced

No 0.024 (0.006, 0.094) <0.001
Time to not producing

sputum (years)
7.61×10−24 (1.26×10−29, 4.61×10−18) <0.001

1Likelihood-ratio test for treatment P< 0.006.

Table 4.12 shows predictors of withdrawing are centre, X-ray cavities, inability to

produce sputum and the Nelson Aalen estimate of time to not producing sputum.

Patients who were randomised to other sites (Harare, Marondera, Zambia and

Botswana) have a 76% reduction in odds of withdrawals (OR: 0.24; 95% CI 0.096 to

0.61) compared to those from Johannesburg. Patients randomised at Cape Town had a

22% reduction in odds of withdrawing from the study (OR: 0.78; 95% CI: 0.356 to

1.208) in comparison to those from Johannesburg (Table 4.12). Those unable to

produce sputum (OR: 0.018) and the less time it took for patients to not be able to

produce sputum, the less chance of them withdrawing from the study.

Table 4.12: Final model showing adjusted odds ratios (OR)

and confidence intervals (CI) predicting withdrawals for

RIFAQUIN.

Covariate Adjusted OR 95% CI P-value

Centre1

Cape Town 0.780 (0.356, 1.708) 0.534

Other 0.242 (0.096, 0.609) 0.003
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X-ray cavities

1 0.917 (0.405, 2.073) 0.835

2 2.171 (0.892, 5.289) 0.088

Sputum produced

No 0.018 (0.003, 0.129) <0.001
Time to not

producing

sputum (years)2
9.216×10−20 (5.52×10−28, 2.100×10−13) <0.001

1Likelihood-ratio test for centre P< 0.002.

2NB: years presented as estimates are small.

Therefore, not being able to produce sputum at any point during the study and the

Nelson-Aalen estimate of time to the first occurrence of not being able to produce

sputum are both important covariates in the RIFAQUIN study and will be included in

our weights for the IPW model. We also include treatment in our weights model as

this is an important covariate. Now, we impose a monotone pattern on the RIFAQUIN

study before exploring GEE models, with and without weights. We then compare the

results from the IPW GEE model to data that does not impose a monotone pattern

using multiple imputation.

4.10 Inverse probability weighting for the RIFAQUIN study

Table 4.13 shows the proportion of patients who were classed as a success, failure or

missing within each visit window across all treatment arms when a monotone missing

pattern is imposed for the RIFAQUIN study. There are slightly more patients missing

in the treatment regimens between months 0-3 and months 4-6 which balances out by

the final visit window.

Table 4.13: Proportion of patients imposing a monotone

missingness pattern in RIFAQUIN.

Outcome Control 4 month regimen 6 month regimen

(N=240) (N=239) (N=251)

Success 219 (91.25%) 214 (89.54%) 223 (88.84%)
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Months 0-3 Fail 11 (4.58%) 15 (6.28%) 14 (5.58%)

Missing 10 (4.17%) 16 (6.69%) 14 (5.58%)

Success 211 (87.92%) 200 (83.68%) 217 (86.45%)

Months 4-6 Fail 4 (1.67%) 4 (1.67%) 0

Missing 25 (10.42%) 35 (14.64%) 34 (13.55%)

Success 194 (80.83%) 178 (74.48%) 199 (79.28%)

Months 7-10 Fail 1 (0.42%) 10 (4.18%) 2 (0.80%)

Missing 45 (18.75%) 51 (21.34%) 50 (19.92%)

Success 167 (69.58%) 167 (69.87%) 181 (72.11%)

Months 11-18 Fail 4 (1.67%) 3 (1.26%) 1 (0.40%)

Missing 69 (28.75%) 69 (28.87%) 69 (27.49%)

Patients are assumed to be missing after the first occurrence of a missing observation

in a visit window. Table 4.14 shows the proportion of patients with negative culture

results within each monotone missing pattern by treatment arm by the end of the

study. There are fewer patients who have completed results on the 4 month regimen

in comparison to the control and 6 month regimen.

Table 4.14: Monotone missing pattern for patients with

negative results in RIFAQUIN, by treatment arm.

Treatment
Months

0-3

Months

4-6

Months

7-10

Months

11-18

Number of

patients1 (n(%))

O O O O 171 (71.25%)

O O O . 24 (10.00%)

Control O O . . 20 (8.33%)

(N=240) O . . . 15 (6.25%)

. . . . 10 (4.17%)

O O O O 170 (71.13%)

O O O . 18 (7.53%)
4 month

regimen
O O . . 16 (6.69%)

(N=239) O . . . 19 (7.95%)
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. . . . 16 (6.69%)

O O O O 182 (72.51%)

O O O . 19 (7.57%)
6 month

regimen
O O . . 16 (6.37%)

(N=251) O . . . 20 (7.97%)

. . . . 14 (5.58%)

1at the end of the study.

Figures 4.9 to 4.11 show the proportion of patients with negative culture results in

each visit window for each monotone missing pattern across treatment arm. The

proportion of patients who are observed have around 90% of negative culture results

after 3-4 months of treatment. Patients on the control regimen who are observed 0 to 3

months and 4 to 6 months and then are subsequently missing have slightly fewer

negative culture results in comparison to others observed within that visit window.

The proportion of negative results are broadly similar across all visit windows for

patients who are observed on treatment arms.

Figure 4.9: Proportion of negative culture results in control regimen imposing a

monotone missing pattern for RIFAQUIN.
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Figure 4.10: Proportion of negative culture results in the 4 month regimen imposing a

monotone missing pattern for RIFAQUIN.
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Figure 4.11: Proportion of negative culture results in the 6 month regimen imposing a

monotone missing pattern for RIFAQUIN.
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Next we explore GEE models, without weights before using IPW to impute the missing

observations for patients in the RIFAQUIN study.
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4.11 Generalised Estimating Equations applied to the

RIFAQUIN study

The results from the Generalised Estimating Equations (GEEs) for the RIFAQUIN

study are presented. We aim for an intention-to-treat type analysis, excluding patients

for reasons not related to treatment (Table 3.7). First, a GEE model for patients

observed within each visit window (i.e. “completers”) was explored, comparing the

upper bound of each confidence interval to a 6% margin. Then we investigate a GEE

model including patients with at least one observation in a visit window. GEEs are

used as an alternative method to multiple imputation and are used to estimate the

population-average effect of randomised treatment to the study.

Table 4.15 shows the results from the GEE model for patients who had an outcome in

each visit window (i.e. “completers”). A difference in proportions between treatment

(6m regimen or 4m regimen) and control for treatment failure (i.e. patients who did

not reach negative culture status) are presented from the GEE model for each visit

window and an unstructured variance-covariance matrix was assumed. Since a

monotone missingness pattern was imposed on the data, patients missing an

observation during the first visit window were subsequently missing at future follow

up visits and therefore were excluded from the analysis. This analysis includes

523/690 patients (76%) who had observations across all visit windows.

Non-inferiority is demonstrated on the 4 month regimens between months 4-6 (1.2%:

95% CI; -1.6% to 4.0%) and all patients on the 6 month regimen were successful (hence

no estimates are available). In the third visit window, non-inferiority is shown on the 6

month regimen between months 7-10, since the upper bound of the 95% confidence

interval is below the 6% non-inferiority margin (5%; 95% CI: -1.4% to 2.4%), but

borderline on the 4 month regimen; 3.5% (95% CI: 0.3% to 6.7%). In the final visit

window, non-inferiority is demonstrated for both regimens (upper bound of the 95%

CI: 2.4% for the 4 month regimen and 0.7% for the 6 month regimen). It is likely that

patients who were failing would have been withdrawn from the study. As a result,

patients who remain in follow-up are likely to be performing well on treatment and

this is what is seen in the final visit window.
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Table 4.15: GEE model for a difference in proportions

of treatment failure for “completers” assuming an

unstructured variance-covariance matrix, by treatment

arm for RIFAQUIN.

Risk difference SE 95% CI

Months 0-3

4 month regimen 0.018 0.022 (-0.026, 0.061)

6 month regimen 0.025 0.023 (-0.019, 0.070)

Months 4-6

4 month regimen 0.012 0.014 (-0.016, 0.040)

6 month regimen1 - - -

Months 7-10

4 month regimen 0.035 0.016 (0.003, 0.067)

6 month regimen 0.005 0.010 (-0.014, 0.024)

Months 11-18

4 month regimen -0.006 0.015 (-0.036, 0.024)

6 month regimen -0.018 0.013 (-0.043, 0.007)

1All patients were “successful”.

Table 4.16 shows the risk difference of the 4 month and 6 month regimens from the

control arm for failure at each visit window from the GEE model assuming an

unstructured variance-covariance structure for all 690 patients. The results from this

analysis are broadly consistent with results from the complete case analysis. However,

for the 6 month regimen non-inferiority can be concluded during the first visit

window between 0-3 months, since the upper bound of the 95% confidence interval

lies below the 6% non-inferiority margin (1.1%; 95% CI: -3.0% to 5.2%). In the third

visit window between 7 and 10 months, the 4 month regimen shows non-inferiority is

less likely to be demonstrated (upper bound of 95% CI: 8.2%) compared to patients

who are observed across all visits are included (Table 4.15; upper bound of 95% CI:

6.7%). This suggests that by excluding patients who are not observed at all visits,

additional information in relation to the primary outcome is also lost.
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Table 4.16: Difference in proportions of treatment

failure including all patients in the analysis assuming

unstructured variance-covariance matrix, by treatment arm

for RIFAQUIN.

Risk difference SE 95% CI

Months 0-3

4 month regimen 0.019 0.022 (-0.024, 0.062)

6 month regimen 0.011 0.021 (-0.030, 0.052)

Months 4-6

4 month regimen 0.001 0.013 (-0.025, 0.027)

6 month regimen1 - - -

Months 7-10

4 month regimen 0.048 0.017 (0.014, 0.082)

6 month regimen 0.005 0.009 (-0.012, 0.022)

Months 11-18

4 month regimen -0.006 0.015 (-0.036, 0.024)

6 month regimen -0.018 0.013 (-0.043, 0.007)

1All patients were “successful”.

4.12 Discussion

In this section, we investigated using GEE models imposing a monotone missingness

pattern to the RIFAQUIN data without including weights in the model. The results

from the GEE model which includes patients observed across all visit windows and

the results from the GEE model that includes patients with at least one observation in

a visit window during follow-up were similar. The results from the analysis which

included patients with at least one observed outcome across visit windows showed

stronger suggestions of not being able to conclude non-inferiority. This was shown by

the upper bounds of the 95% confidence intervals which were larger compared to

those from the completers’ analysis.

Next, we look at including inverse probability weights in the GEE model to account for

the missing data. 173



4.13 Weighted Generalised Estimating Equations applied to

the RIFAQUIN study

Inverse probability weights are included in our GEE model to better represent the

patients randomised to the RIFAQUIN study. Again, patients are excluded for reasons

not related to treatment: late screening failure, drug resistance and no positive culture

results in the first 2 weeks of randomisation (Table 3.7). To obtain weights, treatment,

inability to produce a sputum culture result and the Nelson-Aalen estimate of time to

not producing sputum (see §4.9) were included.

Figures 4.12 to 4.14 summarises the probability weights calculated by treatment arm

and by outcome (success/failure) for each visit window. The probability weights for

patients who are classed as successes are consistent at around 0.9. The probability

weights for patients who are classed as failures are weighted lower at around 0.6 since

there are more patients who are successful in each visit window. For patients

randomised to the 6 month treatment regimen who were included in this analysis

were successful, and therefore no weights are calculated at months 7 to 10 given

months 0 to 3 and months 4 to 6.

Figure 4.12: Histogram of probability weights at months 4 to 6 given months 0 to 3 for

RIFAQUIN.
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Figure 4.13: Histogram of probability weights at months 7 to 10 given months 0 to 3

and months 4 to 6 for RIFAQUIN.
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Figure 4.14: Histogram of probability weights at completion (months 11 to 18) given

months 0 to 3, months 4 to 6 and months 7 to 10 for RIFAQUIN.
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Table 4.17: GEE model for a difference in proportions

of treatment failure using estimated weights from data

observed assuming an independent variance-covariance

matrix, by treatment arm for RIFAQUIN.

Risk difference SE 95% CI

Months 0-3

4 month regimen 0.019 0.022 (-0.024, 0.062)

6 month regimen 0.011 0.021 (-0.030, 0.052)

Months 4-6

4 month regimen 0.001 0.016 (-0.029, 0.032)

6 month regimen1 - - -

Months 7-10

4 month regimen 0.046 0.020 (0.006, 0.086)

6 month regimen 0.0004 0.011 (-0.022, 0.023)

Months 11-18

4 month regimen -0.025 0.023 (-0.070, 0.021)

6 month regimen -0.033 0.022 (-0.076, 0.010)

1All patients were “successful”.

Table 4.17 shows the results from the GEE model including observed weights that

were calculated using predicted probabilities from the logistic regression model. As

for the REMoxTB study (see §4.5), an independent structure sandwich estimator of

variance is included as it is assumed observations at each time point were measured

independently. The results from this model are similar to the GEE model that did not

include any weights (Table 4.16) and are consistent with the GEE model that only

included patients who were observed at all visit windows (Table 4.15).

4.14 Discussion

Having investigated using GEE models for the RIFAQUIN study, there appears to be

little difference between results when we restrict the analysis to include patients who

are observed at all visits compared to including all patients who are observed at least
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once throughout the study. However, by only including patients who are observed at

each visit window throughout the study has the potential to lead to different

conclusions as the upper bounds of the 95% confidence intervals were smaller than

when all patients were included in the analysis. Therefore, excluding patients from

the GEE analysis is not recommended. Sputum production and the Nelson-Aalen

estimate for time to not producing sputum were important predictors for both

outcome failure and withdrawals. These covariates were used to calculate observed

weights separately for each treatment to include in the weighted GEE model. The

results from this model were broadly consistent with the GEE models that did not

include weights when considering whether or not non-inferiority could be concluded

in each visit window. In all three analyses, no results were available between months

4 to 6 for the 6 month regimen since all patients in this visit window were successful.

We now use multiple imputation where a monotone missingness pattern is imposed

for the RIFAQUIN study. The impact of this assumption is investigated, reversing this

restriction, by investigating a non-monotone missingness pattern.

4.15 Multiple imputation for monotonic and non-monotonic

missing patterns

To verify the results from the GEE models used for the RIFAQUIN study, multiple

imputation is used. First, the data is kept in a monotone pattern to directly compare

the results to the GEE models and then we return to the true non-monotone pattern

of the RIFAQUIN study to explore whether there is any gain in information. For both

missing data patterns, visits are kept in visit windows.

4.15.1 Monotonic missing data pattern

Multiple imputation was used by restricting the data to follow a monotone

missingness pattern to check on the accuracy of results produced from the weighted

GEE model.

Missing data were imputed by treatment arm using a logistic regression model, using

100 imputations. Given that all patients randomised to the 6 month regimen were
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successful between months 4 to 6, patients who were missing in this group were

assumed to be successful prior to proceeding to the imputation. To obtain a difference

in proportions for treatment failure between the trial treatment regimens and the

control, a generalised linear model was used to estimate the treatment effects

assuming an identity link function.

Figure 4.15: Imputed results of mean positive cultures where a monotone pattern is

imposed for RIFAQUIN.
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Figure 4.15 shows imputed results of patients who failed for each monotone

missingness pattern. The average number positive culture results imputed were

calculated by treatment arm and each non-monotone missingness pattern for each of

the 100 imputed datasets created. The imputed values are close to values that were

observed and shows the imputation has been performed accurately as the

imputations show there are no outliers. Table 4.18 shows that the results following

imputation are identical to the GEE models with and without weighting (see §4.11 to

§4.13). The model explored here confirms the results of the weighted GEE model.
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Table 4.18: Difference in proportions for treatment failure

following multiple imputation, by treatment arm for

RIFAQUIN.

Risk differences SE 95% CI

Months 0-3

4 month regimen 0.019 0.022 (-0.023, 0.062)

6 month regimen 0.011 0.021 (-0.030, 0.052)

Months 4-6

4 month regimen 0.004 0.016 (-0.027, 0.035)

6 month regimen1 - - -

Months 7-10

4 month regimen 0.045 0.021 (0.004, 0.086)

6 month regimen 0.0001 0.014 (-0.028, 0.028)

Months 11-18

4 month regimen -0.011 0.020 (-0.049, 0.028)

6 month regimen -0.025 0.017 (-0.059, 0.009)

1All patients were “successful”.

4.15.2 Non-monotonic missing data pattern

A non-monotone missingness pattern is used to see whether there is any additional

information to be gained from when a monotone missing pattern is imposed.

Table 4.19 shows the proportion of patients in each treatment arm who were classed as

successful, failures and who were missing across all visit windows. The proportion of

patients classed as a success, failure or missing are similar to when a monotone

missingness pattern is imposed between months 0 to 3 and months 4 to 6, but there

are fewer patients missing between months 7 to 10 and months 11 to 18 suggesting

there may be some information lost when data are restricted to a monotone

missingness pattern though this may not impact on conclusions made.
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Table 4.19: Proportion of patients with a non-monotone

missingness pattern imposed for RIFAQUIN.

Outcome Control 4 Month regimen 6 Month regimen

(N=240) (N=239) (N=251)

Success 219 (91.25%) 208 (87.03%) 223 (88.84%)

Months 0-3 Fail 11 (4.58%) 15 (6.28%) 14 (5.58%)

Missing 10 (4.17%) 16 (6.69%) 14 (5.58%)

Success 212 (88.33%) 202 (84.52%) 220 (87.65%)

Months 4-6 Fail 4 (1.67%) 4 (1.67%) 0

Missing 24 (10.00%) 33 (13.81%) 31 (12.35%)

Success 200 (83.33%) 186 (77.82%) 209 (83.27%)

Months 7-10 Fail 1 (0.42%) 10 (4.18%) 2 (0.80%)

Missing 39 (16.25%) 43 (17.99%) 40 (15.94%)

Success 177 (73.75%) 177 (74.06%) 198 (78.88%)

Months 11-18 Fail 4 (1.67%) 3 (1.26%) 1 (0.40%)

Missing 59 (24.58%) 59 (24.69%) 52 (20.72%)

For data that follow a non-monotone missingness pattern, missing data were imputed

by treatment arm using a logistic regression model using 100 imputations. Again,

patients who received the 6 month regimen were all successful between months 4 to 6

and therefore anyone missing within this visit window who received the 6 month

regimen were assumed to be successful. Figure 4.16 shows the imputed results of

positive culture results for each monotone missing pattern from the imputation

model. The average number positive culture results imputed were calculated by

treatment arm and each non-monotone missingness pattern for each of the 100

imputed datasets created. Figure 4.16 shows that the imputation model has imputed

sensible results in each treatment arm for each missingness pattern since the imputed

values are closely fitted to the observed values, and there are no outliers.

Risk differences were calculated using a logistic regression model assuming an identity

link function. The results from the imputation (Table 4.20) are nearly identical to the

results where a monotone missingness pattern is imposed (Table 4.18).
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Figure 4.16: Imputed results for the mean rate of positive culture results following

principal patterns of non-monotone data for RIFAQUIN.
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Table 4.20: Difference in proportions for treatment failure

following multiple imputation where the pattern is non-

monotone, by treatment arm for RIFAQUIN.

Risk differences SE 95% CI

Months 0-3

4 month regimen 0.019 0.022 (-0.024, 0.062)

6 month regimen 0.010 0.021 (-0.030, 0.051)

Months 4-6

4 month regimen 0.005 0.015 (-0.025, 0.035)

6 month regimen1 - - -

Months 7-10

4 month regimen 0.048 0.018 (0.012, 0.084)

6 month regimen 0.002 0.011 (-0.019, 0.024)

Months 11-18

4 month regimen -0.006 0.018 (-0.040, 0.029)

6 month regimen -0.022 0.014 (-0.050, 0.005)

1All patients were “successful”.
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4.16 Discussion

In this section, we investigated using GEE models to impute the missing observations

of trial participants’ outcome data imposing a monotone missingness pattern to the

RIFAQUIN data.

The results from the different analyses performed here were broadly similar to each

other. This could be due to having less frequent visits over the study period since

patients were followed up monthly with two 3 month visits towards the end of follow

up. As a consequence the frequency for patients to switch into different states of

having negative and positive culture results is reduced.

All analyses showed that the treatment arms performed worse than the control

between months 4 to 6 and months 7 to 10 and performed better than the control in

the final visit window between months 11 to 18. This final visit window consists of

visits 1, 2, 5 and 8 months after the last visit in the third visit window (10 month after

randomisation) and therefore the final window consists of a long time where patients

are not seen as the final two follow up visits were 3 months apart after the last (15 and

18 months). During this final visit window, patients who were failing or were not

getting better on treatment would have been withdrawn from the study and would

have switched treatment or have had their treatment modified. Due to this, it is

expected for both treatment regimens to perform better than the control by the end of

the study within the final visit window since patients who are culture converting to

negative status are more likely to stay enrolled within the study, and this was reflected

in our analyses. Non-inferiority could be concluded on the 4 month regimen between

months 4 to 6 and all patients were successful on the 6 month regimen whereas

between months 7 to 10, non-inferiority could not be concluded on the 4 month

regimen but could be concluded on the 6 month regimen. These observations are

consistent with those reported in the RIFAQUIN study, where non-inferiority could

not be concluded on the 4 month regimen (13.60%, 95% CI: 7.0% to 20.20%) and

non-inferiority was concluded on the 6 month regimen (1.80%, 95% CI: -6.90% to

3.30%) for the PP analysis.
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The results from using multiple imputation, imposing and not imposing a monotone

missingness pattern to the data produced similar results. Although this is reassuring,

a non-monotone missingness pattern is preferred thus reflecting the true nature of the

data collected.

So far in this chapter, a binary outcome was imposed within visit windows. Instead of

making assumptions about the nature of the data within these visit windows, the

number of negative culture results within each visit window could be counted and a

Poisson regression model could be used to assess treatment differences of outcome

failure.

Next, a Poisson regression model is explored for the REMoxTB and RIFAQUIN studies

to assess the rate of negative culture results over time.

4.17 Poisson regression

Poisson regression models are useful for analysing the number of times an event

occurs over time. Estimating the rate of negative culture results over each of the four

visit windows is now considered.

In the REMoxTB and RIFAQUIN studies, patients were not always observed within

each visit window, for example some patients may have been observed at all scheduled

visits within a visit window whereas others may have been observed only once. It

is therefore more relevant to consider the rate of negative cultures by calculating the

number of negative culture results for each observed result within each visit window

thus accounting for patients’ varying time within each visit window. This is done by

including an offset, which constrains the total number of observations for patients to

1, within the following mixed-effects Poisson regression model88 for patient k having

negative results in the tth window:

ln

(
u0,k
u1,k

)
= β0,k,t + β1,k,ttimek,t + β2trtk + β3(timek,t ∗ trtk)

β0,k,t = β0 + u0,t + e0,k,t

β1,k,t = β1 + u1,t

183



 u0

u1

 ∼ N(0,Ωu) : Ωu

 σ2u0
σu0,1

σu0,1 σ2u1



e0,k,t ∼ N(0,Ωe) : (0, σ20,e),

where, u0,k is the total number of negative culture results for each patient k at visit

window t for t=1, 2, 3 or 4 and u1,k is the total number of observations for each patient

k at each visit window t. To take into account that patients have repeated observations

of negative culture results over time, we include random effects parameters u0,k to

represent the departure of the kth patient from the overall rate intercept, u1,k

represents the overall departure of the kth patient from time and e0,k,t represents

random variability within time for the REMoxTB and RIFAQUIN studies.

We next explore using a mixed-effects Poisson regression model to the REMoxTB and

RIFAQUIN studies.

4.17.1 Application to REMoxTB

First, we investigate using a mixed-effects Poisson regression model to the REMoxTB

study before looking at the mean rate of negative cultures within each visit window

over the whole study. The mean rate of negative culture results are taken rather than

the mean rate of positive culture results due to the presence of fewer positive culture

results (and therefore fewer failures overall) during the second half of follow up. This

will avoid any issues of numerical underflow in the computations. Table 4.21 shows

the rate ratios obtained from the multilevel mixed-effects Poisson regression model

and Table 4.22 shows the random effects parameters.

Table 4.21: Multilevel mixed-effects Poisson regression for

REMoxTB, by treatment arm.

Rate ratio SE 97.5% CI

Week 0 to 4

Intercept 0.002 0.0002 (0.0016, 0.002)

Isoniazid 0.815 0.111 (0.600, 1.106)
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Ethambutol 0.837 0.114 (0.616, 1.136)

Week 5 to 8

Intercept 0.017 0.001 (0.015, 0.019)

Isoniazid 0.993 0.075 (0.839, 1.175)

Ethambutol 0.975 0.074 (0.823, 1.155)

Week 12 to 26

Intercept 0.026 0.001 (0.024, 0.029)

Isoniazid 0.961 0.061 (0.835, 1.108)

Ethambutol 0.945 0.060 (0.820, 1.089)

Week 39 to 78

Intercept 0.023 0.001 (0.021, 0.026)

Isoniazid 0.944 0.062 (0.815, 1.093)

Ethambutol 0.951 0.062 (0.821, 1.101)

Table 4.22: Random effects parameters from the multilevel

mixed-effects Poisson regression for REMoxTB.

Parameters Variance SE

Visit window (years) 6.448 ×10−16 2.210 ×10−10

Intercept 2.163 ×10−13 2.101 ×10−7

Cov(year, intercept) -1.170 ×10−14 7.332 ×10−9

The rate of negative culture results increases up until 12-26 weeks and then decreases

on the isoniazid and ethambutol treatment regimens in the next visit window between

weeks 39 to 78, but remains constant on the control arm. Although the estimates are

large, the results are broadly consistent with the results from the GEE models that

imposed a monotone pattern (§4.4 to §4.6.1) and with results from using multiple

imputation, where patients were more likely to be classed as failures over time for

non-monotonic data (§4.6.2). Patients who are in the study for longer and have not

culture converted in the later stage of the treatment phase would have been

withdrawn from the study, and therefore their results would no longer be included in

the analysis. This group of patients may be contributing to the decrease in the rate of

negative culture results during the follow-up phase. Another group of patients who
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might influence this decrease are patients who were randomised to one of the

treatment arms but switched to the control arm because the treatment was failing for

them. Given patients were analysed according to the treatment they were randomised

on, the true effect of treatment for patients is masked.

Table 4.22 suggests underdispersion since there is less patient variation within the

data than predicted. The patient specific random effect of the estimated variance

component is very small at 2.163 ×10−13, which shows that treatment differs between

patients.

The mean rate of negative culture results (Figure 4.17) is slightly less on the control

arm between weeks 5-8, than for the treatment arms, but this is reversed by the time

patients reach the follow-up phase between weeks 39-78 where there are more

negative culture results for patients who received the control regimen than for those

randomised to one of the treatment arms. The variance is at its highest between weeks

5 to 8 reflecting the patients who fluctuated between a positive and negative result

within that visit window.

Figure 4.17: Mean rate and empirical variance of negative culture results for REMoxTB.
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The results from using a mixed effects regression model are broadly consistent with

the results found from the GEE models; the rate of having negative cultures increases

between week 5 to 8 before decreasing over the next visit windows from weeks 12 to

26 weeks and 39 to 78 weeks. The Poisson regression models suggests

underdispersion within the data. The underdispersion mirrors the trend of patients

who are mostly positive at the start of the study which then switches to patients who

are mostly negative towards the end of the study.

We now explore using Poisson regression for the RIFAQUIN study.

4.17.2 Application to the RIFAQUIN study

A multilevel mixed effects Poisson regression model is investigated for the RIFAQUIN

study. Again, we account for the number of negative cultures present within each visit

window rather than positive cultures to avoid any complications in the computation.

Then we look at the mean rate of negative culture results over time. Table 4.23 shows

the rate ratios obtained from the multilevel mixed-effects regression model and

Table 4.24 shows the random effects parameters.

Table 4.23: Multilevel mixed-effects Poisson regression, by

treatment arm for RIFAQUIN.

Rate ratio SE 95% CI

Months 0-3

Intercept 0.032 0.003 (0.027, 0.038)

4 month regimen 1.012 0.123 (0.798, 1.285)

6 month regimen 1.015 0.122 (0.803, 1.284)

Months 4-6

Intercept 0.056 0.004 (0.049, 0.064)

4 month regimen 1.036 0.099 (0.858, 1.250)

6 month regimen 1.043 0.098 (0.867, 1.254)

Month 7-10

Intercept 0.024 0.002 (0.021, 0.027)

4 month regimen 0.896 0.091 (0.734, 1.094)
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6 month regimen 1.000 0.097 (0.826, 1.211)

Month 11-18

Intercept 0.029 0.002 (0.025, 0.033)

4 month regimen 1.008 0.103 (0.826, 1.231)

6 month regimen 0.959 0.095 (0.790, 1.163)

Table 4.24: Random effects parameters from the multilevel

mixed-effects Poisson regression for RIFAQUIN.

Parameters Variance SE

Visit window (years) 1.224 ×10−10 1.740 ×10−6

Intercept 1.272 ×10−9 1.476 ×10−5

Cov(year, intercept) -3.960 ×10−10 4.992 ×10−6

The results in Table 4.23 show how small the resulting standard errors are. This

suggests the data from the RIFAQUIN study are underdispersed. The random

intercept of 1.272 ×10−9 (Table 4.24) shows that treatment regimens differs between

patients.

The rate of negative culture results increases in the second visit window (month 4 to

6) and then decreases in the next visit window between month 7 to 10. In the final visit

window, the rate of culture negative results increases again. By this point, patients

who were failing to culture convert to having stable negative culture results would

have switched treatment so that they are cured of TB. The rate of negative culture

results increases in the second visit window (month 4 to 6) and then decreases in the

next visit window between month 7 to 10. In the final visit window, the rate of

negative culture results decreases slightly on the 6 month regimen in the final visit

window. The rate of culture negative results increases again in the final 11 to 18 month

window for patients who received the 4 month regimen. By this point, patients who

were failing to culture convert to having stable negative culture results would have

switched treatment so that they are cured of TB. These results are similar to those

produced from the GEE models (§4.11 to §4.15.1) and to the multiple imputation

model where data followed a non-monotone missingness pattern (§4.15.2).
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Figure 4.18 shows the mean rate of negative culture results across visit windows. The

four month regimen shows a departure from the control and 6 month regimens after 4

to 6 months, where the mean rate of negative culture results is less before increasing

again by the end of the study. The rate of negative culture results is similar between

the control arm and the 6 month regimen. These two observations correspond with

the results of the trial where non-inferiority was demonstrated for the 6 month

regimen on the PP analysis and the 4 month regimen failed to demonstrate

non-inferiority.

Figure 4.18: Mean rate of negative culture results and empirical variance for

RIFAQUIN.
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To further investigate the large estimates produced by the Poisson model, Table 4.25

and Table 4.26 compares the proportion of positive results with and without applying

our defined outcome for the REMoxTB and RIFAQUIN studies, in accordance with

the trial protocol, where two consecutive negative culture results infer “success” (see

§4.1). This is because the outcome defined requires two consecutive culture results to

determine success. The Poisson model simply counts the number of positive or

189



negative culture results within each visit window without considering the location of

the results, that is that the results must occur consecutively. We investigate whether

this has any impact on the REMoxTB and RIFAQUIN studies by calculating the mean

positive culture results within each visit window, disregarding the location of where

positive or negative culture results occur and compare this to the mean treatment

failure which does take into account that negative results occurring consecutively, to

determine negative culture conversion.

Table 4.25: Comparison of mean positive culture results and

treatment failure for the REMoxTB study.

Week Treatment Mean positive Mean treatment

culture results failure

Control 0.805 0.806

Weeks 0-4 Isoniazid 0.815 0.807

Ethambutol 0.801 0.789

Control 0.344 0.316

Weeks 5-8 Isoniazid 0.308 0.284

Ethambutol 0.304 0.262

Control 0.039 0.035

Weeks 12-26 Isoniazid 0.043 0.038

Ethambutol 0.067 0.051

Control 0.040 0.032

Weeks 39-78 Isoniazid 0.088 0.068

Ethambutol 0.086 0.059

Table 4.26: Comparison of mean positive culture results and

treatment failure for the RIFAQUIN study.

Month Treatment Mean positive Mean treatment

culture results failure

Control 0.432 0.048

Month 0-3 4 month regimen 0.436 0.067
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6 month regimen 0.432 0.059

Control 0.023 0.019

Month 4-6 4 month regimen 0.033 0.019

6 month regimen 0.011 0

Control 0.020 0.005

Month 7-10 4 month regimen 0.083 0.051

6 month regimen 0.015 0.009

Control 0.028 0.022

Month 11-18 4 month regimen 0.028 0.017

6 month regimen 0.015 0.005

The results presented in Tables 4.25 and 4.26 show that applying the protocol rule and

classing patients as a success if two consecutive negative culture results occur at

separate visits within the visit windows makes the probabilities smaller for both

studies. Consecutive positive/negative results are not accounted for when using a

Poisson regression model; only the number of positive (or negative) results available

which occur in any particular order are within each visit window. It is for this reason

that the resulting estimates from the Poisson regression model are larger than

expected.

4.18 Discussion

In TB trials, patients are randomised if they have TB present within their lungs and

therefore observed positive culture results are seen at the beginning of a study. When

treatment is administered, patients produce negative sputum results and this

stabilises towards the end of the study. This pattern was reflected in the mixed effects

Poisson regression model which showed underdispersion. In both studies, patients

randomised to the treatment arms seemed to improve within the first 4-6 months

before worsening again. By the time of the final follow-up visit, patients seemed to

have a higher rate of negative culture conversion. Patients who are in the study for

longer and have not culture converted in the later stage of the treatment phase would

have been withdrawn from the study, and therefore their results would no longer be

included in the analysis. This group of patients may be contributing to this decrease in
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the rate of negative culture results during the follow-up phase. Another group of

patients who might influence this decrease are patients who were randomised to one

of the treatment arms but switched to the control arm because the treatment was

failing for them. Given patients were analysed according to the treatment they were

randomised to, the true effect of treatment for patients is masked. For these analyses,

the Poisson model inflated the resulting estimates by not applying the protocol rule

where two negative results are required to determine stable negative culture

conversion.

4.19 Summary

This chapter has investigated a simpler and alternative approach to impute the

observations under an intention-to-treat analysis for patients whose outcome data

were missing from TB studies, while looking at the proportion of patients who were

classed as failures in more detail. The data were kept within clinically meaningful

visit windows to create more stable weights rather than using weights for each

follow-up visit. This meant we needed to impose an additional rule to class patients

as a “success” or “failure” within each visit window. Doing so enabled us to look at

whether the proportion of treatment failure changed the conclusions when

determining non-inferiority over time using a 6% margin. We explored two valid

analyses under the MAR assumption for the REMoxTB data using GEE models and

multiple imputation. We have shown that by grouping visits into visit windows and

imposing a monotone missingness pattern and using IPW with GEE models works

well as verified by the multiple imputation where the pattern remained

non-monotone for both the REMoxTB and RIFAQUIN studies. However, using IPW

with GEE models in a longitudinal setting assumes the observations are independent

which may not be a valid assumption if there is strong correlation within patient

observations. In using the IPW methodology requires the data to follow a monotone

missingness pattern, which was imposed for both the REMoxTB and RIFAQUIN

datasets. Imposing a monotone missing pattern to the data produced similar results

when reverting back to a non-monotone pattern and using multiple imputation,

however the upper bound of the confidence intervals were slightly higher when a

monotone pattern was imposed. This suggests that imposing a monotone pattern
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results in deficiency in the estimates and confidence intervals. This is most likely

because the data itself follows a non-monotone pattern, therefore by imposing a

monotone pattern to this data removes information that a non-monotone pattern

retains. Therefore, if this approach is taken by grouping visits into visit windows,

multiple imputation should be used keeping the data in a non-monotone missingness

pattern reflecting the true structure of the trial data.

To remove the extra rule imposed within each visit window, i.e. classing patients as a

“success” or “failure” in each window, an alternative analysis was explored by

counting the number of negative culture results within each window, using a Poisson

regression model. The results from the Poisson model showed consistent results with

the GEE analyses and was consistent with the analysis from multiple imputation

where a non-monotone missing pattern was investigated. The Poisson regression

model does not take into account that most patients have TB in the first few weeks of

the study. At this time point, patients are less likely to produce negative culture

results, towards the end of the study most patients do have negative culture results.

This results in severe underdispersion of the data. By counting the number of

negative cultures within each visit window, we lose the protocol defined outcome

where patients are considered to reach negative stable culture conversion if they

achieve two consecutive negative culture results at separate visits. As a descriptive

analysis, this provides a nice indication of the trial as a whole. However as a formal

analysis, we fail to capture the full story of what happens with these patients, and so

the Poisson model is not recommended for these analysis.

Although performing multiple imputation where the missingness pattern is

non-monotone worked well, more assumptions about the classification of the primary

outcome are required, thus adding an extra layer of rules that may be unnecessary.

In the next chapter, we explore using multi-state models as an alternative analysis to

multiple imputation, including all patient outcomes in the intention-to-treat analysis

without pre-determination of false positive or false negative sputum culture results

before performing the protocol defined primary analysis.
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Chapter 5

Multi-state models

So far, we have looked at imputation methods and using weighted marginal models

to estimate treatment effects when some trial participants’ outcome data are missing.

In the longitudinal data from the studies that motivate this work, there are long

constant sequences of binary 1’s at the start of follow-up where the majority of

patients are positive and 0’s towards the end of follow-up where most patients reach

stable negative culture conversion. These sequences are tricky to model with logistic

regression, conditioning on past and future observations (where available), as the

fitted probabilities are often very close to either 1 or 0. This means the corresponding

parameter estimates are often noisily estimated, with large standard errors. This is the

perfect prediction problem81.

To address this we needed to use an alternative multiple imputation method known

as the two-fold fully conditional specification multiple imputation (see §3.6) that

involved imputing patients’ missing observations at each visit depending on

observations in a window either side of that visit. A consequence of using the

two-fold fully conditional specification (FCS) of multiple imputation is that we do not

use the full sequence of available data on each patient. A possible disadvantage of this

is that by not imputing using information from all visits, some information from past

and future visits may be lost. For the marginal GEE models (Chapter 4), patient

observations were grouped into visit windows to take observed information at closer

time points into account. We also tried to form relatively stable models for the long

term trend and smooth out the local noise. However using the models in this way,
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analysing outcomes within each visit window, may be inefficient as this does not take

into account any dependency of the history of observations at future time points.

Another approach, which arguably more closely reflects the clinical reality, is to think

of the sputum tests as imperfect observations of an underlying disease state which is

either positive (diseased) or negative (clear of disease). This is what multi-state

models seek to do, so it is natural to explore their utility for modelling non-inferiority

trials in TB.

In a longitudinal setting, using multi-state models means the entirety of each patient’s

available data is used to estimate their disease state at each time, t. Once fitted this can

then be used to impute the missing sputum culture results which are needed to

construct the primary clinical outcome in the study (see §3.1) under an

intention-to-treat analysis. Therefore, multi-state Markov models appear to have

potential for a more accurate and powerful primary analysis that includes information

from all available data for all patients in the analysis. Hopefully, this will yield more

appropriate and accurate inferences. The extent to which this potential can be realised

is the focus of this chapter.

5.1 Motivation for multi-state models in tuberculosis clinical

trials

In TB trials, patients tend to be excluded from analyses if they withdraw from the

study under the intention-to-treat and per-protocol analyses depending on treatment

completion. For example, if patients do not reach the end of treatment phase, or if

they were not seen at the final follow up visit of the study and they were disease-free

prior to withdrawal. Alongside this, during the course of a trial, patients may be

intermittently observed. As outlined in §3.1, missing culture results (and

contaminated results, classed as missing) are usually ignored according to the trial

protocol. As previously discussed in §3.1, this can cause difficulties when determining

whether or not a patient was “cured”, according to the rules used to determine the

primary outcome in the trial protocol. For example, for possible relapses where

patients may have had two consecutive negative culture results followed by an
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unattended visit, a positive result at the next visit and a negative result thereafter (i.e.

−,−,missing,+,−), then under the trial protocol, it is unclear whether the underlying

clinical state is positive or negative. In such cases, it is unclear whether the patient

remained in a state of stable negative culture conversion (since the single observed

positive result would be considered a “negative” according to the trial protocol), or

whether they relapsed. Multi-state models can estimate the underlying state, impute

the missing sputum test values, and hence readily allow us to calculate the primary

outcome.

In the next section, we review the theory of multi-state Markov models as it relates

to our application to TB trials. We begin by defining simple Markov chains before

extending the theory to hidden Markov models and then we apply these methods to

the REMoxTB study and the RIFAQUIN study.

5.2 Markov multi-state models

A multi-state model is a stochastic process, which generates a sequence, St, over

time89. St is defined as an ordered set of discrete states at continuous time t90. Discrete

time Markov chain models can be analogously defined91, but are not our focus here.
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Figure 5.1: Example of a 3 state Markov chain model.

Multi-state Markov models are a stochastic process and have the Markov property.

This means that future states of the process are conditionally independent of the

history of the process before time t given the state of the process at time t. If the

sequence of states is observed, and therefore the state is known, a Markov chain can

be modelled. Figure 5.1 shows an example of a Markov chain model with three states,

disease (St = 1), no disease (St = 2) and death (St = 3).

Probability transitions are defined as the probability of being in state j at time t given

state i at the previous time point t− 1 such that ai,j(t) = P (St = j|St−1 = i) and can be

interpreted as the instantaneous risk of transitioning from state i to state j. If there are

only two states, this “risk” can be interpreted as a hazard, as in survival analysis. In

the context of clinical trials, our exemplar model shows for a given sequence, patients

can move in and out of state 1 (presence of disease) and 2 (absence of disease) over

time with probability transitions a1,2(t), a2,1(t) and can move into state 3, death, with

probability transitions a1,3(t), a2,3(t). For the purpose of this explanation, we assume

the probabilities are constant over time so that ai,j(t) = ai,j . Death is an absorbing state
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as patients cannot subsequently transition into states 1 or 2. In this example, the same

state can occur consecutively and have probability transitions of a1,1 or a2,2. These state

probability transitions can be presented in matrix form92:

A = {ai,j} =

to state (j)

fr
om

st
at

e
(i)


a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

0 0 0

 .
Note that probability transitions from state 3 all equal zero. This is because following

death, patients cannot transition to any disease status nor death itself again.

For a fully observed sequence, transition probabilities are easily estimated by

calculating the proportion of transitions from state to state. Let s0, s1, ..., st, ..., sT

represent what state, S, a patient is in at times t = 0, 1, ..., T . The probability of a state

sequence in a model can be found by:

P (S0 = s0, S1 = s1, S2 = s2, ..., St−1 = st−1, St = st) =

P(ST = sT |πi, S1 = s1, ..., ST−1 = sT−1)P (S1 = s1, S2 = s2, ..., ST−1 = sT−1).
(5.1)

where πi = P (S0 = s0), the initial state probability. In the example above (Figure 5.1),

the possible states are s ∈ 1, 2, 3. By the Markov property this then becomes:

P(St = st|St−1 = st−1)P (St−1 = st−1|St−2 = st−2)...P (S2 = s2|S1 = s1)P (S0 = s1) =

P (S0)
T∏
t=1

a(St−1=st−1)(St=st).

(5.2)

This is the general form of the likelihood for a state sequence (S) given the model

parameters (φ = (πi, A)) for the initial state probability and probability transitions

A = ai,j , where the likelihood of the model parameters φ given the data is the product

of the probabilities of transitioning between states that are observed93.

Using our 3 state model (Figure 5.1), suppose the patient is diseased during the first 4

visits, disease free at the fifth visit and then subsequently dies: S0 = 1, S1 = 1, S2 = 1,
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S3 = 1, S4 = 2, S5 = 3. Then the probability of the sequence is:

P (S|φ) = P (S0 = 1, S1 = 1, S2 = 1, S3 = 1, S4 = 2, S5 = 3)

= P (S0 = 1)P(S1 = 1|S0 = 1)P(S2 = 1|S1 = 1)P(S3 = 1|S2 = 1)

P (S4 = 2|S3 = 1)P(S5 = 3|S4 = 2)

=π1a1,1a1,1a1,1a1,2a2,3,

(5.3)

where πi = P(S0 = i) is the initial state probability (i.e. π1 = P(S0 = 1) in the above

example).

In practice, often it is not possible to observe the states directly. In this case, we say the

underlying Markov process is hidden. We now describe how the model can be

extended to accommodate this in general settings before describing the special case of

TB trials where the states are disease states and the observations are culture states.

When we have a hidden Markov model (HMM), in simpler cases such as our TB

setting, the true disease state, which is hidden, is measured with error. The

measurements, positive or negative culture results, can be of the same type as the

underlying disease state. Hidden Markov models can be applied much more

generally when the observations have more values or when the observations are

predictive of the underlying states that generate them. In the next few sections as we

outline the HMM theory, we retain this generality.

5.3 Hidden Markov models

A hidden Markov model (HMM) describes the setting where we have a set of

observations but the underlying states of the Markov chain that generate the

observations are unknown.

The Markov chain defined in §5.2 can be extended to HMMs. Figure 5.2 shows a

graphical representation of a general HMM for states (Sk,0:t) and observations (Ok,0:t)

for patients k = 1, 2, ...,K over times t = 0, 1, 2, ..., T . As before (under the Markov

assumption), for each patient k, probability transitions are defined as the probability

of being in a state conditional only on the state at the previous time point:

ak,i,j = P (Sk,t = j|Sk,t−1 = i). (5.4)
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Figure 5.2: Example of a hidden Markov model over time for patient k and i, j hidden

states.

We denote the initial state probability by:

πk,i = P (Sk,0 = i) (5.5)

let:

bk,t(mi) = P (Ok,t = mi|Sk,t = i), (5.6)

where bk,t(mi) represents the probability of being observed as m within state i, where

m = 1, 2, ...,M at time t (where t = 0, 1, ..., T ). Assuming that this does not vary over

time, the observation probability matrix is then:

Bk = {bk,t(mi)} =

observations (m ∈ 1,2,..., M)

st
at

e
(i
∈

1,
2,

...
,I

) 
bk(11) bk(21) · · · bk(M1)

...
...

. . .
...

bk(1I) bk(2I) · · · bk(MI)


The underlying states (i ∈ {1, 2, ..., I}), that are not seen, emit the observation

sequence (m ∈ {1, 2, ...,M}). For this HMM, the initial state, sk,0 = i, at time 0 follows

the initial state probability distribution πsk,0 which is assumed to be known. In that

initial state, an observation is emitted with probability bk,0(msk,0) for that state. We

observe mi when the true state is sk,0. A new state (sk,1) is then chosen according to

the probability transition ak,i,j from time 0 to time 1, and the process is repeated until

the final observation is observed94.
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This probability in (5.6) naturally models the misclassification, where observations are

test results, given an unobservable (true) binary disease state95. For example, the

probability the test is observed (positive) when the disease is present is the sensitivity

and the probability that the test is not observed (negative) when the disease is not

present is the specificity. These probabilities represent the sensitivity and specificity of

the instrument and we estimate these for our TB trials. The probability of a negative

culture observed when the true underlying state is positive and the probability of a

positive result observed when the true underlying state is negative are also estimated.

The joint probability of observations and states given the model can be found by

extending (5.2) to include observation sequences as follows:

Pk(O,S) = πst=0b0(mst=0)
T∏
t=1
bk,t(mst)ast−1,st (5.7)

for state sequence of length T+1. This is the product of the probability of i) the initial

probability state (πi), ii) the probability of the observation in the initial state (b0(ms0))

and iii) the transition probabilities from state i to state j (ast−1,st) and the

corresponding observation probability (bt,k(mst)).

Now consider a HMM where the states (i ∈ 1, 2, ..., I) are of a different type to the

observations m ∈ {1, 2, ...,M} (i.e. what is observed is not the same as the true

underlying state). For example, for one patient assume we observe them to be on

(Ot = 1) or off (Ot = 0) treatment at each of three successive visits as follows: O0 = 0,

O1 = 1, O2 = 1 (Figure 5.3). The same patient can either be in the disease state (St = 1)

or disease free state (St = 2) such that their sequence of states is: s0 = 1, s1 = 1, s2 = 2.
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Figure 5.3: Example of a hidden Markov model for one patient’s observed treatment

and hidden disease state.

Then, the probability of the state sequence being emitted by the observation sequence

for a patient k ∈ 1 is96:

P (O,S) = P (S0 = 1)P (O0 = 0|S0 = 1)P (S1 = 1|S0 = 1)P (O1 = 1|S1 = 1)

P (S2 = 2|S1 = 1)P (O2 = 1|S2 = 2)

=π1b0(m1)a11b1(m1)a12b1(m2).

(5.8)

In order to find the most likely set of underlying, hidden, state sequences, there are four

problems outlined as follows. The first and second problems (§5.4.1 and §5.4.2) describe

the approach of finding the preferred model (φ) for the observed data. The third and

fourth (§5.4.3 and §5.4.4) describe approaches to find the most probable pathway of the

hidden states, given the chosen model.

5.4 Four HMM problems

As detailed in Rabiner’s tutorial92 and in the HMM literature there are a number of

problems (described below unusually in the order of step 1, step 4 and step 2) that we

need to address to fit HMMs to our TB datasets:

1. The first problem, which we address in §5.4.1, is to find the likelihood of the

parameters under the HMM. This is challenging because the actual states are

unobservable (i.e. “hidden”), so they have to be summed out of the likelihood
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function. However, because each individual can have multiple state pathways

given their data, this is computationally very intensive. Therefore, we outline

the approximate approach used by the software.

2. Once we obtain the likelihood, we describe how to maximise it in §5.4.2. For this

the BFGS optimiser is used.

Once the preferred model is chosen using steps 1 and 2, we can impute the

missing TB sputum test data. There are two possible ways to do this. The first,

uses the forwards/backwards algorithm to estimate the probability of a patient

being in a particular state at each time point, from which we can directly impute

the missing values. The second, uses the Viterbi algorithm to predict the most

probable sequence of states for a patient overall. The critical difference between

these two algorithms for our data is that the states predicted by the

forwards/backwards algorithm and Viterbi algorithm can disagree. For

example, if the transition probability is low between the most likely

observations at time t and t+ 1, the Viterbi algorithm will give a lower weight to

the underlying state at that time (even if we have an observation at that time).

Both approaches are presented, and used in the application to check for

consistency of results. Therefore:

3. to find the probability of a patient being in a particular state at a particular time

point using the history of information available prior to that time point, by the

Markov property, we use the forwards/backwards algorithm outlined in §5.4.3,

and

4. to find the most probable overall pathway of a state sequence for each patient we

use the Viterbi algorithm, outlined in §5.4.4.

5.4.1 Problem 1: Evaluation of the likelihood using the forward algorithm

The first problem to resolve is to find the likelihood. That is, the probability of an

observation sequence, Ok,1:t = Ok,1, Ok,2, Ok,3, ..., Ok,t−1, Ok,t, given the state space

model parametrised by φ. This probability is found by calculating every possible state
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sequence. To do this, the joint probability of the observations and the state sequence

given the model can be calculated. Let the model be denoted by φ, such that φ = (A, B,

πi) where A represents state transition probabilities (ak,i,j) from t− 1 to t, B represents

the observation probabilities of a patient (k) being in a particular state, bk,t(mi) at time

t, and πi is the initial probability in each state. By (5.4) and (5.5):

P(Sk|φ) =πak,s0,s1ak,s1,s2ak,s2,s3 ...ak,st−1,st (5.9)

and by (5.6):

P(Ok|Sk, φ) =bk,0(ms0)bk,1(ms1)bk,2(ms2)...bk,t(msT ), (5.10)

where m ∈ 1, 2, ...,M is observed when in a particular state (sT ) at time T. Then, by

(5.9) and (5.10) the joint probability of observation sequence and the state sequence

given the model is:

P (Ok, Sk|φ) = P (O|S, φ)P (S|φ). (5.11)

If the Sk states in (5.11) were observed then the total likelihood is:

L(φ;S,O) =
K∏
k=1

P (Ok, Sk|φ) (5.12)

As the states are unobserved (and unobservable), to obtain the likelihood of the

observed data, we need to sum over all the possible state sequences, Sk, that are

consistent with the observed data. This is a requirement for every patient to obtain the

observed data likelihood.

P (Ok|φ) =
∑
∀Sk

P (Ok, Sk|φ)

=
∑
∀Sk

P (Ok|Sk, φ)P (Sk|φ)
(5.13)

Equation (5.13) can be found by (5.9) and (5.10). However, this is an exhaustive

calculation and becomes computationally infeasible the larger the number of

observations and (in our setting) as the number of follow up visits increases. Instead,

the forward procedure is used to compute an approximation to the likelihood, (5.13),

of the observed sequence in a computationally efficient manner94.
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This calculation used by the forward procedure is much simpler than summing over

all possible state sequences for each patient. Given the current value of the model

parameter, φ, for patient k, the forwards algorithm calculates the probability of the

partial observation sequence, Ok,1:t, when state Sk,t = sk,t. The initial probability of

any observation sequence is:

αk,t=0(i) = πibk,0(mi) (5.14)

for state i (where πi=P(s0 = i)) at time 0 for patient k. The probability at each time for

t > 0 can then be calculated recursively:

αk,t+1(j) =

[
t∑
t=1

αk, t(sk, t)ak,st−1,st

]
bk,t+1(mj) (5.15)

until the end:

P (O|φ) =

T∑
t=0

αk,t(st). (5.16)

As an example, suppose we observe the weather which can either be sunny (S), cloudy

(C) or rainy (R) over time t = 0, 1 and 2; let the hidden state be whether a patch of grass

is dry (D) or wet (W). Assume that at the current value of the model parameters, φ we

have:

πi =
[

0.0 1.0
]
, Ak =

 0.8 0.2

0.9 0.1

 , Bk =

 0.3 0.5 0.2

0.7 0.2 0.1

 ,

where the initial state i ∈ Dry or Wet For one patch’s sequence (i.e. k ∈ 1), let the

observations be R, S, C. To calculate P (O|φ), the forward algorithm is used. The initial

probability for a dry state when rain is observed, (i.e. αR,t=0(D)) and the initial

probability for a wet state when rain is observed (i.e. αR,t=0(W )) is:

αR,t=0(D) = πD × b0(RD) = 0× 0.2 = 0.

αR,t=0(W ) = πW × b0(RW ) = 1× 0.1 = 0.1.

These initial probabilities can then be carried forwards to find the probabilities for a
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dry state and a wet state when the weather is sunny at time=1:

αS,t=1(D) = [αt=0(D)aD,D + αt=0(W )aWD]bt=1(SD) = [(0× 0.8) + (0.1× 0.9)]× 0.3

= 0.027.

αS,t=1(W ) = [αt=0(D)aD,W + αt=0(W )aWW ]bt=1(SW ) = [(0× 0.2) + (0.1× 0.1)]× 0.7

= 0.007.

The final probabilities for a dry state and wet state when the weather is cloudy are then:

αC,t=2(D) = [αt=1(D)aD,D + αt=1(W )aWD]bt=2(CD)

= [(0.027× 0.8) + (0.007× 0.9)]× 0.5 = 0.014.

αC,t=2(W ) = [αt=1(D)aD,W + αt=1(W )aWW ]bt=2(CW )

= [(0.027× 0.2) + (0.007× 0.1)]× 0.2 = 0.001.

The probability of the observation sequence R, S, C given the model parameters φ is

calculated by the sum of the above probabilities:

P (O|φ) = 0 + 0.1 + 0.027 + 0.007 + 0.014 + 0.001 = 0.149.

Due to computational underflow, the log of the likelihood (equation 5.13) is usually

calculated, i.e. log(P (O|φ)). For our example taking the natural logarithm would

result in a probability of -1.904.

Having found the likelihood, we need to train the model parameters to maximise the

probability of the observations given the current model parameters. This is so that the

observations seen are represented by the model (φ = (πi, Ak, Bk)) in the best way for

application to the dataset.

5.4.2 Problem 2: Maximising the likelihood

This requires adjusting the model parameters (φ) to maximise the probability of

observations given the model. The complete data log-likelihood can be found

iteratively using (5.13). Let φinit be the initial or previous estimates of the

parameters97:

P (O,S|φ) =
∑
∀Sk

log(π)P (O,S|φinit) +
∑
∀Sk

[
T∑
t=1

log(ak,i,j)

]
P (O,S|φinit)

+
∑
∀Sk

[
T∑
t=1

log(bk,t(mi))

]
P (O,S|φinit)

(5.17)
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Each of the three terms can then be maximised using maximum likelihood

estimation98. Alternative algorithms such as the Baum-Welch algorithm99, used to

guarantee convergence of the model and Viterbi training100 used as an approximation

to the likelihood (at a loss of efficiency, but gaining in speed) may be used. The

Baum-Welch algorithm is an Expectation-Maximisation algorithm which uses the

forwards/backwards algorithm (described in the next section §5.4.3) to choose model

parameters so that P (O|φ) is locally maximised92. Viterbi training uses the Viterbi

algorithm (defined in §5.4.4), which chooses the probability of the most likely state at

a particular time going forwards. This results in a less computationally intensive

algorithm. Transition probabilities (A) and observation probabilities (B) are initialised

to random numbers and the most probable pathway for the underlying state can be

calculated based on a set of observations. The most likely state sequence found is then

used to re-estimate the hidden parameters. This is then cycled through repeatedly

until the underlying hidden states are unchanged.

5.4.3 Problem 3: Smoothing using the forward/backward algorithm

Often it is of interest to find the probability an observation in a sequence came from a

particular state at a particular time, i.e. P (Sk,t = i|Ok,t). The forward/backward

algorithm is used to efficiently calculate the probability of being in a particular state at

each time point in a hidden Markov model, given the entire observation sequence for

each patient given the current parameter values φ. The forwards/backwards

algorithm uses the forwards algorithm, defined in §5.4.1, (equations 5.14 to 5.16) and

the backwards algorithm (5.18) to (5.20) for smoothing, as explained below.

The backwards algorithm is analogous to the forwards procedure, where the last

observation is taken and iterated backwards. Assume the backward probability equals

1 to start with, such that if βt(i) = P(Ok,0:t|Sk,t = i, φ) then:

βt(sT ) = 1 (5.18)

Each recursive probability is calculated:

βk,t(l) =

T∑
t=l

ak,st−1,Stbk,t+1(mst)βt+1(sT ) (5.19)
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for l = t− 1, t− 2, t− 3, ..., 0 until termination:

P (O|φ) =
t∑
t=0

βk,t(l). (5.20)

The probabilities from the forwards algorithm and backwards algorithm are often

scaled to sum to 1 because as length of follow up time increases, the probabilities tend

to 0 exponentially.

Smoothing is accomplished by multiplying the probabilities from the forwards

algorithm and the backwards algorithm together in order of time, so estimating the

marginal probability of transitioning from state to state at each time point.

Again we use the above weather example in §5.4.1 to determine if a patch of grass is dry

or wet: the aim is to find the best hidden sequence of the grass state given R, S, C was

observed and our model parameters. The forwards probabilities have already been

calculated, so we now calculate the backwards probabilities assuming probabilities of

1 in each state:

βC,t=2(CD) = 1.0

βC,t=2(CW ) = 1.0.

For t=1:

βS,t=1(D) = [βt=2(D)aDD + βC,t=2(W )aWD]bt=2(CD) = [(0.8× 0.5× 1) + (0.9× 0.2× 1)]

= 0.58.

βS,t=1(W ) = [βt=2(D)aDW + βC,t=2(W )aWW ]bt=2(CW ) = [(0.2× 0.5× 1) + (0.1× 0.2× 1)]

= 0.12.

The final probabilities for t=0 are:

αR,t=0(D) = [βt=1(D)aDD + βS,t=1(W )aWD]bt=1(SD)

= [(0.8× 0.3× 0.58) + (0.9× 0.7× 0.58)] = 0.50.

αR,t=0(W ) = [βt=1(D)aDD + βS,t=1(W )aWD]bt=1(SD)

= [(0.2× 0.3× 0.12) + (0.1× 0.7× 0.12)] = 0.02.
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Table 5.1: Marginal (scaled) probabilities at each

time point for observing rain, sun, cloud using the

forwards/backwards algorithm.

Time (t) Forwards algorithm Backwards algorithm Forwards/ backwards

algorithm (scaled1)

α = D α = W β = D β = W αβ = D αβ = W

0 0 0.1 0.51 0.02 0 (0) 0.002 (1)

1 0.03 0.01 0.58 0.12 0.02 (0.995) 0.001 (0.05)

2 0.01 0.001 1 1 0.014 (0.93) 0.001 (0.07)

1 Probabilities are scaled to sum to 1.

Table 5.1 shows the resulting probabilities in order of time and multiplies them to give

the marginal probabilities of being in a dry or wet state over time using the

forwards/backwards algorithm.

The next HMM problem is to find the hidden part of the model by calculating the

optimal state sequence of the model given the current parameter values. The Viterbi

algorithm, proposed by Viterbi101 is typically used for this. The algorithm works by

finding the most probable sequence of hidden states for patients overall that results in

the observed states.

5.4.4 Problem 4: Decoding using the Viterbi algorithm

The Viterbi algorithm finds the most likely sequence of the underlying hidden states

given the entire observation sequence and the current model parameters, φ. Using the

above weather example to determine if a patch of grass is dry or wet, the aim would

be to find the best hidden sequence of the grass state given rain (R), sun (S), cloud (C)

was observed and the current value of the model parameters, φ. In other words, we

seek to find for each patient k the state sequence ({Sk,t}t=Tt=0 ) that maximises P(S|O,φ)

or equivalently P(S,O|φ). Let:

Vt−1(i) = max
∀sk,t=0:t

P (sk,0, Sk,1, ..., sk,t=i = i, Ok,0(sk,0), Ok,1(sk,1), ..., Ok,t(sk,t = i)|φ),

(5.21)
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where Vt(i) is the maximum probability along a single hidden pathway for patient k

at time t and max
∀Sk,t=0:t

is the most probable path taking the maximum over all possible

previous state sequences. Given the probability of a patient being in every state at time

t has already been calculated, the Viterbi probability is calculated by taking only the

most probable state sequence that leads to the next state. For a state Sk,t at time t:

Vt+1(j) = [max
k,st

Vt(st)ak,st,st+1 ]bk,t+1(mj). (5.22)

In addition to the probability Vt(st), the Viterbi algorithm also produces the most likely

state sequence for each patient, k, and hence for the dataset overall. We define this as

Wk,t(j), where j represents the current state a patient is in, to keep track of the sequence

of hidden states that led to each state. In other words, this quantity remembers what

current state a patient is in before finding the next most likely state at time t + 1. The

optimal state sequence can then be found by92:

1. Initialise:

Vk,0(s0) = πk,s0bk,0(ms0)

Wk,0(s0) = 0.
(5.23)

2. Recursion for t=2, ..., T:

Vk,t(st) = max
k,st−1

[Vk,t−1(st−1)ast−1,st ]bk,t(mst)

Wk,t(st) = argmax
k,st−1

[Vk,t−1(st−1)ast−1,st ].
(5.24)

3. Termination:

P (S∗, O|φ) = max
k,sT

[Vk,T (sT )]

S∗k,T = argmax
k,sT

[Vk,T (sT )]
(5.25)

4. Backtracing the best state sequence to the beginning:

S∗k,t = Wk,t+1(S
∗
k,t+1), (5.26)

for time t = T − 1, t − 2, ..., 2, 1 for the most probable path S∗. Due to computational

underflow, the logarithms are usually taken for log(πk,s0), log(ast+1,st) and

log[bk,t(mst)]. Note that this calculation is similar to that of the forwards algorithm

(equation 5.14 to 5.16), where the summation is replaced with a maximum.
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We now illustrate the above by returning to our example set out in §5.4.1. We can use

the model parameters to find the most probable state sequence for a patch of grass

given rain (R), sun (S) and cloud (C) are observed over time t = 0, 1 and 2. The initial

probabilities are:

P (D) = πbt=0(D) = 0× 0.2 = 0

P (W ) = πbt=0(W ) = 1× 0.1 = 0.1

The key to the Viterbi algorithm is that only the highest scoring pathways are kept

at each possible state rather than a list of all possible states. Since, at time t = 0,

P (W ) > P (D), we proceed with the probability of being in a wet state at t = 0, to

calculate the probability of the next state being wet or dry given that sun is observed:

P (W,D) = P (D)aW,Dbt=1(D) = 0.1× 0.9× 0.3 = 0.027

P (W,W ) = P (D)aW,Dbt=1(W ) = 0.1× 0.1× 0.7 = 0.007

Taking the most probable states forward, P(W,D), the probability of the final state being

wet or dry given that we observe cloudy weather is:

P (W,D,D) = P (W,D)aD,Dbt=2(D) = 0.027× 0.8× 0.5 = 0.011

P (W,D,W ) = P (W,D)aD,W bt=2(W ) = 0.027× 0.2× 0.2 = 0.001

The most probable sequence of states for a patch of grass given rain, sun and cloud are

observed and the model parameters is: wet, dry and dry (Figure 5.4). Note that the

probabilities at the end are similar to those produced from the forwards/backwards

algorithm in Table 5.1.

Figure 5.4: Graphical representation of Viterbi algorithm to find the most likely

sequence of states for a patch of grass.
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Having described multi-state Markov models and in particular outlined how the

likelihood is obtained, and the role of the forwards/backwards algorithm and the

Viterbi algorithm, we now return to our TB application.

5.5 Multi-state models in tuberculosis clinical trials

In TB clinical trials, part of the algorithm to determine the composite primary

outcome of treatment failure (see §3.1) states that patients diagnosed with TB are

considered “cured” at the point when two consecutive negative sputum culture

results are observed (at separate visits). Using multi-state models enables us to

impute the missing data (details to follow) resulting in a “completed” dataset which

can be used to determine each patient’s outcome. Hence, we can define the primary

outcome of treatment failure over 18 months of follow-up as:

1. Relapse; two consecutive positive culture results at separate visits after the

treatment phase following “cure”,

2. Patients who are never “cured”

As in §4.1, the final classification which classes patients who had a positive culture

result followed by a negative culture result, where the positive result was preceded by

at least two consecutive negative culture results, i.e. −,−,+,− is considered a

treatment success. This definition differs from the REMoxTB and RIFAQUIN studies

where if the last scheduled observed positive result was not followed by at least two

possibly scheduled negative results, it was considered as “unfavourable”. Our

definition in step 3 has been relaxed from the protocol defined outcome to remove any

false positive culture results that occur at the end of follow-up. This is because in the

original analysis, unscheduled visits post the week 78 scheduled follow-up visit were

included to determine the primary outcome. Therefore, any isolated positive cultures

towards the end of scheduled follow-up in the main study would have been classed as

“negative” by two negative culture results at these extra unscheduled visits post week

78. For analyses performed in this chapter, we only look at results collected at the

scheduled follow-up visits to impute the missing data. Unscheduled results where

positive or negative culture results were observed (and therefore known) between

randomisation and week 78 are then included to determine patients’ overall outcome.
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To determine treatment failure, as defined above, requires data from each patient at

each scheduled visit. The aim is to include all patients in the analysis (intent-to-treat),

excluding patients for reasons unrelated to treatment such as drug resistance, protocol

violations at enrolment or no positive culture results seen in the first 2 weeks of

randomisation. When data are missing, we are going to use the underlying state to

impute the missing observation at each scheduled follow-up visit for all patients.

Although looking at the entirety of a pathway of state sequences given the

observations seen in the data is useful to get an overall picture of a study, using the

whole pathway per patient predicted by Viterbi may not always match the states that

were observed in the study (see §5.4.4). This is because for misclassification models

where the observations are states, a long sequence of observations seen may not

always exactly match the sequence predicted by the Viterbi algorithm since Viterbi

calculates the expected pathway given the entirety of what is seen. Instead, we use the

forwards/backwards algorithm (see §5.4.1) to find the hidden states which are then

used to impute the missing culture data, resulting in a “completed” dataset.

Following imputation, any unscheduled, observed, visits are then included if those

visits occurred over the course of scheduled follow-up to determine whether or not a

patient was a treatment failure.

A sequence of underlying (unobservable) states based on taking the maximum

probability of independently calculated states will not always equal the most probable

overall sequence of states predicted by the Viterbi algorithm. This is because the

Viterbi algorithm calculates the most probable set of state sequences overall, and so

states predicted by this algorithm may not always match an observed (known) state.

Consequently, to ensure that the known (observed) states within the dataset are used,

the forwards/backwards algorithm is preferred for imputation of the missing data. As

described above (§5.4.3), this algorithm finds the probability of a patient being in a

particular state (Sk,t) at each time t.
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5.5.1 Imputation for missing data in multi-state models

The forwards/backwards algorithm (see §5.4.1) predicts what underlying state a

patient is in at a particular time point. We extend this algorithm to impute missing

state data (i.e. sputum test results) taking into account the variability of the state

predicted by the forwards/backwards algorithm as follows:

1. Draw a random parameter (say, φ̂∗) from the multi-variate normal distribution:

φ̂∗ ∼ N(φ̂, V ar(φ̂)). Then we use the forwards/backwards algorithm to find the

marginal probabilities per patient k at time t.

Then to impute the states, for each observation that is missing (z̃k,t) per patient k:

2. Set φ = φ̂∗ and calculate the probability of state, Sk,t, at time t.

3. Draw independent random numbers, Randk, between 0 and 1 from the uniform

probability distribution, Uk,t(0, 1).

4. For binary states (where the states are positive or negative culture results in our

TB datasets), if uk,t < P (Sk,t = 1), impute the sputum test results as 1, otherwise

as 0 (corresponding to Sk,t = 2).

Following this process gives us one imputed set of observations for states that are

missing. Steps 1-4 can be repeated to produce I imputed datasets. For each of these I

imputed datasets, the primary outcome can be determined, treating the states as

positive/negative sputum test results. Each of these imputed sets gives the initial or

previous parameter estimates (φinit) and standard error. The final step is then to

combine these I imputed data sets, following the calculation of the primary outcome

for each imputed data set using Rubin’s Rules34 as defined in Chapter 3 (see §3.5.1).

We use the msm package in R to fit HMMs95. Within this package, an extra feature

was added by Chris Jackson upon our request to draw a random parameter from the

multi-variate normal distribution to implement step 1 (§5.5.1).

5.5.2 Calculation of probability transitions

To calculate the probability of transitioning from state to state, we need to estimate the

probability transitions (ak,i,j). The calculation of the probability transitions from the
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HMM can be used to assess how well the HMM fits to our datasets over time. In order

to find these probabilities, we use transition intensities. These transition intensities,

λi,j , are defined as the instantaneous risk of moving from state i to state j 95. Transition

intensities are defined as:

λi,j = lim
dt→0

P (Sk,t+dt = j|Sk,t = i)

dt
. (5.27)

For our TB datasets, we use a two state Markov chain where a patient can either be in a

positive state or a negative state. For this simple two state Markov chain, the intensity

matrix Q takes the form:

Q(t) =

to state (j)

fr
om

st
at

e
(i)  −λ12(t) λ12(t)

λ21(t) −λ21(t)

 .
By definition, the rows sum to 093.

Time constant probability transitions for a set of covariates

For continuous-time multi-state Markov models, possible predictors of the outcome

(i.e. treatment failure) can be added to the model as covariates. In this section, we

assume time is homogeneous. For a stationary Markov process, the matrix

exponential102 of the scaled transition intensity matrix is used to calculate the

probability of transitioning from state i to state j (i.e. ai,j). In the simple case where

the baseline intensities are constant, Pi,j(s, t) = 1 − eλi,j(t−s) is used to estimate the

probability of transitioning from state i to state j. This probability assumes the

baseline intensities are constant and that the model is time-homogeneous.

Simple simulation study

To check our understanding of the relationship between transition intensities and

transition probabilities where the effect of time is assumed to be constant, we

performed a simulation study for a two state Markov model. The transition intensity

from state 1 to state 2 was set at 0.1 and that from state 2 to state 1 at 0.3, and these are

constant over time. The probability transitions were calculated using the matrix

exponential of these known intensities. Data were simulated over 10 time points for
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10,000 patients from the calculated probability transitions. The HMM was fitted using

the msm package and the parameters of the estimated intensities from this model were

used to estimate the transition probabilities, to compare with those used to generate

the data. The probability of changing state over time was always defined on the initial

probability of state 1 or 2 (i.e. at the first time point). For example, the probability of a

change from state 1 to state 2 at time t (for t=2, 3, 4, 5, 6, 7, 8, 9 and 10) depends on the

initial probability of state 1 at time t. The transition from state 1 to state 2 fitted by the

HMM to the simulated data gave an estimated intensity of 0.098 (95% CI; 0.096 to

0.101) which includes the true value of 0.1. The transition from state 2 to state 1 had an

intensity of 0.301 (95% CI; 0.294 to 0.308) which again includes the true value of 0.3.

Table 5.2 shows that the transition probabilities estimated from the simulated data

closely agree with the true values of the probability transitions. The full simulation

program, presenting these results and the estimates of the probability transitions are

in Appendix G.

Table 5.2: Comparison of simulated probability transitions

to the true values, where time is constant.

Time (t) True values Estimated values1 True values Estimated values1

P(St = 2|St−1 = 1) P(St = 2|St−1 = 1) P(St = 1|St−1 = 2) P(St = 1|St−1 = 2)

1 0.082 0.081 0.247 0.248

2 0.138 0.136 0.413 0.414

3 0.175 0.172 0.524 0.526

4 0.200 0.197 0.599 0.601

5 0.216 0.213 0.648 0.651

6 0.227 0.224 0.682 0.685

7 0.235 0.232 0.704 0.707

8 0.240 0.236 0.719 0.723

9 0.243 0.240 0.730 0.733

10 0.245 0.242 0.736 0.740

1Values estimated from the simulated data.
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Time-varying probability transitions and a time-varying covariate

Probability transitions can also be calculated in cases where the covariate in the

Markov model is time-dependent, such as age or time itself. With time-varying

covariates, transition intensities Q(t) are dependent on time. Probability transitions

can be estimated in smaller windows of time across the whole time. This assumes that

transitions intensities (Q) are piecewise constant between time intervals. Probability

transition matrices can then be multiplied individually,

P (tz, tz+1) = exp((tz+1 − tz)Q(tz)), over time.

Simple simulation study

Data were simulated over 10 time points for 10,000 patients from the calculated

probability transitions. The HMM was fitted using the msm package and the

parameters from this model was compared with the time used to generate the data.

To check our understanding of the relationship between the transition intensities and

the transition probabilities where time is not constant, we performed a simulation

study including time itself as a time-varying covariate using the msm package. Data

were simulated for 10,000 patients over 10 time points for a two state Markov model.

The initial transition intensity from state 1 to state 2 was set at 0.22 and increased by

increments of 0.02 over time t (from time=1, 2, 3, 4, 5, 6, 7, 8, 9 and 10). The initial

transition intensity from state 2 to state 1 was set at 0.57 and increased by increments

of 0.07 until the 10th time point. From these intensities, probability transitions were

calculated assuming transition intensities were piecewise constant from t− 1 to t. The

HMM was fitted using the data simulated from these true values and the parameters

from this HMM were compared with the intensities used to generate the data. Table

5.3 shows the true value of the probability transitions and the estimates from the

simulated data. The full simulation program, presenting these results and the

estimates of the probability transitions are in Appendix G.
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Table 5.3: Comparison of simulated probability transitions

to the true values, where time is constant.

Time (t) True values Estimated values1 True values Estimated values1

P(St = 2|St−1 = 1) P(St = 2|St−1 = 1) P(St = 1|St−1 = 2) P(St = 1|St−1 = 2)

1 0.152 0.153 0.394 0.404

2 0.160 0.159 0.426 0.426

3 0.166 0.165 0.454 0.449

4 0.173 0.170 0.481 0.473

5 0.178 0.176 0.505 0.496

6 0.183 0.181 0.527 0.520

7 0.188 0.186 0.547 0.543

8 0.192 0.191 0.566 0.566

9 0.196 0.195 0.583 0.588

10 0.200 0.199 0.599 0.610

1Values estimated from the simulated data.

Checking the fit of the model

In addition to finding the probability transitions from the transition intensities, we can

estimate how well these models fit to the observed raw data. Here, we consider having

imperfect observations of an underlying disease state. We calculate the proportion of

patients transitioning from state i to state j. This calculation is simply:

Total number of transitions from state i at time 0 to state j at time t
Total number of patients observed at time t

. (5.28)

Using our simulated example conducted above (§5.5.2), the probability of

transitioning from state 1 to state 2 when time=1 is calculated by taking the total

number of patients who transition from state 1 at time 0 to state 2 at time 1 divided by

the total number of patients observed at time 1. For time=2 the probability of

transitioning from state 1 to state 2 is calculated by taking the total number of patients

who transition from state 1 at time 0 to state 2 at time 2 divided by the total number of

patients observed at time 2, and so on until time=10. The calculation is similar for

state 2 to state 1 transitions.
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For time varying probabilities, the proportion of patients transitioning from state to

state is calculated by taking the proportion of patients who transition from state i at

time t to state j at t+ 1:

Total number of transitions from state i at time t to state j at time t+ 1

Total number of patients observed in state i at time t
. (5.29)

To demonstrate this, we take the simulated example above in §5.5.2 and calculate the

proportion of patients with observed data transitioning from state to state.

Figure 5.5: Comparison of raw probability transitions to probability transitions from

software for time-varying covariate from state 1 to state 2 and state 2 to state 1.
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Figure 5.5 compares these proportions (indicated by the green line) to the true values

(indicated in yellow) and to the probability transitions calculated from the msm

package (indicated by the orange line). The model fitted by the msm package fits

relatively well to the probability transitions calculated from the raw data as well as the

true values. Estimating fit of these models produced by the software in this way to

our exemplar TB data sets will give us an approximate idea of how well these models

may be fitting in practice to the raw data.
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5.6 Application of hidden Markov model to the REMoxTB and

RIFAQUIN studies

The REMoxTB (§3.2.1) and RIFAQUIN (§3.2.2) studies will be used as examples to

evaluate the practical utility of HMMs for TB trials, to handle missing data issues

(under MAR) for an intention-to-treat type analysis. As we have already noted, this is

a key issue: approximately 10% of patients were excluded from the REMoxTB study

and 15% were excluded from the RIFAQUIN study due to loss of follow up or

withdrawal, and the non-inferiority margin is 6%. The proportion of patients

excluded in these studies therefore exceeds the margin, and so including these

observations may have a non-trivial impact on the conclusions.

The average baseline intensities are estimated from the msm package. Since we only

have two states in our model, these intensities can be interpreted as hazards. From

now on, this is the term we will use to describe transition intensities. This HMM will

include randomised treatment arm (trt) and time as covariates and an interaction

between the two covariates if needed to allow the hazards to be modelled differently

in the treatment arms. The β parameters are interpreted as log hazard ratios.

Different smoothing methods are compared since the intensities are clearly expected

to vary over time. Sections 5.6.1 to 5.6.4 describe these methods in detail. These

smoothing methods may be able to better capture the probability of transitioning from

state to state over time, particularly in the early part of follow-up where patients may

fluctuate from state to state. Smoothing methods include piecewise constants, linear

splines, cubic splines and fractional polynomials.

5.6.1 Piecewise constant

A piecewise constant splits the covariate into different sections depending on the

placement of ζz knots where, z = 1, 2, ..., Z. A constant hazard between the knots is

assumed which allows us to model a non-linear hazard. To find the transition

intensity matrix estimates (λi,j(t)), transitioning from state i to state j (at time t) for

the REMoxTB and RIFAQUIN studies, if patients are observed on the control arm then

trt1 = 0 and trt2 = 0. For the REMoxTB study if patients are observed on the
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isoniazid arm then trt1 = 1 and trt2 = 0, if observed on the ethambutol arm then

trt1 = 0 and trt2 = 1. For the RIFAQUIN study if patients are observed on the 6

month regimen then trt1 = 1 and trt2 = 0, if observed on the 4 month regimen then

trt1 = 0 and trt2 = 1. Continuous time represents the follow up time of the scheduled

visit, for patients k:

λi,j(t) = β0 + β1trt1 + β2trt2 + β3time+ β4trt1 ∗ time+ β5trt2 ∗ time+ ...+

βf

[
(time > ζz)+) + (trt(time > ζz)+)

]
,

where (time > ζz)+ = 1

0, otherwise

(5.30)

and βf represents the f th parameter. The subscript of “+” means that the resulting

values from using the specified knot will always be greater than 0.

5.6.2 Linear splines

Linear splines assume that the relationship between the covariate and the hazard is

linear, joining at the knots where the covariate has been split into sections. The model

is:

λi,j(t) = β0 + β1trt1 + β2trt2 + β3time+ β4trt1 ∗ time+ β5trt2 ∗ time+ ...+

βf [(time− ζz)+ + trt1(time− ζz) + trt2(time− ζz)]
(5.31)

for ζz = 1, 2, 3, ..., z knots. The interaction terms are denoted by trt1(time − ζz) and

trt2(time− ζz).

5.6.3 Restricted cubic splines

Restricted cubic splines (RCS) assume a cubic polynomial relationship between the

covariate and the hazard where the cubic terms change at the knots, and below the

first knot and above the final knot. The lower and upper range of the relationship is

restricted to linear. These models are more flexible than linear splines as they allow

for a smoothly varying cubic relationship between the covariate and the outcome. The

model is:

λi,j(t) = β0 + β1trt1 + β2trt2 + β3 ∗ time+ β4trt1time+ β5trt2time+ ...+

R[time] + ...+R[trt1time] +R[trt2time]
(5.32)
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where R[time], R[trt1time] and R[trt2time] represent the cubic polynomial part of the

model. For R[time] and z knots at times ζq = 1, 2, ..., z 97:

βf time+

z−1∑
q=2

βf

[
(time− ζq−1)3+ − (time− ζz−1)3+

ζz − ζq−1
ζz − ζz−1

+ (time− ζz)3+
ζz−1 − ζq−1
ζz − ζz−1

]
,

(5.33)where (time− ζ)3+ = (time− ζ)3, if time ≥ ζ

0, if time < ζ.

For the R[trt1time] and R[trt2time] covariates, (5.33) applies replacing time with the

interaction: trt1time or trt2timed respectively.

5.6.4 Fractional polynomials

Fractional polynomials are estimated from a set of polynomials of order -2, -1, -0.5, 0,

0.5, 1, 2, 3, which transform the covariate of interest into a polynomial term103.

Fractional polynomials of order 2 (i.e. we restrict the choice to two powers,FP1, FP2,

from the set) will be used to attain two transformations of the time, trt1time and

trt2time covariates. The model is:

λi,j(t) = β0 + β1trt1 + β2trt2 + β3time
FP1 + β4time

FP2 + β5trt1time
FP1

+β6trt2time
FP1 + β7trt1time

FP2 + β8trt2time
FP2 .

(5.34)

We will now apply these smoothing methods to find the best fitting model to our

observed data for the REMoxTB and RIFAQUIN studies, using the -2 log-likelihood

ratios as a guide. Having chosen our preferred model, we use the

forwards/backwards algorithm to impute each missing observation and then we use

the Viterbi algorithm to investigate what the most probable underlying state sequence

is overall (§5.3 to §5.5.1).

5.7 Application to the REMoxTB study

We now explore fitting a HMM to the REMoxTB study where the negative and

positive culture results observed are measures (made with error) on the underlying

disease which can either be positive or negative. As already discussed, the aim is to
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model all the observed data, and then use the model to multiply impute patients’

missing sputum test results under the intention-to-treat analysis. Patients are

excluded for reasons unrelated to treatment (Table 3.1). This will enable calculation of

the primary outcome for each patient (in each imputed dataset).

For our HMM analyses, the 2% (n=40) of patients who died during the study were

removed since the number of deaths is small and balanced among the treatment

groups. Therefore removing these patients has no material effect on any inferences

made. This makes the modelling substantially less complex since we look at 2 states

instead of 3. Recall that REMoxTB compared two treatment arms to the standard of

care regimen and patients were followed up over 17 scheduled visits (see §3.2.1). At

each of these visits a sputum test was taken and cultured for TB. As previously

discussed (§5.5) culture results from sputum samples collected at unscheduled visits

are not included in the modelling. As the timing of these observations differs by

patient, including them complicates the model and increases the challenge of fitting it.

Figure 5.6: Two state HMM for TB1.

1 for continuous time t.
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Figure 5.6 shows a two-state Markov chain model for TB trials where a patient’s state

is either “positive” or “negative”. Here, patients can transition in and out of each state

over time t. The HMM, showing the observation process, follows as for Figure 5.2

with time t running from time = 0 (i.e. randomisation) to 78 weeks. The state, St, is the

actual positive or negative TB state at time t. The probability transitions, ak,i,j(t)

where i, j ∈ 1, 2, is the instantaneous transition intensity interpreted as hazards at

time t. Patients can remain in or transition to and from each state at any time during

follow-up. However the underlying TB state cannot be directly observed. Instead, at

each scheduled follow-up visit patient sputum samples are taken and are transferred

to laboratories. A Mycobacteria Growth Indicator Tube (MGIT) machines is then used

to automatically detect whether patients are culture negative or positive63. The

REMoxTB and RIFAQUIN studies also collected results from a Löwenstein-Jensen

medium (LJ) which detects positive or negative results manually. However, these

processes are not error-free. Therefore it is possible that false negative or false positive

results are returned. Therefore, the observation process (the culture results of the

sputum samples at the scheduled visits) needs to be accommodated in the HMM. This

is done by specifying a misclassification matrix (see §5.3).

Next, we describe the model we will build for our HMM before choosing our

preferred model. The model chosen will then be used to impute missing observations

to determine the overall outcome for each patient and compare these results to that

from the main study. We then predict the most likely overall state sequence per

patient, use this to determine the overall outcome per patient and compare the results

of this to the results of the main study.

5.7.1 Model building

Recall from §3.6.1 that patients can still be included in the study if they have a positive

culture result during the first 2 weeks of the study if not at baseline. Therefore, to

initialise the state transitions, we take an initial working assumption that 80% of

patients have a positive culture result (i.e. have TB) and 1% have a negative culture

result at baseline. We also assume initial values of 95% sensitivity (i.e the probability

of having a true positive result) and specificity (i.e. the probability of having a true

negative result) based on expert opinion. Following the first 8 weeks where patients
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are assessed weekly, patients are assessed less frequently over the following 70 weeks

(§3.8.1). During the first 8 weeks we assume the observation times represent the exact

times of the transition, and patients are assumed to be in the same state between these

follow-up visits for continuous time95. In other words, the observed state remains

constant between scheduled follow-up visits. This is reasonable to assume since it is

unlikely that the result of the sputum culture per patient would frequently fluctuate

between a positive and a negative culture result between the 7 days of weekly

follow-up visits. Subsequent visits have a much larger time gap, and therefore after 8

weeks it is assumed that transitions fluctuate from positive to negative culture results

and vice versa between observed scheduled visits until the final 78 week follow up

visit.

Our strategy to find our preferred model is to begin with constant hazards (no

covariates included) and then increase the flexibility of the hazard model until

improvements in the goodness of fit are negligible. There may be instances where the

resulting -2 log-likelihood suggests a model is a good fit, but the resulting parameters

have great uncertainty surrounding them. The chosen model will be determined on a

combination of both the log-likelihood and reasonable confidence intervals that

surround the resulting parameters. This also applies when choosing our preferred

model overall.

Our first addition to the model is to include treatment and time as covariates, together

with the interaction between them allow the hazards to vary linearly with time and

allow this to differ by randomised treatment arm. The next step is to investigate

increasingly complex smoothing models for the hazard, working through the

approaches described in §5.6.1 to §5.6.4.

In each case, we fit a full interaction with treatment, to allow the hazards to vary by

treatment group. Due to the complexity of the smoothing models, with additional

knots and trying to estimate the sensitivity and specificity of positive and negative

results can result in unrealistic estimates. In this case, we can use the estimated matrix

of the hazard, misclassification probabilities and hazard ratios of the covariates as

initial values95 thus restarting the HMM. Additionally, the computation of these
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complex models may break down. Here, we can take a simpler model (e.g. without

estimating the misclassifications) and use the estimated matrix of the hazard and the

hazard ratios of the covariates as initial values, until we are able to estimate the

misclassifications. This process is performed iteratively until the preferred model is

found thus improving the choice of the probabilities of the transition and

misclassification matrices.

For each model we investigate, a graphical representation of the prevalence will be

produced to visualise the goodness of fit of the model. Prevalence is defined as the

proportion of patients observed to be in a positive or negative state over time, and the

results from the Viterbi algorithm are used to assess prevalence if patient observation

results are missing at any time point. This is compared against the expected

prevalence which is forecasted from our preferred model. Since misclassifications are

assessed, the expected prevalence of the observed (and therefore known) states are

estimated from the assumed proportion occupying each state at the initial time using

the fitted probability transitions (see §5.5.2 and §5.5.2)104. The expected prevalences of

the known states is multiplied by the misclassification probabilities to obtain the

expected prevalences of the observed states104.

In a second stage, we derive estimated positive to negative probability transitions and

negative to positive probability transitions from our preferred model. These

probability transitions are then compared to the raw positive to negative probability

transitions and negative to positive transitions from the raw data. We also compare

these estimated probability transitions and raw transitions to probability transitions

(positive to negative and negative to positive) from the two-fold fully conditional

specification multiple imputation model (§3.6) to estimate the fit of these models to

the raw data. Although the raw data have missing values, we hope that the chosen

model will take these missing observations into account and so large departures from

the raw data are unexpected.

Next, having chosen the preferred model, we use the forwards/backwards algorithm

from §5.4.3 to find the probability of being in a positive state or a negative state at each

time point. We use multiple imputation as set out in §5.5.1 to account for the

uncertainty of the estimated probabilities. A total of 20 imputations will be used
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(§5.5.1). Having used this algorithm, the outcome (treatment failure) of each patient is

determined for each imputation set. These are then combined using Rubin’s Rules34.

The resulting estimates are then compared to those of the original study.

For completeness, we also use the Viterbi algorithm (see §5.4.4) which finds the most

probably pathway of hidden states for each patient. The outcome of each patient can

then be determined (see §5.5). These results are then compared to the estimates found

in the original study. We then compare these results and the results from the

forwards/backwards algorithm to the two-fold fully conditional specification

multiple imputation model.

All analyses were implemented in R version 3.3.2 using Chris Jackson’s msm package95.

5.7.2 Results

In the original analysis, a total of 237 patients were excluded from the PP analysis and

111 were excluded from the mITT analysis. For these analyses, a total of 1785 patients

were included in the analysis (see Table 3.1). Aggregating the number of transitions

over the follow-up time and individual patients, we find most observations (n=11,

325) were negative to negative transitions, and around half of that (n=5480) were

positive to positive transitions (Table 5.4). As noted earlier (see §5.7.1), most patients

were in a positive state at the start of the study and most become negative over the

first 3 months of follow-up. There were fewer negative to positive transitions (n=856)

than positive to negative transitions (n=2078) and a non-trivial number of culture

results were missing.

Table 5.5 shows the results from fitting different models (see 5.6.1 to 5.6.4) to the data

and Figures 5.7, and 5.10 to 5.14 show the observed and expected prevalence for each

fitted HMM.
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Table 5.4: Total number of state transitions for all patients

across all visits.

[To(St = j)]

Positive Negative Missing

Positive 5480 2078 1125

[From(St−1 = i)] Negative 856 11325 1897

Missing 613 1975 3211

The first model is a simple HMM with no covariates included. The second model

includes treatment, time and an interaction between the two as covariates. Models 3

to 6 investigate smoothing methods (a piecewise constant model, a linear splines

model, a restricted cubic splines model and a second order fractional polynomial

model) as described from §5.6.1 to §5.6.4. The knots chosen for the piecewise constant,

linear splines and restricted cubic splines models were placed at 4, 8 and 26 weeks.

This is a natural choice given that these are where visit windows were imposed in

Chapter 3 and Chapter 4.

Model 1: No covariates

The first HMM with no covariates included in the model shows that on average, the

probability of a patient being in a negative state in the next instant if they are currently

in a positive state (i.e. presence of TB) is 0.14 and the probability of a patient having a

positive culture result in the next instant if they are currently in a negative state (i.e.

no presence of TB) is much lower at 0.005. The probability the true underlying state is

positive given the observed state was negative is 7.6% (0.076; 95% CI: 0.069 to 0.085)

and the probability that the true underlying state is negative given the observed state

is positive is 1.6% (0.016; 95% CI: 0.013 to 0.019). As shown in Table 5.5, these

misclassification probabilities are mostly consistent for all HMMs explored. The fitted,

marginal prevalence from this model (Figure 5.7) shows that the model severely

underestimates the proportion of patients in a negative state between 10 and 20 weeks

and overestimates the proportion between 39 and 58 weeks.

228



Figure 5.8 shows the probability transitions with no covariates, assuming a constant

hazard. This is compared to probabilities from the raw data for positive to negative

and negative to positive transitions. This model overestimates the positive to negative

transitions between weeks 6 and 17 and is underestimated from week 22 until the final

follow-up visit at week 78. The model underestimates the probability of transitioning

from a negative state to a positive state throughout the study. This suggests that this

model is not a good fit to our data.

Figure 5.7: Estimated and observed marginal prevalence: no covariates included for

REMoxTB.
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Figure 5.8: Estimated probability transitions, P (St = j|S0 = 1), with no covariates for

REMoxTB.
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Table 5.5: Different HMMs for REMoxTB.

Transition states Misclassifications

Model P (St = j|St−1 = i) (95% CI) P (O|S) (95% CI)

P (Neg|Pos) P (Pos|Neg) P (Ot = Pos|St = Pos) P (Ot = Neg|St = Pos) P (Ot = Pos|St = Neg) P (Ot = Neg|St = Neg)

No covariates

Baseline hazard 0.145 (0.138, 0.153) 0.005 (0.004, 0.006) 0.923 (0.915, 0.931) 0.077 (0.069, 0.085) 0.016 (0.013, 0.019) 0.984 (0.981, 0.987)

-2 log-likelihood: 16550.9

Treatment, week interaction

Baseline hazard 9.812 (7.057, 13.642) 0.366 (0.238, 0.563) 0.920 (0.912,0.927) 0.080 (0.073,0.088) 0.020 (0.016,0.025) 0.980 (0.975,0.984)

Isoniazid 0.908 (0.681, 1.212) 0.746 (0.316, 1.763)

Ethambutol 1.006 (0.753,1.345) 1.586 (0.6980,3.604)

Week 1.326 (1.268,1.386) 1.293 (1.226,1.365)

Isoniazid*Week 1.052 (0.989,1.119) 1.027 (0.965,1.094)

Ethambutol*Week 1.089 (1.017,1.167) 1.051 (0.980,1.127)

-2 log-likelihood: 16229.22

Piecewise Constant (see 5.6.1)

Baseline hazard 0.080 (0.056, 0.114) 0.006 (0.003, 0.011) 0.929 (0.920,0.937) 0.071 (0.063,0.080) 0.016 (0.012,0.022) 0.984 (0.978,0.988)

Isoniazid 0.886 (0.588, 1.334) 0.353 (0.1065, 1.172)

Ethambutol 1.020 (0.798, 1.304) 0.570 (0.237, 1.371)

Week 1.034 (0.956, 1.118) 0.980 (0.888, 1.082)

Week4 2.589 (1.712, 3.916) 0.060 (0.002, 1.814)

Week8 0.173 (0.018, 1.652) 0.552 (0.019, 16.334)

Week26 0.097 (0.006, 1.466) 0.292 (0.007, 12.481)

Isoniazid*Week 1.068 (0.875, 1.304) 1.026 (0.920, 1.146)

Ethambutol*Week 0.994 (0.915, 1.078) 1.030 (0.924, 1.148)

Isoniazid*Week4 0.879 (0.361, 2.141) 0.606 (0.006, 61.40)

Ethambutol*Week4 1.189 (0.746, 1.893) 0.495 (0.011, 22.82)

Isoniazid*Week8 0.032 (0.001, 0.8629) 4.765 (0.058, 388.92)

Ethambutol*Week8 0.231 (0.024, 2.246) 5.771 (0.125, 265.50)

Isoniazid*Week26 1.003 (0.0001, 8216.39) 0.634 (0.010, 41.54)

Ethambutol*Week26 10.028 (0.502, 200.14) 0.344 (0.005, 24.71)

-2 log-likelihood: 15597.36

Linear splines (see 5.6.2)

Baseline hazard1 0.107 (0.095, 0.119) 0.008 (0.006, 0.011) 0.940 0.060 0.020 0.980

Isoniazid 0.791 (0.531, 1.180) 0.323 (0.014, 7.209)

Ethambutol 0.889 (0.600, 1.319) 0.060 (0.001, 7.478)

Week 1.3621 (1.239, 1.498) 0.7702 (0.490, 1.210)

Week4 0.887 (0.758, 1.038) 0.789 (0.405, 1.535)

Week8 0.698 (0.620, 0.785) 1.434 (0.974, 2.109)

Week26 1.186 (1.068, 1.317) 1.100 (0.941, 1.285)
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Isoniazid*Week 1.083 (0.950, 1.235) 1.094 (0.434, 2.756)

Ethambutol*Week 1.054 (0.924, 1.202) 1.998 (0.534, 7.475)

Isoniazid*Week4 0.963 (0.774, 1.199) 1.016 (0.298, 3.461)

Ethambutol*Week4 0.973 (0.782, 1.212) 0.506 (0.110, 2.335)

Isoniazid*Week8 0.939 (0.801, 1.101) 1.019 (0.585, 1.777)

Ethambutol*Week8 0.970 (0.829, 1.134) 1.120 (0.685, 1.828)

Isoniazid*Week26 1.034 (0.910, 1.175) 0.841 (0.703, 1.006)

Ethambutol*Week26 1.028 (0.912, 1.159) 0.822 (0.687, 0.984)

-2 log-likelihood: 15416.98

Cubic splines (see 5.6.3)

Baseline hazard1 0.116 (0.101, 0.133) 0.001 (0.0001, 0.006) 0.948 0.052 0.016 0.984

Isoniazid 0.778 (0.516, 1.174) 0.196 (0.011, 3.589)

Ethambutol 0.947 (0.633, 1.417) 0.631 (0.092, 4.338)

Week 1.420 (1.262, 1.600) 0.645 (0.434, 0.957)

Week4 7.407×10−7 (1.370×10−12 , 0.401) 41.25 (1.268×10−15 , 1.342×1018)

Week8 1.023×108 (3.876×10−6 , 2.700×1021) 0.946 (3.875×10−37 , 2.307×1036)

Week26 0.239 (1.035×10−9 , 5.504×107) 0.005 (6.673×10−24 , 3.806×1018)

Isoniazid*Week 1.091 (0.925, 1.286) 1.231 (0.500, 3.031)

Ethambutol*Week 1.039 (0.883, 1.223) 0.948 (0.437, 2.055)

Isoniazid*Week4 (2.103×10−10 , 2.685×106) (2.570×10−32 , 5.645×1030)

Ethambutol*Week4 0.027 (3.836×10−10 , 1.891×106) 1882.0 (8.085×10−29 , 4.381×1034)

Isoniazid*Week8 876.147 (1.778×10−16 , 4.316×1021) 0.626 (2.793×10−67 , 1.402×1066)

Ethambutol*Week8 8229 (6.560×10−15 , 1.032×1022) 0.025 (2.153×10−72 , 2.861×1068)

Isoniazid*Week26 0.05617 (1.842×10−13 , 1.713×1010) 4.54062 (1.487×10−36 , 1.387×1037)

Ethambutol*Week26 0.003 (2.425×10−14 , 2.843×108) 5.477×10−6 (8.153×10−48 , 3.679×1036)

-2 log-likelihood: 15524.37

Fractional polynomials (see 5.6.4)

Baseline hazard1 0.007 (0.004, 0.015) 0.005 (0.002, 0.011) 0.96 0.04 0.04 0.96

Isoniazid 0.497 (0.301,0.821) 0.821 (1.751×10−9 , 3.854×108)

Ethambutol 0.695 (0.423, 1.143) 3.641 (2.543×10−9 , 5.213×109)

Week 0.295 (0.209, 0.415) 1.142 (0.529, 2.461)

WeekFP1(0.5) 1.923 (1.424, 2.598) 0.070 (0.0004, 13.445)

WeekFP2(0.5) 4.734 (3.033, 7.389) 1.049 (0.092, 11.897)

Isoniazid*Week 1.158 (0.736, 1.823) 0.541 (0.142, 2.065)

Ethambutol*Week 0.870 (0.516, 1.468) 0.504 (0.049, 5.242)

Isoniazid*WeekFP1(0.5) 1.760 (1.111, 2.787) 0.232 (1.527×10−7 , 3.535×105)

Ethambutol*WeekFP1(0.5) 1.643 (1.011, 2.672) 0.158 (1.182×10−8 , 2.104×106)

Isoniazid*WeekFP2(0.5) 0.719 (0.391, 1.324) 4.607 (0.026, 825.129)

Ethambutol*WeekFP2(0.5) 1.024 (0.526, 1.993) 5.084 (0.003, 8142.642)

-2 log-likelihood: 15610.74

1 Misclassifications were fixed at for sensitivity and specificity.
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In terms of covariates, we can see that time should be included in the model by the

differing probability transitions when HMMs are fitted separately by treatment arm

(Figure 5.9).

Figure 5.9: Estimated probability transitions, P (St = j|S0 = 1), modelled separately by

treatment for REMoxTB.
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Model 2: Treatment, time and an interaction between treatment and time

The second HMM includes treatment, time as a time-varying covariate and an

interaction between the two as covariates. The average risk of transitioning from a

positive state to a negative state is quite large at 9.8, but the wider 95% confidence

intervals (7.06 to 13.6) reflect some uncertainty around this (Table 5.5). It is unclear

why the baseline hazard is so large, but may be an indication that this is not a suitable

model. The average risk of transitioning from a negative state to a positive state is, on

average, 0.37 (95% CI, 0.24 to 0.56). Patients who were randomised to the isoniazid

treatment arm on average have a 9% (HR: 0.91; 95% CI, 0.68 to 1.2) reduction in
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hazard of being in a negative state given their current state is positive and an even

lower hazard (HR: 0.75; 95% CI, 0.32 to 1.76) of being in a positive state given their

current state is negative. On average, patients who received ethambutol have a small

increase in risk of transitioning from a positive state to a negative state and a 59%

increase in hazard (1.59; 95% CI, 0.70 to 3.60) transitioning from a negative state to a

positive state in the next instant, although the wide confidence intervals reflect some

uncertainty around this. The hazard of transitioning from a positive to negative state

increases by 33% (HR: 1.33, 95% CI 1.27 to 1.39) over time and the hazard increases by

29% (HR: 1.29, 95% CI, 1.23 to 1.37) for patients in a negative state who transition to a

positive state over time (“Week” covariate; Table 5.5). The interaction terms show a

5% increase (1.05, 95% CI, 0.99 to 1.12) in hazard of transitioning from a positive state

to a negative state for patients who received isoniazid over time and a 3% increase in

hazard (1.03, 95% CI, 0.96 to 1.09) of transitioning from a negative to positive state

over the duration of follow up. The interaction between the isoniazid arm and time

(week) shows that the hazard of transitioning from a positive state to a negative state

for patients who receive ethambutol increases by 9% over follow up time and the

confidence intervals show that this is a significant interaction (95% CI: 1.02 to 1.17).

The interaction between the ethambutol treatment arm and time (week) shows that

the hazard of transitioning from a negative state to a positive state for patients who

receive ethambutol increases by 5% over time (1.05, 95% CI: 0.98 to 1.13).

The prevalence when treatment, time and the interaction between the two is included

(Figure 5.10) shows that this model is a better fit to the observed data than not

including any covariates. However, the proportion of negative cultures being

observed after 17 weeks from the forecasted model remains constant thus failing to

capture the decreasing trend of having a negative culture between 26 weeks and 52

weeks.
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Figure 5.10: Estimated and observed prevalence when treatment, time and their

interaction are included for REMoxTB.

Model 3: Piecewise constant model

The results from the piecewise constant model suggest the model is a better fit than the

interaction model as the -2 log-likelihood is lower at 15597.36 (Table 5.5), however the

interaction terms between treatment and at week 8 for negative to positive transitions

(HR: 4.765; 95% CI: 0.058 to 388.92 for isoniazid at week 8 and HR: 5.77; 95% CI: 0.125 to

265.50 for ethambutol at week 8) and the interaction terms between treatment and week

26 are also a poor fit reflected by the 95% confidence intervals (HR: 0.634; 95% CI: 0.010

to 41.54 for isoniazid at week 26 and HR: 0.344; 95% CI: 0.005 to 24.71 for ethambutol at

week 26). The prevalence for the piecewise constant model (Figure 5.11) captures the

decreasing incidence of having a negative culture between 12 and 25 weeks, but it is

markedly underestimated.

Model 4: Linear splines model

Figure 5.12 shows the incidence of having a positive culture or negative culture over

time for the linear splines model. This model does capture the decreasing trend of

negative culture results which then levels out again, matching the observed data, to

around 98% by the end of the study at week 78.
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Figure 5.11: Estimated and observed prevalence for piecewise constant model with

knots included at 4, 8 and 26 weeks for REMoxTB.

Figure 5.12: Estimated and observed prevalence for linear splines model with knots

included at 4, 8 and 26 weeks for REMoxTB.
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Model 5: Restricted cubic splines (RCS) model

The prevalence for the RCS model in Figure 5.13 shows the expected prevalence from

the HMM also gives a similar fit to the observed data when RCS is used. However,

looking at the results from this model shows unreasonable estimates suggesting the

model is not as good as the linear splines model (Table 5.5). This is reflected in the

resulting -2 log likelihoods which is 15524.37 with the RCS included and is lower for

the linear splines model at 15416.98 (Table 5.5).

Figure 5.13: Estimated and observed prevalence for restricted cubic splines with knots

included at 4, 8 and 26 weeks for REMoxTB.

Model 6: Fractional polynomials model

The second order fractional polynomials model was challenging to fit and so a fourth

order fractional polynomials model was explored. However, this model failed to

converge. Therefore we continued to use a second order fractional polynomial

beginning with a simpler model, gradually building the complexity by fixing the

misclassification to specific values and using the estimates (i.e. baseline hazard and
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hazard ratios) from the working model as initial values. The width of the confidence

intervals suggest that there is simply not enough information within the dataset to

accurately estimate the baseline hazard and hazard ratios using fractional

polynomials. The wide 95% confidence intervals resulting from the fitted fractional

polynomials model (Table 5.5) show that the hazard of transitioning to a positive state

when patients are currently in a negative state are not well estimated, since most of

the confidence intervals are wide for the covariates. The most uncertainty surrounds

the treatment covariates, where for the isoniazid arm there is a decrease in hazard of

18% (HR: 0.822; 95% CI: 1.751×10−9 to 3.854×108) and for the ethambutol arm the

hazard of transitioning to a positive state given a patient is in a negative state

increases by 3.641 (95% CI: 2.543×10−9 to 5.213×109). The expected prevalence

(Figure 5.14) does not capture what happens at the end of the study as it

underestimates the observed data at the end of the study at 78 weeks.

Summary of the model for REMoxTB

The linear splines model is the preferred HMM and is significantly better compared

with just treatment, time and the interaction between them as covariates (P<0.001).

Therefore the linear splines model is our chosen hidden Markov model for the

REMoxTB study.

Probability transitions for the linear splines model

The linear splines model is our preferred model for the REMoxTB data. Figures 5.15

and 5.16 shows the probability of transitioning from a positive to negative state and a

negative to positive state over time since randomisation from t weeks to t+1 using the

linear splines model from the HMM, including time as a time-varying covariate with

knots at 4, 8 and 26 weeks. The probability transitions from this model are compared

to the raw probability transitions from the REMoxTB dataset and the two-fold fully

conditional specification multiple imputation model (see 3.5.3) over time from t weeks

to t+1. The HMM shows that between 4 and 17 weeks there is a higher probability of

transitioning from positive to negative on the treatment arms than on the control arm

before levelling out (Figure 5.15). The shaded regions within these figures represent

95% confidence intervals for the probability transitions in each treatment arm over

time.
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Figure 5.14: Estimated and observed prevalence for the fractional polynomials model

for REMoxTB.

The probability transitions from the HMM overestimates the probabilities around 8

weeks, but fits a little better to the raw data than the two-fold imputation does

towards the end of the study at around 52 weeks. The two-fold imputation fits better

to the raw data for the negative to positive transition probabilities whereas the linear

splines HMM is slightly underestimated in comparison to the raw data between

weeks 26 to 52, but look reasonable towards the end of the study. At the very

beginning, the HMM shows wide confidence intervals for negative to positive

transitions. This could be because not many patients are negative in the first couple of

weeks in the study, so there is little to no information in those first one to two weeks

which the HMM has picked up on.

The preferred linear splines HMM was further investigated by fitting knots in

different places for positive to negative transitions (see Appendix H). This was done

to see if the choice of knots had a large influence on the estimates of the probability

transitions thus reducing the overestimated positive to negative probability

transitions between 8 to 12 weeks of follow-up. Our original linear splines model with

knots at 4, 8 and 26 weeks still proved to be preferable to describe the REMoxTB data.
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Figure 5.15: Positive to negative probability transitions (PN) for linear splines model

with knots at 4, 8 and 26 weeks for REMoxTB.
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Figure 5.16: Negative to positive probability transitions (NP) for linear splines model

with knots at 4, 8 and 26 weeks for REMoxTB.
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One possible reason for this apparent poor fit in the early stage of the follow-up visit

for positive to negative transitions is that there is insufficient data to estimate the state

transitions around this point. To explore this further, we proceeded to simulate data

based on the results produced from the linear splines HMM with knots at 4, 8 and 26

weeks. Data were simulated for 30,000 patients, 10,000 patients in each treatment arm,

taking time up to 20 weeks using the estimated hazard, hazard ratios, knots and

misclassification probabilities from the linear splines model in Table 5.5. We then

fitted the model using the data simulated, and include the results of the transition

probabilities from these data in the transition probability figures. The results from

fitting the HMM were similar to those used to simulate the data where the hazard of

transitioning from a positive to negative state peaks around 0.5 around 8 weeks before

reducing to around 0.1 by 20 weeks (Figure 5.17).

As a knot was already placed at 4 weeks, an extra knot at an earlier time point was

chosen at 2 weeks to try and bring the estimates of the probability transitions closer to

the raw data at the future 8 week follow up visit. The data were simulated again for

30,000 patients, 10,000 in each treatment arm. This brought the probability transitions

between 6 to 17 weeks down matching closer to the probability transitions shown by

the raw data (Figure 5.19). As this additional knot brought down the probability

transitions, an extra knot was added at 2 weeks on the raw REMoxTB data. The

resulting model matches closer to the raw probability transitions around 8 weeks but

is still not as closely matched as the transition probabilities are from the two-fold

multiple imputation model (see Table H1 and Figures H2 to H3 in Appendix H). The

confidence intervals from the hazards and hazard ratios adding a fourth knot at 2

weeks on the REMoxTB data suggests that this is not the best model (Table H1), in

particular for the negative to positive transitions, also reflected in the higher -2

log-likelihood of 15416.98. For negative to positive probability transitions, the

simulations support the HMM fitted with and without the extra knot placed at 2

weeks (Figures 5.18 and 5.20). In both of these cases, the HMM and the simulated data

underestimate the probability transitions during the continuation phase, remaining

constant with a probability of 0 transitions.
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Figure 5.17: Simulated positive to negative probability transitions (PN) for linear

splines HMM with knots at 4, 8 and 26 weeks for REMoxTB.
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Figure 5.18: Simulated negative to positive probability transitions (NP) for linear

splines HMM with knots at 4, 8 and 26 weeks for REMoxTB.
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The addition of a knot at 2 weeks for the simulated data which were based on the

linear splines model for the REMoxTB data worked well. Adding an extra knot at 2

weeks to the original REMoxTB data did not make a huge impact to reduce the

estimated probability transitions around 8 to 12 weeks. This suggests that the HMM

does not fit quite so well around 8 weeks of follow up. Additionally as an extra knot

at 2 weeks on the simulated data was a closer fit to the raw data suggests that there is

not enough data available to fit our complex model between 8 to 12 weeks of

follow-up. For negative to positive transitions, data that were simulated suggested

there were no transitions during follow-up. This further suggests that there is

insufficient data available for the HMM to fit our data.

Figure 5.19: Simulated positive to negative probability transitions (PN) for linear

splines HMM with knots at 2, 4, 8 and 26 weeks for REMoxTB.

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
Pr

ob
ab

ili
ty

 o
f t

ra
ns

iti
on

in
g 

PN

0 2 4 6 8 12 17 22 26 39 52 65 78
Time (visit week)

Control (Raw) Isoniazid (Raw) Ethambutol (Raw)

Control (Two-fold) Isoniazid (Two-fold) Ethambutol (Two-fold)

Control (HMM) Isoniazid (HMM) Ethambutol (HMM)

Control (Simulations) Treat 1 (Simulations) Treat 2 (Simulations)

Probability of transitioning PN

PN: positive (P) to negative (N) transitions where P (St = N |St−1 = P ).

Data simulated from estimated hazards, hazard ratios and misclassifications from a linear splines HMM with an
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Figure 5.20: Including simulated negative to positive probability transitions (NP) for

linear splines HMM with knots at 2, 4, 8 and 26 weeks for REMoxTB.
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Data simulated from estimated hazards, hazard ratios and misclassifications from the linear splines HMM with an

additional knot at 2 weeks.

We also explored adding an offset as a covariate to the linear splines model with knots

placed at 4, 8 and 26 weeks. This is because given an expression for the hazard, λi,j(t),

for the transition intensities, the transition probabilities (e.g. from week 0 to week 1)

are eλi,j(t)t. This is not a linear expression in t1, which may be a source of the relatively

poor fit. A possible way to alleviate this is to include log(t) as an offset in the log hazard

ratio model:

log[λi,j(t)] = log λi,j(t = 0)− log(t) + xTβ

i.e.λi,j(t) =
λi,j(t = 0)ex

T β

t
.

(5.35)

This is the matrix exponent expression to obtain the transition probabilities, which

takes the extra t out. To remove this, potentially improving the fit of the model, we

took time on a log scale and constrained it to −1. This made little difference to the

overall fit of this model so we did not explore this further. Our final model to predict

the missing culture data is therefore the HMM including a linear splines with 3 knots

at weeks 4, 8, and 26 and no offset.
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Prediction of states for the REMoxTB study

Table 5.6 shows the results of the primary outcome (failure) from using the

forwards/backwards algorithm (see §5.4.1 and §5.4.2) and Viterbi algorithm (see

§5.4.4) to predict states for missing observations, resulting in a “completed” dataset.

We were then able to determine each patient’s outcome. We calculated the difference

in proportions of treatment failure (defined in §5.5) using a binomial model with an

identity link. This model adjusted for weight and centre. The model struggled to

converge when missing states were predicted using the Viterbi algorithm and so a

cut-off of 1000 iterations was used.

The results from this model and from using the forwards/backwards algorithm were

compared to the results from that of the two-fold fully conditional specification

multiple imputation algorithm and the results produced from the authors of the study

(Figures 5.21 and 5.22).

The results of the forwards/backwards algorithm and Viterbi algorithm are compared

to the original results of the REMoxTB study (Table 5.6). There is a small gain in

information using the forwards/backwards algorithm reflected by the slightly

narrower confidence intervals. The results are consistent with the PP and mITT

analyses. They fail to demonstrate non-inferiority since the upper bound of the 97.5%

CI lies above the 6% non-inferiority margin for patients randomised to the isoniazid

arm (11.14%) and ethambutol arm (12.25%). There is a larger gain in information

using the Viterbi algorithm judged by the 97.5% confidence intervals. The results from

this model are consistent with the forwards/backwards algorithm and the PP/mITT

analyses, failing to demonstrate non-inferiority (upper bound of 97.5% CI:10.42% for

isoniazid arm and 10.91% for ethambutol arm). Appendix I presents the unadjusted

results for these analyses.
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Table 5.6: Adjusted risk differences using the

forwards/backwards algorithm and the Viterbi algorithm

for REMoxTB.

Risk difference (97.5% CI)

PP analysis (N = 1548)

Isoniazid 6.10% (1.70% to 10.5%)

Ethambutol 11.40% (6.70% to 16.1%)

mITT analysis (N = 1674)

Isoniazid 7.80% (2.70% to 13.00%)

Ethambutol 9.00% (3.80% to 14.20%)

Forwards/backwards algorithm

Isoniazid 7.04% (2.94% to 11.14%)

Ethambutol 7.86% (3.46 to 12.25)

Viterbi algorithm

Isoniazid 7.12% (3.82 to 10.42)

Ethambutol 7.46% (4.01% to 10.91%)

The results from the Viterbi algorithm are similar to the forwards/backwards

algorithm and are consistent with the findings from the study where non-inferiority

could not be concluded. To know which of the two performs best, a simulation study

would be needed to find the bias and coverage of these two algorithms. However, as

the models do not fit that well, we did not do this. The narrower confidence intervals

from the Viterbi algorithm suggest a larger gain in information in comparison to the

PP and mITT analyses. Predictions made from the Viterbi algorithm always identified

relapses from the original data during the 78 weeks of scheduled follow-up.

The majority of patients who were excluded from the original mITT and PP analyses

were imputed as achieving stable negative culture conversion from using the

forwards/backwards algorithm (see Table I1, Appendix I).
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Comparison of states predicted with the two-fold fully conditional specification

multiple imputation model

The results from the forwards/backwards algorithm and Viterbi algorithm are

compared to the two-fold fully conditional specification multiple imputation method

(Figures 5.21 and 5.22). The results of these models are also consistent with the

two-fold FCS multiple imputation model. The estimates from the two-fold imputation

(7.07%; 97.5% CI: 1.84% to 12.30%) and the HMM (7.86%, 97.5% CI: 3.46% to 12.25%)

for the ethambutol arm suggest those on the ethambutol regimen did better than that

shown from the PP (11.4%, 97.5% CI: 6.70% to 16.10%) and mITT (9.00%, 97.5% CI:

3.80% to 14.20%) analyses. The estimates from the two-fold imputation suggest the

isoniazid arm performed slightly better than that shown from the PP and mITT

analyses and the estimates from the HMM are somewhere in between those of the PP

and mITT analyses.

Figure 5.21: HMM (adjusted) estimates of primary endpoint using the

forwards/backwards algorithm for the REMoxTB study.
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Figure 5.22: HMM (adjusted1) estimates of primary endpoint using the Viterbi

algorithm for the REMoxTB study.
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5.7.3 Discussion

So far, we have investigated whether using multi-state Markov models for the

REMoxTB study works well to impute the missing observations resulting in a

complete data set. A complete data set can then be used to determine each patient’s

clinical outcome in this study. Using multi-state models for the REMoxTB trial has

worked reasonably well. As per the definition of the primary outcome, single positive

results after reaching stable negative culture conversion are classed as negative and

single negative results are ignored if stable negative culture conversion has not be

achieved. Here we estimated the probability of false positive results and false negative

results (i.e. the misclassifications). An alternative approach would be to have

re-classed these false positive and negative results before using these multi-state

models. However, this approach does not estimate the error of false positive or false

negative culture results, which are of interest within the TB community, as a

consequence of the MGIT machine or using LJ selection to determine a culture result.

Following the modelling strategy defined in §5.7.1, our preferred model was the linear

splines model. This model had the lowest -2 log-likelihood and this also gave the

closest agreement between the model estimates of the expected prevalence and the

direct comparison to the raw data.
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However, when we calculated the transition probabilities obtained from the fitted

model, and compared them with the raw data, we found the model overestimated the

probability of transitioning from a positive to negative culture result around 8-12

weeks compared to the raw data. Clearly, the fit of the HMM depends on where the

chosen knots are placed and how much information is provided into the HMM.

However, we found little improvement by varying the knot positions. Nevertheless,

the HMM still gives a good fit to the data during the follow-up phase (26 to 78 weeks)

where most of the missing data occur and we rely on the HMM to impute this.

Using the forwards/backwards algorithm, accounting for the uncertainty of its

predictions and using the Viterbi algorithm failed to demonstrate non-inferiority.

While these different methods are consistent with that of results produced from the PP

and mITT analyses, there is some, albeit small, gain in including the 10% of patients

who were excluded from the mITT analyses due to withdrawal or lost to follow-up

from the study. Given the context of the study, any gain in information is worthwhile.

Although the probability transitions from our chosen HMM was overestimated in the

early part of follow-up, the approach appears promising. Therefore we now apply the

same methods used here for the RIFAQUIN study. REMoxTB was unique in its design

by including weekly follow-up visits in the first 8 weeks of the study. The RIFAQUIN

study has fewer follow up visits and is a more typical representation of the amount of

data collected in Phase III TB clinical trials.

5.8 Application to the RIFAQUIN study

The methods used for the REMoxTB study in §5.7 are now applied to the RIFAQUIN

study. Patients are excluded from this intention-to-treat analysis for reasons unrelated

to treatment (Table 3.7). Scheduled follow up visits differ here in comparison to

REMoxTB; patients were assessed 2 months after baseline and monthly up to 12

months with two final visits at 15 and 18 months. For this study, patients were

followed up less frequently in the first 2 months. We therefore assumed that the

culture test results could fluctuate between observed follow up visits throughout the

whole study, which reflects the true Markov process. The two states are a positive
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culture result and a negative culture result. There were nearly twice as many deaths in

the 4 month regimen treatment arm (n=12), however there was no association

between the occurrence of death and treatment (χ2test = 2.582; p = 0.275). Given that

there were so few deaths overall, death is not included as a state (n=27).

To initialise the state transitions, as a working assumption we assume 80% of patients

are in a positive state (i.e. have TB) and 1% are in a negative culture result at baseline,

and assume a 95% sensitivity (i.e. true positive result) and 95% specificity (i.e. true

negative result) as starting values in our model fitting. These values are used to

initialise the state transitions and the misclassification matrix. The methods applied

for RIFAQUIN then follow that of the REMoxTB study in §5.7.1, where first we choose

our preferred model after smoothing the data and assessing the goodness of fit from

prevalence plots. Then we compare the probability state transitions of this chosen

HMM to the probability of the raw data before imputing missing cultures using the

forwards/backwards algorithm. Finally, we use the Viterbi algorithm to find the most

likely sequence of hidden states.

5.8.1 Results

The original results of the RIFAQUIN study excluded 313 patients from the PP

analysis and excluded 304 patients from the mITT analysis. A total of 730 patients

were included in the analyses for this study (see Table 3.7). Aggregating the number

of state transitions over the follow-up time and individual patients, 5859 transitions

were from a negative to a negative state (Table 5.7). There is a non-trivial number of

missing culture results (n=1346). There were few positive to positive transitions

(n=147) for all patients across all 14 scheduled follow up visits, although all patients

were in a positive state at the start of the study (see §5.7.1). There are more positive to

negative transitions (n=711) than negative to positive transitions (n=90), although

there were more negative to missing transitions (n=707) than positive to missing

transitions (n=111).
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Table 5.7: Total number of state transitions for all patients

across all visits.

[To(St = j)]

Positive Negative Missing

Positive 147 711 111

[From(St−1 = i)] Negative 90 5859 707

Missing 14 505 1346

Table 5.8 shows the results from fitting different HMMs with increasing complexity of

models (see §5.6.1 to §5.6.4) to the data. Figures 5.23 and 5.26 to 5.30 compares the

forecasted prevalence with the expected prevalence to visualise the goodness of fit of

these models. The knots chosen for the piecewise constant, linear splines and

restricted cubic splines models were placed at 3, 6 and 10 months. This is a natural

choice given that these are where visit windows were imposed in Chapter 3 and

Chapter 4.

Table 5.8 shows that for most HMMs fitted the hazard of a patient being in a negative

state if they are currently in a positive state is approximately 0.83 and the hazard of a

patient being in a positive state at the next instant if they are currently in a negative

state is low at around 0.02. In general, most HMMs explored suggest patients had an

increase in hazard of transitioning from a negative state to a positive state for the 4

month regimen and for the 6 month regimen since the hazard ratios for these

treatments are greater than 1. Similarly, there is an increase in hazard for patients

transitioning from a positive to a negative state, since the estimates from the hazard

ratios are greater than 1 for the 4 month and 6 month treatment regimens.

The misclassifications for all models explored were very low since the probability that

the true underlying state is positive given the observed state was negative and the

probability that the true underlying state is negative given the observed state is

positive is nearly 0. This suggests there were few false negative culture results and

false negative results detected. Models were re-run without assessing

misclassifications and the estimates of the hazards and hazard ratios were
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approximately the same for all models explored. Given that we are interested in the

sensitivity, specificity and misclassifications of each for the RIFAQUIN study, we

present these results.

Model 1: No covariates

The first HMM with no covariates added to the model shows that the probability of

transitioning from a positive to negative state at the next instant is high at 1.108 (95%

CI: 1.012 to 1.214) and the probability of transitioning from a negative to positive state

is low at 0.024 (95% CI: 0.020 to 0.030).

The fitted, marginal prevalence from this model (Figure 5.23) shows that the model

severely underestimates the proportion of patients in a positive state over the first 2 to

3 months of follow-up suggesting this model is not such a good fit to our data.

Figure 5.23: Estimated and observed marginal prevalence: no covariates included for

RIFAQUIN.
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Figure 5.24 shows the probability transitions with no covariates, assuming a constant

hazard. This HMM is compared to probabilities from the raw data for positive to

negative and negative to positive transitions. The probability transitions from this

model are well matched to the raw data.

Figure 5.24: Estimated probability transitions, P (St = j|S0 = 1), with no covariates for

RIFAQUIN.
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Table 5.8: Different HMMs for RIFAQUIN.

Transition states Misclassifications

Model P (St = j|St−1 = i) (95% CI) P (O|S) (95% CI)

P (Neg|Pos) P (Pos|Neg) P (Ot = Pos|St = Pos) P (Ot = Neg|St = Pos) P (Ot = Pos|St = Neg) P (Ot = Neg|St = Neg)

No covariates

Baseline hazard 1.108 (1.012, 1.214) 0.024 (0.020, 0.030) 1.000 (0.961, 1.000) 0.0002 (9.457×10−7 , 0.039) 4.989×105 (2.419×10−7 , 0.0102) 1.000 (0.999, 1.000)

-2 log-likelihood: 1781.297

Treatment, month interaction

Baseline hazard 0.824 (0.679, 1.000) 0.019 (0.015, 0.024) 1.000 (0.960, 1.00) 0.0002 (1.14×10−6 , 0.041) 0.0001 (4.485×10−7 , 0.016) 1.000 (0.984, 1.000)

4m regimen 1.476 (1.039, 2.098) 5.259 (1.708, 16.19)

6m regimen 1.163 (0.903, 1.500) 1.234 (0.304, 5.01)

Month 0.969 (0.92, 1.02) 1.016 (0.914, 1.130)

4m regimen*Month 0.919 (0.854, 0.989) 0.870 (0.760, 0.996)

6m regimen*Month 0.984 (0.909, 1.064) 0.921 (0.778, 1.092)

-2 log-likelihood: 1727.305

Piecewise Constant (see 5.6.1)

Baseline hazard 0.834 (0.624, 1.114) 0.019 (0.014, 0.026) 1.000 (0.939, 1.000) 0.0002 (5.768×10−7 , 0.061) 0.0001 (2.332×10−7 , 0.042) 0.999 (0.958, 1.000)

4m regimen 1.225 (0.937, 1.601) 1.651 (0.243, 11.20)

6m regimen 1.176 (0.901, 1.535) 1.540 (0.181, 13.086)

Month 1.242 (1.017, 1.517) 1.101 (0.766, 1.583)

Month3 0.257 (0.074, 0.888) 1.093 (0.194, 6.142)

Month6 0.277 (0.065, 1.188) 0.380 (0.066, 2.200)

Month10 0.676 (0.152, 3.013) 1.401 (0.245, 8.009)

4m regimen*Month 0.832 (0.625, 1.108) 1.012 (0.637, 1.608)

6m regimen*Month 0.919 (0.683, 1.236) 1.012 (0.569, 1.803)

4m regimen*Month3 2.841 (0.468, 17.24) 2.120 (0.238, 18.85)

6m regimen*Month3 7.579 (0.554, 103.62) 1.066 (0.041, 27.93)

4m regimen*Month6 1.935 (0.361, 10.366) 0.725 (0.0833, 6.303)

6m regimen*Month6 0.127 (0.007, 2.417) 0.358 (0.012, 10.384)

4m regimen*Month10 0.398 (0.042, 3.738) 0.120 (0.011, 1.288)

6m regimen*Month10 4.479 (0.427, 46.950) 0.951 (0.056, 16.280)

-2 log-likelihood: 1687.292

Linear splines (see 5.6.2)

Baseline hazard 0.83577 (0.685, 1.020) 0.016 (0.012, 0.022) 1.000 (0.963, 1.000) 2.394×10−4 (1.514×10−6 , 0.037) 9.893×10−5 (6.410×10−7 , 0.015) 1.000 (0.985, 1.00)

4m regimen 1.163 (0.901, 1.503) 0.217 (0.008, 5.569)

6m regimen 1.247 (0.819, 1.901) 3.737 (0.117, 119.7)

Month 1.015 (0.897, 1.149) 1.102 (0.618, 1.966)

Month5 0.911 (0.725, 1.145) 0.888 (0.454, 1.737)

4m regimen*Month 0.942 (0.802, 1.107) 1.863 (0.888, 3.91)

6m regimen*Month 1.015 (0.812, 1.268) 0.700 (0.297, 1.650)
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4m regimen*Month5 0.990 (0.728, 1.348) 0.406 (0.173, 0.951)

6m regimen*Month5 0.917 (0.607, 1.383) 1.369 (0.492, 3.809)

-2 log-likelihood: 1705.719

Cubic splines (see 5.6.3)

Baseline hazard 0.830 (0.639, 1.078) 0.019 (0.014, 0.027) 1.000 (0.974, 1.000) 0.0003 (3.506×10−6 , 0.026) 0.0001 (1.420×10−6 , 0.010) 1.000 (0.991, 1.000)

4m regimen 1.348 (0.966, 1.882) 3.105 (0.758, 12.714)

6m regimen 1.189 (0.891, 1.587) 1.385 (0.229, 8.393)

Month 0.946 (0.878, 1.020) 0.961 (0.806, 1.145)

Month5 1.446 (0.577, 3.624) 1.610 (0.544, 4.766)

4m regimen*Month 0.958 (0.871, 1.054) 0.971 (0.783, 1.205)

6m regimen*Month 0.978 (0.866, 1.104) 0.899 (0.673, 1.200)

4m regimen*Month5 0.542 (0.185, 1.590) 0.391 (0.100, 1.535)

6m regimen*Month5 1.345 (0.101, 17.870) 1.495 (0.088, 25.510)

-2 log-likelihood: 1723.325

Fractional polynomials (see 5.6.4)

Baseline hazard1 0.081 (4.206×10−7 , 1.561×104) 0.0002 (1.9×10−26 , 2.4×1018) 0.980 0.020 0.020 0.980

4m regimen 1.310 (0.988, 1.737) 0.142 (0.000,∞)

6m regimen 1.235 (0.941, 1.622) 0.078 (0.000,∞)

Month 0.33 (2.69×10−9 , 41330834) 0.088 (1.08×10−8 , 714008)

MonthFP1(−0.5) 82.902 (1.004, 6844) 0.008467 (0.000,∞)

MonthFP2(0) 0.9519 (1.2×10−24 , 7.5×1023) 6.6×105 (3.8×10−120 , 1.2×10131)

4m regimen*Month 2.750 (2.2×10−8 , 3.4×108) 0.120 (2.8×10−14 , 4.9×1011)

6m regimen*Month 3.547 (2.8×10−8 , 4.6×108) 0.867 (3.1×10−13 , 2.4×1012)

4m regimen*MonthFP1(−0.5) 0.010 (8.401×10−5 , 1.104) 0.004 (0.000,∞)

6m regimen*MonthFP1(−0.5) 0.050 (0.0003, 8.224) 0.046 (0.000,∞)

4m regimen*MonthFP2(0) 0.870 (1.1×10−24 , 7.0×1023) 0.001 (1.6×10−216 , 2.1×10225)

6m regimen*MonthFP2(0) 0.230 (2.2×10−25 , 2.3×1023) 14.100 (4.4×10−246 , 4.5×10247)

-2 log-likelihood: 1763.083

1 Misclassifications were fixed at 98% for sensitivity and specificity.
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Figure 5.25 shows that time should be included in the model since the probability

transitions differ by treatment arm over time when these HMMs are fitted separately

by treatment arm.

Figure 5.25: Estimated probability transitions, P (St = j|S0 = 1) modelled separately

by treatment for RIFAQUIN.
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Model 2: Including treatment, time and an interaction between them as covariates

The second model in Table 5.8 which includes treatment, time and the interaction

between them as covariates shows that there is a significant interaction between the 4

month regimen and time. This is most likely due to the fact that patients do not

receive a further 2 months of treatment compared to the control and 6 month

treatment regimens. The risk of transitioning from a positive to negative state

decreases by 8% (HR: 0.92; 95% CI: 0.85 to 0.99) as time increases. There is a 13%

decrease in risk of transitioning from a negative to positive state (HR: 0.87; 95% CI:

0.76 to 1.00). Patients who received the 4 month regimen had a 48% increase in risk of

transitioning from a positive to a negative state (HR: 1.48; 95% CI: 1.04 to 2.10) and a

huge increase of risk transitioning from a negative to positive state (HR: 5.26; 95% CI:

1.71 to 16.19). However, there is greater uncertainty surrounding this as demonstrated
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by the confidence intervals. Patients randomised to the 6 month treatment regimen

have a 16% increase in risk of transitioning from a positive to a negative state (HR:

1.163; 95% CI: 0.90 to 1.50) and a 23% increase in risk of transitioning from a negative

to a positive state (HR: 1.234; 95% CI: 0.304 to 5.01) on average. Figure 5.26 shows that

the prevalence for this model slightly underestimates the proportion of patients in a

negative state around 3 to 5 months and from 10 to 18 months of follow-up.

Figure 5.26: Estimated and observed prevalence when treatment, time and their

interaction are included for RIFAQUIN.

Model 3: Piecewise constant

The prevalence for the piecewise constant model (Figure 5.27; negative state) fits

slightly better around 5 months, supported by the -2 log-likelihood of 1687.29 (Table

5.8), compared to a simpler model with treatment, months and an interaction (Figure

5.26) between the two covariates. This is shown by the likelihood ratio test comparing

this model to the HMM with treatment, months and an interaction. This test showed

that the piecewise constant model is significantly better (P<0.002).
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Figure 5.27: Estimated and observed prevalence for piecewise constant model with

knots included at 3, 6 and 10 months for RIFAQUIN.

Model 4: Linear splines model

For the linear splines model, adding 3 knots at 3, 6 and 10 months failed to converge.

Reducing the number of knots to 2 also proved challenging to fit. We therefore tried

one knot at 3, 6 and 10 months separately. As a check, we tried re-fitting the model

with one knot at each follow-up visit (monthly, from 2 to 12 months and at 15 and

18 months). From this process we found that adding one knot at 5 months was the

better HMM for the RIFAQUIN data. For the 4 month regimen there is a 16% increase

in risk transitioning from a positive to negative state (95% CI: 0.90 to 1.50) when a

knot at 5 months is used (Table 5.8) and an increase of 25% in risk transitioning from

a positive to negative state for the 6 month regimen. There is a 78% reduction in risk

transitioning from a negative to positive state (HR: 0.22, 95% CI; 0.008 to 5.57) for the

4 month regimen and, although there is greater uncertainty surrounding the estimate,

the hazard of transitioning from a negative to positive state on the 6 month regimen is

far larger (HR: 3.74, 95% CI; 0.117 to 119.7). The expected prevalence from this HMM

suggests this model provides a reasonable fit to the data after 2 months of follow-up

(Figures 5.28). However, the estimates of the hazard ratios from this HMM contradict
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the results of the original study, where the 4 month regimen showed more relapses

and failed to demonstrate non-inferiority at the 6% margin. The expectation would be

to have a higher increase in risk (i.e. a hazard greater than 1) of transitioning from a

negative to a positive culture to reflect that the 4 month regimen did not perform as

well as the control regimen and to have a higher hazard than the 6 month regimen

given that the 4 month regimen failed to demonstrate non-inferiority but the 6 month

regimen did. Given that the results from this HMM go against our intuition of what

the RIFQUIN study showed, we reject this model.

Figure 5.28: Estimated and observed prevalence for linear splines model with knots

included at 5 months for RIFAQUIN.

Model 5: Restricted cubic splines model (RCS)

The prevalence for the RCS model in Figure 5.29 shows the expected prevalence from

the HMM is not such a good fit to the observed data since, for the proportion of

patients in a negative state, the model underestimates the observed data around 3 to 6

months and towards the end of follow-up (around 10 to 18 months). The resulting -2

log likelihood suggests that this model (-2 log likelihood=1723.3) is not as good as the

piecewise constant model, which is 1687.3 (Table 5.8).
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Figure 5.29: Estimated and observed prevalence for restricted cubic splines model with

knots included at 5 months for RIFAQUIN.

Model 6: Fractional polynomials model

The fractional polynomials model was unable to estimate the misclassifications and

therefore these were fixed at 2%; the confidence intervals demonstrate the difficulty of

fitting and interpreting this model. However the average intensity is consistent with

other HMMs fitted. Figure 5.30 shows that the expected prevalence from this HMM is

poorly fitted to the observed data for the proportion of patients in a negative state

since the model underestimates the observed data from 3 months until the end of

follow-up at 18 months. This in conjunction with the resulting estimates of the

confidence intervals produced from the fractional polynomials HMM model suggest

that this is a poor model.

We therefore choose the piecewise constant as our preferred HMM for the RIFAQUIN

study.
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Figure 5.30: Estimated and observed prevalence for fractional polynomials model with

knots included at 5 months for RIFAQUIN.

Probability transitions for the piecewise constant model

Probability transitions from the piecewise constant HMM are compared to probability

transitions from the raw data (Figure 5.31 and 5.32). We also compare probability

transitions from the two-fold fully conditional specification multiple imputation

model. These figures suggest that the piecewise constant HMM is a poor fit in

comparison to the raw data, particularly for the 4 month and 6 month treatment

regimens. These figures show that the two-fold fully conditional specification multiple

imputation model fits closer to the raw positive to negative and negative to positive

probability transitions. The positive to negative transition probabilities from this

HMM follow the same pattern as for the raw probability transitions, where the

probability of transitioning sharply decreases and then levels out. Similarly, the

probability of transitioning from negative to positive follows a similar pattern to that

of the raw transitions where an increase in negative to positive transitions is captured

around 5 to 10 months for the control and 4 month regimens. The shaded regions

within these figures represent 95% confidence intervals for the probability transitions

in each treatment arm over time.
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Figure 5.31: Comparison of simulated positive to negative probability transitions (PN)

to the piecewise constant HMM at 3, 6, and 10 months for RIFAQUIN.
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Figure 5.32: Negative to positive probability transitions (NP) with piecewise constants

at 3, 6, and 10 months compared to data simulated for RIFAQUIN.
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We further explored this piecewise constant model with alternative knots for positive

to negative transitions (see Appendix J). This was done to investigate whether the

choice of the knots made a huge difference to the estimated probability transitions.

The piecewise constant model was still the preferred model.

To investigate whether there was not enough data in this study to estimate the state

transitions, we simulated data for 30,000 patients (10,000 in each arm) over 18 months.

Data were simulated based on the results of the piecewise constant HMM using the

estimated hazard, hazard ratio, knots and misclassifications from the model in Table

5.8. We then fitted a piecewise constant model to the simulated data and these results

are included in the transition probability figures (Figures 5.31 and 5.32). By simulating

data, and therefore having more data in the model, improved the fit of the HMM

(Figure 5.31). The probability of transitioning from a positive to a negative culture

result match closer to the raw data and mirror the pattern of positive to negative

probability transitions, but this still seems to be a poor fit. The probability of

transitioning from a negative to positive culture result was also improved using

simulated data with more pronounced negative to positive transitions around 4 to 10

months.

We proceeded to a simpler piecewise constant model adding one knot at 2 months to

see whether this would bring the probability transitions any closer to the raw data,

since this is where there is a sharp decrease in positive to negative probability

transitions. The resulting simulations from this model showed some improvement

(Figure 5.33 and 5.34), shifting closer to where the raw probability transitions are. We

then went back to the original RIFAQUIN data and fitted a piecewise constant HMM

with one knot at 2 months. The results from this model (Table 5.9) were similar to the

piecewise constant model with knots at 3, 6 and 10 months for positive to negative

transitions. For negative to positive transitions, the estimates and confidence intervals

were much larger suggesting this model would not be a good fit. The probability

transitions from fitting this model to the data were poorer for the negative to positive

probability transitions (Figure 5.34) and for the 6 month regimen for positive to

negative transitions. This further suggests there is insufficient data (i.e. not enough

patients randomised in the study) for the HMM to fit well to our data and that the

model is not well-fitted to the data for the RIFAQUIN study.
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Table 5.9: Piecewise constant imposed at 2 months only for RIFAQUIN.

Transition states1 Misclassifications

Model P (St = j|St−1 = i) (95% CI) P (O|S) (95% CI)

P (Neg|Pos) P (Pos|Neg) P (Ot = Pos|St = Pos) P (Ot = Neg|St = Pos) P (Ot = Pos|St = Neg) P (Ot = Neg|St = Neg)

Piecewise Constant (see 5.6.1)

Baseline hazard 0.799 (0.649, 0.984) 0.017 (0.012, 0.024) 1.000 (0.350, 1.000) 6.0×10−5 (1.763×10−9 , 0.650) 2.0×10−5 (7.387×10−10 , 0.418) 0.999 (0.582, 1.000)

4m regimen 1.270 (0.952, 1.694) 13.4 (0.089, 2015.6)

6m regimen 1.216 (0.924, 1.600) 12.12 (0.08, 1835.2)

Month 1.05 (0.931,1.185) 1.030 (0.908,1.169)

Month2 0.452 (0.146, 1.398) 6.459 (0.045, 881.24)

4m regimen*Month 0.822 (0.697, 0.970) 0.821 (0.700, 0.963)

6m regimen*Month 0.869 (0.729, 1.036) 0.904 (0.741, 1.103)

4m regimen*Month2 3.438 (0.801, 14.75) 0.637 (0.004, 110.9)

6m regimen*Month2 3.297 (0.684, 15.89) 0.114 (0.001, 21.54)

-2 log-likelihood: 1717.477
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Figure 5.33: Positive to negative probability transitions (PN) with piecewise constants

at 2 months compared to data simulated for RIFAQUIN.
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Figure 5.34: Negative to positive probability transitions (PN) with piecewise constants

at 2 months compared to data simulated for RIFAQUIN.
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knot at 2 months.
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As for the REMoxTB study (see equation 5.35), we investigated whether the addition

of an offset as a covariate to the model would improve the overall fit of the piecewise

constant model with knots at 3, 6 and 10 months. The addition of an offset was

computationally impossible to fit. We therefore choose the piecewise constant model

with knots placed at 3, 6 and 10 months, with no offset, as the final HMM for the

RIFAQUIN study to predict the missing culture data.

Prediction of states for the RIFAQUIN study

After using the forwards/backwards algorithm to impute the missing data, resulting

in a complete data set, each patient’s outcome was determined (see §5.5). This was

also done using the Viterbi algorithm. The results from each of these algorithms are

compared to the original study results of the RIFAQUIN study over 18 months. Table

5.10 shows the results from the forwards/backwards algorithm and Viterbi algorithm

based on the piecewise constant HMM is consistent with the mITT analysis and is

similar to the PP analysis. The 4 month regimen fails to demonstrate non-inferiority

(upper bound of the 95% CI: 16.9%). As for the REMoxTB study, most patients from

the forwards/backwards algorithm had their missing state imputed as negative.

Table 5.10: Adjusted risk differences using the

forwards/backwards algorithm and the Viterbi algorithm

for RIFAQUIN.

Risk difference (97.5% CI)

PP analysis (N = 514)

4 month regimen 13.60% (7.00% to 20.20%)

6 month regimen -1.80% (-6.90% to 3.30%)

mITT analysis (N = 593)

4 month regimen 13.10% (5.60% to 20.60%)

6 month regimen 0.40% (-5.70% to 6.60%)

Forwards/backwards algorithm

4 month regimen 10.42% (3.91% to 16.92%)

6 month regimen -1.80% (-6.10% to 2.51%)

Viterbi algorithm
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4 month regimen 7.66% (3.01 to 12.32)

6 month regimen 1.00% (-3.75% to 1.75%)

The Viterbi algorithm is also consistent with the analyses from the mITT analysis for

the 4 month regimen failing to demonstrate non-inferiority (upper bound of the 95%

CI: 12.3%). For both treatment regimens there is a much larger gain in information

from the HMM using the Viterbi algorithm reflected in the narrower confidence

intervals. However the Viterbi algorithm calculates the most probable pathway for a

patient overall rather than imputing missing observations at each point based on the

observed data, and so uncertainty of an imputed state cannot be calculated.

Predictions made from the Viterbi algorithm could identify relapses from the original

data over 18 months of follow-up.

Comparison of states predicted with the two-fold fully conditional specification

multiple imputation model

Figures 5.35 and 5.36 show the results from comparing the forwards/backwards

algorithm and Viterbi algorithm with the two-fold fully conditional multiple

imputation model. These results were adjusted for centre of recruitment (see

Appendix K for unadjusted results). The results from using the forwards/backwards

algorithm are similar to the two-fold FCS multiple imputation and supports the PP

analysis demonstrating non-inferiority on the 6 month regimen (upper bound of the

95% CI: 2.51%). The confidence intervals show a small gain in information using a

piecewise HMM compared to the two-fold fully conditional specification multiple

imputation model for the 4 month regimen and a slightly bigger gain in information

for the 6 month regimen. The point estimates and confidence intervals from the HMM

and two-fold FCS multiple imputation tend more towards favouring treatment

compared to the PP and mITT analysis which tend towards the control regimen.

The results from using the Viterbi algorithm are also consistent with the two-fold fully

conditional specification multiple imputation algorithm. The confidence intervals from

the Viterbi algorithm are much narrower for the 6 month treatment regimen (-1.00%;

upper bound of the 95% CI: 1.75). This suggests a large gain in information for this

treatment arm.
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Figure 5.35: Analysis of RIFAQUIN using the forwards/backwards algorithm

(adjusted analysis).
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Figure 5.36: Analysis of RIFAQUIN using the Viterbi algorithm (adjusted analysis).

7.66 (3.01 to 12.32)

10.26 (2.71 to 17.81)

13.60 (7.00 to 20.20)

13.10 (5.60 to 20.60)

-1.00 (-3.75 to 1.75)

-2.69 (-7.98 to 2.60)

-1.80 (-6.90 to 3.30)

0.40 (-5.70 to 6.60)

Favours control
HMM: 4m
HMM: 6m

MI (two-fold): 4m
MI (two-fold): 6m

PP: 4m
PP: 6m

mITT: 4m
mITT: 6m

-10 -5 0 6 10 15 20 25
Difference from control (%)

Adjusted analyses

5.8.2 Discussion

For the RIFAQUIN study, under an ITT type analysis, we investigated whether using

multi-state models to impute the missing observations resulting in a complete dataset

works well. With an imputed, “complete”, dataset each patient’s clinical outcome can

be readily determined. For the RIFAQUIN study which had fewer follow-up visits

and a smaller sample size than the REMoxTB study, the application of these methods

did not work so well.
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The estimated sensitivity and specificity suggest that there were few, if any, false

negative states or false positive states. Following the modelling strategy defined in

§5.7.1, the preferred model was the piecewise constant model with knots placed at 3, 6

and 10 months. This model also had the lowest -2 log-likelihood supporting that this

model was the better fit out of the models investigated. The expected prevalence of

being in a positive or negative state compared to the observed data also showed that

this model was reasonable.

Upon examining the probability transitions, calculating these probabilities from the

fitted model and comparing them with the raw data, this model was not an altogether

satisfactory fit. Even choosing different knots failed to make any large improvements

to these probabilities. After simulating data based on the piecewise constant HMM,

there was some improvement in the positive to negative and negative to positive state

transitions, but not enough to match that of the raw transition probabilities. Using a

simpler model and reducing the number of knots to one at 2 months, simulating the

data again only showed a marginal improvement to the fit of raw transition

probabilities. Increasing the number of knots to four was computationally impossible

to fit. This suggests that there is not enough information from the RIFAQUIN study to

fit the HMM and that the model is not such a good fit to the data.

The results from using the forwards/backwards algorithm accounting for the

uncertainty in the predictions made and using the Viterbi algorithm were nonetheless

broadly consistent with the results of the study. For both analyses, the 6 month

regimen supported the PP analysis for demonstrating non-inferiority and this was

also found using the two-fold fully conditional specification multiple imputation

method. The results from the HMM favoured the treatment arm than the control

when all patients were included in the analysis. This suggests that the loss of

information when patients were excluded from the original analysis provides more

conservative results.
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The fitted probability transitions for the REMoxTB and RIFAQUIN studies suggest the

Markov model does not seem to fit so well to the raw data. It is possible that the trial

data is not solely dependent on the previous time point, but also on previous time

points. We next investigate whether or not the data are in fact Markov.

5.9 Are the data truly Markov?

To further explore what may lie behind the relatively poor fit of the model estimates of

the probability transitions to the raw data, we investigate whether or not the data are

truly Markov. From a clinical perspective, we know that patients who achieve stable

culture conversion (i.e. two consecutive negative results at separate visits) early on in

the study (around 8-12 weeks) are expected to maintain that status until the final

follow-up visit. However, those that have a mixture of positive and negative culture

results within 8 to 12 weeks of follow-up or those who take longer to culture convert

are expected to have a lower probability of maintaining negative status towards the

end of the study. This clinical perspective, that what happens around 8 to 12 weeks is

informative for what happens later in follow-up, suggests the data may not be

Markov.

We investigate this in the REMoxTB study and then the RIFAQUIN study. We take the

culture result at each visit from the second follow-up visit onwards and estimate the

dependence on the culture result at the previous two visits, and the previous visit.

Logistic regression of the culture result at visit t − 1 and t − 2 (from the second visit

onwards) was performed separately for each treatment arm. Additionally, backwards

stepwise logistic regression was also performed using the entire history of patient

data available to predict the final 18 month visit. For this stepwise regression model,

we include the immediate preceding visit (65 weeks for the REMoxTB study and 15

months for the RIFAQUIN study) and a threshold of 5% is used to determine whether

dependency on the previous time point is statistically significant.

If the transition probabilities are first order Markov, we should find a strong

dependence on the (positive or negative) culture result at t − 1, but given this a

relatively weak, generally non-significant, dependence on the culture result at t− 2.
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Table 5.11: Predictors of culture results from time t at

observations t−1 and t−2, by treatment arm for REMoxTB.

Treatment Week, OR OR (95% CI) P-value OR (95% CI) P-value

(95% CI) at t-1 at t-2

2 9.06 (5.08 to 16.14) < 0.001 4.69 (2.22 to 9.91) < 0.001

3 6.58 (3.80 to 11.40) < 0.001 4.66 (2.69 to 8.08) < 0.01

4 7.13 (4.33 to 11.75) < 0.001 4.62 (2.73 to 7.80) < 0.001

5 7.57 (4.70 to 12.19) < 0.001 6.27 (3.63 to 10.84) < 0.001

6 6.22 (3.89 to 9.94) < 0.001 5.66 (3.39 to 9.45) < 0.001

7 9.25 (5.43 to 15.76) < 0.001 6.11 (3.48 to 10.73) < 0.001

8 7.07 (4.03 to 12.39) < 0.001 3.79 (2.20 to 6.52) < 0.001

Control 12 3.95 (1.65 to 9.46) 0.002 3.74 (1.59 to 8.81) 0.603

(N = 590) 17 11.82 (3.07 to 45.47) < 0.001 0.94 (0.20 to 4.39) 0.937

22 48.00 (9.47 to 243.40) < 0.001 2.56 (0.30 to 21.85) 0.391

26 17.29 (2.95 to 101.13) 0.002 14.87 (3.35 to 66.08) < 0.001

39 15.29 (2.39 to 98.03) 0.004 15.82 (4.03 to 62.05) 0.164

52 33.45 (11.12 to 100.66) < 0.001 5.06 (0.55 to 46.22) < 0.001

65 36.90 (10.11 to 134.62) < 0.001 17.60 (5.06 to 61.22) 0.151

78 96.00 (21.41 to 430.38) < 0.001 22.95 (5.51 to 95.57) < 0.001

2 7.76 (3.70 to 16.27) < 0.001 3.12 (1.20 to 8.10) 0.019

3 6.61 (3.72 to 11.73) < 0.001 7.42 (3.69 to 14.95) < 0.001

4 6.86 (4.36 to 10.79) < 0.001 3.69 (2.16 to 6.32) < 0.001

5 8.78 (5.46 to 14.11) < 0.001 4.30 (2.64 to 7.01) < 0.001

6 10.18 (6.27 to 16.54) < 0.001 11.63 (6.30 to 21.48) < 0.001

7 10.58 (6.16 to 18.18) < 0.001 11.39 (6.10 to 21.28) < 0.001

8 8.73 (4.87 to 15.65) < 0.001 4.50 (2.52 to 8.04) < 0.001

Isoniazid 12 1.46 (0.30 to 7.05) < 0.001 0.636 (0.14 to 3.09) 0.801

(N = 609) 17 7.05 (1.38 to 36.09) 0.019 1.18 (0.25 to 5.54) 0.603

22 63.26 (15.56 to 257.24) 0.009 14.45 (3.29 to 63.47) 0.832

26 70.83 (17.74 to 282.75) < 0.001 14.42 (3.39 to 61.24) < 0.001

39 28.05 (11.38 to 69.14) < 0.001 7.61 (2.22 to 26.16) < 0.001

52 19.78 (8.16 to 47.93) < 0.001 10.96 (4.05 to 29.67) 0.001
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65 89.40 (29.53 to 270.60) < 0.001 10.97 (4.55 to 26.45) < 0.001

78 56.62 (18.37 to 174.44) < 0.001 41.42 (14.47 to 118.60) 0.001

2 5.90 (3.15 to 11.03) < 0.001 4.48 (1.87 to 10.74) 0.001

3 13.01 (7.23 to 23.42) < 0.001 5.27 (2.80 to 9.92) < 0.001

4 12.45 (7.23 to 21.44) < 0.001 8.77 (4.75 to 16.20) < 0.001

5 6.34 (4.07 to 9.88) < 0.001 4.75 (2.88 to 7.81) < 0.001

6 7.08 (4.46 to 11.25) < 0.001 9.37 (5.36 to 16.38) < 0.001

7 5.67 (3.44 to 9.34) < 0.001 8.80 (4.70 to 16.49) < 0.001

8 11.80 (6.20 to 22.45) < 0.001 6.77 (3.44 to 13.30) < 0.001

Ethambutol 12 5.35 (2.05 to 13.96) 0.001 1.47 (0.55 to 3.93) < 0.001

(N = 586) 17 5.54 (1.44 to 21.37) 0.013 4.53 (1.57 to 13.07) 0.446

22 31.34 (10.73 to 91.57) 0.734 < 0.001 (0.96 to 13.69) 0.009

26 12.07 (4.65 to 31.30) < 0.001 6.20 (2.09 to 18.38) 0.057

39 27.74 (12.69 to 60.64) < 0.001 7.58 (2.92 to 19.67) 0.001

52 13.94 (6.21 to 31.26) < 0.001 10.81 (4.60 to 25.44) < 0.001

65 29.67 (10.93 to 80.56) < 0.001 5.61 (2.16 to 14.56) < 0.001

78 31.65 (9.97 to 100.50) < 0.001 28.65 (9.77 to 84.00) < 0.001

For the REMoxTB study, Table 5.11 shows that, across all treatment arms, there is a

steady dependence of culture results at t on culture results at t − 1. However, for all

treatment arms, around weeks 3 to 12, we find additional dependence on the culture

results at t-2. This suggest that when patients transition from a positive state to a

negative state, this is not well modelled by the Markov assumption. As this

assumption underpins the HMM, this is a plausible explanation for the observed and

fitted transition probabilities in weeks 6 to 12.

A total of 334 patients were included for the backwards stepwise regression model.

Table 5.12 confirms that the data are not Markov since having a positive culture result at

week 6 (P=0.003), 7 (P=0.041), 26 (P=0.002) is predictive of results at week 78 (P<0.003)

as well as the previous 65 week scheduled visit (P<0.001) for all patients.

272



Table 5.12: Odds ratios (OR), and confidence intervals (CI)

for predicting positive cultures at week 78 for REMoxTB.

Covariate OR (95% CI) P-value

Week 6 0.189 (0.038 to 0.933) 0.003

Week 7 9.739 (2.163 to 43.852) 0.041

Week 26 10.405 (2.371 to 45.654) 0.002

Week 65 63.674 (12.592 to 321.980) < 0.001

For the RIFAQUIN study, the logistic regression models to assess time at t − 1 and

t − 2 often failed due to perfect prediction or collinearity. Therefore, since the results

for the REMoxTB study were similar across treatment groups, we combine treatment

groups for the RIFAQUIN study.

Table 5.13 shows dependence of culture results at time t on culture results at t − 1.

There is also steady dependence of culture results at time t on culture results at t − 2.

This suggests that when patients transition from a positive to negative state and a

negative to positive state, this is not well modelled by the Markov assumption.

Table 5.13: Predictors of culture results from time t at

observations t−1 and t−2, by treatment arm for RIFAQUIN.

Month, OR OR (95% CI) P-value OR (95% CI) P-value

(95% CI) at t-1 at t-2

3 NA 27.40 (8.29 to 90.59) < 0.001

4 12.32 (3.64 to 41.72) < 0.001 32.91 (8.29 to 130.62) < 0.001

5 10.23 (1.96 to 53.43) 0.006 16.17 (2.98 to 87.76) 0.001

6 10.23 (1.96 to 53.43) 0.006 16.04 (3.75 to 68.59) < 0.001

7 7.20 (1.41 to 36.89) 0.018 34.05 (11.33 to 102.31) < 0.001

8 11.95 (3.36 to 42.48) < 0.001 340.90 (68.24 to 1702.89) < 0.001

9 48.40 (15.13 to 154.85) < 0.001 121.25 (36.39 to 403.99) < 0.001

10 20.85 (6.05 to 71.86) < 0.001 62.09 (17.36 to 222.06) < 0.001

11 38.25 (10.00 to 146.38) < 0.001 310.67 (59.54 to 1621.01) < 0.001
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12 83.04 (18.31 to 376.59) < 0.001 182.00 (35.22 to 940.52) < 0.001

15 25.06 (5.31 to 118.39) < 0.001 23.78 (3.85 to 146.94) 0.001

18 24.53 (3.95 to 152.56) 0.001 12.79 (2.29 to 71.45) 0.004

∗NA = results not presented due to perfect prediction or collinearity

Table 5.14: Odds ratios (OR), and confidence intervals (CI)

predicting positive cultures at month 18 for RIFAQUIN.

Covariate OR (95% CI) P-value

Month 3 94.987 (5.984 to 1507.754) 0.001

Month 15 2.038 (0.070 to 59.205) 0.001

The stepwise logistic regression shows that positive cultures at month 3 (P=0.002) was

predictive of positive cultures at month 18 in addition to the previous visit at month

15 (P=0.001; Table 5.14). This also suggests that positive culture results in the early

part of follow-up are predictive of positive results at the final follow-up visit.

For both the REMoxTB and RIFAQUIN studies, at week t, some culture results are

dependent on culture results at t − 2. This suggests that patients who transition from

state to state are not well modelled by the Markov assumption. It most likely that this

is the reason that the probability transitions from these multi-state models were not

as well matched to the raw data of these studies as we would like. Nevertheless, the

REMoxTB study did show a reasonable approximation to the data. However this study

was unique in terms of the number of follow-up visits conducted. Tuberculosis trials

usually follow that of the RIFAQUIN study with fewer follow up visits at the start of

the study, and so overall HMMs do not seem to be well suited for these studies.
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5.10 Summary and discussion

This chapter has investigated the use of multi-state Markov models in tuberculosis

clinical trials using two data sets as examples. Although the data are not truly Markov,

especially around 8 to 12 weeks when patients are transitioning from a positive to

negative state, they are more so in the latter part of the follow-up when most data are

missing. Therefore, if we use a flexible model for the log hazard over time this should

be a reasonable approach. Results from the REMoxTB study confirm this.

For the REMoxTB study, we assumed in the first 8 weeks of follow-up, a patient’s state

remained constant from week to week. Post-week 8 we assumed patients could

transition between scheduled follow-up visits over time. It was more accurate to

assume a patients state remained largely unchanged between 7 days of follow-up as

the transitions from state to state would be quite slow. This shows how flexible these

models can be. Using HMMs enabled us to fit complex models which were able to

forecast a better fit to the observed data. After finding a HMM for the observed data,

the estimates from the hazard, hazard ratios and misclassifications can be used as

starting values to re-fit the HMM. The advantage of doing this is to improve the

estimates of a model.

We used a linear splines model with 3 knots at 4, 8 and 26 weeks and we were also

able to add a fourth knot at 2 weeks increasing the model’s complexity. Using the

forwards/backwards algorithm and Viterbi algorithm produced results consistent

with that of the published mITT and PP analyses. This is reassuring since there were

no major departures from the original results of the study. In using the extended

forwards/backwards algorithm to impute the missing observations resulted in a

“completed” dataset that allowed each patient to be classed as a treatment failure or

as reaching stable negative culture conversion. The results from this algorithm were

also similar with the results from the two-fold fully conditional specification multiple

imputation which provides further re-assurance that these models are able to estimate

the data well.
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Although the expected prevalence for the restricted cubic splines model suggested the

model was a reasonable fit to the data, assessing the misclassification matrix for the

HMM tended to withdraw a lot of information from the data. This in conjunction with

fitting the more complex cubic splines meant that the model struggled to fit well. The

second order fractional polynomials model did not fit so well and so we did attempt

to fit a fourth order fractional polynomial model. The model for this however failed to

converge. Perhaps if we had more data, we would have been able to fit this model

better for these more complicated models. When assessing how closely matched the

probability transitions were to the raw data, the probability of transitioning from a

positive to a negative state over time using the linear splines HMM were not well

matched around 8 to 12 weeks of follow-up. Although the HMM includes more

information after imputing the missing data, large departures from the raw data are

not expected. Nevertheless, overall the probability transitions from the HMM were

still well matched to the raw data in the latter part of follow-up, suggesting most

patients were in a negative state by the end of the study. Simulating the data for

30,000 patients based on estimates from the linear splines HMM when including a

fourth knot at 2 weeks, and re-fitting the model using these simulated data, did

improve the fit of the data in the early part of follow-up. However adding this fourth

knot to our preferred HMM to the REMoxTB data did not make a large difference

between 8 to 12 weeks, suggesting there was not enough information at this point to

estimate the probability transitions well at that point.

For the RIFAQUIN study, the piecewise constant HMM was the preferred model

which included 3 knots at 3, 6 and 10 months. Adding this number of knots seemed to

work well, but in increasing the complexity of the model using splines and fractional

polynomials meant fitting these models with fewer knots. This was done either so that

the more complex HMM models converged or to obtain more sensible estimates from

the chosen model. Even though these models were challenging to fit, the estimates

from using our extended forwards/backwards algorithm to account for the

uncertainty of estimates produced by the algorithm and the Viterbi algorithm were

better matched to the original analyses of the PP estimates rather than the mITT

analyses. This is most likely because the ITT type analysis proposed here does not

make extreme assumptions about the missing data unlike that which is imposed in the

original mITT analysis for the RIFAQUIN study.
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The linear splines HMM with one knot at 5 months did not produce a sensible

estimate for the 4 month treatment regimen for negative to positive transitions. The

result of this HMM suggested that the risk of transitioning from a negative state to a

positive state was low for the 4 month regimen and high for the 6 month regimen.

This result goes against our intuition since there was good evidence from the original

analyses of the RIFAQUIN study that the 4 month treatment regimen failed to

demonstrated non-inferiority. Due to this observation, we would have expected the

results from the fitted HMM to show a much larger hazard ratio to reflect that there

were more positive culture results in the study for this treatment arm and therefore

more treatment failures. Therefore when using these methods to find the preferred

HMM for the data, careful interpretation of the results for each HMM investigated is

also needed to ensure there are no conflicting results between the models. Having

used the estimates produced from the piecewise constant HMM with knots at 3, 6, and

10 months to simulate data for 30,000 patients, and then re-fitting the HMM failed to

improve the fit of the probability transitions. The most plausible explanation for this is

that RIFAQUIN was a smaller study in comparison to the REMoxTB study, with fewer

follow-up visits.

Assuming patients could transition between states outside of observations collected at

scheduled follow-up visits over the duration of the whole study reflects the true

Markov process. Although a strong and less plausible assumption for longer

follow-up visits, it is possible to assume states only change at the time of follow-up.

However doing so for these studies reduced the size of the estimates, but resulted in a

higher -2 log-likelihood indicating a poorer fit to the data.

False positive cultures and false negative cultures were accounted for by assessing

misclassifications using hidden Markov models. This meant we were able to estimate

these probabilities and impute the culture states using the estimated hazards and the

estimated sensitivity and specificity rather than using the trials’ definition. If we were

not estimating the misclassifications, we would have had to re-class single positive

culture results as negative (if patients had reached stable negative culture conversion

prior to the single positive result) or re-classing negative results as positive (if patients
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had not reached stable negative culture conversion/relapsed) before running these

models. This latter approach was not taken since a MGIT machine or manual LJ

spectrum is used to detect presence or absence of TB. This means it is of interest to

estimate such occurrences rather than imposing a rule. However, in most cases when

choosing the preferred model for the data for our exemplar studies, we found that

assessing the misclassification matrix drained out quite a lot of information from the

data, making them more challenging to fit. If the misclassifications could be assessed

(an added complexity to Markov models) when fitting the models, the missing culture

results could be imputed, but the confidence intervals will be slightly wider inferring

uncertainty. This is a consequence of assessing the misclassifications for the studies

explored here. Therefore presenting these results to researchers, which appear to

show that a loss of information as a consequence of the wider confidence intervals

when the rationale for using HMMs was to gain some information is not ideal. This is

why fixing the misclassifications may be preferable, since the intention is not to lose

information. The goal is to gain information from these models and with less

importance on precisely estimating what the misclassifications are. This is no excuse

to define and fix nonsensical values for sensitivity and specificity; rather caution to

not estimate these nuisance parameters at the cost of losing information. The process

for assessing these models is to try to fit the HMM resulting in a misclassification

model or to coax the model, eventually estimating the misclassification matrix and

then using those results as initial values fixing the misclassifications at those values

found by the previous model. Fixing the misclassifications even if the

misclassification matrix could be directly estimated from the model made very little

difference to the resulting probabilities for the REMoxTB and RIFAQUIN studies, but

did inflate the confidence intervals slightly when they were not fixed.

For the studies we used in this chapter, simpler models using a linear spline or using a

piecewise constant model worked better than a restricted cubic spline or fractional

polynomial model. For the fractional polynomial model and cubic splines model,

more data is included in comparison to the linear splines and piecewise constant

model, where a value of zero is taken up to the point of the specified knot. This in

conjunction with the added variables create a more complicated model overall

reflected in the estimates produced for the cubic splines and fractional polynomial

models. This indicates that these models are too complex for the software to fit for the
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data we have. These models may however work well if the collection of sputum

samples were better placed in terms of timing or in other studies with a larger sample

size. The simulations conducted improved the fit of probability transitions from the

chosen HMM to the raw data for the REMoxTB study, but not for the RIFAQUIN

study. This further supports that these models may work better for trials with larger

sample sizes. Additionally, the weekly visits collected over the first two months in the

REMoxTB study may have contributed to having a better Markov model that

provided a closer fit to the data than for the RIFAQUIN study where most patients

suddenly switch to a negative state after initially being diagnosed with TB around 8

weeks.

Having compared positive to negative and negative to positive transition probabilities

over time to the raw data, it appears that the two-fold fully conditional specification

method, which is not dependent on the Markov assumption, provides a closer fit to

the data than multi-state Markov models. Having investigated whether or not the

data are Markov, it appears that the culture results are dependent on earlier time

points as well and therefore this assumption does not hold so well for the data we

investigated here. Although it is possible that a second order Markov model may

work, doing so will increase the complexity of fitting these models as the number of

parameters increases exponentially with order105. Given that the models fitted here

were already challenging to fit, we did not proceed with this.

The two-fold FCS multiple imputation method is therefore the preferred approach

when further investigating the impact of missing data for TB studies using an ITT

analysis, excluding patients for reasons unrelated to treatment. This is evident in the

RIFAQUIN study which had fewer follow-up visits and fewer patients in the study

than for REMoxTB. This discrepancy is important since the RIFAQUIN study is

representative of other studies within the TB field with fewer follow-up visits. To

better capture the trend of the data in the HMM analysis, we fitted more complex

models using piecewise constants, linear splines, cubic splines and fractional

polynomials. The most likely explanation for the differences in the probability

transitions to the raw data is that the multi-state models are computationally intensive

to fit where there are few visits (and therefore fewer observed states) over a long
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period of follow-up. This is made even more complicated by using smoothing

methods for these type of data.

In the next chapter we use a range of sensitivity analyses to test the robustness of our

analyses and conclusions thus far. We look at departures from the MAR assumption

under MNAR (see §3.3). As the two-fold FCS method provided a closer fit of

probability transitions to the data than the HMMs explored in this chapter for both the

REMoxTB and RIFAQUIN studies, and so is the preferred choice, we explore

reference-based sensitivity analyses using multiple imputation.
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Chapter 6

Sensitivity analyses

Chapters 3-5 have explored different methods to handle the missing data, allowing us

to include in the analysis patients with interim missing values and patients who had

reached a stable negative culture conversion when last seen but withdrew before the

end of follow-up. Any analysis with missing data makes inherently untestable

assumptions about the distribution of the unobserved data. Consequently, where

missing data arises, analysis should not only consist of a primary analysis under the

most plausible assumption for the missing data but should ideally include a range of

sensitivity analyses under alternative missing data assumptions to test the robustness

of conclusions. The importance of conducting such sensitivity analysis is highlighted

in the 2010 EMA guidelines for missing data in confirmatory clinical trials106. These

guidelines state: “When the results of the sensitivity analyses are consistent with the

primary analysis and lead to reasonably similar estimates of the treatment effect, this

provides some assurance that neither the lost information nor the methods used to

handle missing data had an important effect on the overall study conclusions”.

Different results obtained when the assumptions of the missing data are varied are

just as important since this reveals under what conditions different results would be

obtained.

The systematic review in Chapter 2 showed only 16% (27/168) of articles reported

sensitivity analyses in which the assumption made for the missing data was changed.

This illustrates a need for accessible methods of sensitivity analysis busy trialists can

utilise. For the REMoxTB study best case/worse case scenarios were performed in the
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primary analysis for all analyses across all treatment arms. For the RIFAQUIN study

patients who died during the study were classed as unfavourable, reinfections were

classed as unfavourable for PP and mITT analyses and a worst case analysis was

performed for all patients in the mITT analysis who were excluded provided they

were not a late screening failure.

In §3.6.2 and §3.10 we investigated a best case scenario for the REMoxTB and

RIFAQUIN studies where missing observations in the standard of care regimen were

imputed with positive culture results and missing observations on treatment arms

were imputed with negative culture results. We also explored worst case scenarios

where missing observations on the standard of care arm were imputed with negative

culture results and missing observations on treatment arms were imputed with

positive cultures.

In this chapter we propose new, alternative sensitivity analyses to assess the impact of

changing patients’ post-deviation behaviour (i.e. after being lost to follow up) on trial

results. These are less extreme than the simple best case/worst case scenario

approaches, hence have the potential to be more realistic and useful. Specifically, we

investigate reference-based sensitivity analyses using multiple imputation to explore

departures from the MAR assumption, under MNAR (3.3). We first outline the

methodology behind reference-based sensitivity analyses using multiple imputation

for a continuous outcome. An extension which enables these methods to be applied

for binary outcomes is then proposed. The methods are then applied to the REMoxTB

and RIFAQUIN studies.

6.1 Reference-based sensitivity analyses via multiple

imputation

The aim for any primary analysis should be to estimate the primary objective, or the

estimand i.e. that which is being estimated. Sensitivity analyses should also be

designed to address the estimand of interest. Therefore when framing sensitivity

analyses we must carefully consider precisely what is being estimated under the

selected assumptions. Universal terminology is proposed by Carpenter, Roger and
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Kenward107; the de jure and de facto estimands. The de jure estimand estimates the

expected treatment effect if eligible patients randomised into a study adhered to their

randomised treatment as specified in the trial protocol and the de facto estimand

estimates the treatment effect seen in practice if this treatment were assigned to the

target population of eligible patients, as defined by the trial inclusion criteria107. These

terms are arguably similar to PP and ITT analyses respectively, but as found in the

systematic review in Chapter 2, PP and ITT can be interpreted in several ways. The de

jure and de facto estimands reduce these ambiguous definitions focusing on the

specific assumption used to impute the missing data and now relate to the estimand.

Reference based-sensitivity analyses use a multiple imputation model constructed

using data observed from a designated reference (typically control) arm to impute

missing outcome data in the treatment arm. This enables one to assess the impact of

deviators behaving like a reference patient post-deviation on trial results. These

methods were developed by Carpenter, Roger and Kenward107, based on ideas from

Little and Yau108 and shown to be statistically valid by Cro109. Appealingly,

reference-based multiple imputation procedures enable the estimation of both de jure

and de facto estimands. That is, they assess the impact of assuming all patients

adhered to their randomised treatment and the impact seen in practise where patients

may switch treatment arms and subsequently behave as if allocated to a treatment

reference arm.

For reference-based sensitivity analyses via multiple imputation, data are split

according to patient withdrawal so that each patient’s data can be divided into

pre-deviation data and post-deviation data. Different options to construct a joint

distribution between pre-deviation and post-deviation can be used, corresponding to

alternative assumptions for the unobserved data. The joint distribution is then used to

create several imputed data sets that are then combined for analyses using Rubin’s

rules34. We now describe in detail how Carpenter et al107 propose how this should be

done for a longitudinal continuous outcome, under the assumption of multivariate

normality.
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6.1.1 Algorithm for reference-based sensitivity analyses

The algorithm proceeds as for standard multiple imputation under MAR (see §3.5.1)

while accounting for pre- and post-deviation data. As defined by Carpenter et al107:

1. Assuming MAR, for each randomised treatment arm a MVN distribution with

unstructured mean and unstructured variance-covariance matrix is fitted for all

patients’ pre-deviation observations. Adopting a Bayesian approach, an

improper prior for the mean and an uninformative Jeffreys prior for the

variance-covariance matrix is used.

2. For each randomised treatment arm a mean vector and variance-covariance

matrix is drawn from the posterior distribution. These draws are used to

construct the joint distribution of each deviating patient’s pre- and

post-deviation outcome data using one of the options presented in §6.1.2. This

joint distribution is used to form the conditional distribution of the

post-deviation responses given pre-deviation responses. The post-deviation

data is then sampled from this constructed conditional distribution resulting in

one complete data set.

3. Repeat step 2 to create I imputed datasets.

Having created I imputed datasets, the estimates are combined to get an overall

estimate and variance using Rubin’s rules34 (see §3.5.1).

6.1.2 Options to construct the joint MVN distribution

The distribution of each patient’s post-deviation responses given their pre-deviation

responses and deviation time, required for imputation is defined as:

MVN ∼ (Ymis(k)|Yobs(k), Dk, trtk, η), (6.1)

for patient k for the randomised treatment arm trt deviating at time D. Yobs represents

pre-deviation responses from baseline until the point of deviation,

(Yobs(k) = Yk,0, ..., Yk,Dk), Ymis(k) represents post-deviation responses until the end of

scheduled follow-up (Ymis(k) = Yk(Dk+1),...,Yk,J ) and η represents noise.
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The heart of the reference-based approach in step 2 of the algorithm presented in

§6.1.1 is the construction of each patient’s joint MVN distribution of pre-deviation and

post-deviation data. In longitudinal data, such as arises from TB trials, this can

involve specifying many parameters. Reference-based methods do this implicitly, by

reference to other treatment arms and/or group of patients. The reason for doing this

is to make it easier for non-statistical experts to understand the assumption, and (as

mentioned) to avoid specifying many sensitivity parameters explicitly.

Following the formation of the required joint distribution for each patient who

deviates, the conditional distribution of post-deviation data given pre-deviation data

can then be constructed for imputation. Each option corresponds to an alternative

underlying missing data assumption. These scenarios apply to studies where patients

are randomised to one or more active interventions, alongside a reference (e.g. control

or placebo) intervention. The reference-based options for constructing of the joint

MVN distribution presented by Carpenter and Kenward include110,111:

1. Jump to reference: The joint distribution of a deviating patient’s observed and

missing data is formed as MVN where the mean and variance is taken from their

randomised treatment arm up until the last pre-deviation observation.

Post-deviation, the mean response distribution and the variance follow that of

the reference arm, i.e. the control regimen. This corresponds to the assumption

that post-deviation, the deviator ceased their randomised treatment and started

treatment similar to that available in one of the other arms (the reference arm).

2. Copy increments in reference: This is similar to the jump to reference option,

where the joint distribution takes the mean from the randomised arm up to the

last pre-deviation observation. Post-deviation the mean increments copy those

from the reference arm and the variance follows that of the reference arm. This

corresponds to the assumption that post-deviation the deviators response

resumes the course observed in the reference arm.

3. Copy reference: The whole distribution of a patient pre-deviation and

post-deviation is assumed to be the same as that of the reference arm. This

corresponds to the assumption that the deviator followed the reference

treatment throughout the trial.
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These three options fit under the de facto terminology umbrella since they explore

scenarios regardless of adherence to the protocol defined treatment. Under the

de jure estimand, where the assumption is that patients follow the trial protocol

continuing to adhere to treatment, the following options may be applied110,111:

4. Randomised-arm MAR: Patients’ pre-deviation and post-deviation follows a

MVN distribution with mean and variance from the randomised treatment arm.

5. Last mean carried forward: The marginal treatment group mean at the final

observed visit is held at this value and the variance comes from the randomised

treatment arm. This option is appropriate when the effect of randomised

treatment is assumed to be maintained on average post-deviation.

Appendix L shows the technical details for how each of these options are formed.

The methods of Carpenter, Roger and Kenward107 described here are valid where

patient outcomes follow a continuous MVN distribution. However, in TB studies, the

outcomes are binary. We now describe options that may be used to extend

reference-based sensitivity analyses via multiple imputation so that they are

applicable to binary outcome data. The first describes simple rounding, the second

approach describes the coin flip algorithm and the final proposal is the adaptive

rounding algorithm methodology proposed by Horton et al112. Other extensions of

the multiple imputation procedures for counts113 and time-to-event outcomes have

been proposed114, but to our knowledge no one has yet proposed an extension for

binary outcomes.

6.2 Adaptive rounding algorithm

For reference-based sensitivity analyses in a binary setting, we proceed to model the

binary data as if it were continuous and use multiple imputation as described in

§6.1.1. Following the imputation, missing observations imputed as continuous are

then back-transformed to binary observations. Each imputed data set with all

outcome values on the binary scale can then be analysed using the analysis model of

interest and results combined using Rubin’s rules34 for inference.
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To back-transform to binary data when multiple imputation is performed under the

assumption of MAR, the following methods proposed by Horton et al112, described by

Carpenter and Kenward79 and Bernaards et al115 can be used. The first involves using

a simplistic method (simple rounding) that rounds the imputed value for the missing

observation to the nearest 0 or 1. The second method is the coin flip algorithm, where

any imputed value ≤ 0 is replaced with a 0 and any value ≥ 1 is replaced with a 1.

Values that fall in between 0 and 1 (Yv) are imputed with a binary response of 1 with

probability Yv. The third method is the adaptive rounding algorithm:

(a) For binary variable w in imputed dataset I = 1, ..., I let Ȳw,z̃,t be the mean of the

observed (binary) and imputed z̃ values at time t.

(b) The binomial distribution is approximated to the normal distribution:

r̃v,w,t =
Ȳv,w,t − Cv,w,t√
Ȳw,z,t(1− Ȳw,z̃,t).

Let ϕ(.) be the cumulative distribution function of the standard normal.

We set ϕ(rv,w,t) = Ȳw,z̃,t and then construct a threshold such that:

Cw,z̃,t = Ȳw,z̃,t − ϕ−1(Ȳw,z̃,t)
√
Ȳw,z̃,t(1− Ȳw,z̃,t) (6.2)

(c) Imputed values are re-coded as 0 if Yw,z̃,t ≤ Cw,z̃,t and 1 if Yw,z̃,t > Cw,z̃,t

Bernaads et al performed a simulation study using these three methods and found

that the adaptive rounding algorithm performed best under standard MAR multiple

imputation115. Although this was only slightly better than the simple rounding

method, the adaptive rounding algorithm is preferred to increase the variability for

values that are imputed close to 0 or 179. This is clearly an important component in

the context of imputing for TB studies.

We therefore use the adaptive rounding algorithm with reference-based sensitivity

analysis for the REMoxTB and RIFAQUIN studies to test for departures from the

MAR assumption made about the missing data under MNAR.

287



6.3 Application to the REMoxTB and RIFAQUIN studies

In non-inferiority studies, new treatments are compared to the standard of care. It is

plausible to assume patients who are lost to follow-up receive some form of standard

care. We also use de jure methods assuming patients continued with their randomised

treatment arm post-deviation. These analyses will capture patients who completed

intensive treatment and may not have had any further treatment since it is assumed

that their outcomes will follow the distribution of the randomised treatment arm even

though we are unable to verify this.

As outlined in the previous subsection (see §6.2), for imputation it is assumed that the

data in the REMoxTB and RIFAQUIN study can be modelled as continuous, and a

total of 50 imputations are created for each de jure and de facto scenario. For missing

outcomes, data are back-transformed after imputation by applying the adaptive

rounding algorithm defined in §6.2. The results are then combined using Rubin’s

rules34. The results are interpreted according to the definition of treatment failure as

in §3.1 at the 1.25% (one-sided) significance level for the REMoxTB study and 2.5%

(one-sided) significance level for the RIFAQUIN study. Analyses for the REMoxTB

study adjusts for weight band and centre of recruitment and the RIFAQUIN study

adjusts for centre of recruitment. To determine whether non-inferiority could be

concluded, the 6% margin is used as defined in the original studies.

As for §3.2, any observed (and therefore known) sputum test results that occur during

an unscheduled visit will be included after imputation and after the application of the

adaptive rounding algorithm between randomisation and the final 18 month scheduled

follow-up visit. Any unscheduled visits after this final scheduled follow-up visit are

ignored.
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6.3.1 Results from the REMoxTB study

Conducting reference-based sensitivity analyses via multiple imputation across all

visits proved impossible because there is insufficient information within the dataset to

estimate any variability between patient outcomes. This means an underlying MVN

distribution to the observed data could not be fitted across all time points at once.

Instead, the general approach taken was to split the data into 4 visit windows.

Imputations were performed using Suzie Cro’s mimix command in Stata111.

Assuming patient outcomes are continuous, for one set of imputations the first visit

window was imputed across all visits within that visit window. The information (i.e.

the observed and imputed data) from the final follow-up visit within that visit

window was taken forwards to impute the next visit window. This mimics the

two-fold algorithm (see §3.5.3) using one pass. This was done until the final visit

window was imputed (see Figure 6.1).

Figure 6.1: Diagram showing “one pass” of the two-fold algorithm for the REMoxTB

study.

As in §3.8.2 when investigating patterns of missing data, we took visits from weeks 0

to 4, 5 to 8, 12 to 26 and 39 to 78 and imputed separately within each of those windows,

repeated for 50 imputations. The imputed datasets for each visit window were then

combined into one large dataset (with multiple imputations) before continuing with

the analysis. Figures 6.2 to 6.6 show the results from using jump to reference (j2r), copy

increments in reference (cir) and copy reference (cr) under the de facto analysis and

from using last mean carried forward (lmcf) and randomised-arm missing at random

(mar) under the de jure analysis to assess for departures from the MAR assumption.

Unadjusted results are presented in Appendix M.
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Figure 6.2: Jump to reference sensitivity analysis for the REMoxTB study (adjusted

analyses).
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Figure 6.3: Copy increments in reference sensitivity analysis for the REMoxTB study

(adjusted analyses).
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Figure 6.4: Copy reference sensitivity analysis for the REMoxTB study (adjusted

analyses).
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Figure 6.5: Last mean carried forward sensitivity analysis for the REMoxTB study

(adjusted analyses).
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Figure 6.6: Missing at random sensitivity analysis for the REMoxTB study (adjusted

analyses).
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For the jump to reference sensitivity analysis, where post-deviation it is assumed

patients follow the mean distribution of the control arm, the upper bound of the 97.5%

confidence interval was 8.19% for the isoniazid arm (4.08%; 97.5% CI: -0.02 to 8.19%)

and 9.01% for the ethambutol arm (4.69%; 97.5% CI: 0.36% to 9.01%) failing to

demonstrate non-inferiority (Figure 6.2). The results from the copy increments in

reference, copy reference, last mean carried forward and missing at random

sensitivity analyses are similar (Figures 6.3 to 6.6). All fail to demonstrate

non-inferiority since the upper bound of the 97.5% confidence intervals lie above the

6% non-inferiority margin. The randomised-arm missing at random and last mean

carried forwards sensitivity analyses, where it is assumed patients continue on their

randomised treatment arm post-deviation, had larger estimates of the upper bound of

the 97.5% confidence interval which favoured the control arm.
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6.3.2 Discussion

Reference-based sensitivity analyses showed consistent results with those of the

primary analysis and with that of the two-fold FCS multiple imputation method

where non-inferiority was not demonstrated on either the isoniazid or ethambutol

treatment arms. The results from all analyses explored suggest that the results are not

as extreme as those shown from the PP and mITT analyses, moving slightly closer

towards non-inferiority. For this study, the PP and mITT analyses suggest the

treatments were not performing as well as the control regimen and so, as expected the

sensitivity analyses show greater support for non-inferiority if patients are assumed to

move to the effective standard of care regimen under the de facto analyses. By

contrast, the de jure analyses assume patients with missing outcomes continue with

their randomised treatment and so the results for the last mean carried forward and

missing at random sensitivity analyses are closer to the PP analysis than the mITT

analysis and move towards favouring the control regimen. This is expected since

these treatments did not perform so well; if it is assumed patients continue on a

treatment arm that is not as effective as the control regimen then the effect of the

treatment regimen will favour the control regimen supporting the conclusions of

failing to demonstrate non-inferiority.

The sensitivity analyses explored here seem to work well for the REMoxTB study and

provide reasonable estimates for our data. Overall, we conclude that the conclusions

from the analysis under the MAR assumption are robust to the plausible assumptions

captured in the reference-based analyses. The differences between the MAR and

reference-based analyses are in the direction our intuition would expect. Next, we

apply the same methods here to the RIFAQUIN study which reflects more closely to

how tuberculosis trials are designed.

6.3.3 Results from the RIFAQUIN study

As for the REMoxTB study, there was not enough information within the data to

estimate the variance using reference-based multiple-imputation across all visits for

the RIFAQUIN study. Therefore, once again, data were imputed within each visit

window taking the observed and imputed observations in the last visit within each
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visit window forwards. Again, 50 imputations were generated. The four windows

were defined as follows: months 0 to 3, 4 to 7, 8 to 10, 11 to 18. These visit windows

differ slightly to those in §3.11 where month 7 is included in the second window for

imputation. This is due to collinearity when month 7 was included in the third visit

window between 7-10 months.

Figure 6.7 shows that the jump to reference sensitivity analysis failed to demonstrate

non-inferiority for the 4 month regimen (10.33%; 95% CI: 4.72% to 15.94%). These

results are consistent with the copy increments in reference and copy reference

sensitivity analyses (Figures 6.8 and 6.9). On the 6 month regimen the upper bound of

the 95% CI was 4.75% for the jump to reference sensitivity analysis (0.49%; 95% CI:

-3.78% to 4.75%) which was consistent with the copy reference sensitivity analysis

demonstrating non-inferiority. These results are closer to the results from the PP

analysis than the mITT analysis and are consistent with the two-fold FCS multiple

imputation. The copy increments in reference sensitivity analysis suggested a slightly

stronger case for non-inferiority where the upper bound of the 95% confidence

interval was 2.82% (-1.75%; 95% CI: -6.32 to 2.82).

Figure 6.7: Jump to reference sensitivity analyses for the RIFAQUIN study (adjusted

analysis).
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Figure 6.8: Copy increments in reference sensitivity analyses for the RIFAQUIN study

(adjusted analysis).
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Figure 6.9: Copy reference sensitivity analyses for the RIFAQUIN study (adjusted

analysis).
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Figure 6.10: Last mean carried forward sensitivity analyses for the RIFAQUIN study

(adjusted analysis).
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Figure 6.11: Missing at random sensitivity analyses for the RIFAQUIN study (adjusted

analysis).
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The results from the last mean carried forward sensitivity analysis, where patients are

analysed according to their randomised treatment arm shows a stronger case for

failing to demonstrate non-inferiority on the 4 month regimen (upper bound of 95%

CI: 22.04%) than the PP and mITT analyses (upper bound of 95% CI: 20.2% and 20.6%

respectively). The 6 month regimen demonstrates non-inferiority where the upper

bound of the 95% CI is 0.8% (-3.34%; 95% CI: -7.48% to 0.8%), and this result was

similar for the missing at random sensitivity analysis. The 4 month regimen for the

missing at random sensitivity analysis also favours the control arm (upper bound of

95% CI: 17.3%) but not as strongly as the last mean carried forward analysis. See

Appendix N for unadjusted results which give broadly similar conclusions.

6.3.4 Discussion

The results from all sensitivity analyses performed were consistent with the PP

analysis. Overall, and as expected, the de facto point estimates (where the jump to

reference, copy increments in reference and copy reference options assume patients

follow the distribution of the control arm) move the treatment estimates in the

opposite direction to the de jure estimates (where the last mean carried forwards and

missing at random assume patients followed the distribution of their randomised

arm) depending on where the starting point is. Consistent with this, the results from

the 4 month regimen using analyses under the de facto estimand were not as inferior

as the PP and mITT analyses. For analyses that fit under the de facto estimand, the PP
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and mITT analyses from the study showed that the 4 month regimen did not perform

as well as anticipated, and therefore the sensitivity analyses show some benefit if it is

reasonable to assume that patients were administered the standard of care regimen

after withdrawal. The results from the 6 month regimen suggest the results are

non-inferior when assuming de facto and de jure.

Under the de jure assumption analyses where patients are assumed to continue with

their randomised treatment post-deviation both the last mean carried forward and

missing at random sensitivity analyses were consistent with the PP analysis

demonstrating non-inferiority on the 6 month regimen. The missing at random

sensitivity analysis was consistent with the PP and mITT analysis but was not as

strongly inferior for both treatment arms and the last mean carried forward analysis

tended more so towards the control arm for the 4 month regimen. The last mean

carried forward analysis does however carry a strong assumption that, over time the

marginal mean result (from randomisation until the final observed visit) is carried

forwards for the imputation of later time points until the last scheduled follow-up

visit of the study. It is likely that for this treatment arm, those who were last seen prior

to withdrawal were already performing poorly on that treatment arm and so in reality

would have had their treatment regimen changed.

The original analyses from the study showed conflicting results for the 6 month

regimen; the PP analysis demonstrated non-inferiority and the mITT analysis failed to

demonstrate non-inferiority. All sensitivity analyses supported the conclusions of the

PP analysis. This suggests that the original mITT analyses performed for the

RIFAQUIN study makes extreme assumptions, where patients who are lost to

follow-up are considered to be failures. The de facto analyses showed the estimates

tended towards the control regimen. If the 6 month treatment regimen is in fact the

better regimen then analyses under de facto, which predicts results for patients who

are missing using the information from observed patients who are in the control arm

(i.e. not the better regimen) and so patients behave as if on the control regimen

post-deviation, will show less benefit for patients randomised to the 6 month regimen.

As a result, the estimates will tend towards failing to demonstrate non-inferiority.

Whereas, if it is assumed patients with missing data continued on the better 6 month
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regimen and therefore information to predict the missing values were borrowed from

those observed on that treatment arm, a stronger benefit of the regimen would be

shown. Therefore the estimates calculated from this type of analysis will tend more so

towards demonstrating non-inferiority. Similarly, if the 4 month regimen is the worse

regimen compared to control, assuming de facto will show a benefit as the results will

shift towards demonstrating non-inferiority and for analyses under de jure will

continue to show a lack of benefit. This is reflected in the estimates of the sensitivity

analyses.

6.4 Summary

In previous chapters, we showed that multiple imputation (assuming MAR) is a

robust and practical way to handle missing data in TB trials. Having shown this, in

this chapter, we have developed methodology for conducting sensitivity analyses

under MNAR assumptions for trials with unobserved binary outcomes. The proposed

methodology allows the impact of departures from MAR on trial results to be

assessed. Specifically, we have extended the reference-based multiple imputation

methodology of Carpenter, Roger and Kenward107 for use with a binary outcome.

This was achieved by assuming data were continuous and then using the adaptive

rounding algorithm we back-transformed the data to binary outcomes.

Instead of assuming a worst case scenario as recommended by regulators in TB trials,

this allows us to make the more plausible assumption that patients who deferred from

treatment were subsequently administered the standard of care regimen. For

completeness we also investigated de jure methods, where we assume patients

continued on their randomised treatment arm after deviation. The sensitivity analyses

explored here show that, assuming patients continued with their randomised

treatment arm, results are supportive of the conclusions of the PP analysis. That is

non-inferiority was demonstrated. Arguably, this is a reasonable assumption, since

post-withdrawal patients are most likely to be administered the standard of care

rather than no treatment because patients are quite ill from this disease. However,

assuming patient outcomes for those on the alternative treatment regimens follow the

distribution of the standard of care arm post-deviation will make the treatment look
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similar to the standard of care arm thus biasing towards the null (i.e. the

non-inferiority margin) demonstrating non-inferiority. It is therefore equally

important to use the de jure methods where patient outcomes are assumed to

continue following the distribution of their randomised arm. Conducting sensitivity

analyses under a range of alternative assumptions for the unobserved data is

important to get a handle under what conditions the results vary, if any.

The REMoxTB and RIFAQUIN studies both highlight what is likely to be a recurring

issue in the application of TB studies. This is that there is insufficient information to

estimate the full variance-covariance matrix, resulting in collinearity when applying

reference-based sensitivity analyses via imputation over all observation times. We

therefore adopted our earlier proposal of splitting the data into visit windows,

imputing each window assuming a multivariate joint distribution between the mean

and variance of the control arm sequentially taking the last imputed visit, and

therefore “completed” data, within each window forwards to the next window for

imputation. This was done to remove imputing across all visits within each visit

window independently, retaining the information from the last visit at the previous

visit window forwards over time, as a “one-path” of the two-fold algorithm. This was

done assuming the data were continuous using the mimix command in Stata

software111. The adaptive rounding algorithm was then used, back-transforming

these imputed values to binary values for analysis. We modified the software to

accommodate for the adaptive rounding algorithm. We have shown that this is a

feasible approach that works well for our TB datasets.

Although the imputations were retained using the last visit within each visit window,

the results from the sensitivity analyses were consistent with that of the primary

analyses and were closely matched to the two-fold FCS multiple imputation

performed in Chapter 3. These methods also matched our intuition for patients on the

treatment regimens which were not performing so well. This is because, assuming

after withdrawal they received the standard of care regimen, it was expected the

estimates move in the direction of demonstrating non-inferiority as discussed (§6.3.2).

Analogous to this is if a treatment does perform “acceptably worse” in comparison to

the control regimen, the estimates would move in the opposite direction (failing to

demonstrate non-inferiority). Assuming patients continued with their randomised
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treatment regimen also matched our intuition; treatment regimens that performed

poorly continued to move in the direction of favouring the control regimen and

treatment regimens that performed well continued to favour the treatment.

The de jure analysis for both the REMoxTB and RIFAQUIN studies, assuming

randomised-arm missing at random, showed that the estimates were broadly similar

to the two-fold fully conditional specification multiple imputation algorithm but that

the confidence intervals were narrower. The expectation would be that the two

analyses produce similar results as they almost make the same assumption. This

could be a consequence of using one forwards path for imputation within the four

visit windows. A natural extension given that the results look promising might be to

implement these sensitivity analyses using a two-fold approach.

For the RIFAQUIN study, the PP and mITT analyses were conflicting. The sensitivity

analyses used in this chapter provided more support for the PP analysis even when

we assumed patients deviated to the standard of care regimen. The mITT analysis

appears to make a rather strong assumption relative to the reference-based methods

applied here. In some cases an extreme assumption can be made and the conclusions

still be sustained. This is acceptable in situations where if a more plausible

assumption is made then the overall conclusions will also hold. However, there will

be cases where the most plausible assumptions through the reference-based methods

will still retain the conclusions where as for a relatively extreme example it might not.

In this situation we argue that the reference-based methods, being that they make

more plausible assumptions, would provide more useful information to decision

makers.

Using the adaptive rounding algorithm to extend the existing reference-based

sensitivity methods to binary outcomes has never been applied before. Here, we have

shown that in principle the adaptive rounding algorithm works well providing

consistent results with all other analyses. However, while we have demonstrated

proof of concept, further work is required to validate the methods proposed here, and

we discuss this aspect in §7.3. By using more plausible assumptions, sensitivity

analyses will inevitably result in a more accurate interpretation of the whole of the

study. It is for this reason that we argue reference-based sensitivity analyses can be

and should be considered for use for future TB non-inferiority studies.
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Chapter 7

Discussion

In medical research, non-inferiority trials aim to find an alternative to the standard

treatment that may be less efficacious, but has an advantage over the standard of care,

such as fewer side effects or reduced cost. The clinical advantage of non-inferior

treatment regimens is that clinicians have more than one treatment regimen option to

administer to patients116, should the standard of care cause side effects to a patient or

if the patient is allergic to a particular drug. Arguably, as more treatments are found to

be superior to placebo, the use of non-inferiority designs will continue to increase. It is

therefore all the more essential that non-inferiority trials are both well-designed and

well-conducted, with appropriate, transparent methodology used.

The lack of clear guidance for designing these studies demonstrates a need for more

appropriate guidelines. The first aim in this thesis was to highlight these issues,

reviewing current practice in design and analysis of these studies. The second aim

was to find better methods for analysing the primary outcome in non-inferiority

clinical trials, as there is a real need to identify and disseminate a valid, practical,

approach to deal with the missing data. The third aim of this thesis was to investigate

a better, yet still accessible approach for performing sensitivity analysis. Each of these

aims are discussed in turn and we end with a final discussion of this thesis overall.

The guidelines reviewed in this thesis were often conflicting, making it challenging for

researchers to implement a well-designed non-inferiority trial. Since our systematic

review in Chapter 2 was completed, the U.S. FDA guidelines for non-inferiority were
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finalised in November 201613. The finalised version had little improvement in terms

of clarity to the draft version and still remained inconsistent with other guidelines

reviewed. Over the last six years, between the draft version of the U.S. FDA

non-inferiority guidelines and the final version, researchers have become and

continue to be increasingly aware of imputation methods developed to address issues

raised by missing data. This was perhaps one of the more noticeable additions to the

final version of the U.S. FDA guidance which recommend using imputation methods

to account for attrition bias13. They however fail to distinguish between single

imputation and multiple imputation methods. The guidance also fails to highlight

that imputation methods carry untestable assumptions and completely neglect that

using sensitivity analyses, under a range of plausible assumptions, is also important

to test whether conclusions are robust.

The inconsistency in the guidance given to researchers is reflected to what is being

done in practice, as shown by our systematic review reported in Chapter 2. One of the

most concerning things we found was the lack of robust justification(s) of the

non-inferiority margin. This is because there is a direct link from this to the clinical

impact on patient well-being. We hope that this finding in our published review44 and

our warning that editors and other researchers within the community must be

satisfied with the justification of the choice of the margin itself has an impact within

the field.

The review performed found that ITT and PP analyses were often performed, and the

general consensus is that if both analyses provide similar conclusions we can be

reassured. Often, differences are due to patient withdrawal (from treatment, follow-up

or both). Commonly, one of the ITT or PP analysis was taken to be the primary

analysis, with the other considered a sensitivity analysis. These two analyses actually

answer quite different questions about the behaviour of the population and do not

explore the robustness of the conclusions to well-defined assumptions about the

missingness mechanism. Therefore, they are not ideal sensitivity analyses.

Beyond this, the different interpretations of an ITT analysis and in particular a PP

analysis were also concerning. There has been debate, and will continue to be debate,
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surrounding the two analyses and whether one ought to take precedence over the

other116–121. A recent review performed for non-inferiority trials by Aberegg et al

found that there was little difference between results of ITT and PP analyses and

where differences arose, the ITT was actually a more conservative analysis122,

(although, this research only reviewed articles from 5 journals). Ultimately, as with

any research, the population chosen for an analysis and the analysis itself should be

based on the real question to be answered, rather than performing an analyses

without any careful thought about the question. This distinction is something

currently being emphasised within the medical statistics field123, where the focus is on

what the estimand (i.e. the outcome to be estimated) should be. Nonetheless, the ITT

and PP terminology appear to be the norm when designing non-inferiority trials,

evident in all non-inferiority guidelines. The lack of clarity on how PP is defined in

current guidelines has the potential to give researchers some leeway to perform a

wide range of analyses, and as a consequence introduce bias into a study. In doing so

the focus of what truly is the estimand is lost.

Another key finding within the review was that imputation techniques to test the

missing data assumptions were rarely considered. In clinical trials, there inevitably

will be some missing data35. The best advice to minimise the ambiguity that

unavoidably arise from a non-trivial proportion of missing data is simply to minimise

the amount of missing data in the first place, through creative preventative measures.

For example, training staff involved during the development of a study about the

impact missing data can have, should encourage them to collect as much data as

possible and in particular persist in efforts to follow up patients to the end of a study.

One study published that was included in our systematic review included case report

forms (CRF) in the protocol (within the supplementary content)124. There is a specific

question that asks whether all the patient information was collected and if not then an

explanation for why the information was not collected. This is something that could

easily be implemented in all clinical trials, and should help assess the plausibility of

the assumptions made about the distribution of the missing data (i.e. whether MCAR,

MAR or MNAR are reasonable) for the analyses. Logistically, this question can also

remind researchers to collect vital information relating to patient outcomes that could

have otherwise been forgotten.
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For TB studies, the mITT and PP analyses dealt with missing data by excluding

patients depending on treatment completion. The second aim of this thesis was to

compare and contrast more sophisticated statistical approaches which allow the

inclusion of these patients who were excluded and illustrate their use, using two TB

datasets as examples. In terms of missing data, around 10-15% patients who are lost to

follow-up are completely excluded from analyses in these trials. This is unsatisfactory

when the non-inferiority margin is around 6% since the exclusion of these data may

affect the overall conclusions made for these studies.

Our datasets were from TB non-inferiority trials where the goal was to find a shorter 4

month intensive treatment regimen compared to standard 6 months of care. For

patients to be classified as “cured” after treatment, the results of patients’ sputum

samples need to be classed as negative at two consecutive, separate follow-up visits

over the 18 months of total follow-up. The requirement of this confirmatory result

means missing data can be problematic when attempting to determine the overall

outcome of a patient. The missing data, and contaminated results which are regarded

as missing, are ignored for analysis purposes. Our goal was to also include in the

analysis information from patients with these missing observations in the analysis, to

provide a more powerful, clinically meaningful analysis. We investigated different

statistical methods to impute this missing data, resulting in a “completed” dataset that

then allowed us to determine the primary outcome of treatment failure for each

patient under the MAR assumption. We then explored a method, known as

reference-based imputation, for exploring the robustness of conclusions obtained

under MAR to plausible MNAR mechanisms.

7.1 Summary of results under MAR

Chapter 3 explored various single imputation methods and multiple imputation

methods to include the missing observations of culture data from patients randomised

to the REMoxTB (Table 3.2) and RIFAQUIN (Table 3.10) studies. We found that single

imputation methods made extreme assumptions about the missing data. The

complete case analysis resulted in a huge loss of data, therefore providing a less
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powerful analysis, and best case/worst case scenarios produced extreme results in

favour of demonstrating and failing to demonstrate non-inferiority respectively.

Due to the long, binary sequence of positive culture results at the start of follow-up

and negative culture results towards the end of follow-up in both the REMoxTB and

RIFAQUIN datasets, performing standard multiple imputation (including all visits in

the imputation) was computationally infeasible. Instead we used the two-fold fully

conditional specification multiple imputation algorithm. This method was used to

impute the missing observations at each follow-up visit sequentially using observed

outcomes on either side of that visit, propagating the imputed information forwards,

until the final 18 month visit. The 10-15% of patients who withdrew were included in

this analysis and imputations were performed separately in each treatment arm. This

method seemed to work well for the data, producing consistent results with those of

the primary PP analysis in both studies where the four month regimens failed to

demonstrate non-inferiority and the 6 month regimen used in the RIFAQUIN study

demonstrated non-inferiority.

Given the computational difficulties we faced applying multiple imputation in

Chapter 3, we smoothed the data by creating visit windows, partitioning the data

prior to conducting any further analyses. Using these visit windows, we investigated

different patterns of missing data in both the REMoxTB and RIFAQUIN studies. The

proportion of negative culture results in these different missing patterns challenges

regulatory guidelines that recommend performing a worst case scenario. This is

because we find this is a very conservative analysis. Sensible interpretation of results

relies on sensible methods and analyses, and so we do not recommend using the

worst case scenario for TB trials.

In Chapter 4, data remained partitioned in visit windows meaning that we were able

to look at the data focusing on specific time points over the course of follow-up and

also perform analyses on a simpler dataset. This is a key step for estimating stable

weights for inverse probability weighted analysis. Marginal models such as

Generalised Estimating Equations worked well when including weights in the model

to account for the missing data. Weights were determined by investigating predictors
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of treatment failure and withdrawals. Production of sputum and time to not

producing sputum were key predictors and were included in the weights. Looking at

risk differences within each visit window rather than overall gave more insight into

how treatment failure changed over time for the REMoxTB and RIFAQUIN studies.

For the REMoxTB study, we found that the treatments performed best within the first

8 weeks of treatment and performed well in the first 6 months of treatment. By the

time of the continuation phase (6 to 18 months) non-inferiority could no longer be

demonstrated. This suggested that the treatment used during the intensive phase is

not strong enough or that treatment is not administered to patients long enough to

suppress any latent TB bacteria remaining in the lungs. As a consequence, any

remaining bacteria can multiply causing the patient to have a recurrence of the

disease. This was a similar story for the RIFAQUIN study where treatment was most

effective in the first 4-6 months of treatment. The 6 month regimen containing a higher

dosage of rifapentine demonstrated non-inferiority for all visit windows. Although

the 4 month regimen demonstrated non-inferiority in the final 11 to 18 months, it

failed to demonstrate non-inferiority between 7 to 10 months. Towards the end of the

study, patients not on treatment who were not becoming cured of TB would have had

their treatment switched to a standard of care regimen as a consequence of the

treatment failing. Therefore we can be confident that the 4 month regimen failed to

demonstrate non-inferiority. This was supportive of the original primary analysis.

Observations over time were kept as visit windows, and as an alternative analysis, we

used a mixed effects Poisson regression model to count the number of negative results

within each window. There was less patient variation within the data predicted by the

model suggesting data were underdispersed. Further, simply counting the number of

culture results within a visit window, we lose the protocol defined outcome where

patients are considered to reach negative stable culture conversion if they achieve two

consecutive negative culture results at separate visits. In the Generalised Estimating

Equation analysis this was handled by including weights within the model. The

Poisson regression analysis is therefore not recommended for TB studies.

Chapter 5 explored multi-state Markov models, and in particular used hidden Markov

models where the positive and negative cultures results were of the same type as the
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hidden underlying disease state. This is a potentially attractive approach since these

models can estimate the sensitivity and specificity. This is of interest within the TB

community since the automated MGIT machine or manual LJ spectrum used to

detected TB are not known to be 100% accurate. We explored a range of models such

as piecewise constants, splines and fractional polynomials to smooth the data and

provide a better fit of the Markov model to our data. A linear spline worked best for

the REMoxTB study and a piecewise constant worked best for the RIFAQUIN study.

For the REMoxTB study, a lack of fit was marked around 6 to 12 weeks where patients

were changing from mostly positive to mostly negative culture results. It was in this

region that the data were not truly first order Markov. However, the fit to the latter

part of the follow-up, when the data were nearly Markov and where most of the

missing values were, was good. Various models of increasing complexity were

explored to improve the fit, but a major constraint is the relatively limited information

in the data to fit such models. This was even more noticeable when using these

models for the RIFAQUIN study which had fewer patients and fewer follow-up visits.

Using simpler models, reducing the complexity of the chosen model for the

RIFAQUIN study resulted in a much poorer fit of the data.

To impute the missing states (considering the states as sputum test results thereafter)

for each patient using our TB datasets, the forwards/backwards algorithm was used

to calculate the probability of being in a positive or negative state at each time point.

This algorithm was extended to enable proper imputation of missing sputum results.

The Viterbi algorithm which calculates the overall sequence of states per patient was

also used to check the consistency of conclusions made. The forwards/backwards

algorithm is less computationally intensive than the Viterbi algorithm when

predicting the true underlying disease state. Note that the forwards/backwards

algorithm and Viterbi algorithm are both approximate, but can disagree in cases

where the probability transitions are low between the most likely observations at time

t and the next time point. Consequently, the Viterbi algorithm may calculate a lower

probability for the underlying disease state at that time, even if the state observed is

known.
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Even though the fit of the final model for these studies did not match exactly to the

raw data, is reassuring that the results from using the forwards/backwards algorithm

and from using the Viterbi algorithm were consistent with mITT, PP analyses and

two-fold fully conditional specification multiple imputation for both the REMoxTB

and RIFAQUIN studies. This is what we hoped, as the HMM and multiple imputation

approach both assume MAR, and impute within arms assuming patients continue to

follow the protocol. The HMMs were easier to fit for the REMoxTB study where there

were 1000 more patients, than for the RIFAQUIN study. REMoxTB also had more

early follow-up visits resulting in richer data. The HMMs for RIFAQUIN also needed

additional covariates in order to try and better model the fit of the observed

transitional probabilities. Given that most TB clinical trials are of a similar size to the

RIFAQUIN study, with a similar follow-up schedule, this suggests fitting these

models may be relatively impractical for TB studies with smaller populations. These

methods may however still prove to be very useful for other disease areas.

Since the REMoxTB and RIFAQUIN studies were published, there has been much

discussion surrounding the choice of treatment regimens for phase III TB trials. In

phase II studies, potential treatment regimens to shorten the duration of TB treatment

look at the surrogate endpoint of culture conversion at 8 weeks. Although a useful

biomarker for these trials as a whole, as Ruan et al assert125, this marker is not strong

enough to reliably predict patient outcomes in phase III trials. This was a lesson learnt

from these studies and perhaps a strong contributor for these 4 month regimens

failing to demonstrate non-inferiority.

We have shown how multiple imputation, weighted Generalised Estimating

Equations and HMMs, can be used under an ITT type analysis (excluding reasons

unrelated to treatment) to impute missing outcome data under the MAR assumption.

Of these, we found that the two-fold fully conditional specification multiple

imputation algorithm was the most practical, robust, approach. For the studies

explored in this thesis, the results were similar to the per-protocol analysis. This is

because the ITT analysis we propose does not make the extreme assumptions used in

the original analysis for these studies. That is, assuming patients who do not not reach

the end of follow-up are considered to be failures. Well-defined imputation based
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approaches are preferable to ad-hoc approaches for dealing with missing values. We

therefore argue that two-fold fully conditional specification multiple imputation

should be used to handle missing outcomes for the primary analysis. Of course

techniques like multiple imputation or inverse probability weighting should not be

used without first carefully exploring the impact of the missing data, predictors of

outcomes being missing and the likely correlation of the actual missing values. Our

results confirm that the treatment regimens used were simply not strong enough to

kill any remaining latent bacteria in the lungs during the continuation phase. Given

the high costs of the study, there can be little justification for not using the most

appropriate statistical approach which makes full use of information in the data.

7.2 Summary of results under MNAR

The results from the systematic review found that sensitivity analyses that tested for

departures from the assumption made about the distribution of the missing data were

rarely performed. When they were, simplistic methods that made strong assumptions

about the missing data were used such as best case/worst case scenarios or last

observation carried forward. In TB trials, it is often recommended to use a worst case

scenario. In the original analyses for the REMoxTB and RIFAQUIN studies, the worst

case assumption used as a sensitivity analysis was performed across all treatment

arms, showing consistent results with the primary analyses performed. An actual

worst case scenario, performed in Chapter 3, where the missing data for patients

randomised to the control arm is imputed with the best result and the missing data for

patients randomised to the treatment arms are imputed with the worst result shows

just how extreme this analysis is. A better and more accessible approach to use

sensitivity analyses was also a requirement following this review. This motivated the

work in Chapter 6 looking at departures from the MAR assumption to MNAR.

For the reasons explained above, we proceeded with a multiple imputation approach.

As discussed in Chapter 6, specifying a full MNAR distribution for the data requires

specifying the distribution of a large number of parameters. Reference-based

sensitivity analysis was designed to address this issue by instead specifying the

MNAR distribution by reference to other groups of patients in the study, typically the
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reference (often control) arm79. Accordingly, these studies are a natural setting to

apply this approach. However, this is the first time reference-based sensitivity

analyses have been explored in a non-inferiority setting. While current methods and

software exist for continuous longitudinal outcomes111, the approach has not been

used for binary data before. Our approach was to assume the data were continuous

for imputation, back transforming imputed values to binary values using the adaptive

rounding algorithm. This algorithm has been shown to have good statistical

properties115. Additionally, we had to address the computational issue of there being

insufficient data to estimate the unstructured variance-covariance matrix of the

outcome data. We handled this by applying the reference-based imputation approach

within overlapping windows, analogous to the two-fold algorithm, although we only

used one (forwards) pass through the data.

We performed two types of analysis. The first, de facto, analyses imputed missing

data from patients in the control (i.e. reference) arm. This type of analyses assume

(and may often be plausible) that post-withdrawal patients took a control-like

treatment regimen, and this shifted the estimates of the treatment effect in the

opposite direction. Depending on the starting point, this can either decrease or

increase the evidence for non-inferiority. By contrast, the de jure analyses, imputes the

missing data from patients in the same trial arm, in effect as if they continued to

follow the protocol. As expected, the de jure MAR analysis, which makes the same

assumption to the two-fold fully conditional specification multiple imputation MAR

analysis, gave similar results.

The assumptions underpinning this approach are much more plausible than those for

the simplistic best case/worst case scenario which produces extreme results. Therefore

we believe this approach should be adopted routinely. To facilitate this, the program we

extended for the analysis of these binary outcomes is to be developed for applicability

in general settings as an extension to the currently available mimix software in Stata111

to make this program available for all researchers.
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7.3 Future work

The methods applied in Chapters 3-5 in this thesis, to impute observations for patients

whose outcome data were missing (and who were therefore excluded if they did not

reach the end of the study), were very similar to the estimates found in the

pre-specified primary analyses. Although this is reassuring, there are still gaps

remaining in the methods used in these trials. The trial protocol defined primary

outcome of treatment failure can occur at any point over several scheduled follow-up

visits. Analytically the long sequence of data per patient causes computational

problems making it difficult to apply robust methods with meaningful results. This is

because there are long constant sequences of positive culture results at the start of

follow-up and long constant sequences of negative culture results towards the end of

follow-up. There are some ways around this problem. The most practical of which

seems to be partitioning the data into visit windows, but a simpler analysis that

focuses on the treatment effects at the end of the intensive phase and at the end of the

continuation phase may be sufficient to draw valid inferences. If so, this will result to

a simpler, clearer design for these trials.

Chapter 3 investigated hot-deck multiple imputation but we found this was

computationally impossible. An extension of this to longitudinal data using the

principals behind the two-fold approach may work well, but would be expected to

gain little information, if at all, relative to parametric imputation.

Chapter 5 investigated multi-state hidden Markov models, which allow the

misclassification probabilities to be estimated. First order Markov chains were

investigated, so that the previous visit was accounted for. However, the REMoxTB

study showed that during the period between 6 to 12 weeks, when patients are

moving from a positive culture results to mostly negative culture results, depend on

the state at the previous two visits. This was a similar story for the RIFAQUIN study.

Second order or higher order Markov chains could be explored. However, we did not

do this, because of the issues we faced with the first order Markov models —

specifically the limited amount of available information in the data to fit the models.

This did not suggest this was a promising practical approach. As we only have two
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states, the estimated intensities can be interpreted as (log) hazards and (log) hazard

ratios; this assumes local proportionality. Beyond this, the forwards/backwards

algorithm used to predict patient outcomes for multi-state Markov models could be

extended to incorporate sensitivity analyses in a similar way to the reference-based

multiple imputation explored in Chapter 6. These sensitivity analyses could then test

for departures of the MAR assumption made for these multi-state models under

MNAR. We note that, while the statistical performance (in terms of bias and coverage)

of the two-fold algorithm has been extensively explored using simulations78, if we

wanted to use HMMs routinely in the primary analysis, a simulation study to confirm

their performance would be desirable.

Chapter 6 used the adaptive rounding algorithm, extending the methods to binary

outcomes using the reference-based multiple-imputation methodology of Carpenter,

Roger and Kenward107. While we demonstrated proof of concept, further work is

required to validate the “information anchoring” property of the method in this

setting. Collinearity was an issue for multiple imputation under MAR, which was

why we used a version of the two-fold approach using reference-based sensitivity

analyses. We took the approach of grouping visits into visits windows, partially

mimicking the two-fold FCS multiple imputation method imputing missing

observations within each visit window conditional on the last visit at the previous

visit window. The encouraging results with this approach support further developing

reference-based sensitivity analyses using a two-fold FCS multiple imputation

approach for non-inferiority trials with binary outcomes, such as in TB. We note that

this approach has the attraction of being “information anchored”. That is to say the

information lost due to missing data is held constant across the primary and

sensitivity analyses. This is an attractive property for regulators and trialists.

7.4 Conclusion

This thesis began with three aims: to review current practice in design and analysis of

non-inferiority trials; to identify the most practical, accessible approach for handling

missing data under MAR; and to identify a promising approach to sensitivity

analyses. The systematic review performed highlighted the need for a more practical
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approach to handle missing data for non-inferiority trials. Our proposed imputation

approach is likely to be increasingly acceptable to the research community; research

shows the use of multiple imputation is rising126 with more researchers using the

methods. This is perhaps because it is now easily accessible in most statistical

software. The increasing awareness that the method exists has lead to missing data

and multiple imputation guidelines. The methods explored included other methods

to handle missing data, in particular such as inverse probability weighting and

multi-state models. We found that for longitudinal binary data, although multi-state

models can provide reasonable predictions of what state a patient is in if the

observation is missing, it was much harder to get them to fit, and the fit was not

entirely satisfactory. It is likely that this is due to violation of the first-order Markov

assumption. Therefore, two-fold fully conditional specification multiple imputation is

the preferred choice for TB studies as the method allows us to choose a non-Markov

dependency. The results from these analyses were closer to the original PP analysis

from the studies explored. The ITT analysis proposed here makes less extreme

assumptions than the typically used mITT and PP definitions in TB studies. Turning

to our final aim of performing sensitivity analyses, our extension of reference-based

sensitivity analysis for binary outcomes worked well for the REMoxTB and

RIFAQUIN studies. These sensitivity analyses are robust and more plausible than the

recommended worst case analysis and we believe this should be the first choice for

non-inferiority trials.

While the focus of this thesis was on TB non-inferiority trials, in theory the analyses

used here can be applied to all clinical trials with binary longitudinal data that require

a confirmatory result to determine a patient’s outcome. In conclusion, we have

successfully addressed the three motivating aims, providing a practical way forward

in TB non-inferiority trials.
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Appendices

A Data extraction form

GENERAL INFORMATION

1. Journal:

2. Article filename:

STUDY DESIGN

3. What was the effect measure of the primary outcome?

(a) Odds ratio

(b) Risk ratio

(c) Hazard ratio

(d) Rate ratio (for counts)

(e) Difference in proportions

(f) Difference in means

(g) Ratio of means

(h) Other

4. What was the margin?

(a) Was the choice of the margin justified? y/n

(b) How was the margin justified?

5. What type of intervention was used?

(a) Drug
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(b) Surgery

(c) Other

6. What type of trial was this?

(a) Participant randomisation

(b) Cluster randomised

(c) Crossover randomisation

(d) Other

Sample size

7. What was the type I error rate used in the sample size calculation?

a. Was this one-sided or two-sided? One-sided/two-sided/unclear

8. What was the power used in the sample size calculation?

9. Was the treatment effect assumed to be zero? y/n/unclear

PRIMARY OUTCOME

10. Copy and paste the primary outcome:

11. What population was chosen (fill all that apply)?

a. Intention-to-treat (ITT)? y/n

i) If yes how was this defined (implicitly or explicitly)?

ii) Was this primary or secondary (implicitly or explicitly)?

primary/secondary/NA

b. Per protocol (PP)? y/n

i) If yes how was this defined (implicitly or explicitly)?

ii) Was this primary or secondary (implicitly or explicitly)?

primary/secondary/NA
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c. Modified intention-to-treat (mITT)? y/n

i) If yes how was this defined (implicitly or explicitly)?

ii) Was this primary or secondary (implicitly or explicitly)?

primary/secondary/NA

d. As-treated? y/n

i) If yes how was this defined (implicitly or explicitly)?

ii) Was this primary or secondary (implicitly or explicitly)?

primary/secondary/NA

e. Other? y/n

i) If yes how was this defined?

ii) Was this primary or secondary? primary/secondary/NA

f. Unclear? y/n

12. Was the primary outcome a composite outcome? y/n

13. What disease is the primary outcome answering?

Study results

14. What level is the confidence interval being reported? 90%/95%/other

a. If other:

15. Which bound of the confidence interval is being reported?

one-sided/two-sided/unclear

a. Was the direction pre-specified? Upper bound/lower bound/not specified

16. Is the confidence interval consistent with the type I error rate? y/n/unclear

17. What was the p-value?

a. What side of the p-value has been reported? One-sided/two-sided/NA
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Missing data

18. What percentage of missing outcome data was reported?

19. Were any imputation techniques used? y/n/NA

a. If yes, what method was used?

Sensitivity analysis

20. Were any sensitivity analyses on the primary outcome conducted? y/n

a. If yes, what were they?

Conclusions

21. Was non-inferiority declared? y/n

a. Copy and paste conclusions made on non-inferiority

Other

22. Do any questions need to be checked by another reviewer (detail in the

comments section)? y/n

Comments:
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B Missing data patterns for REMoxTB

Table B1: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with most culture results observed (i.e. completers’) over visit windows for REMoxTB

on control arm1 .

Number of negative culture results Total number Treatment success

Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 Total (N=590) Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 of negative n/no. patient

culture results per pattern

O O O O 272 (46.10%) 267/1269 = 21.04% 692/1019 = 67.91% 985/1011 = 97.43% 998/1033 = 96.61% 2942 253 (93.01%)

O O ∆ O 33 (5.59%) 26/149 = 17.45% 64/118 = 54.24% 62/66 = 93.94% 118/121 = 97.52% 270 29 (87.88%)

O O O . 19 (3.22%) 13/93 = 13.98% 41/72 = 56.94% 64/70 = 91.43% 10/11 = 90.91% 128 3 (15.79%)

O O O ∆ 27 (4.58%) 28/128 = 21.88% 64/101 = 63.37% 96/99 = 96.97% 54/54 = 100.00% 242 24 (88.89%)

O ∆ O O 19 (3.22%) 16/80 = 20.00% 25/38 = 65.79% 65/66 = 98.48% 69/73 = 94.52% 175 16 (84.21%)

∆ O O O 20 (3.39%) 7/53 = 13.21% 52/71 = 73.24% 72/74 = 97.30% 68/75 = 90.67% 199 18 (90.00%)

. . . . 7 (1.19%) 0/7 = 0.00% 0/0 = 0% 1/1 = 100.00% 1/1 = 100.00% 2 0 (0.00%)

O O . . 10 (1.69%) 16/50 = 32.00% 30/36 = 83.33% 2/2 = 100.00% 2/2 = 100.00% 50 0 (0.00%)

. . O O 9 (1.53%) 3/10 = 30.00% 3/4 = 75.00% 29/29 = 100.00% 31/32 = 96.88% 66 8 (88.89%)

O . O O 10 (1.69%) 9/43 = 20.93% 7/9 = 77.78% 37/38 = 97.37% 37/37 = 100.00% 90 10 (100.00%)

O O . O 8 (1.36%) 10/38 = 26.32% 17/27 = 62.96% 6/6 = 100.00% 29/29 = 100.00% 62 6 (75.00%)

O . . . 9 (1.53%) 7/33 = 21.21% 0/1 = 0.00% 0/0 = 0% 0/0 = 0% 7 0 (0.00%)

. O O O 7 (1.19%) 1/8 = 12.50% 20/24 = 83.33% 26/27 = 96.30% 26/26 = 100.00% 73 6 (85.71%)

O D D D 2 (0.34%) 5/8 = 62.50% 1/1 = 100.00% 0/0 = 0% 0/0 = 0% 6 0 (0.00%)

O . . O 4 (0.68%) 3/18 = 16.67% 1/3 = 33.33% 2/2 = 100.00% 9/15 = 60.00% 15 1 (25.00%)

O O O D 4 (0.68%) 1/19 = 5.26% 3/15 = 20.00% 13/16 = 81.25% 2/3 = 66.67% 19 0 (0.00%)

. . . O 3 (0.51%) 0/6 = 0.00% 0/1 = 0.00% 2/2 = 100.00% 11/11 = 100.00% 13 1 (33.33%)

O . O . 2 (0.34%) 1/7 = 14.29% 0/1 = 0.00% 6/7 = 85.71% 0/0 = 0% 7 0 (0.00%)

D D D D 2 (0.34%) 1/1 = 100.00% 0/0 = 0% 0/0 = 0% 0/0 = 0% 1 0 (0.00%)

. . O . 1 (0.17%) 0/2 = 0.00% 0/0 = 0% 3/3 = 100.00% 0/0 = 0% 3 0 (0.00%)

. O O . 1 (0.17%) 1/1 = 100.00% 3/4 = 75.00% 3/3 = 100.00% 0/0 = 0% 7 0 (0.00%)

. O . D 1 (0.17%) 0/2 = 0.00% 4/4 = 100.00% 1/1 = 100.00% 0/0 = 0% 5 0 (0.00%)

O . . D 1 (0.17%) 0/3 = 0.00% 0/0 = 0% 1/1 = 100.00% 0/0 = 0% 1 0 (0.00%)

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window; D=Death or .=Missing.
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Table B2: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with most culture results intermittently observed over visit windows for REMoxTB

on control arm1 .

Number of negative culture results Total number Treatment success

Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 Total (N=590) Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 of negative n/no. patient

culture results per pattern

∆ ∆ O O 12 (2.03%) 5/32 = 15.63% 13/24 = 54.17% 41/42 = 97.62% 42/42 = 100.00% 101 12 (100.00%)

O O ∆ ∆ 7 (1.19%) 5/34 = 14.71% 19/25 = 76.00% 14/14 = 100.00% 14/14 = 100.00% 52 7 (100.00%)

∆ O ∆ O 11 (1.86%) 6/32 = 18.75% 20/34 = 58.82% 22/22 = 100.00% 42/42 = 100.00% 90 11 (100.00%)

O ∆ ∆ O 2 (0.34%) 0/7 = 0.00% 2/4 = 50.00% 3/4 = 75.00% 6/6 = 100.00% 11 1 (50.00%)

O ∆ O ∆ 5 (0.85%) 6/23 = 26.09% 9/10 = 90.00% 15/16 = 93.75% 8/10 = 80.00% 38 4 (80.00%)

∆ . . . 3 (0.51%) 1/8 = 12.50% 0/1 = 0.00% 0/1 = 0.00% 0/0 = 0% 1 0 (0.00%)

∆ ∆ ∆ O 4 (0.68%) 0/11 = 0.00% 6/8 = 75.00% 8/8 = 100.00% 15/15 = 100.00% 29 4 (100.00%)

∆ ∆ ∆ . 3 (0.51%) 0/8 = 0.00% 0/6 = 0.00% 6/6 = 100.00% 2/2 = 100.00% 8 1 (33.33%)

O ∆ ∆ ∆ 2 (0.34%) 2/9 = 22.22% 3/4 = 75.00% 3/4 = 75.00% 4/4 = 100.00% 12 2 (100.00%)

∆ . ∆ . 1 (0.17%) 0/2 = 0.00% 0/0 = 0% 0/2 = 0.00% 0/0 = 0% 0 0 (0.00%)

. . ∆ ∆ 1 (0.17%) 1/2 = 50.00% 0/1 = 0.00% 2/2 = 100.00% 2/2 = 100.00% 5 1 (100.00%)

∆ ∆ . . 1 (0.17%) 1/2 = 50.00% 1/2 = 50.00% 1/1 = 100.00% 1/1 = 100.00% 4 1 (100.00%)

∆ O O ∆ 1 (0.17%) 0/2 = 0.00% 3/3 = 100.00% 3/3 = 100.00% 2/2 = 100.00% 8 1 (100.00%)

∆ . ∆ ∆ 1 (0.17%) 0/3 = 0.00% 1/1 = 100.00% 2/2 = 100.00% 2/2 = 100.00% 5 1 (100.00%)

∆ ∆ ∆ ∆ 1 (0.17%) 1/3 = 33.33% 2/2 = 100.00% 2/2 = 100.00% 2/2 = 100.00% 7 1 (100.00%)

∆ . . ∆ 1 (0.17%) 1/3 = 33.33% 0/0 = 0.00% 0/0 = 0.00% 2/2 = 100.00% 3 0 (0.00%)

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window or .=Missing.
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Table B3: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with a mixture of observed, intermittent and missing culture results within visit

windows for REMoxTB on control arm1 .

Number of negative culture results Total number Treatment success

Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 Total (N=590) Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 of negative n/no. patient

culture results per pattern

O O ∆ . 8 (1.36%) 4/32 = 12.50% 15/27 = 55.56% 16/16 = 100.00% 3/4 = 75.00% 38 1 (12.50%)

O . ∆ O 10 (1.69%) 6/41 = 14.63% 4/6 = 66.67% 18/20 = 90.00% 31/35 = 88.57% 59 7 (70.00%)

O ∆ . . 2 (0.34%) 1/8 = 12.50% 2/4 = 50.00% 0/1 = 0.00% 0/0 = 0% 3 0 (0.00%)

O ∆ O . 3 (0.51%) 1/15 = 6.67% 3/6 = 50.00% 9/10 = 90.00% 3/3 = 100.00% 16 1 (33.33%)

. ∆ O O 2 (0.34%) 0/2 = 0.00% 4/4 = 100.00% 6/6 = 100.00% 7/7 = 100.00% 17 2 (100.00%)

O ∆ . O 4 (0.68%) 2/17 = 11.76% 3/8 = 37.50% 4/4 = 100.00% 16/16 = 100.00% 25 1 (25.00%)

O O . ∆ 2 (0.34%) 0/9 = 0.00% 6/8 = 75.00% 2/2 = 100.00% 4/4 = 100.00% 12 2 (100.00%)

O O ∆ D 2 (0.34%) 1/8 = 12.50% 7/7 = 100.00% 4/4 = 100.00% 1/1 = 100.00% 13 0 (0.00%)

O . ∆ . 2 (0.34%) 0/9 = 0.00% 1/1 = 100.00% 4/4 = 100.00% 2/2 = 100.00% 7 0 (0.00%)

∆ ∆ O . 1 (0.17%) 2/2 = 100.00% 2/2 = 100.00% 3/3 = 100.00% 1/1 = 100.00% 8 0 (0.00%)

. . ∆ O 3 (0.51%) 0/4 = 0.00% 0/1 = 0.00% 6/6 = 100.00% 11/11 = 100.00% 17 3 (100.00%)

∆ . O O 3 (0.51%) 3/8 = 37.50% 2/2 = 100.00% 11/11 = 100.00% 11/11 = 100.00% 27 3 (100.00%)

O . . ∆ 2 (0.34%) 1/9 = 11.11% 1/2 = 50.00% 0/0 = 0% 3/4 = 75.00% 5 0 (0.00%)

∆ ∆ . O 2 (0.34%) 0/5 = 0.00% 2/4 = 50.00% 2/2 = 100.00% 7/7 = 100.00% 11 2 (100.00%)

O ∆ ∆ . 4 (0.68%) 5/18 = 27.78% 5/8 = 62.50% 7/8 = 87.50% 1/1 = 100.00% 18 0 (0.00%)

∆ O . O 1 (0.17%) 0/3 = 0.00% 2/4 = 50.00% 0/0 = 0% 2/3 = 66.67% 4 1 (100.00%)

. ∆ O . 1 (0.17%) 0/1 = 0.00% 1/2 = 50.00% 4/4 = 100.00% 1/1 = 100.00% 6 0 (0.00%)

∆ O ∆ . 1 (0.17%) 1/3 = 33.33% 4/4 = 100.00% 2/2 = 100.00% 0/0 = 0% 7 0 (0.00%)

∆ O . . 1 (0.17%) 0/2 = 0.00% 4/4 = 100.00% 0/0 = 0% 0/0 = 0% 4 0 (0.00%)

∆ O . ∆ 1 (0.17%) 1/3 = 33.33% 2/3 = 66.67% 1/1 = 100.00% 1/2 = 50.00% 5 0 (0.00%)

. . O ∆ 1 (0.17%) 0/1 = 0.00% 0/1 = 0.00% 1/3 = 33.33% 2/2 = 100.00% 3 0 (0.00%)

∆ . . O 2 (0.34%) 0/4 = 0.00% 0/0 = 0% 2/2 = 100.00% 7/7 = 100.00% 9 0 (0.00%)

O ∆ . ∆ 2 (0.34%) 6/9 = 66.67% 4/4 = 100.00% 2/2 = 100.00% 4/4 = 100.00% 16 2 (100.00%)

∆ O O D 2 (0.34%) 4/5 = 80.00% 5/6 = 83.33% 6/8 = 75.00% 1/1 = 100.00% 16 0 (0.00%)

∆ . ∆ O 1 (0.17%) 0/2 = 0.00% 1/1 = 100.00% 2/2 = 100.00% 3/3 = 100.00% 6 1 (100.00%)

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window; D=Death or .=Missing.
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Table B4: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with most culture results observed (i.e. completers’) over visit windows for REMoxTB

on isoniazid arm1 .

Number of negative culture results Total number Treatment success

Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 Total (N=609) Weeks 0-4 Weeks 5-8 Weeks 12-26 Months 39-78 of negative n/no. patient

culture results per pattern

O O O O 306 (50.25%) 267/1470 = 18.16% 796/1148 = 69.34% 1107/1142 = 96.94% 1094/1161 = 94.23% 3264 274 (89.54%)

O O ∆ O 38 (6.24%) 19/174 = 10.92% 89/136 = 65.44% 72/76 = 94.74% 123/136 = 90.44% 303 33 (86.84%)

O O O . 31 (5.09%) 24/150 = 16.00% 84/115 = 73.04% 104/113 = 92.04% 18/23 = 78.26% 230 3 (9.68%)

O O O ∆ 22 (3.61%) 15/102 = 14.71% 54/85 = 63.53% 72/75 = 96.00% 40/44 = 90.91% 181 18 (81.82%)

O ∆ O O 23 (3.78%) 14/109 = 12.84% 29/46 = 63.04% 73/82 = 89.02% 73/85 = 85.88% 189 18 (78.26%)

∆ O O O 13 (2.13%) 8/39 = 20.51% 39/48 = 81.25% 44/45 = 97.78% 49/49 = 100.00% 140 13 (100.00%)

. . . . 21 (3.45%) 2/29 = 6.90% 0/0 = 0% 0/0 = 0% 0/0 = 0% 2 0 (0.00%)

O O . . 15 (2.46%) 14/68 = 20.59% 32/54 = 59.26% 5/5 = 100.00% 2/2 = 100.00% 53 0 (0.00%)

. . O O 7 (1.15%) 0/7 = 0.00% 0/1 = 0.00% 26/26 = 100.00% 23/25 = 92.00% 49 6 (85.71%)

O . O O 9 (1.48%) 11/38 = 28.95% 6/7 = 85.71% 33/34 = 97.06% 28/34 = 82.35% 78 6 (66.67%)

O O . O 13 (2.13%) 12/63 = 19.05% 28/46 = 60.87% 11/12 = 91.67% 43/45 = 95.56% 94 9 (69.23%)

O . . . 8 (1.31%) 11/30 = 36.67% 2/3 = 66.67% 1/1 = 100.00% 0/0 = 0% 14 0 (0.00%)

. O O O 3 (0.49%) 2/5 = 40.00% 10/10 = 100.00% 12/12 = 100.00% 12/12 = 100.00% 36 3 (100.00%)

O D D D 2 (0.33%) 2/10 = 20.00% 2/2 = 100.00% 0/0 = 0% 0/0 = 0% 4 0 (0.00%)

O . . O 2 (0.33%) 3/9 = 33.33% 2/2 = 100.00% 2/2 = 100.00% 7/7 = 100.00% 14 2 (100.00%)

O O O D 1 (0.16%) 1/5 = 20.00% 2/4 = 50.00% 3/3 = 100.00% 0/1 = 0.00% 6 0 (0.00%)

. . . O 1 (0.16%) 0/0 = 0% 0/0 = 0% 0/0 = 0% 4/4 = 100.00% 4 0 (0.00%)

. . O . 3 (0.49%) 0/3 = 0.00% 1/1 = 100.00% 8/9 = 88.89% 0/2 = 0.00% 9 0 (0.00%)

D D D D 2 (0.33%) 1/4 = 25.00% 0/0 = 0% 0/0 = 0% 0/0 = 0% 1 0 (0.00%)

O O D D 2 (0.33%) 0/9 = 0.00% 7/8 = 87.50% 2/2 = 100.00% 0/0 = 0% 9 0 (0.00%)

. . D D 1 (0.16%) 0/2 = 0.00% 0/0 = 0% 0/0 = 0% 0/0 = 0% 0 0 (0.00%)

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window; D=Death or .=Missing.
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Table B5: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with most culture results intermittently observed over visit windows for REMoxTB

on isoniazid arm1 .

Number of negative culture results Total number Treatment success

Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 Total (N=609) Weeks 0-4 Weeks 5-8 Weeks 12-26 Months 39-78 of negative n/no. patient

culture results per pattern

∆ ∆ O O 4 (0.66%) 2/10 = 20.00% 8/8 = 100.00% 14/14 = 100.00% 16/16 = 100.00% 40 4 (100.00%)

O O ∆ ∆ 8 (1.31%) 4/39 = 10.26% 19/28 = 67.86% 15/16 = 93.75% 14/16 = 87.50% 52 6 (75.00%)

∆ O ∆ O 2 (0.33%) 0/6 = 0.00% 3/7 = 42.86% 4/4 = 100.00% 7/7 = 100.00% 14 2 (100.00%)

O ∆ ∆ O 6 (0.99%) 2/27 = 7.41% 8/12 = 66.67% 12/12 = 100.00% 21/21 = 100.00% 43 6 (100.00%)

O ∆ O ∆ 2 (0.33%) 1/8 = 12.50% 4/4 = 100.00% 6/6 = 100.00% 4/4 = 100.00% 15 2 (100.00%)

∆ . . . 2 (0.33%) 1/6 = 16.67% 0/1 = 0.00% 0/0 = 0% 0/0 = 0% 1 0 (0.00%)

∆ ∆ ∆ O 1 (0.16%) 3/3 = 100.00% 2/2 = 100.00% 2/2 = 100.00% 4/4 = 100.00% 11 0 (0.00%)

. . ∆ ∆ 1 (0.16%) 1/2 = 50.00% 0/0 = 0% 2/2 = 100.00% 1/2 = 50.00% 4 0 (0.00%)

∆ ∆ . ∆ 1 (0.16%) 2/3 = 66.67% 0/2 = 0.00% 0/0 = 0% 1/2 = 50.00% 3 0 (0.00%)

∆ ∆ O ∆ 1 (0.16%) 1/3 = 33.33% 1/2 = 50.00% 3/3 = 100.00% 2/2 = 100.00% 7 1 (100.00%)

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window or .=Missing.321



Table B6: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with a mixture of observed, intermittent and missing culture results within visit

windows for REMoxTB on isoniazid arm1 .

Number of negative culture results Total number Treatment success

Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 Total (N=609) Weeks 0-4 Weeks 5-8 Weeks 12-26 Months 39-78 of negative n/no. patient

culture results per pattern

O O ∆ . 9 (1.48%) 1/42 = 2.38% 14/34 = 41.18% 18/18 = 100.00% 4/5 = 80.00% 37 1 (11.11%)

O . ∆ O 6 (0.99%) 9/26 = 34.62% 2/2 = 100.00% 12/12 = 100.00% 18/22 = 81.82% 41 5 (83.33%)

O ∆ . . 6 (0.99%) 1/28 = 3.57% 7/12 = 58.33% 2/2 = 100.00% 1/1 = 100.00% 11 0 (0.00%)

O ∆ O . 3 (0.49%) 4/13 = 30.77% 4/6 = 66.67% 9/11 = 81.82% 0/1 = 0.00% 17 0 (0.00%)

. ∆ O O 3 (0.49%) 1/1 = 100.00% 6/6 = 100.00% 12/12 = 100.00% 12/12 = 100.00% 31 3 (100.00%)

O ∆ . O 3 (0.49%) 3/13 = 23.08% 5/6 = 83.33% 3/3 = 100.00% 10/10 = 100.00% 21 3 (100.00%)

O O . ∆ 1 (0.16%) 0/4 = 0.00% 1/4 = 25.00% 0/1 = 0.00% 2/2 = 100.00% 3 0 (0.00%)

∆ O O . 5 (0.82%) 7/15 = 46.67% 17/17 = 100.00% 16/19 = 84.21% 0/2 = 0.00% 40 0 (0.00%)

O O ∆ D 4 (0.66%) 3/19 = 15.79% 11/14 = 78.57% 8/8 = 100.00% 1/1 = 100.00% 23 0 (0.00%)

. . ∆ O 1 (0.16%) 0/0 = 0% 0/0 = 0% 2/2 = 100.00% 4/4 = 100.00% 6 1 (100.00%)

O . ∆ . 2 (0.33%) 1/8 = 12.50% 2/2 = 100.00% 4/4 = 100.00% 0/1 = 0.00% 7 0 (0.00%)

∆ ∆ O . 2 (0.33%) 1/5 = 20.00% 3/4 = 75.00% 5/7 = 71.43% 1/2 = 50.00% 10 0 (0.00%)

O . O ∆ 4 (0.66%) 2/15 = 13.33% 1/3 = 33.33% 14/14 = 100.00% 8/8 = 100.00% 25 4 (100.00%)

∆ ∆ . O 2 (0.33%) 3/5 = 60.00% 3/4 = 75.00% 2/2 = 100.00% 5/6 = 83.33% 13 1 (50.00%)

∆ O . O 1 (0.16%) 1/3 = 33.33% 4/4 = 100.00% 1/1 = 100.00% 4/4 = 100.00% 10 1 (100.00%)

∆ O . . 1 (0.16%) 3/3 = 100.00% 4/4 = 100.00% 1/1 = 100.00% 0/0 = 0% 8 0 (0.00%)

. ∆ O . 2 (0.33%) 1/4 = 25.00% 4/4 = 100.00% 4/7 = 57.14% 2/2 = 100.00% 11 1 (50.00%)

∆ . ∆ O 1 (0.16%) 2/3 = 66.67% 0/0 = 0% 2/2 = 100.00% 3/3 = 100.00% 7 1 (100.00%)

O . ∆ ∆ 2 (0.33%) 7/9 = 77.78% 0/0 = 0% 4/4 = 100.00% 4/4 = 100.00% 15 2 (100.00%)

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window or .=Missing.
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Table B7: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with most culture results observed (i.e. completers’) over visit windows for REMoxTB

on ethambutol arm1 .

Number of negative culture results Total number Treatment success

Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 Total (N=609) Weeks 0-4 Weeks 5-8 Weeks 12-26 Months 39-78 of negative n/no. patient

culture results per pattern

O O O O 301 (51.37%) 265/1449 = 18.29% 773/1140 = 67.81% 1050/1107 = 94.85% 1055/1142 = 92.38% 3143 263 (87.38%)

O O ∆ O 35 (5.97%) 34/160 = 21.25% 85/125 = 68.00% 64/70 = 91.43% 112/124 = 90.32% 295 30 (85.71%)

O O O . 36 (6.14%) 33/174 = 18.97% 89/131 = 67.94% 104/126 = 82.54% 17/26 = 65.38% 243 9 (25.00%)

O O O ∆ 30 (5.12%) 26/147 = 17.69% 74/110 = 67.27% 104/110 = 94.55% 54/60 = 90.00% 258 26 (86.67%)

O ∆ O O 25 (4.27%) 22/113 = 19.47% 40/50 = 80.00% 80/83 = 96.39% 87/89 = 97.75% 229 23 (92.00%)

∆ O O O 17 (2.90%) 7/49 = 14.29% 43/60 = 71.67% 54/59 = 91.53% 62/64 = 96.88% 166 15 (88.24%)

O O . . 10 (1.71%) 10/48 = 20.83% 29/40 = 72.50% 6/6 = 100.00% 4/4 = 100.00% 49 0 (0.00%)

. . . . 7 (1.19%) 4/8 = 50.00% 0/0 = 0% 0/0 = 0% 0/0 = 0% 4 0 (0.00%)

. . O O 15 (2.56%) 3/13 = 23.08% 5/5 = 100.00% 53/55 = 96.36% 54/56 = 96.43% 115 12 (80.00%)

O . O O 9 (1.54%) 9/36 = 25.00% 4/6 = 66.67% 31/32 = 96.88% 31/36 = 86.11% 75 6 (66.67%)

O O . O 6 (1.02%) 1/26 = 3.85% 16/23 = 69.57% 6/6 = 100.00% 20/20 = 100.00% 43 6 (100.00%)

O . . . 5 (0.85%) 5/19 = 26.32% 1/1 = 100.00% 0/0 = 0% 1/1 = 100.00% 7 0 (0.00%)

. O O O 5 (0.85%) 4/9 = 44.44% 18/19 = 94.74% 18/20 = 90.00% 19/20 = 95.00% 59 4 (80.00%)

O D D D 3 (0.51%) 3/14 = 21.43% 0/1 = 0.00% 0/0 = 0% 0/0 = 0% 3 0 (0.00%)

. . . O 1 (0.17%) 1/1 = 100.00% 0/0 = 0% 0/0 = 0% 4/4 = 100.00% 5 0 (0.00%)

O . O . 2 (0.34%) 3/7 = 42.86% 0/0 = 0% 5/7 = 71.43% 1/1 = 100.00% 9 1 (50.00%)

. O O . 1 (0.17%) 0/2 = 0.00% 2/3 = 66.67% 3/3 = 100.00% 1/1 = 100.00% 6 0 (0.00%)

. . O D 1 (0.17%) 0/1 = 0.00% 1/1 = 100.00% 3/3 = 100.00% 0/0 = 0% 4 0 (0.00%)

O O . D 1 (0.17%) 1/4 = 25.00% 2/3 = 66.67% 1/1 = 100.00% 0/0 = 0% 4 0 (0.00%)

. O . . 1 (0.17%) 1/2 = 50.00% 4/4 = 100.00% 0/0 = 0% 1/1 = 100.00% 6 1 (100.00%)

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window; D=Death or .=Missing.
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Table B8: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with most culture results intermittently observed over visit windows for REMoxTB

on ethambutol arm1 .

Number of negative culture results Total number Treatment success

Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 Total (N=609) Weeks 0-4 Weeks 5-8 Weeks 12-26 Months 39-78 of negative n/no. patient

culture results per pattern

∆ ∆ O O 8 (1.37%) 14/22 = 63.64% 16/16 = 100.00% 26/28 = 92.86% 27/31 = 87.10% 83 6 (75.00%)

O O ∆ ∆ 7 (1.19%) 3/35 = 8.57% 17/25 = 68.00% 13/14 = 92.86% 13/14 = 92.86% 46 6 (85.71%)

O ∆ ∆ O 4 (0.68%) 1/18 = 5.56% 4/8 = 50.00% 7/8 = 87.50% 14/15 = 93.33% 26 3 (75.00%)

O ∆ O ∆ 2 (0.34%) 0/9 = 0.00% 4/4 = 100.00% 7/7 = 100.00% 4/4 = 100.00% 15 2 (100.00%)

∆ . . . 3 (0.51%) 1/8 = 12.50% 1/1 = 100.00% 0/0 = 0% 0/0 = 0% 2 0 (0.00%)

∆ ∆ ∆ O 1 (0.17%) 0/3 = 0.00% 1/2 = 50.00% 2/2 = 100.00% 4/4 = 100.00% 7 1 (100.00%)

O ∆ ∆ ∆ 1 (0.17%) 1/5 = 20.00% 1/2 = 50.00% 2/2 = 100.00% 2/2 = 100.00% 6 1 (100.00%)

∆ . ∆ . 1 (0.17%) 0/2 = 0.00% 1/1 = 100.00% 2/2 = 100.00% 0/0 = 0% 3 0 (0.00%)

∆ ∆ . . 1 (0.17%) 1/2 = 50.00% 2/2 = 100.00% 1/1 = 100.00% 0/0 = 0% 4 0 (0.00%)

∆ . ∆ ∆ 1 (0.17%) 0/3 = 0.00% 0/0 = 0% 2/2 = 100.00% 2/2 = 100.00% 4 1 (100.00%)

∆ O O ∆ 1 (0.17%) 0/3 = 0.00% 2/4 = 50.00% 4/4 = 100.00% 2/2 = 100.00% 8 1 (100.00%)

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window or .=Missing.
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Table B9: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with a mixture of observed, intermittent and missing culture results within visit

windows for REMoxTB on ethambutol arm1 .

O O ∆ . 6 (1.02%) 1/28 = 3.57% 6/22 = 27.27% 9/12 = 75.00% 3/3 = 100.00% 19 0 (0.00%)

O . ∆ O 2 (0.34%) 0/10 = 0.00% 0/1 = 0.00% 4/4 = 100.00% 6/6 = 100.00% 10 2 (100.00%)

O ∆ . . 2 (0.34%) 2/9 = 22.22% 2/4 = 50.00% 0/0 = 0% 0/0 = 0% 4 0 (0.00%)

O ∆ . O 1 (0.17%) 0/4 = 0.00% 1/2 = 50.00% 0/1 = 0.00% 1/3 = 33.33% 2 0 (0.00%)

O ∆ O . 2 (0.34%) 2/8 = 25.00% 3/4 = 75.00% 6/7 = 85.71% 1/1 = 100.00% 12 1 (50.00%)

. ∆ O O 3 (0.51%) 0/3 = 0.00% 6/6 = 100.00% 11/11 = 100.00% 11/11 = 100.00% 28 3 (100.00%)

O O . ∆ 4 (0.68%) 5/20 = 25.00% 14/14 = 100.00% 2/2 = 100.00% 8/8 = 100.00% 29 4 (100.00%)

O O ∆ D 1 (0.17%) 2/5 = 40.00% 2/4 = 50.00% 2/2 = 100.00% 0/0 = 0% 6 0 (0.00%)

∆ O O . 2 (0.34%) 1/5 = 20.00% 3/7 = 42.86% 6/7 = 85.71% 0/0 = 0% 10 0 (0.00%)

∆ . O O 3 (0.51%) 3/8 = 37.50% 2/3 = 66.67% 10/10 = 100.00% 12/12 = 100.00% 27 3 (100.00%)

. . ∆ O 2 (0.34%) 3/4 = 75.00% 0/0 = 0% 4/4 = 100.00% 7/7 = 100.00% 14 1 (50.00%)

∆ ∆ O . 3 (0.51%) 1/9 = 11.11% 3/6 = 50.00% 8/10 = 80.00% 0/2 = 0.00% 12 0 (0.00%)

O . ∆ . 2 (0.34%) 1/8 = 12.50% 2/2 = 100.00% 4/4 = 100.00% 1/1 = 100.00% 8 0 (0.00%)

O . O ∆ 1 (0.17%) 1/5 = 20.00% 1/1 = 100.00% 4/4 = 100.00% 2/2 = 100.00% 8 1 (100.00%)

O . . ∆ 2 (0.34%) 1/8 = 12.50% 0/0 = 0% 1/1 = 100.00% 4/4 = 100.00% 6 0 (0.00%)

∆ O ∆ . 2 (0.34%) 2/6 = 33.33% 4/6 = 66.67% 3/4 = 75.00% 1/1 = 100.00% 10 1 (50.00%)

∆ O . . 1 (0.17%) 2/3 = 66.67% 2/3 = 66.67% 0/0 = 0% 0/0 = 0% 4 0 (0.00%)

∆ O . O 1 (0.17%) 0/3 = 0.00% 2/3 = 66.67% 1/1 = 100.00% 3/3 = 100.00% 6 1 (100.00%)

∆ . D D 2 (0.34%) 1/5 = 20.00% 2/2 = 100.00% 0/0 = 0% 0/0 = 0% 3 0 (0.00%)

∆ O . ∆ 1 (0.17%) 0/3 = 0.00% 3/3 = 100.00% 1/1 = 100.00% 2/2 = 100.00% 6 1 (100.00%)

. . O ∆ 1 (0.17%) 0/1 = 0.00% 0/0 = 0% 3/4 = 75.00% 2/2 = 100.00% 5 1 (100.00%)

∆ . O ∆ 1 (0.17%) 0/2 = 0.00% 0/0 = 0% 4/4 = 100.00% 2/2 = 100.00% 6 1 (100.00%)

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window or .=Missing.
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C Missing data patterns for RIFAQUIN

Table C10: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with most culture results observed (i.e. completers’) over visit windows for RIFAQUIN

on control arm1 .

Number of negative culture results Total number Treatment success

Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 Total (N=590) Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 of negative n/no. patient

culture results per pattern

O O O O 127 (52.92%) 227/372 = 61.02% 369/374 = 98.66% 478/484 = 98.76% 456/469 = 97.23% 1530 121 (95.28%)

O O O ∆ 17 (7.08%) 30/50 = 60.00% 47/50 = 94.00% 56/59 = 94.92% 32/34 = 94.12% 165 16 (94.12%)

O O O . 16 (6.67%) 28/45 = 62.22% 46/46 = 100.00% 57/57 = 100.00% 13/13 = 100.00% 144 16 (100.00%)

O O . . 17 (7.08%) 29/51 = 56.86% 40/46 = 86.96% 4/5 = 80.00% 4/4 = 100.00% 77 3 (17.65%)

O . . . 8 (3.33%) 13/21 = 61.90% 4/4 = 100.00% 0/0 = 0% 1/1 = 100.00% 18 1 (12.50%)

. . . . 7 (2.92%) 0/7 = 0.00% 0/0 = 0% 0/0 = 0% 1/2 = 50.00% 1 0 (0.00%)

O ∆ O O 7 (2.92%) 11/21 = 52.38% 13/14 = 92.86% 26/26 = 100.00% 25/26 = 96.15% 75 6 (85.71%)

∆ O O O 8 (3.33%) 8/16 = 50.00% 22/22 = 100.00% 30/30 = 100.00% 28/28 = 100.00% 88 8 (100.00%)

O O ∆ O 4 (1.67%) 8/12 = 66.67% 11/11 = 100.00% 6/8 = 75.00% 15/15 = 100.00% 40 4 (100.00%)

O . O O 4 (1.67%) 6/11 = 54.55% 4/4 = 100.00% 13/13 = 100.00% 14/14 = 100.00% 37 3 (75.00%)

. O O O 1 (0.42%) 0/1 = 0.00% 2/2 = 100.00% 4/4 = 100.00% 3/3 = 100.00% 9 1 (100.00%)

O . . O 1 (0.42%) 0/2 = 0.00% 0/0 = 0% 1/1 = 100.00% 3/3 = 100.00% 4 0 (0.00%)

O O O D 1 (0.42%) 2/3 = 66.67% 3/3 = 100.00% 3/3 = 100.00% 0/0 = 0% 8 1 (100.00%)

O O D D 1 (0.42%) 2/3 = 66.67% 2/2 = 100.00% 0/0 = 0% 0/0 = 0% 4 0 (0.00%)

O D D D 1 (0.42%) 2/3 = 66.67% 1/1 = 100.00% 0/0 = 0% 0/0 = 0% 3 0 (0.00%)

. . O O 1 (0.42%) 0/1 = 0.00% 1/1 = 100.00% 4/4 = 100.00% 3/3 = 100.00% 8 0 (0.00%)

D D D D 1 (0.42%) 0/1 = 0.00% 0/0 = 0% 0/0 = 0% 0/0 = 0% 0 0 (0.00%)

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window; D=Death or .=Missing.
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Table C11: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with most culture results intermittently observed over visit windows for RIFAQUIN

on control arm1 .

Number of negative culture results Total number Treatment success

Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 Total (N=590) Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 of negative n/no. patient

culture results per pattern

O O ∆ ∆ 3 (1.25%) 6/9 = 66.67% 8/8 = 100.00% 6/6 = 100.00% 6/6 = 100.00% 26 3 (100.00%)

∆ O O ∆ 2 (0.83%) 2/4 = 50.00% 6/6 = 100.00% 8/8 = 100.00% 4/4 = 100.00% 20 2 (100.00%)

O ∆ O ∆ 1 (0.42%) 2/3 = 66.67% 2/2 = 100.00% 4/4 = 100.00% 2/2 = 100.00% 10 1 (100.00%)

∆ O ∆ O 1 (0.42%) 1/2 = 50.00% 3/3 = 100.00% 2/2 = 100.00% 3/3 = 100.00% 9 1 (100.00%)

O ∆ ∆ O 1 (0.42%) 1/3 = 33.33% 2/2 = 100.00% 2/2 = 100.00% 3/3 = 100.00% 8 1 (100.00%)

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window or .=Missing.
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Table C12: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with a mixture of observed, intermittent and missing culture results within visit

windows for RIFAQUIN on control arm1 .

Number of negative culture results Total number Treatment success

Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 Total (N=590) Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 of negative n/no. patient

culture results per pattern

O O ∆ . 6 (2.50%) 11/18 = 61.11% 16/16 = 100.00% 12/12 = 100.00% 2/2 = 100.00% 41 6 (100.00%)

O O . ∆ 1 (0.42%) 2/3 = 66.67% 3/3 = 100.00% 1/1 = 100.00% 2/2 = 100.00% 8 1 (100.00%)

O . . ∆ 1 (0.42%) 2/3 = 66.67% 1/1 = 100.00% 0/0 = 0% 2/2 = 100.00% 5 1 (100.00%)

O O ∆ D 1 (0.42%) 1/2 = 50.00% 3/3 = 100.00% 2/2 = 100.00% 0/0 = 0% 6 1 (100.00%)

O ∆ . ∆ 1 (0.42%) 2/3 = 66.67% 2/2 = 100.00% 0/0 = 0% 2/2 = 100.00% 6 1 (100.00%)

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window; D=Death or .=Missing.
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Table C13: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with most culture results observed (i.e. completers’) over visit windows for RIFAQUIN

on isoniazid arm1 .

Number of negative culture results Total number Treatment success

Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 Total (N=609) Weeks 0-4 Weeks 5-8 Weeks 12-26 Months 39-78 of negative n/no. patient

culture results per pattern

O O O O 123 (51.46%) 222/358 = 62.01% 338/352 = 96.02% 434/464 = 93.53% 436/450 = 96.89% 1430 105 (85.37%)

O O O ∆ 25 (10.46%) 47/73 = 64.38% 73/74 = 98.65% 93/97 = 95.88% 49/50 = 98.00% 262 23 (92.00%)

O O O . 12 (5.02%) 23/36 = 63.89% 32/33 = 96.97% 37/44 = 84.09% 4/4 = 100.00% 96 8 (66.67%)

O O . . 12 (5.02%) 24/36 = 66.67% 30/31 = 96.77% 2/3 = 66.67% 3/3 = 100.00% 59 10 (83.33%)

O . . . 13 (5.44%) 16/35 = 45.71% 7/7 = 100.00% 0/0 = 0% 2/3 = 66.67% 25 2 (15.38%)

. . . . 10 (4.18%) 0/10 = 0.00% 0/0 = 0% 0/0 = 0% 1/1 = 100.00% 1 0 (0.00%)

O ∆ O O 8 (3.35%) 15/23 = 65.22% 15/16 = 93.75% 30/31 = 96.77% 29/29 = 100.00% 89 8 (100.00%)

∆ O O O 5 (2.09%) 4/10 = 40.00% 13/14 = 92.86% 16/20 = 80.00% 18/18 = 100.00% 51 4 (80.00%)

O O ∆ O 2 (0.84%) 4/6 = 66.67% 6/6 = 100.00% 3/4 = 75.00% 8/8 = 100.00% 21 2 (100.00%)

O . O O 1 (0.42%) 2/3 = 66.67% 0/0 = 0% 3/3 = 100.00% 2/3 = 66.67% 7 0 (0.00%)

O O O D 1 (0.42%) 2/3 = 66.67% 3/3 = 100.00% 4/4 = 100.00% 0/0 = 0% 9 1 (100.00%)

O . . O 1 (0.42%) 2/3 = 66.67% 1/1 = 100.00% 0/0 = 0% 3/3 = 100.00% 6 1 (100.00%)

. . O O 1 (0.42%) 0/1 = 0.00% 1/1 = 100.00% 3/3 = 100.00% 4/4 = 100.00% 8 0 (0.00%)

O O D D 1 (0.42%) 2/3 = 66.67% 2/2 = 100.00% 0/0 = 0% 0/0 = 0% 4 0 (0.00%)

O D D D 1 (0.42%) 2/3 = 66.67% 1/1 = 100.00% 0/0 = 0% 0/0 = 0% 3 0 (0.00%)

. . . O 1 (0.42%) 0/1 = 0.00% 0/0 = 0% 1/1 = 100.00% 4/4 = 100.00% 5 0 (0.00%)

O O . D 1 (0.42%) 2/3 = 66.67% 3/3 = 100.00% 1/1 = 100.00% 0/0 = 0% 6 1 (100.00%)

. . . D 1 (0.42%) 0/1 = 0.00% 0/0 = 0% 0/0 = 0% 0/0 = 0% 0 0 (0.00%)

. O O . 1 (0.42%) 0/1 = 0.00% 3/3 = 100.00% 3/3 = 100.00% 1/1 = 100.00% 7 0 (0.00%)

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window; D=Death or .=Missing.
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Table C14: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with most culture results intermittently observed over visit windows for RIFAQUIN

on isoniazid arm1 .

Number of negative culture results Total number Treatment success

Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 Total (N=609) Weeks 0-4 Weeks 5-8 Weeks 12-26 Months 39-78 of negative n/no. patient

culture results per pattern

O O ∆ ∆ 3 (1.26%) 6/9 = 66.67% 9/9 = 100.00% 4/6 = 66.67% 6/6 = 100.00% 25 2 (66.67%)

∆ O O ∆ 2 (0.84%) 1/4 = 25.00% 5/6 = 83.33% 5/6 = 83.33% 4/4 = 100.00% 15 1 (50.00%)

∆ ∆ O ∆ 1 (0.42%) 1/2 = 50.00% 2/2 = 100.00% 4/4 = 100.00% 2/2 = 100.00% 9 1 (100.00%)

. . ∆ ∆ 1 (0.42%) 0/1 = 0.00% 1/1 = 100.00% 2/2 = 100.00% 2/2 = 100.00% 5 0 (0.00%)

∆ ∆ ∆ O 1 (0.42%) 1/2 = 50.00% 2/2 = 100.00% 2/2 = 100.00% 4/4 = 100.00% 9 1 (100.00%)

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window or .=Missing.
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Table C15: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with a mixture of observed, intermittent and missing culture results within visit

windows for RIFAQUIN on isoniazid arm1 .

Number of negative culture results Total number Treatment success

Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 Total (N=609) Weeks 0-4 Weeks 5-8 Weeks 12-26 Months 39-78 of negative n/no. patient

culture results per pattern

O O ∆ . 3 (1.26%) 6/9 = 66.67% 9/9 = 100.00% 6/6 = 100.00% 1/1 = 100.00% 22 2 (66.67%)

O . ∆ O 2 (0.84%) 3/6 = 50.00% 2/2 = 100.00% 3/4 = 75.00% 8/8 = 100.00% 16 1 (50.00%)

O O . ∆ 1 (0.42%) 2/3 = 66.67% 3/3 = 100.00% 0/0 = 0% 2/2 = 100.00% 7 1 (100.00%)

O . O ∆ 1 (0.42%) 1/3 = 33.33% 1/1 = 100.00% 3/3 = 100.00% 2/2 = 100.00% 7 1 (100.00%)

. O O ∆ 1 (0.42%) 0/1 = 0.00% 3/3 = 100.00% 1/4 = 25.00% 2/2 = 100.00% 6 0 (0.00%)

O ∆ O D 1 (0.42%) 2/3 = 66.67% 2/2 = 100.00% 3/3 = 100.00% 0/0 = 0% 7 1 (100.00%)

∆ ∆ O . 1 (0.42%) 1/2 = 50.00% 2/2 = 100.00% 4/4 = 100.00% 1/1 = 100.00% 8 1 (100.00%)

O ∆ D D 1 (0.42%) 2/3 = 66.67% 2/2 = 100.00% 0/0 = 0% 0/0 = 0% 4 0 (0.00%)

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window or .=Missing.
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Table C16: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with most culture results observed (i.e. completers’) over visit windows for RIFAQUIN

on ethambutol arm1 .

Number of negative culture results Total number Treatment success

Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 Total (N=609) Weeks 0-4 Weeks 5-8 Weeks 12-26 Months 39-78 of negative n/no. patient

culture results per pattern

O O O O 134 (53.39%) 246/394 = 62.44% 381/386 = 98.70% 503/510 = 98.63% 491/496 = 98.99% 1621 127 (94.78%)

O O O ∆ 18 (7.17%) 31/53 = 58.49% 53/53 = 100.00% 66/69 = 95.65% 34/36 = 94.44% 184 17 (94.44%)

O O O . 14 (5.58%) 25/41 = 60.98% 41/41 = 100.00% 45/45 = 100.00% 12/12 = 100.00% 123 14 (100.00%)

O O . . 11 (4.38%) 20/31 = 64.52% 29/29 = 100.00% 3/3 = 100.00% 2/2 = 100.00% 54 4 (36.36%)

O . . . 10 (3.98%) 16/28 = 57.14% 4/4 = 100.00% 1/1 = 100.00% 1/1 = 100.00% 22 0 (0.00%)

. . . . 9 (3.59%) 0/9 = 0.00% 0/0 = 0% 0/0 = 0% 0/0 = 0% 0 0 (0.00%)

O ∆ O O 7 (2.79%) 14/21 = 66.67% 14/14 = 100.00% 27/27 = 100.00% 28/28 = 100.00% 83 7 (100.00%)

∆ O O O 6 (2.39%) 5/12 = 41.67% 18/18 = 100.00% 22/24 = 91.67% 21/23 = 91.30% 66 4 (66.67%)

O O ∆ O 7 (2.79%) 10/19 = 52.63% 17/18 = 94.44% 14/14 = 100.00% 23/24 = 95.83% 64 6 (85.71%)

O . O O 3 (1.20%) 6/9 = 66.67% 2/2 = 100.00% 11/11 = 100.00% 12/12 = 100.00% 31 3 (100.00%)

. O O O 3 (1.20%) 0/3 = 0.00% 8/8 = 100.00% 11/11 = 100.00% 11/11 = 100.00% 30 3 (100.00%)

O . . O 1 (0.40%) 2/3 = 66.67% 1/1 = 100.00% 1/1 = 100.00% 3/3 = 100.00% 7 1 (100.00%)

O O O D 1 (0.40%) 2/3 = 66.67% 2/2 = 100.00% 3/3 = 100.00% 0/0 = 0% 7 1 (100.00%)

. . . O 1 (0.40%) 0/1 = 0.00% 0/0 = 0% 0/0 = 0% 4/4 = 100.00% 4 0 (0.00%)

O O . D 1 (0.40%) 1/2 = 50.00% 3/3 = 100.00% 1/1 = 100.00% 0/0 = 0% 5 0 (0.00%)

O O . O 2 (0.80%) 4/6 = 66.67% 6/6 = 100.00% 2/2 = 100.00% 6/6 = 100.00% 18 2 (100.00%)

D D D D 1 (0.40%) 0/1 = 0.00% 0/0 = 0% 0/0 = 0% 0/0 = 0% 0 0 (0.00%)

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window; D=Death or .=Missing.
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Table C17: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with most culture results intermittently observed over visit windows for RIFAQUIN

on ethambutol arm1 .

Number of negative culture results Total number Treatment success

Weeks 0-4 Weeks 5-8 Weeks 12-26 Weeks 39-78 Total (N=609) Weeks 0-4 Weeks 5-8 Weeks 12-26 Months 39-78 of negative n/no. patient

culture results per pattern

O O ∆ ∆ 3 (1.20%) 4/8 = 50.00% 9/9 = 100.00% 6/6 = 100.00% 6/6 = 100.00% 25 3 (100.00%)

∆ O O ∆ 4 (1.59%) 3/8 = 37.50% 10/10 = 100.00% 15/15 = 100.00% 8/8 = 100.00% 36 4 (100.00%)

O ∆ O ∆ 2 (0.80%) 4/6 = 66.67% 4/4 = 100.00% 8/8 = 100.00% 4/4 = 100.00% 20 2 (100.00%)

∆ ∆ O O 1 (0.40%) 1/2 = 50.00% 2/2 = 100.00% 4/4 = 100.00% 4/4 = 100.00% 11 1 (100.00%)

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window or .=Missing.
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Table C18: Number of negative culture results and proportion of patients who achieved negative culture

conversion for patients with a mixture of observed, intermittent and missing culture results within visit

windows for RIFAQUIN on ethambutol arm1 .

O O ∆ . 3 (1.20%) 6/9 = 66.67% 8/8 = 100.00% 6/6 = 100.00% 1/1 = 100.00% 21 3 (100.00%)

O . ∆ O 3 (1.20%) 5/9 = 55.56% 2/2 = 100.00% 6/6 = 100.00% 11/11 = 100.00% 24 3 (100.00%)

O O . ∆ 1 (0.40%) 2/3 = 66.67% 3/3 = 100.00% 1/1 = 100.00% 2/2 = 100.00% 8 1 (100.00%)

O . . ∆ 1 (0.40%) 1/2 = 50.00% 1/1 = 100.00% 1/1 = 100.00% 2/2 = 100.00% 5 1 (100.00%)

∆ . O O 1 (0.40%) 1/2 = 50.00% 1/1 = 100.00% 3/3 = 100.00% 3/3 = 100.00% 8 1 (100.00%)

O ∆ O . 1 (0.40%) 2/3 = 66.67% 2/2 = 100.00% 4/4 = 100.00% 1/1 = 100.00% 9 1 (100.00%)

∆ . . O 1 (0.40%) 1/2 = 50.00% 1/1 = 100.00% 1/1 = 100.00% 3/3 = 100.00% 6 1 (100.00%)

O ∆ . . 1 (0.40%) 2/3 = 66.67% 2/2 = 100.00% 0/0 = 0% 0/0 = 0% 4 0 (0.00%)

1Where O=Most results observed within a window; ∆=Intermittent results observed within a window or .=Missing.

334



D Predictions of outcome failure and withdrawals for

REMoxTB

Table D1: Unadjusted odds ratios (OR), standard errors (SE)

and confidence intervals (CI) for predicting outcome failure

for all covariates included in the model for the REMoxTB

study

Covariate OR SE 95% CI P-value

Treatment

Isoniazid 1.770 0.297 (1.274, 2.458) 0.001

Ethambutol 1.897 0.318 (1.366, 2.633) <0.001

Baseline DTP 0.995 0.012 (0.972, 1.019) 0.686

Weight band (adjusted)

40-45 kg 1.359 0.328 (0.846, 2.182) 0.204

>45-55 kg 0.919 0.204 (0.594, 1.421) 0.703

>55 kg 0.754 0.174 (0.480, 1.184) 0.220

Age 1.013 0.005 (1.003, 1.023) 0.013

Chest X-ray cavities

Yes 1.279 0.219 (0.914, 1.789) 0.151

Smoker

Past 1.546 0.242 (1.137, 2.102) 0.005

Current 1.182 0.182 (0.874, 1.599) 0.277

Race

Black 0.653 0.094 (0.492, 0.866) 0.003

Mixed Race or Coloured 0.538 0.096 (0.379, 0.763) 0.001

Other (N=3) 1.877 2.307 (0.169, 20.880) 0.608

HIV

Positive 1.914 0.408 (1.260, 2.908) 0.002

Sex

Female 0.547 0.085 (0.403, 0.741) <0.001

Centre (adjusted)

Cape Town 1.050 0.250 (0.658, 1.674) 0.838
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Other South Africa 1.223 0.310 (0.744, 2.011) 0.428

India 2.269 0.446 (1.544, 3.334) <0.001

Kenya/Zambia/Tanzania 1.314 0.274 (1.544, 3.334) <0.001

Other (East Asia) 1.139 0.295 (0.686, 1.891) 0.616

Sputum production

No 0.711 0.092 (0.552, 0.915) 0.008
Time to not

producing sputum
0.550 0.139 (0.335, 0.902) 0.018

Table D2: Adjusted odds ratios (OR), standard errors (SE)

and confidence intervals (CI) for predicting outcome failure

for all covariates included in the model for the REMoxTB

study

Covariate Adjusted OR SE 95% CI P-value

Treatment

Isoniazid 1.796 -0.346 (1.231, 2.619) 0.002

Ethambutol 2.237 -0.423 (1.544, 3.240) <0.001

Baseline DTP 0.976 -0.015 (0.947, 1.006) 0.115

Weight band (adjusted)

40-45 kg 1.323 -0.385 (0.748, 2.340) 0.336

>45-55 kg 0.875 -0.256 (0.494, 1.552) 0.649

>55 kg 0.708 -0.218 (0.388, 1.293) 0.261

Age 1.010 -0.006 (0.998, 1.023) 0.095

Chest X-ray cavities

Yes 1.122 -0.211 (0.776, 1.623) 0.541

Smoker

Past 0.784 -0.371 (1.186, 2.682) 0.005

Current 1.872 -0.432 (1.191, 2.941) 0.007

Race

Black 0.104 -0.139 (0.008, 1.432) 0.091

Mixed Race or Coloured 0.107 -0.143 (0.008, 1.478) 0.095

Other (N=3) 0.31 -0.564 (0.009, 10.99) 0.52
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HIV

Positive 3.053 -0.88 (1.736, 5.370) <0.001

Sex

Female 0.506 -0.105 (0.337, 0.760) 0.001

Centre (adjusted)

Cape Town 0.902 -0.246 (0.529, 1.539) 0.705

Other South Africa 1.63 -0.538 (0.853, 3.115) 0.139

India 0.28 -0.386 (0.019, 4.153) 0.355

Kenya/Zambia/Tanzania 1.605 -0.501 (0.870, 2.960) 0.13

Other (East Asia) 0.117 -0.16 (0.008, 1.720) 0.118

Sputum production

No 0.19 -0.046 (0.117, 0.306) <0.001
Time to not producing

sputum
0.047 -0.021 (0.020, 0.114) <0.001
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E Working correlation matrices

1. First order autoregressive which assumes observations which are closer together

are more similar than observations further apart.

Rk,t(α) =


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1


2. Exchangeable which assumes repeated observations have the same correlation.

Rk,t(α) =


1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1
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F Predictions of outcome failure and withdrawals for

RIFAQUIN

Table F1: Unadjusted odds ratios (OR), standard errors (SE)

and confidence intervals (CI) for predicting withdrawals

for all covariates included in the model for the RIFAQUIN

study

Covariate OR SE 95% CI P-value

Treatment

4m regimen 1.336 0.326 (0.828, 2.156) 0.236

6m regimen 0.804 0.221 (0.468, 1.379) 0.427

Baseline DTP 1.020 0.015 (0.990, 1.051) 0.186

Weight band (adjusted)

40-45 kg 0.577 0.206 (0.287, 1.162) 0.124

>45-55 kg 0.476 0.148 (0.259, 0.875) 0.017

>55 kg 0.525 0.165 (0.259, 0.972) 0.04

Age 1.011 0.008 0.995, 1.028) 0.174

Chest X-ray cavities

Yes 0.810 0.207 (0.491, 1.335) 0.408

Smoker

Past 0.982 0.255 (0.590, 1.635) 0.945

Current 0.940 0.230 (0.582, 1.519) 0.800

Race

Black 0.766 0.171 (0.495, 1.187) 0.233

Mixed Race or Coloured 0.361 0.121 (0.187, 0.695) 0.002

HIV

Positive 1.004 0.405 (0.455, 2.215) 0.991

Sex

Female 0.817 0.192 (0.516, 1.295) 0.390

Centre (adjusted)

Cape Town 2.293 0.907 (1.056, 4.979) 0.036

Other South Africa 1.451 0.687 (0.574, 3.668) 0.423
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India 3.231 1.155 (1.603, 6.512) 0.001

Kenya/Zambia/Tanzania 1.951 0.740 (0.927, 4.105) 0.008

Other (East Asia) 1.659 0.960 (0.675, 4.074) 0.616

Sputum production

No 0.486 0.106 (0.317, 0.745) 0.001
Time to not producing

sputum
0.079 0.032 (0.035, 0.177) <0.001

Table F2: Adjusted odds ratios (OR), standard errors (SE)

and confidence intervals (CI) for predicting withdrawals

for all covariates included in the model for the RIFAQUIN

study

Covariate Adjusted OR SE 95% CI P-value

Treatment

4m regimen 0.9611 0.300 (0.522, 1.771) 0.899

6m regimen 0.7012 0.232 (0.367, 1.340) 0.282

Baseline DTP 1.0146 0.019 (0.977, 1.053) 0.449

Weight band (adjusted)

40-45 kg 0.673 0.321 (0.264, 1.713) 0.406

>45-55 kg 0.457 0.223 (0.176, 1.190) 0.109

>55 kg 0.465 0.234 (0.173, 1.249) 0.129

Age 1.015 0.011 (0.994, 1.036) 0.172

Chest X-ray cavities

Yes 0.747 0.234 (0.405, 1.379) 0.352

Smoker

Past 2.005 0.764 (0.950, 4.229) 0.068

Current 2.482 1.04 (1.092, 5.642) 0.03

Race

Black 7.10× 104 52161832 0 0.988

Mixed Race or Coloured 2.66× 104 19552427 0 0.989

HIV

Positive 1.136 0.617 (0.392, 3.291) 0.814

340



Sex

Female 0.921 0.33 (0.456, 1.859) 0.817

Centre (adjusted)

Cape Town 2.343 1.132 (0.909, 6.038) 0.078

Other South Africa 1.723 1.056 (0.518, 5.729) 0.375

India 9.85× 104 72397857 0 0.988

Kenya/Zambia/Tanzania 1.077 0.597 (0.364, 3.190) 0.893

Other (East Asia) 5.48× 104 40253957 0 0.988

Sputum production

No 0.022 0.01 (0.009, 0.055) <0.001
Time to not producing

sputum
0.001 0 (0.000, 0.002) <0.001
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G Simulation of transition probabilities in R

> # A. Simulation of transition probabilities assuming transition intensites

remain constant over time

>

> # Purpose: Simulate data from probability transitions after choosing transition

intensities and trace back to the known transition intensities and

probabilities .

>

> library(msm)

>

> # 1. Generate a matrix of constant intensities .

> Q<- matrix( c(-.1,.1,.3,-.3),ncol=2,byrow=T)

>

> # Under this intensity matrix , we get the following transmission probabilities ,

at time t = 0, 1, 2, 3, 4.

>

> MatrixExp(Q*0)

State 1 State 2

State 1 1 0

State 2 0 1

> # State 1 State 2

> #State 1 1 0

> #State 2 0 1

>

> MatrixExp(Q*1)

State 1 State 2

State 1 0.91758 0.08241999

State 2 0.24726 0.75274003

>

> MatrixExp(Q*2)

State 1 State 2

State 1 0.8623322 0.1376678

State 2 0.4130033 0.5869967

>

> MatrixExp(Q*3)

State 1 State 2

State 1 0.8252986 0.1747014

State 2 0.5241043 0.4758957

>

> MatrixExp(Q*4)

State 1 State 2

State 1 0.8004741 0.1995259

State 2 0.5985776 0.4014224

>

>
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> # 2. Simulate states under the above transmission probabilities for 10 time

points.

> ntimes <-10

> Y.1.2 <-rep(0,ntimes)

> Y.2.1 <-rep(0,ntimes)

>

> # 2a. Step 1: Extract transmission probabilities from

> # intensity matrix using matrix exponential .

>

> for( i in 1: ntimes) {

+

+ Y.1.2[i]<- MatrixExp(Q*i)[1,2] # State 1 to State 2 from t=i-1 to t=i

+ Y.2.1[i]<- MatrixExp(Q*i)[2,1] # State 2 to State 1 from t=i-1 to t=1

+

+ }

>

> # True probability transition values

> Y.P.N

[1] 0.08241999 0.13766776 0.17470145 0.19952587 0.21616618 0.22732051 0.23479748

[8] 0.23980945 0.24316907 0.24542109

>

> Y.N.P

[1] 0.2472600 0.4130033 0.5241043 0.5985776 0.6484985 0.6819615 0.7043925

0.7194283

[9] 0.7295072 0.7362633

>

> # Step 2: Simulate data for 10 ,000 patients:

> > npat <-10000

>

> Y<-matrix(NA ,nrow=npat ,ncol=ntimes +1)

>

> labs <-rep("",ntimes +1)

> for(i in 1: (ntimes +1) ) { labs[i]<-paste("t=",i-1,sep="") }

>

> dimnames(Y)[[2]] <-labs

> dimnames(Y)[[1]] <-1:dim(Y)[1]

>

> Set a random seed number so simulations are re-producible.

> set.seed (1875263)

>

> Y[,1]<-rep(c(0,1),npat/2)

>

> # Y.1.2[1] and Y.2.1[1] denote the transition probabilities where the

transitions are calculated

> # at the first time point.

>

> for (i in 1:npat) {
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+

+ for (j in 2:( ntimes +1) ) {

+

+ Y[i,j] <- rbinom(1,1,Y.1.2[1])*(Y[i,j -1]==0) + rbinom(1,1,1-Y.2.1[1])*(Y[i,j

-1]==1)

+

+ }

+

+ }

>

>

> # ################

> # msm modelling #

> # ################

> library(reshape2)

>

> # Format data for msm modelling

> sim1 <- melt(Y, id.vars = c("t="))

>

> # Rename variables for msm to run

> names(sim1)[1] <- "subject"

>

> # States are simulated as 0’s and 1’s. Transform to 1’s and 2’s for msm to run.

> sim1\$state <-sim1\$value +1

>

> # Denote the state variable as binary

> sim1\$state <-as.factor(sim1\$state)

>

> # Remove this variable produced from reshaping the data.

> sim1\$value <- NULL

>

> # Recode variable to show time and rename Var2.

> sim1\$Var2=gsub("t=*","",sim1\$Var2)

> names(sim1)[2] <- "time"

>

> # Bind the variable names to the simulated dataset.

> sim1\$subject <- sim1\$subject

> sim1\$time <- sim1\$time

> sim1\$state <- sim1\$state

>

> # Denote time as a continuous variable.

> sim1\$time <-as.numeric(sim1\$time)

>

> # Sort data.

> sim1 <-sim1[with(sim1 , order(subject , time)), ]

>

> # denote initial intensities (start at true values)
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> qm <- rbind(c(0.1, 0.1),

+ c(0.3, 0.3))

>

> # Fit the msm model assuming constant intensities and not including any

covariates .

> sim1.msm <- msm(state ~ time , subject = subject , data = sim1 ,

+ qmatrix = qm , exacttimes=FALSE ,

+ method = ‘‘BFGS’’,

+ control = list(fnscale = 4000, maxit = 10000))

>

> sim1.msm

> # Transition intensity matrix:

> qmatrix.msm(sim1.msm)

State 1 State 2

State 1 -0.09849 ( -0.10118 , -0.09587) 0.09849 ( 0.09587 , 0.10118)

State 2 0.30093 ( 0.29429 , 0.30772) -0.30093 ( -0.30772 , -0.29429)

> # Transition probability matrix for t=1:

> pmatrix.msm(sim1.msm , t=1)

State 1 State 2

State 1 0.9188051 0.08119493

State 2 0.2480946 0.75190538

> # Transition probability matrix for t=2:

> pmatrix.msm(sim1.msm , t=2)

State 1 State 2

State 1 0.8643468 0.1356532

State 2 0.4144943 0.5855057

> # Transition probability matrix for t=3:

> pmatrix.msm(sim1.msm , t=3)

State 1 State 2

State 1 0.8278210 0.1721790

State 2 0.5261003 0.4738997

> # Transition probability matrix for t=4:

> pmatrix.msm(sim1.msm , t=4)

State 1 State 2

State 1 0.8033228 0.1966772

State 2 0.6009556 0.3990444

> # Transition probability matrix for t=5:

> pmatrix.msm(sim1.msm , t=5)

State 1 State 2

State 1 0.7868917 0.2131083

State 2 0.6511618 0.3488382
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> # Transition probability matrix for t=6:

> pmatrix.msm(sim1.msm , t=6)

State 1 State 2

State 1 0.7758711 0.2241289

State 2 0.6848356 0.3151644

> # Transition probability matrix for t=7:

> pmatrix.msm(sim1.msm , t=7)

State 1 State 2

State 1 0.7684795 0.2315205

State 2 0.7074210 0.2925790

> # Transition probability matrix for t=8:

> pmatrix.msm(sim1.msm , t=8)

State 1 State 2

State 1 0.7635218 0.2364782

State 2 0.7225693 0.2774307

> # Transition probability matrix for t=9:

> pmatrix.msm(sim1.msm , t=9)

State 1 State 2

State 1 0.7601967 0.2398033

State 2 0.7327294 0.2672706

> # Transition probability matrix for t=10:

> pmatrix.msm(sim1.msm , t=10)

State 1 State 2

State 1 0.7579665 0.2420335

State 2 0.7395439 0.2604561

> # The transition intensities and probabilities closely match those to the true

values.

> # END

> # #############

> # B. Simulation of transition probabilities assuming transition intensities

change over time

>

> # Purpose: Simulate data from probability transitions after choosing transition

intensities that vary over time and trace back to the known transition

intensities and probabilities .

>

> library(msm)

> # Begin: simulate observed data under these
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> # time -varying transmission probabilities

>

> # Choose 10 time points

> ntimes <-10

>

> Y.1.2 <-rep(0,ntimes)

> Y.2.1 <-rep(0,ntimes)

>

> Q<-vector(’list’,ntimes)

>

> # create time varying intensities

> for( i in 1: ntimes) {

+

+ Q[[i]]<-matrix( c( -(0.2+(0.02*i)) ,(0.2+(0.02*i)) ,(0.5+(0.07*i)) ,( -(0.5+(0.07*i)

))),ncol=2,byrow=T)

+

+ }

> # Check true transition intensities for all 10 time points

> Q[1]

[[1]]

[,1] [,2]

[1,] -0.22 0.22

[2,] 0.57 -0.57

> Q[2]

[[2]]

[,1] [,2]

[1,] -0.24 0.24

[2,] 0.64 -0.64

> Q[3]

[[3]]

[,1] [,2]

[1,] -0.26 0.26

[2,] 0.71 -0.71

> Q[4]

[[4]]

[,1] [,2]

[1,] -0.28 0.28

[2,] 0.78 -0.78

> Q[5]

[,1] [,2]

[1,] -0.30 0.30

[2,] 0.85 -0.85
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> Q[6]

[,1] [,2]

[1,] -0.32 0.32

[2,] 0.92 -0.92

> Q[7]

[,1] [,2]

[1,] -0.34 0.34

[2,] 0.99 -0.99

> Q[8]

[,1] [,2]

[1,] -0.36 0.36

[2,] 1.06 -1.06

> Q[9]

[,1] [,2]

[1,] -0.38 0.38

[2,] 1.13 -1.13

> Q[10]

[,1] [,2]

[1,] -0.4 0.4

[2,] 1.2 -1.2

> #Step 1: extract transmission probabilities from

> # intensity matrices using matrix exponential

>

> for( i in 1: ntimes) {

+

+ Y.1.2[i]<- MatrixExp(Q[[i]])[1,2] # from t=i-1 to t=i

+ Y.2.1[i]<- MatrixExp(Q[[i]])[2,1] # from t=i-1 to t=1

+

+ }

>

> # True probability transition values

> Y.1.2

[1] 0.1520939 0.1596047 0.1664314 0.1726343 0.1782687 0.1833847 0.1880284

0.1922415

[9] 0.1960624 0.1995259

> Y.2.1

[1] 0.3940614 0.4256124 0.4544856 0.4809099 0.5050946 0.5272311 0.5474944

0.5660445

[9] 0.5830276 0.5985776

>
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> # Step 2: Simulate data for 10 ,000 patients based on these probability

transitions :

> > npat <-10000

>

> Y<-matrix(NA ,nrow=npat ,ncol=ntimes +1)

>

> labs <-rep("",ntimes +1)

> for(i in 1: (ntimes +1) ) { labs[i]<-paste("t=",i-1,sep="") }

>

>

> dimnames(Y)[[2]] <-labs

> dimnames(Y)[[1]] <-1:dim(Y)[1]

>

> set.seed (1875263)

>

> Y[,1]<-rep(c(0,1),npat/2)

>

>

> for (i in 1:npat) {

+

+ for (j in 2:( ntimes +1) ) {

+

+ Y[i,j] <- rbinom(1,1,Y.1.2[j-1])*(Y[i,j -1]==0) + rbinom(1,1,1-Y.2.1[j-1])*(Y[i,

j -1]==1)

+

+ }

+

+ }

>

>

> # ################

> # msm modelling #

> # ################

>

> # load packages to use for msm

>

> library(msm)

> library(reshape2)

>

> # format data for msm modelling

> sim1 <- melt(Y, id.vars = c("t="))

>

> names(sim1)[1] <- "subject"

>

> sim1\$state <-sim1\$value +1

> sim1\$state <-as.factor(sim1\$state)

> sim1\$value <- NULL
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>

> sim1\$Var2=gsub("t=*","",sim1\$Var2)

>

> names(sim1)[2] <- "time"

>

> sim1\$subject <- sim1\$subject

> sim1\$time <- sim1\$time

> sim1\$state <- sim1\$state

>

> sim1\$time <-as.numeric(sim1\$time)

>

> # Sort data

> sim1 <-sim1[with(sim1 , order(subject , time)), ]

>

> # Denote some intial intensities

> qm <- rbind(c(0.2, 0.2),

+ c(0.5, 0.5))

>

> # Fit msm model: including time as a covariate

> sim1.time.msm <- msm(state ~ time , subject = subject , data = sim1 ,

+ qmatrix = qm , exacttimes=FALSE ,

+ covariates = ~time ,

+ method = "BFGS",

+ control = list(fnscale = 4000, maxit = 10000))

>

>

> # NB: outputs the average intensity #

> sim1.time.msm

Call:

msm(formula = state ~ time , subject = subject , data = sim1 , qmatrix = qm ,

covariates = ~time , exacttimes = FALSE , method = "BFGS", control = list(

fnscale = 4000, maxit = 10000))

Maximum likelihood estimates

Baselines are with covariates set to their means

Transition intensities with hazard ratios for each covariate

Baseline time

State 1 - State 1 -0.3015 ( -0.3080 , -0.2950)

State 1 - State 2 0.3015 ( 0.2950 , 0.3080) 1.069 (1.06 ,1.077)

State 2 - State 1 0.8580 ( 0.8414 , 0.8749) 1.087 (1.08 ,1.094)

State 2 - State 2 -0.8580 ( -0.8749 , -0.8414)

-2 * log -likelihood: 106776.2

[Note , to obtain old print format , use "printold.msm"]

>
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> # recover individual intensities using qmatrix:

> qmatrix.msm(sim1.time.msm , covariate=list(time =0))

State 1 State 2

State 1 -0.2236 ( -0.2329 , -0.2147) 0.2236 ( 0.2147 , 0.2329)

State 2 0.5899 ( 0.5714 , 0.6089) -0.5899 ( -0.6089 , -0.5714)

>

> qmatrix.msm(sim1.time.msm , covariate=list(time =1))

State 1 State 2

State 1 -0.2390 ( -0.2473 , -0.2309) 0.2390 ( 0.2309 , 0.2473)

State 2 0.6411 ( 0.6241 , 0.6585) -0.6411 ( -0.6585 , -0.6241)

>

> qmatrix.msm(sim1.time.msm , covariate=list(time =2))

State 1 State 2

State 1 -0.2554 ( -0.2628 , -0.2481) 0.2554 ( 0.2481 , 0.2628)

State 2 0.6968 ( 0.6811 , 0.7128) -0.6968 ( -0.7128 , -0.6811)

>

> qmatrix.msm(sim1.time.msm , covariate=list(time =3))

State 1 State 2

State 1 -0.2729 ( -0.2796 , -0.2663) 0.2729 ( 0.2663 , 0.2796)

State 2 0.7573 ( 0.7423 , 0.7725) -0.7573 ( -0.7725 , -0.7423)

>

> qmatrix.msm(sim1.time.msm , covariate=list(time =4))

State 1 State 2

State 1 -0.2916 ( -0.2981 , -0.2853) 0.2916 ( 0.2853 , 0.2981)

State 2 0.8230 ( 0.8074 , 0.8389) -0.8230 ( -0.8389 , -0.8074)

> qmatrix.msm(sim1.time.msm , covariate=list(time =5))

State 1 State 2

State 1 -0.3116 ( -0.3185 , -0.3049) 0.3116 ( 0.3049 , 0.3185)

State 2 0.8945 ( 0.8764 , 0.9130) -0.8945 ( -0.9130 , -0.8764)

> qmatrix.msm(sim1.time.msm , covariate=list(time =6))

State 1 State 2

State 1 -0.3330 ( -0.3413 , -0.3249) 0.3330 ( 0.3249 , 0.3413)

State 2 0.9722 ( 0.9495 , 0.9954) -0.9722 ( -0.9954 , -0.9495)

> qmatrix.msm(sim1.time.msm , covariate=list(time =7))

State 1 State 2

State 1 -0.3559 ( -0.3664 , -0.3457) 0.3559 ( 0.3457 , 0.3664)

State 2 1.0566 ( 1.0275 , 1.0865) -1.0566 ( -1.0865 , -1.0275)

> qmatrix.msm(sim1.time.msm , covariate=list(time =8))

State 1 State 2

State 1 -0.3803 ( -0.3938 , -0.3673) 0.3803 ( 0.3673 , 0.3938)

State 2 1.1484 ( 1.1111 , 1.1869) -1.1484 ( -1.1869 , -1.1111)

> qmatrix.msm(sim1.time.msm , covariate=list(time =9))
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State 1 State 2

State 1 -0.4064 ( -0.4235 , -0.3901) 0.4064 ( 0.3901 , 0.4235)

State 2 1.2481 ( 1.2009 , 1.2971) -1.2481 ( -1.2971 , -1.2009)

> qmatrix.msm(sim1.time.msm , covariate=list(time =10))

State 1 State 2

State 1 -0.4343 ( -0.4556 , -0.4140) 0.4343 ( 0.4140 , 0.4556)

State 2 1.3565 ( 1.2977 , 1.4179) -1.3565 ( -1.4179 , -1.2977)

>

> # Close enough to the known transition intensities above

>

> # Calculate transition probabilities , assuming time is

> # piecewise constant

> time_p<-1:10

> times <-c(1:10)

>

> transcov .1.2 <-rep(0,10)

> transcov .2.1 <-rep(0,10)

>

> for (i in 1:10) {

+ sim1.cov <-pmatrix.piecewise.msm(sim1.time.msm , i-1, i, times , ci=c("none"),

+ covariates= (list(list (time = 0),

+ list (time = 1),

+ list (time = 2),

+ list (time = 3),

+ list (time = 4),

+ list (time = 5),

+ list (time = 6),

+ list (time = 7),

+ list (time = 8),

+ list (time = 9),

+ list (time = 10)) ))

+

+ transcov .1.2[i]<-sim1.cov[1,2]

+ transcov .2.1[i]<-sim1.cov[2,1]

+ }

>

> # Probability transitions from state 1 to state 2 over 10 time points:

> transcov .1.2

[1] 0.1530220 0.1589080 0.1646963 0.1703432 0.1758034 0.1810302 0.1859765

0.1905959

[9] 0.1948441 0.1986801

>

> # Probability transitions from state 2 to state 1 over 10 time points:

> transcov .2.1

[1] 0.4036580 0.4263246 0.4493793 0.4727036 0.4961651 0.5196186 0.5429082

0.5658701
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[9] 0.5883358 0.6101365

>

>

> # END

> # #############
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H Probability transitions for REMoxTB

Figure H1: Positive to negative probability transitions with linear splines at 5, 7 and 8

weeks for REMoxTB.
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Positive to negative probability transitions with linear splines at 4, 12 and 26 weeks for

REMoxTB.
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Positive to negative probability transitions with linear splines at 4, 6, 15 and 26 weeks

for REMoxTB.
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Negative to positive probability transitions with linear splines at 4, 6, 15 and 26 weeks

for REMoxTB.
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Table H1: Linear splines HMM with at knot at 2, 4, 8 and 26 weeks for REMoxTB.

Transition states1 Misclassifications

Model P (St = j|St−1 = i) (95% CI) P (O|S) (95% CI)

P (Neg|Pos) P (Pos|Neg) P (Ot = Pos|St = Pos) P (Ot = Neg|St = Pos) P (Ot = Pos|St = Neg) P (Ot = Neg|St = Neg)

Linear splines (see 5.6.2)

Baseline hazard2 0.12247 (0.10981, 0.13658) 0.01507 (0.01102, 0.02062) 0.930829 0.069171 0.007196 0.992804

Isoniazid 0.5881 (0.339597, 1.018) 0.6580 (0.005947,72.798)

Ethambutol 0.8673 (0.51732, 1.454) 1.9180 (0.01547,237.878)

Week 1.1784 (0.9139,1.519) 0.7602 (0.1060,5.453)

Week2 1.318 (0.88804, 1.955) 1.203 (0.09766,14.825)

Week4 0.7695 (0.6072,0.9752) 0.7169 (0.3035,1.6934)

Week8 0.7374 (0.6616,0.8219) 1.3599 (1.0394,1.7792)

Week26 1.126 (1.0414,1.216) 1.072 (0.9679,1.188)

Isoniazid*Week 1.446 (1.00082, 2.088) 1.082 (0.06336,18.479)

Ethambutol*Week 1.1334 (0.79357,1.619) 0.5013 (0.02618,9.599)

Isoniazid*Week2 0.6180 (0.35572, 1.074) 0.7803 (0.02188,27.833)

Ethambutol*Week2 0.8426 (0.48779, 1.455) 2.5118 (0.05828,108.261)

Isoniazid*Week4 1.216 (0.8774,1.686) 1.285 (0.3579,4.611)

Ethambutol*Week4 1.1045 (0.7955,1.533) 0.8493 (0.2294,3.144)

Isoniazid*Week8 0.8779 (0.7555,1.020) 0.9946 (0.6694,1.478)

Ethambutol*Week8 0.9198 (0.7926,1.067) 1.0138 (0.7013,1.465)

Isoniazid*Week26 1.0628 (0.9662,1.169) 0.9036 (0.7967,1.025)

Ethambutol*Week26 1.0508 (0.9612,1.149) 0.8853 (0.7819,1.002)

-2 log-likelihood: 15416.98
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Figure H2: Positive to negative probability transitions with linear splines at 2, 4, 8 and

26 weeks for REMoxTB.
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Figure H3: Negative to positive probability transitions with linear splines at 2, 4, 8 and

26 weeks for REMoxTB.
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I Analyses Viterbi forwards/backwards for REMoxTB

Figure I1: Analysis of REMoxTB using the forwards/backwards algorithm (unadjusted

analysis).
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Figure I2: Analysis of REMoxTB using the Viterbi algorithm (unadjusted analysis).
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Table I1: Proportion of patients meeting the primary outcome for REMoxTB following imputation using the

forwards/backwards algorithm.

PP (n=237) mITT (n=111)

Control Isoniazid Ethambutol Control Isoniazid Ethambutol

Excluded from primary analysis 35 (6%) 41 (7%) 35 (6%) 80 (14%) 95 (16%) 62 (11%)

Primary Imputed

outcome set

Failure 1 11 (14%) 18 (19%) 22 (35%) 9 (26%) 13 (32%) 13 (37%)

Success 1 69 (86%) 77 (81%) 40 (65%) 26 (74%) 28 (68%) 22 (63%)

Failure 2 10 (13%) 17 (18%) 22 (35%) 8 (23%) 10 (24%) 13 (37%)

Success 2 70 (88%) 78 (82%) 40 (65%) 27 (77%) 31 (76%) 22 (63%)

Failure 3 14 (18%) 15 (16%) 15 (24%) 9 (26%) 10 (24%) 12 (34%)

Success 3 66 (83%) 80 (84%) 47 (76%) 26 (74%) 31 (76%) 23 (66%)

Failure 4 12 (15%) 14 (15%) 17 (27%) 10 (29%) 10 (24%) 14 (40%)

Success 4 68 (85%) 81 (85%) 45 (73%) 25 (71%) 31 (76%) 21 (60%)

Failure 5 14 (18%) 20 (21%) 14 (23%) 9 (26%) 12 (29%) 11 (31%)

Success 5 66 (83%) 75 (79%) 48 (77%) 26 (74%) 29 (71%) 24 (69%)

Failure 6 14 (18%) 15 (16%) 15 (24%) 8 (23%) 10 (24%) 11 (31%)

Success 6 66 (83%) 80 (84%) 47 (76%) 27 (77%) 31 (76%) 24 (69%)

Failure 7 15 (19%) 19 (20%) 15 (24%) 11 (31%) 12 (29%) 12 (34%)

Success 7 65 (81%) 76 (80%) 47 (76%) 24 (69%) 29 (71%) 23 (66%)

Failure 8 17 (21%) 20 (21%) 18 (29%) 10 (29%) 13 (32%) 13 (37%)

Success 8 63 (79%) 75 (79%) 44 (71%) 25 (71%) 28 (68%) 22 (63%)

Failure 9 18 (23%) 19 (20%) 19 (31%) 12 (34%) 10 (24%) 14 (40%)

Success 9 62 (78%) 76 (80%) 43 (69%) 23 (66%) 31 (76%) 21 (60%)

Failure 10 11 (14%) 16 (17%) 18 (29%) 10 (29%) 10 (24%) 15 (43%)

Success 10 69 (86%) 79 (83%) 44 (71%) 25 (71%) 31 (76%) 20 (57%)

Failure 11 10 (13%) 19 (20%) 19 (31%) 8 (23%) 11 (27%) 12 (34%)

Success 11 70 (88%) 76 (80%) 43 (69%) 27 (77%) 30 (73%) 23 (66%)

Failure 12 13 (16%) 22 (23%) 20 (32%) 9 (26%) 13 (32%) 14 (40%)

Success 12 67 (84%) 73 (77%) 42 (68%) 26 (74%) 28 (68%) 21 (60%)

Failure 13 13 (16%) 19 (20%) 17 (27%) 9 (26%) 12 (29%) 12 (34%)

Success 13 67 (84%) 76 (80%) 45 (73%) 26 (74%) 29 (71%) 23 (66%)

Failure 14 11 (14%) 19 (20%) 18 (29%) 9 (26%) 11 (27%) 13 (37%)

Success 14 69 (86%) 76 (80%) 44 (71%) 26 (74%) 30 (73%) 22 (63%)

Failure 15 12 (15%) 18 (19%) 19 (31%) 9 (26%) 10 (24%) 12 (34%)

Success 15 68 (85%) 77 (81%) 43 (69%) 26 (74%) 31 (76%) 23 (66%)

Failure 16 10 (13%) 18 (19%) 15 (24%) 8 (23%) 11 (27%) 12 (34%)

Success 16 70 (88%) 77 (81%) 47 (76%) 27 (77%) 30 (73%) 23 (66%)

Failure 17 10 (13%) 19 (20%) 15 (24%) 8 (23%) 11 (27%) 11 (31%)
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Success 17 70 (88%) 76 (80%) 47 (76%) 27 (77%) 30 (73%) 24 (69%)

Failure 18 10 (13%) 15 (16%) 17 (27%) 8 (23%) 11 (27%) 13 (37%)

Success 18 70 (88%) 80 (84%) 45 (73%) 27 (77%) 30 (73%) 22 (63%)

Failure 19 13 (16%) 18 (19%) 15 (24%) 9 (26%) 11 (27%) 13 (37%)

Success 19 67 (84%) 77 (81%) 47 (76%) 26 (74%) 30 (73%) 22 (63%)

Failure 20 10 (13%) 14 (15%) 14 (23%) 8 (23%) 10 (24%) 11 (31%)

Success 20 70 (88%) 81 (85%) 48 (77%) 27 (77%) 31 (76%) 24 (69%)
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J Probability transitions for RIFAQUIN

Figure J1: Positive to negative probability transitions with piecewise constant at 2, 4

and 10 months for RIFAQUIN.
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Figure J2: Negative to positive probability transitions with piecewise constant at 2, 4

and 10 months for RIFAQUIN.
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K Analyses Viterbi forwards/backwards for RIFAQUIN

Figure K1: Analysis of RIFAQUIN using the forwards/backwards algorithm

(unadjusted analysis).
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Figure K2: Analysis of RIFAQUIN using the Viterbi algorithm (unadjusted analysis).
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L Technical details to construct the joint multivariate normal

distribution for each reference-based option.

To construct the joint MVN distribution for a patient’s pre-deviation data and

post-deviation outcome data, we begin by describing the jump to reference option

which leads to how we approach the other options. We use the methods describe by

Carpenter and Kenward79 (pp 251-252) to describe these details. For step 2 of the

algorithm for reference-based sensitivity analyses (see step 2 in §6.1.1), a mean vector

and variance-covariance matrix is drawn from the posterior distribution for each

randomised arm. Let the current draw of the control (reference) arm means be

denoted by µξ = (µξ,0, µξ,0, ..., µξ,dk) and variance-covariance be denoted by Σξ for

deviation time dk from the posterior. Let the current draw of the treatment group

means be denoted by µτ = µτ,0, µτ,1, ..., µτ,dk and the variance-covariance matrix be

denoted by Στ for deviation time dk from the posterior.

Under jump to reference, the joint distribution for the observed (pre-deviation) and

missing data (post-deviation) outcomes is formed as MVN with mean and

variance-covariance matrix from a patient’s randomised treatment arm for

pre-deviation measurements. Post-deviation, we assume the mean and

variance-covariance matrix matches the observed mean for those who were

randomised to the control arm. The variance-covariance matrix for the treatment arm

and the control arm conditions on components of the post-deviation data given the

pre-deviation data. For patients randomised to the control arm who deviate, missing

data is imputed under MAR as for standard imputation (§3.5.1).

The new variance-covariance matrix from the control arm (ξ) and treatment arm (τ),

partitioned at time dk, for pre-deviation data (1) and post-deviation data (2) can be

formed as79:

Σξ =

 ξ11 ξ12

ξ21 ξ22

 ,Στ =

 τ11 τ12

τ21 τ22

 .
From these matrices we form the new variance-covariance matrix as79:

Σ =

 Σ11 Σ12

Σ21 Σ22

 .
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to match the variance-covariance matrix from the treatment arm for the pre-deviation

data and the control arm for the conditional components for the post-deviation data

given the pre-deviation data. Then, as shown by Carpenter, Roger and Kenward107:

Σ11 = τ11,

Σ21 = ξ21ξ
−1
11 τ11,

Σ22 = ξ22 − ξ21ξ−111 (ξ11 − τ11)ξ−111 ξ12,

For copy increments in reference, the mean for a patient that deviates from the

treatment arm and follows the control arm becomes:

µk = [µτ,0, µτ,1, ..., µτ,dk−1,µτ,dk+(µξ,dk+1
−µξ,dk ),µτ,di+(µξ,dk+2

−µξ,dk ),...]
T .

For copy reference, the mean and variance covariance matrix comes from the control

arm, irrespective of deviation time79.

Under MAR, post-deviation data for deviating patients is assumed to behave like that

of their original randomisation109.

For last mean carried forward, the mean for a patient that deviates from the control arm

and follows the mean observations for patients who were randomised to the treatment

arm becomes:

µk = [µτ,0, µτ,1, ..., µτ,dk−1,µτ,dk ,µτ,di ,...]
T , where Σ = Στ .
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M Unadjusted analyses using reference-based sensitivity

analyses for REMoxTB.

Figure M1: Jump to reference sensitivity analyses for the REMoxTB study (unadjusted

analysis).
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Figure M2: Copy increments in reference sensitivity analysis for the REMoxTB study

(unadjusted analyses).
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Figure M3: Copy reference sensitivity analysis for the REMoxTB study (unadjusted

analyses).
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Figure M4: Last mean carried forward sensitivity analysis for the REMoxTB study

(unadjusted analyses).
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Figure M5: Missing at random sensitivity analysis for the REMoxTB study (unadjusted

analyses).
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N Unadjusted analyses using reference-based sensitivity

analyses for RIFAQUIN.

Figure N1: Jump to reference sensitivity analyses for the RIFAQUIN study (unadjusted

analysis).
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Figure N2: Copy increments in reference sensitivity analyses for the RIFAQUIN study

(unadjusted analysis).
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Figure N3: Copy reference sensitivity analyses for the RIFAQUIN study (unadjusted

analysis).
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Figure N4: Last mean carried forward sensitivity analyses for the RIFAQUIN study

(unadjusted analysis).
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Figure N5: Missing at random sensitivity analyses for the RIFAQUIN study

(unadjusted analysis).
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