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Abstract  

Understanding the evaporation of water from gas diffusion layers (GDL) is important for 

polymer electrolyte fuel cell (PEFC) design and operational purposes, particularly for open-

cathode air-breathing fuel cells where water removal is purely through evaporation. In this 

work, water droplet dynamics on the surface of a fuel cell GDL is studied by wettability and 

thermal characterisation. The droplet maintains a fixed contact diameter (pinned) until there 

is a transition from non-wetting to wetting regime, after which the contact diameter reduced 

rapidly until complete evaporation occurs. GDL thermal characterisation reveals that 

temperature variation encountered across the GDL is due to a change in emissivity and 

increased thermal gradient across the GDL due to its uneven surface. Droplet thermal 

characterisation reveals that the droplets have a cooling effect on the surrounding GDL when 

introduced at room temperature and the cooling effect is more exacerbated with an increase in 

GDL temperature. This work provides insight into the dynamics of water evaporation on 

GDLs which could be effective in developing water and heat management strategies in 

PEFCs, as water droplets are expected to experience similar pinning and cooling effect to that 

observed in this work within the cathode gas channels of PEFCs. This is particularly relevant 

to passive open-cathode cells. 

 

 

 

 

 

 

 

 

 

 

 



 

1 Introduction  

 Polymer electrolyte fuel cells (PEFCs) are a promising alternative power generation 

technology due to their high energy conversion efficiency, low temperature operation and  

high power density [1]. Open-cathode air-breathing fuel cells are attractive for portable 

power applications, as in passive mode they do not require forced convection of air to the 

cathode, so avoiding the need for blowers and reducing balance-of-plant requirements [2]. In 

air-breathing fuel cells, the cathode is exposed to the atmosphere and supply of oxygen is 

achieved through free or natural convection of air [3,4].   

 Effective water management is one of the greatest technological challenges for PEFC 

commercialisation [5]. Water is required to hydrate the electrolyte for improved proton 

conductivity and transport of water occurs across the membrane through hydraulic gradients 

[6]. However, excess water can fill open pores in the GDL which can act to block reactant 

access to the catalyst [7]. This phenomenon is known as ‘flooding’ and can significantly 

diminish fuel cell performance, particularly at high current density. Introducing a 

hydrophobic content to the GDL helps to avoid water build-up within open pores; however, 

as a result of this, water droplets can readily form on the surface of the GDL. Understanding 

how these droplets form and evaporate is important for design and operational optimisation.   

 In conventional closed cathode fuel cells, the propensity of liquid water to be removed 

from the surface of the GDL is strongly influenced by superficial gas velocity [8].  For high 

superficial gas velocity, the shear force from the gas flow detaches droplets from the GDL 

surface. Lower gas velocity allows droplets to grow in size until they touch hydrophilic 

channel walls and spread. However, in open-cathode fuel cells, water removal is purely by 

evaporation due to lack of forced convection mechanism; in which case, current density and 

temperature plays the major role in determining how droplets form and evaporate.  

 Various experimental techniques have been reported showing how liquid water is 

transported and distributed in PEFCs. Techniques such as NMR imaging [9–11] and beam 

interrogation techniques, such as neutron imaging [12–16] and X-ray imaging [17–19] enable 

the in situ measurement of liquid water distribution in operating PEFCs. However, such 

techniques are costly, require advanced imaging facilities and are often limited by spatial and 

temporal resolutions which are required for dynamic in-situ studies. Direct optical 

visualisation [20–22] has proven to be a powerful technique for observing water droplet 

formation, motion and evaporation in operating fuel cells [23–26]. The technique benefits 



 

from high spatial and temporal resolution and depending on the optical set-up, direct access 

to the surface of the GDL is enabled (such as in the case of an open-cathode fuel cell).  

 Water visualisation work on GDLs has mainly focused on liquid water formation and 

transport [7,8,15,21,22,27] with little work has been done on evaporation. Work reported to 

date indicates that droplet detachment and growth in PEFCs is highly dependent on the 

superficial gas velocity [7,8,15,21,22,27] and droplet ‘pinning’[7,8]. A droplet is considered 

‘pinned’ when it doesn’t easily detach from the GDL surface and the contact line along the 

liquid water-GDL interface does not change [8]. Pinning is influenced by superficial air 

velocity, surface roughness and structure [8].  

 Though all these studies have provided useful results in the understanding of droplet 

behaviour in PEFCs, the results are mainly only applicable to conventional fuel cells, which 

utilise forced convection of air to the cathode. In open-cathode fuel cells, droplet detachment 

from the GDL is purely by evaporation as there is no forced convection of air to the cathode, 

meaning gas velocity does not play a role in detaching droplets, although free-convection 

induced by temperature gradients and buoyancy forces may be a factor. This presents an 

interesting area of study – visualisation and study of droplet evaporation dynamics on a fuel 

cell GDL.   

In open-cathode fuel cells, drying of the membrane has been identified to be one of the major 

sources of limiting current density [28]. Therefore, an understanding of the dynamics of 

droplet evaporation on GDLs can be useful in developing droplet heat and water management 

strategies which can be effective at moderating PEFC temperature.  

Despite there being little work reported on droplet evaporation from GDLs, some work has 

been done on droplet evaporation from hydrophobic surfaces that we can learn from. Droplet 

evaporation depends on surface wettability [29], contact angle hysteresis [30] and surface 

roughness [31]. Picknett and Bexon [32] identified two modes of evaporation for a droplet 

resting on a smooth hydrophobic surface, namely the constant contact angle (CCA) mode and 

the constant contact radius (CCR) mode. During the CCA mode, the contact angle is 

unchanged during evaporation, the drop shape remaining that of a spherical cap, but with 

diminishing area of contact between liquid and surface [32]. During the CCR mode, 

evaporation takes place with unchanged contact area between liquid and surface, the shape 

remaining that of a spherical cap, but with diminishing contact angle. Evaporation was 

observed to begin in the CCR mode before transitioning to the CCA mode [32].  



 

Hao et al. [33] studied the evaporating behaviour of water droplets on superhydrophobic 

surfaces. Their results revealed that the receding contact angle of water droplets increased 

during evaporation. McHale et al. [34] reported that droplet evaporation on superhydrophobic 

surfaces follows three modes: a CCR mode, a CCA mode and a mixed mode in which they 

both decrease simultaneously. Dash et al. [35] studied the evaporation characteristics of water 

droplets on heated hydrophobic and superhydrophobic surfaces and their results revealed that 

evaporation is purely in CCA mode as the droplet radius constantly reduced.  While work has 

been done on droplet evaporation on hydrophobic and superhydrophobic surfaces, most of 

the characterisation work performed has been limited to studying its wettability 

characteristics on different surfaces. However, in this study, thermal visualisation and 

characterisation of a droplet’s evaporating dynamics is used in combination with wettability 

studies. This is particularly important as thermal imaging is being increasingly used for fuel 

cell diagnostics and the characterisation performed will help interpretation of droplet shape 

and form from infrared measurements during fuel cell operation. 

Thermal characterisation / mapping is a powerful diagnostic tool for the study of fuel cells 

[36–41]. Knowledge of temperature distribution on the MEA surface of PEFCs is very 

important as it affects localised current density, water and thermal management. Thermal 

imaging can help identify the location of hotspots, which can accelerate degradation and 

eventual failure of the membrane [42–44] and in the design of different fuel cell cooling 

systems [45–48].  

The paper describes a comprehensive characterisation of the dynamics of water droplet 

evaporation from the surface of gas diffusion layers used in polymer electrolyte fuel cells. 

Water droplet behaviour of GDLs plays an important role electrode flooding and heat 

rejection from fuel cells. For the first time, this work describes droplet evaporation based on 

droplet form and shape as well as its thermal signature. Important insight into the evaporation 

dynamics is realised, this is correlated with the thermal response and some important new 

insights with regard to studying fuel cells using thermal imaging cameras are identified. 

 

 

 



 

2 Experimental 

The GDL used for characterisation was a commercially available Toray carbon fibre paper 

(Toray Industries, Inc. product code TGP-H-030). The GDL wettability characterisation was 

performed using an optical DSA100 drop shape analysis system (KRUSS GmbH, Hamburg). 

Drop shape analysis (DSA) is an image analysis method for determining the contact angle 

from the shadow image of a sessile drop and the surface tension or interfacial tension from 

the shadow image. The system uses a diffuse backlight to illuminate the drop; this provides 

high contrast between the edge of the droplet and its surroundings. The contact angle was 

calculated using sessile drop fitting or the Young-Laplace technique [49], which assumes the 

effect of gravity to be negligible. The drop image is illuminated from one side and a high 

resolution CCD camera at the opposite side records an image of the drop. The drop image is 

transferred to a computer equipped with a video-digitizer board (frame-grabber). The DSA 

software contains time-proven tools for analysing the drop image which can be used to 

calculate the contact angle. Evolution of the droplet-GDL contact angle during the 

evaporation process was done automatically by the DSA100. The DSA software detected the 

liquid-air interface through the liquid-solid-air contact point. The contact angle is between 

this tangent and the plane of the solid surface. A diagram of the setup is shown in Figure 1. 

Repeated measurements for each temperature resulted in contact angle measurements within 

±3
o
. An 8 µl ± 0.1 µl volume of deionised water was used for each droplet. The experiment 

was performed at room temperature which was recorded at 23 ºC. The relative humidity was 

measured at 40%. The experiments were performed on the same day and there was no change 

in the conditions. The temperature of the GDL was controlled by a hot plate over the range of 

30 
o
C to 60 

o
C. This temperature range was chosen due to the temperature profiles achieved 

during thermal characterisation of the open-cathode fuel cell.  

 



 

 

Figure 1 Experimental set up and label of the DSA100 equipment used for contact angle 

measurement; (b) focus on the operation slab with GDL and water droplet. 

 

While injecting the droplet through the GDL (bottom injection) more accurately depict how 

water is formed in fuel cells i.e. from the catalyst layer and through to the GDL, injecting the 

droplet directly on top of the GDL enabled the wide range of studies conducted to be 

consistent, uniform and comparable. The temperature ranges would be difficult to achieve 

and may not be accurate. Since this paper targets open cathode fuel cells where droplet 

removal is purely by evaporation due to temperature changes, it was therefore important to 

keep the temperature factor.  

Furthermore, Das et al [50], compared the bottom injection method to the top injection 

method by measuring the contact angle and adhesion force. They reported that while the 

contact angles and droplet contact diameter were different (larger with bottom injection), they 

followed the same trend during evaporation. They attributed this to the significant 



 

water/water interaction created by the bottom injection which is likely to increase the 

droplet’s adhesion (hence a larger contact diameter and angle).  

Thermal imaging was performed using a 640 × 512 focal plane array InSb camera 

(SC5600MB FLIR, UK). The camera was calibrated for the temperature range in question 

(15 ‒ 100 °C) with the images being recorded using commercially available software 

(ResearchIR, FLIR ATC, Croissy-Beaubourg, France).  

X-ray CT of a section of the GDL was performed at the TOMCAT beamline at the Swiss 

Light Source (SLS). 1501 projections were acquired under a monochromatic 10.5 keV beam. 

The projections were reconstructed using a filtered back projection algorithm into a 3D image 

with a voxel size of 0.65 µm. The tomography image was binarized using Avizo Fire’s 

Watershed algorithm, segmented using Avizo Fire’s segmentation editor and saved as a 

surface (ASCII .stl) which was imported into Star CCM+ (CD-adapco) for polyhedral 

meshing. The volume was prepared in a similar way to that described by Cooper et al. [51].  

 

 

 

 

 

 

 

 



 

3 Result and discussion  

Images of the evaporating water droplet on the GDL surface are shown in Figure 2. Each 

column shows successive stages in the evaporation of the droplet with time at different 

temperatures. The images are taken from the side of the droplet and a reflection artefact is 

noticeable and associated with the white light illumination source. The evaporation time 

varies from 1450 s at 30 
o
C to 290 s at 60 

o
C.  

 

 

Figure 2 Evaporation of droplets on the GDL surface at different temperatures over time.  
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3.1 Effect of PTFE content on contact angle 

The transport of liquid water through the GDL is not only reliant on pore structure, porosity 

and permeability but also degree of hydrophobicity of the GDL [52]. The contact angle the 

droplet (at different temperature) makes with GDLs of various PTFE contents was evaluated. 

The GDLs were commercially available Toray carbon fibre paper produced by Toray 

Industries. It should be noted that changing the temperature of the water bath regulated 

temperature of the droplet. However, when water is sucked into the syringe from the water 

bath and dropped onto the GDL the temperature would have reduced. However, for the 

purpose of comparison it is assumed that there is no reduction in droplet temperature when 

sucked out of the water bath. The GDL was at room temperature (20 
°
C). The experiment was 

repeated three times over three different GDL samples of the same PTFE content with the 

average contact angle recorded. The result is displayed in Figure 3.  
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Figure 3 Evolution of droplet contact angle at different droplet temperature using GDLs 

coated with various amount of PTFE.  

The data from Figure 3 shows that an increase in the PTFE content of GDL leads to an 

increase in the contact angle, which means a higher degree of hydrophobicity of the material. 

Fuel cells require the GDL to have a high degree of hydrophobicity to help with water 

management. It should be noted that a GDL’s treatment with PTFE increases its thickness, 

reduces pores size and leads to higher contact resistance. Therefore, the PTFE content within 

the GDL cannot be increased indefinitely. Furthermore, it can be seen from Figure 3 that an 



 

increase in temperature of the droplet leads to decrease in contact angle. This is expected 

because liquid-gas surface tension is affected by temperature. As temperature increases, 

surface tension decreases, and vice versa. An increase in temperature will therefore lead to a 

decrease in contact angle. The GDL with 20% PTFE was therefore used to study water 

droplet dynamics during evaporation. 

3.1.1 Variation of contact angle, contact diameter and droplet diameter  

The evolution of contact angle as liquid evaporates is shown in Figure 4a. The relative time 

change is also displayed in Figure 4b. The water droplet makes a large initial contact angle 

(130 ± 2
o
) with the GDL for each of the different temperatures.  This is within the range of 

studies describing contact angles on GDLs, which report values between 115 º and 140 º [53]. 

The initially high contact angle (hydrophobic surface) is indicative of the fact that the GDL is 

impregnated with PTFE, added to improve water management by expelling liquid water from 

the GDL structure [5].  



 

 

Figure 4 (a) Evolution of droplet contact angle during evaporation at different GDL 

temperatures (b) Relative time change of the droplet at different temperature. 

 

At each initial GDL temperature, the contact angle of the droplet remains quite steady during 

the initial evaporation period, before decreasing more rapidly with the shrinking of the 

droplet, identified by a reduction in droplet diameter (Figure 5a). Taking the evaporation 

process at 30 
o
C as an example, the contact angle decreased from 130º to 110º at the initial 

stage (0 – 850 s), a decrease rate of 0.02º s
-1

. This is followed by a transition (850 – 1150 s) 

where the contact angle reduced from 110º to 95º, a reduction rate of 0.05º s
-1

. The 

evaporation process ends with a steep drop in the contact angle from 95º to 10º with a 

reduction rate of 0.24º s
-1

. This would indicate that there are three regions in the evaporation 

dynamics of water droplets on a GDL in terms of contact angle. There is an initially low 
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reduction in contact angle due to the hydrophobic nature of the GDL preventing wetting of 

the surface. This is followed by a moderate reduction in the contact angle which indicates that 

the droplet is approaching the transition from non-wetting to wetting regime. This occurred at 

a contact angle of ~ 110º. This is in agreement with work done by Jinuntuya et al. [54] who 

studied the influence of wettability on liquid water transport in GDLs. Their model predicted 

that the transitioning into the wetting regime occurs between 100º and 120º. The final region 

in the evaporation process occurs when the transition to the wetting regime, which occurs by 

definition at 90º [55], after which the droplet rapidly evaporates.  The droplet diameter can be 

seen to reduce steadily during evaporation (Figure 5a).  

 

Figure 5 Evolution of droplet during evaporation at different GDL temperatures: (a) droplet 

diameter, (b) contact diameter. 

The result from Figure 5b shows the contact diameter of the droplet is initially constant 

before decreasing. The contact diameter of the droplet is the contact line the droplet makes 

with the GDL. This is different from the droplet diameter, which is the width of the droplet 

itself. The reduction in the contact diameter is aligned with the transition in contact angle 

from non-wetting to wetting regime. This would indicate that when deciding materials for 

PEFC GDLs, a material that keeps the droplet pinned for a longer period of time will be 

advantageous as it will hinder flooding of the GDL. This is in agreement with work done by 

Fei et al. [33], Dash et al. [35] and McHale et al. [34] on droplet evaporation on hydrophobic 

and superhydrophobic surfaces. The initially fixed contact diameter of the droplet also 

indicates that droplet evaporation on GDLs proceeds in a pinned contact area mode, followed 

by a contact line retreat, which is in agreement with work done by McHale et al. [34], who 

studied liquid evaporation on superhydrophobic surfaces. It also agrees with work done by 

Zachary et al. [8] who identified droplet pinning on GDL surfaces during evaporation and 

also revealed that the strength of the pinning is dependent on the GDL material.  
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3.2  Thermal characterisation of water droplets on GDL  

To better understand water droplet evaporation on a GDL, thermal characterisation was 

performed. This is particularly important as thermal imaging is being increasingly used for 

fuel cell diagnostics and the characterisation performed will help interpretation of droplet 

shape and form from infrared measurements.  

3.2.1  GDL thermal characterisation  

Before the thermal characterisation of the droplet on the GDL, the GDL itself was 

characterised in order to acquire a thermal image baseline. The emissivity of the GDL was 

obtained to be 0.97 by comparing the temperature reported by the camera with that of an 

imbedded thermocouple over a range of temperatures.   The infrared camera was used to 

obtain temperature readings across a 1.4 cm line-scan (Figure 6a) with a pixel resolution of 

100  100 µm.  There are consistent distinct regions of high and low ‘temperature’, (e.g., 

high temperature at 1.05 cm and low temperature at 0.45 cm) which are exacerbated as the 

mean temperature increases. The statistical temperature distribution on the GDL surface 

(Figure 6b) also shows that as temperature increases the variance in the temperature 

measurement becomes larger. 

 



 

 

Figure 6 (a) Temperature distribution at different nominal temperatures along a single 1.4 cm 

line-scan on the GDL; (b) Statistical temperature distribution on 9 cm
2  

GDL surface.   

As emissivity variations on a sample influence the reported temperature from IR 

thermography, the structure of the GDL in relation to the pixel size needs to be characterised. 

Figure 6(b-c) shows the area associated with each pixel size based on a scanning electron 

micrograph and an X-ray CT image of the surface of the GDL. The pixel area during thermal 

imaging (Figure 6a) of the GDL is 100  100 µm. It is clearly seen that depending on the area 

examined, the observed ‘depth’ or geometry of the GDL varies, which can lead to change in 

emissivity. For example, Deloye et al. [56] showed that the emissivity of quartz sand varied 

by 5% depending on the surface composition, particle distribution and viewing angle.  In 

order to examine if the observed variation in temperature is an emissivity effect, the Stefan-

Boltzmann equation (Equation 1) is used to determine how much variation in reported 

temperature is linked to variation in emissivity.  
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Figure 7 (a) Scanning electron micrograph of GDL with representative square sections 

showing the equivalent pixel size from the IR camera; (b) X-ray CT of GDL (top view) with 

pixel size represented.  

  

The Stefan-Boltzmann equation (Equation 1) links the amount of energy radiated by a black 

body to the reported temperature and emissivity.                                 𝑱∗ = 𝜺𝝈𝑻𝟒                             Equation 1 

Where  𝐽∗ is the total energy radiated per unit surface of area of a black body across all 

wavelengths per unit time, ε is the emissivity, σ is the Stefan-Boltzmann constant and T is the 

temperature in Kelvin. The effect a change in emissivity has on the reported temperature can 

be estimated from Equation 2.  

                                                 𝑻 ∝ √𝟏 𝜺⁄𝟒
                                      Equation 2 

Assuming the actual emissivity of the different regions does not change with temperature, we 

can expect to see a 
1T4 

dependence associated with the observed temperature spreading effect 

(Figure 6b). This is shown in Figure 8 which shows the variation in temperature observed in 

Figure 6b compared to the expected variation based on range of emissivity (80 – 95%). This 

range of emissivity was used for comparison as the likely emissivity change as a result of the 

different materials / geometries on the GDL should between these ranges.  



 

 

Figure 8 Comparison of observed experimental variation in GDL temperature over a 9 cm
2
 

area (Figure 6b) to the expected theoretical variations associated with different emissivity. 

The result from Figure 8 indicates that emissivity is not the only reason for the observed 

temperature variation, as the associated temperature change observed is not consistent with 

the temperature over a range of emissivity. This would indicate that thermal gradients exists 

across the GDL despite its relatively small thickness and this has been observed and reported 

in other studies [57,58]; thermocouples were used, which provided temperature of the hotter 

active layer and the cooler GDL. However, this result shows that during thermal imaging, 

pixel resolution can uncover a range of temperatures from different depths in the GDL. 

Examining the SEM and X-ray CT images from Figure 6 (b-c), it is seen that the GDL has a 

highly non-uniform surface and the pixel area across will sample different depths into the 

sample. This would explain the consistent temperature profiles (peaks and troughs observed) 

in the linear profiles taken from the thermal images (Figure 6a), which got exacerbated as the 

GDL temperature increased as a result of the increased thermal gradients.   

3.2.2 Droplet thermal characterisation  

With the GDL characterisation complete and baseline temperature profiles obtained, 8 µl 

droplets were introduced onto the controlled temperature GDL using a syringe (Figure 9). 

Droplet evaporation was detected visually with the disappearance of the droplet and a rise in 

the local temperature of the area where the droplet resided.  
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Figure 9 Thermal imaging of water droplet on GDL at a range of set temperatures: (a) 30 
o
C, 

(b) 40 
o
C, (c) 50 

o
C and (d) 60 

o
C.  

In the images, the circular profile of the droplet at a lower temperature than the GDL is very 

well defined; a ‘halo effect’ is also noticeable whereby the droplet has a cooling effect on the 

surrounding GDL area. The subtle line seen in Figure 9 is as a result of a possible 

microscopic scratch on the GDL which is not visible to the naked eye. The associated lower 

temperature is due to the fact that the camera is likely to be measuring infrared from a 

slightly deeper portion of the GDL. This made no difference to the results as the temperature 

difference between the scratched surface and the normal surface of the GDL (without the 

droplet) is less than 1°C. 

Figure 10a shows the temperature at the centre of the droplet with time. On initial contact 

with the GDL, the droplet rapidly increases in temperature and reaches a characteristic 

plateau temperature. This plateau temperature is independent of the initial starting 

1cm 



 

temperature of the water droplet and represents an equilibrium temperature that is a balance 

between the heating effect of the GDL and the cooling effect of evaporation, as shown in 

Figure 10b. 

 

Figure 10 (a) Evolution of temperature of the centre of the droplet during evaporation; (b) 

comparison of droplet evaporation profile at different initial droplet temperatures 

The difference in measured temperature is not a consequence of emissivity differences, as 

water has an emissivity of 0.95, while the GDL has an emissivity of 0.97, which should lead 

to a temperature difference of only ~ 0.4 ºC, based on Equation 2.  Following the plateau 

region, the onset of temperature increase coincides with the transition into the wetting 

regime, as shown in Figure 5a. This shows that thermal characterisation can be used to 

identify the transition from non-wetting to wetting regime of droplets on hydrophobic 

surfaces. While the centre temperature provides useful information about evaporation 

dynamics, a full temperature profile across the droplet and surrounding area is necessary for 

understanding the cooling effect on the GDL and how to interpret the IR profiles of water 

droplets in operational fuel cells. The temperature profile of the entire droplet during 

evaporation at a GDL temperature of 30 ºC is shown in Figure 11a, while the profile of the 

droplet and surround GDL is shown in Figure 11b. The pixel resolution was 100 µm.  The 

evaporation of the droplet is clearly displayed in Figure 11a with the reduction in its diameter 
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from 3.5 mm at 0 seconds to 2.3 mm at 1080 seconds. This is in close agreement to the drop 

analysis performed earlier (Figure 5b), where an initial droplet diameter of 3.3 mm was 

obtained and the droplet diameter at 1080 s was ~ 2.3 mm. 

 

Figure 11  Spatial temperature profile of (a) water droplet and (b) droplet and surrounding 

GDL at 30 ºC  

There was also a ~ 1 ºC reported difference in temperature between the edges of the droplet 

and its centre. This could be as a result of the edges benefiting from a higher heat transfer 

from the surrounding GDL than the centre. However, without the initial wettability 

calibration, the actual diameter of the droplet could have been over estimated, as the ‘halo’ 

effect extends the cooling region out to as much as 5 mm from the centre of the droplet 

(Figure 10).   The effect is exacerbated as the GDL temperature increases due to the higher 

difference in temperature between the droplet and the GDL.  

4. Conclusion  

Water droplet evaporation dynamics on a heated GDL has been studied ex situ using 

wettability analysis and thermal characterisation. Evaporation dynamics show a transition 

from non-wetting to wetting with minimal change in the droplets’ contact diameter until the 

transition contact angle is attained, while there is a constant reduction in the droplet diameter 

until evaporation.  

Thermal imaging has also been used as an effective tool for the characterisation of the 

thermal effect of water droplets. This work also reveals that non-uniformity in GDL structure 

leads to a variation in reported temperature when using an infrared camera as a result of 

thermal gradients and unlevelled surface (porous structure on same scale as image resolution) 
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of the GDL. Cooling profiles exist around droplets due to the so-called halo effect; this 

should not be mistaken for a droplet while using an infrared camera.  
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