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Abstract  

Social scientists often face a fundamental problem: Did I leave something causally important 

out of my explanation? How do I diagnose this? Where do I look for solutions to this 

problem? We build bridges between regression models and qualitative comparative analysis 

(QCA) by comparing diagnostics and solutions to the problem of omitted variables and 

conditions. We then discuss various approaches and tackle the theoretical issues around 

causality which must be addressed before attending to technical fixes. In the conclusions we 

reflect on the bridges built between the two traditions and draw more general lessons about 

the logic of social science research. 
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Introduction 

Social science methods have developed rapidly over the recent years, as have the methods 

controversies. One of the most sharply discussed additions is certainly Charles C. Ragin’s 

Qualitative Comparative Analysis (QCA) (Ragin 1987; 2000; 2008; Schneider and 

Wagemann 2012). Since its existence, QCA has triggered critiques about technical matters 

but also about its very raison d’être (Collier 2014; Munck 2016; Paine 2016a; Paine 2016b; 

Seawright 2005). Yet, this has not led to a decline in the use of the method (Rihoux et al. 

2013; Wagemann et al. 2016: 2533).  

While, for the skeptics, QCA is ‘just too poor’ to meet the standards of the classic rules of 

inference and explanation, for others QCA is ‘just another beast’ and cannot be related to the 

mainstream traditions (Schneider and Wagemann 2012). Real conversations and comparisons 

between QCA and other methodological traditions are therefore still rare (exceptions include 

Fiss et al. 2013; Grofman and Schneider 2009; Schneider 2016; Seawright 2005; Thiem et al. 

2016; Vis 2012). With this contribution, we strengthen the conversation between QCA as a 

set-theoretic approach and the well-established tradition of quantitative methods within 

which we focus on regression models.  

Instead of raising issues about fundamental differences, we stick to the claim of pluralism in 

methodology and keep the conversation going at a relatively low level of abstraction, 

focusing on a specific problem. Practically, we look at a model specification problem that 

occurs in both regression and QCA, namely the omitted variables problem. Only then do we 

reflect on what the comparison tells us about the logic of inquiry. We find that regression and 

QCA are genuinely different, yet they can still be engaged in conversation (in the spirit of 

Maggetti et al. 2013).  
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Note that for us, building a bridge does not mean erasing diversity and suggesting a 

mishmash solution (here we follow Moses and Knutzen 2012: 313). It means generating 

more awareness around how two different ways of thinking can work in practice, on the 

shop-floor of the social scientist. Building a bridge simply means that there are two different 

sides that can be connected, and we are mindful of what connects them and how to go from 

one side to the other.  

What do we look for at the shop-floor level, then? Our central focus is the common problem 

of having forgotten something important in causal explanation. In regression models, as 

mentioned, this is called the ‘omitted variables problem’.1 In one of the most well-known 

textbooks on research design we are told that we have to systematically look for omitted 

variables because “if relevant variables are omitted, our ability to estimate causal inferences 

correctly is limited” (King et al. 1994: 175).  

If we leave aside the connotations evoked by the language of ‘omitted variables’, we soon 

realize that the problem is more general. It doesn’t matter whether a researcher is working 

with a regression model or QCA: to leave out important explanatory factors seriously flaws 

causal analysis. In the context of our comparison, the omitted variables problem is still under-

studied, as opposed to the question of robustness for example, for which a broad literature 

comparing QCA and econometrics exists (Hug 2013; Schneider and Wagemann 2012: 285ff.; 

Skaaning 2011) – only Seawright (2005: 16ff.) has devoted a limited number of words to this 

topic. 

																																																								
1 In QCA, the term of ‘omitted variables’ is not used, also because it is inappropriate to speak about ‘variables’ 

(see fn. 2). However, for reasons of readability, we use this expression not only for our discussion on regression, 

but also when we deal with QCA. 
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Although the language is different and for very good reasons (variables on one side, 

conditions and sets on the other)2 the basic thrust of the argument is the same. However, and 

interestingly, the ways in which the problem appears and the solutions are developed differ 

markedly. These divisions shed light on conceptions of causality, the logic of inquiry, and 

research design. Yet, we find that the primacy of embedding the causal model in theories is 

the same.    

The regression view of the cathedral3 

Let us begin with an example: is regulation an obstacle to growth? Decades of attempts to de-

regulate the economy seem to suggest that the proposition that there is a causal relationship 

between regulation and growth is popular among international organizations and 

governments (Schrefler and Radaelli 2011). This causal claim has roots in the argument that 

regulation and de-regulation in goods and labour markets have macro-economic effects 

(Blanchard and Giavazzi 2003). The specification of a model that can be tested is tricky: is it 

the total level of regulation that affects the rate of growth, or the quality of rules (Jalilian et 

al. 2007; Radaelli and De Francesco 2007)? Does the number of rules reach a threshold 

beyond which its effects on growth are definitively negative? And how do we measure 

regulation across countries? 

																																																								
2 This is more than just a linguistic matter of taste. Set-theoretic methods, such as QCA, do not look at variables 

but model various degrees of case membership in sets. The difference between the two understandings does not 

so much result in different values of the variable or the set membership, respectively, but lies in the perspective: 

variables look at a characteristics, while sets group cases according to a given case property. Sets, therefore, are 

very closely linked to concepts. 

3 We paraphrase a famous article by Calabresi and Melamed (1972) and show how the perspective changes 

dramatically depending on the analytical lens adopted. 
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In regression designs, omitted variables can be described as a mistake in model specification: 

an issue of confounders. A model can be wrongly specified in two ways: one way is a 

functional form misspecification (e.g. the model describing the relationship between 

regulation and growth is non-linear but we estimate a linear model), the other way is 

misspecification of the variables. We focus on the latter. To be sure, functional 

misspecification generates severe errors, but if the only problem that arises is detecting the 

functional form, this means that we have the variables and data we need. Therefore, we 

possess all the ingredients needed to find the functional form that fits the data, along with the 

possibility of the assistance of the F test for joint exclusion restrictions (Woolridge 2008: 

242). 

Turning to variables rather than form, the first diagnostic question is whether we suspect the 

model to be incorrectly specified because we either have omitted relevant variables in the 

explanation of growth, or if this is due to the inclusion of irrelevant variables (over-

specification of the model). In general, irrelevant variables do not affect the un-biasedness of 

ordinary least squares estimators, although they can have undesirable effects on the variance 

of the estimators, and thus the efficiency of the estimation. As a result, standard errors are 

needlessly large (Dougherty 2011: 250f.). Instead, if the model omits a variable that is 

actually relevant in the ‘true’ model (under-specification) we generate biased estimators. 

When there is a single included variable and one omitted variable we can at least infer the 

direction of the bias (Dougherty 2011). What is more, we also risk finding a flawed or at least 

not sufficiently good or powerful enough explanation. To use our previous example: even if 

we establish a correlation between regulation and growth, we could rightly suspect that there 

are other variables that affect growth. 

As banal as it may sound: if we do not insert possible causes into our model, we will not be 

able to assess their potential contribution to the explanation. As a result, the practice has 
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evolved to building models from general to specific, that is, to start with a rich set of 

variables and then to progress to a more specific model by successively imposing restrictions 

after testing their validity (Dougherty 2011: 460). This is because the cost of including 

irrelevant variables is perceived to be smaller than the cost of omitting variables. However, 

this may lead to very large and fundamentally a-theoretical models. We will expand on this 

later, when dealing with control variables. 

In general, the amount of variance explained by the model (regulation and economic growth 

in our example) and the size of the coefficients indicate that something may be wrong. We 

can also turn to the broad features of the results obtained via the model that we may have 

under-fitted, such as the sign of the estimated coefficients in comparison to the prior 

expectations – this should ring alarm bells. The plot of the residuals may reveal specification 

errors, hence the good practice of plotting the residuals of the fitted model. More specifically, 

the main diagnostic devices for whether variables should or should not be included revolve 

around testing hypotheses for the coefficients, using tests such as the Wald test, the 

likelihood ratio test and the Lagrange multiplier test. Specification tests and diagnostics vary 

depending on the type of model used – see Greene (2003, chapter 21) for specification tests 

that are appropriate for discrete choice models. Nevertheless, if the model is not correct as a 

result of overlooking an important variable, the test statistics are generally invalidated 

(Dougherty 2011: 254).  

One preliminary and fundamental diagnostic question is whether we suspect a problem of 

measurement: do we have the correct variable in mind but are unable to measure it for 

different reasons? If so, we do not really have a problem of confounders at the level of 

research design (we follow up in the next section with examples). An alternative question to 

ask is: Is the problem of confounders of a more radical nature, affecting our causal theory? 

Indeed, variables are often omitted because of poor research design.  
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Dougherty (2011: 250) explains how this takes us into a catch-22 dilemma: “If we know 

exactly which explanatory variables ought to be included in the equation when we undertake 

regression analysis, our task is limited to calculating estimates of their coefficients (…). In 

practice, however, we can never be sure that we have specified the equation correctly”. In 

short: if only we had the perfect theory in the first place! But unfortunately, we do not. Thus, 

issues related to the theory that lead us to specify one model or another cannot be solved with 

technical recipes. For everything else, however, we can and should mitigate the problem with 

technical solutions.  

 

Proxies and instruments 

Turning our attention to technical solutions, we must first consider proxies and instrumental 

variables. Let us start with proxies. Imagine we do not have an accurate measure of a variable 

– but we are confident that the variable (regulation in our example) ought to be in the model 

of growth. This can be a problem of sheer practical necessity. For example, even in a G7 

economy like the UK, only few departments have counted the regulations they manage and 

enforce. In such circumstances, we can reason that the total number of pages in the official 

federal-national registers is a good proxy for the number of total regulations. Further, the 

World Bank has produced cross-country doing business indicators that cover the regulatory 

regimes of common business operations, such as hiring and firing workers, getting bank 

credit, protecting equity investors, registering property, enforcing contracts in courts, and 

starting and closing a business (Djankov et al. 2006). These indicators may be considered a 

proxy measure for regulation we have in mind. We are not saying that regulation and number 

of pages in official repositories of laws (or measures of ease of doing business) are the same 

thing. They are not. All we need to say is that there are decent arguments to consider number 
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of pages or doing business as a proxy of the measure of regulation a macroeconomic model 

explaining economic growth. This is a sort of plug-in approach, because we plug in or 

substitute one variable for another.  

However, we do not always find proxy variables. The proxies may not exist, or they may not 

be available in our conceptual toolbox or yet again their operationalization may be contested. 

In this case, a possible solution is to turn to instrumental variables. Historically, instrumental 

variables have been used to fix bias from measurement error and to overcome endogeneity 

problems (Angrist and Krueger 2001: 72). In the last twenty years instrumental variables 

have been used “to overcome omitted variable problems in estimates of causal relationships” 

(ibid.). Technically, an instrument is (a) exogenous, thus uncorrelated with the error term of 

the equation, and (b) correlated with the endogenous explanatory variable. Imagine that, in 

our model, we want to estimate the causal effect of regulation on growth but there is 

correlation between regulation and the error term. This may occur because we left out a 

variable that also correlates with regulation. This omitted factor may be, for example, 

‘privatization’. If we find that privatization is correlated with regulation and does not show 

correlation with the error term we can use data on privatization as instrument and proceed 

with unbiased estimation.4  

The question is whether we are turning to instruments exclusively because a variable 

included in the model is correlated with the error term and therefore we need a fix, or the 

instrument also makes sense in how we believe causality works – so for example we believe 

that privatization only influences growth by regulatory channels. The definition of 

instrumental variables is technical: we justify an instrument if it satisfies properties (a) and 
																																																								
4	An instrumental variable has first and foremost a technical definition, contrary to the 

conceptual approach we followed when dealing with the proxy.	
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(b) above. This can lead to absurdities in causal analysis. Imagine an instrumental variable 

that satisfies the properties above but cannot be justified by the theory that has informed our 

model. We can find a number of variables that technically satisfy the properties and therefore 

are instruments, but only a subset of these technically derived instruments are also 

theoretically justified. 

Here again, accurate diagnostics is an important step. If we think there is a measurement 

problem but in order to solve it we create an additional research design problem, the solution 

is worse than the original state of play. Instruments have been widely used to counter bias 

from measurement errors in systems of simultaneous equations (Angrist and Krueger 2001: 

71). But we should be cautious in their application to omitted variables, considering carefully 

the risk of the slippery slope: how far do we go in arguing conceptually and theoretically that 

a variable is an instrument for another variable? What is the conceptual threshold beyond 

which we no longer consider that ‘regulation explains growth given instrument Z’? If Z is 

remotely attributable to an alternative instrument W from a conceptual point of view but has 

‘nice statistical properties’, do we resist the temptation to use Z as an instrument? In the end, 

this is a question belonging to research design, and more pertinently to our conceptual 

thresholds for considering a statistical relationship a causal explanation.  

To sum up then, our preliminary conclusions are: if we use proxies, we need a theory 

informing us about the conceptual boundaries (overlaps, differences, etc.) between the 

omitted variable and the proxy. If we use instrumental variables, we do not want to end up 

with a purely technical solution looking in vain for its theoretical grounding. 
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Control variables 

In this section, we expand on the strategy mentioned previously, namely the general-to-

specific approach in arriving at the final set of variables. The idea is simple: as we are not 

sure about the correct model, we start with a fairly general model (Dougherty 2011) and 

insert a good deal of control variables – using our example, this would mean variables 

different from regulation, such as taxes, the debt-GDP ratio or the quality of the labour force. 

This practice is impeccable if we have good theoretical reasons to insert variables that 

represent alternative rival hypotheses. The questionable practice however is to use control 

variables as just a way of ending up with bloated specifications of the models, with 10, even 

20 control variables.  

The classic reasoning for the inclusion of control variables is inherently another catch-22 

situation. The assumption is that we would include the correct set of control variables. But 

this would mean that we already have a robust idea of what the correct model is. We have 

established rival alternative hypotheses and have come to conclusion that they should be 

tested. This does not mean that we have to measure all the variables, but that we should know 

what they are – this way we can answer the question of whether their inclusion increases the 

bias or not (Clarke 2005: 346, footnote 7). Of course, this level of omniscience does not 

feature in real-world research, where we have first-order approximations of the true model 

and we can only decide whether to add a subset of the set of potentially omitted variables.  

Thus, unless we know the true and complete specification of the model (and there is no 

diagnostic, conceptual, theoretical tool for this step) there is no justification for which control 

variables should be included. This is because including some but not all variables may or 

may not decrease the bias. This rather depends on the correlations between the included and 
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excluded variables, the variance of all variables, and the effects of the included and excluded 

variables (Clarke 2005: 350).  

There are also issues with the efficiency of the estimation: the inclusion of control variables 

does not necessarily decrease the variance of the coefficient(s) of interest. The myth that 

including some known variables of an un-specified set would be a good strategy is gently 

debunked with the following words (Clarke 2005: 341): [the unspoken belief seems to be 

that] “a researcher cannot know all 20 variables that appear in the data-generating process, 

but if she knows and includes 12 of them, she is better off than if she knows and includes 

only 10 of them. Unfortunately, there is nothing in the mathematics of regression analysis 

that supports this conclusion”. 

The upshot of this discussion leads authors like Clarke to a fundamental suggestion: let us be 

cautious with the logic of control variables, and draw more on the logic of research design. 

Thus, notions of theory and design keep coming back. Either omitted variable bias is a 

problem of a poor research design; or theory helps us to identify proxies; or it is the lack of 

theory which makes us sceptical about instrumental variables; or we need theory to identify 

the largest possible subset of control variables which help us detect omitted variable bias.  

All these scenarios mean going back to theory in search of a better specification, finding 

contexts close to those of natural experiments, and controlling for effects that we have not 

measured by improving on sample stratification. Starr (2005) and Clarke (2005) add the 

practical suggestion of testing broad theories in focused, controlled circumstances, because 

under narrow circumstances – what is also known as middle-range theories (Merton 1957) in 

other approaches – we reduce the number of potential control variables. Most and Starr 

(1989, see also Starr 2005) take up this reference to research design with the expression of 
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‘domain specific laws’, i.e., laws that are not universally valid, but are true under certain 

conditions or within certain domains. 

Careful design helps, but Clarke himself acknowledges that there is no amount of theorizing 

that can provide us with the exact vector of variables to include in a specification. There are 

local variables on which general theories are silent, yet these variables might determine the 

effects that we are interested in (Clarke 2009: 62). Results are inevitably vulnerable to 

omitted variable bias – although sensitivity analysis improves our confidence (details in 

Clarke, 2009).  

Another view of the cathedral 

QCA is known for combining sufficient and necessary conditions into configurative 

formulas. Like in regression, we have to include those conditions into the model which have 

the potential to be causally relevant.  

This becomes even more important as QCA works as a causes-of-effects design. Thus, the 

identification of a broad (in order not to use the illusionary word ‘complete’) set of at least 

potential causes beforehand is crucial for the validity of QCA results. Indeed, omitting 

exactly the condition that would create a difference between otherwise similar cases (and thus 

create a new configuration) bears the risk of reaching the wrong conclusions.  

With regard to the technicalities, a first question is whether there can be an equivalent to an 

over-specified model in QCA, so whether it is possible that irrelevant (i.e., superfluous) 

conditions find their way into the explanation. The answer is relatively simple: if in our 

example of growth a condition like privatization is neither sufficient nor necessary, nor is it 

an INUS or a SUIN condition, then it will not appear as (part of) the solution in the analysis 

of necessity or sufficiency. However, in research practice, it seems to be highly unlikely that 
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an irrelevant condition (as any condition) does not form a part of the solution in one way or 

another, and if this is the case because it is causally linked to a relevant, but omitted 

condition, similar to the discussion on instrumental variables above.  

Indeed, this reminds us of a situation in regression whereby correlation is not causation. 

Theory helps to differentiate causes from correlations. Causal mechanisms assist in this task 

(Bennett and Checkel 2015: 3f.; Gerring 2014). Indeed, set relations alone do not constitute 

causal relations (Schneider and Wagemann 2016: 317). 

Turning from the inclusion of irrelevant conditions to the omission of relevant ones, we 

identify three ways to detect omitted conditions. However, unlike with regression, there is no 

standard literature in QCA which would identify a systematic and generally agreed set of 

diagnostic rules. Therefore, what we say below is exploration of a novel territory. 

 

Distribution of raw consistency values 

Our first suggestion concerns the assessment of sufficiency in a truth table analysis and, 

connected to this, the frequency of contradictory truth table rows and the distribution of raw 

consistency values. 

Remember that a basic step in QCA is when individual truth table rows are assessed whether 

they are sufficient for the outcome or not. A truth table row represents a configuration of 

conditions. If, e.g., the three potentially explanatory factors A, B, and C are used in an 

analysis, truth table rows can take the form ABC, or AB~C,5 or ~A~BC, etc. In a crisp set 

analysis (csQCA) where the conditions and the outcome are dichotomies, the sufficiency 

assessment of each of these combinations is straightforward: if, whenever the combination of 
																																																								
5 The tilde indicates the negation of a condition. 
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conditions is observed, the outcome is also observed, then the combination is defined 

sufficient. The (quite common) situation is that some deviant cases show the same 

combination of conditions, but not the outcome. Imagine that most cases which share a given 

combination of explanatory factors for growth have high growth values, while a limited 

number of cases do not. This situation has been called a ‘contradictory cases’ scenario (Ragin 

1987: 113ff.).  

‘Contradiction’ means that such a scenario contradicts the conclusion that the configuration 

of conditions is fully sufficient for the outcome: although there is a great deal of evidence in 

favour of it, sufficiency cannot be deterministically confirmed. But ‘contradiction’ also 

means that there are still contradictions in the data which have to be solved in some way. In 

other words, the conditions of which the configurations (and thus truth table rows) are 

composed do not differentiate the empirical cases well enough to account for differences in 

the outcomes, such as different levels of growth. This is a clear indication that conditions 

which would have been useful, if not indispensable, for the explanation have been omitted. 

Therefore, one of the earliest recommendations was to search for additional explanatory 

factors (Ragin 1987: 113 – “omitted causal variables” are even literally mentioned here!). 

Banal as this may sound, this is of course the gold standard of a research process which we 

have already discussed for regression: if the set of variables which was chosen in a first 

moment does not explain an outcome such as growth, then we need more and other variables.  

In fsQCA, fuzzy sets are used. This means that cases can also have partial membership in 

sets. Again, truth table rows have to be assessed for their sufficiency. However, sufficiency 

cannot be defined any more straightforwardly. For perfect sufficiency, every case must 

confirm the inequality relation X ≤ Y, with X being the condition and Y the outcome. The 

consistency measure indicates how deviant the empirical situation is from the ideal situation 

where all cases fulfil the sufficiency requirement. It does not only take into account the 
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number of cases which contradict sufficiency, but also how strongly they contradict it and 

how relevant the cases are. It is an illusion to expect many truth table rows with consistency 

values of 1 in an fsQCA.  

If the researcher is ‘lucky’ (but this is not necessarily a question of luck, but rather of a strong 

design), then at least some truth table rows show consistency values of 1 and some others at 

least values close to 1 (and the XY plot looks also fine). Additionally, in an ideal situation, all 

remaining truth table rows show clearly inferior consistency values so that a final decision 

about sufficiency assessments is facilitated. This means that a dominance of only high and 

low raw consistency values indicates that the chosen conditions differentiate well with the 

different outcome levels. 

In consequence, a situation is alarming when raw consistency values of a mid-level are 

prevalent, e.g. a predominance of values of 0.7x (and hardly any higher – or lower – ones). 

This means that there are neither clear indications for a decision in favour of sufficiency nor 

against it. The researcher has chosen conditions which do not differentiate and thus do not 

potentially explain, while relevant conditions have been left out. 

The situation becomes even worse when researchers follow blindly or misinterpret 

recommendations about the treatment of raw consistency values. Schneider and Wagemann 

(2012: 279) write that “[i]n general, consistency levels (well) above 0.75 are advisable.” This 

does not mean that automatically all those rows that show consistency values around the 

indicated 0.75 can be qualified as sufficient conditions. Such an interpretation does not only 

bear a superficial reading of the recommendation, but it also overlooks that a dominant 

presence of values of 0.75 (and close to this) indicates serious problems with regards to the 

conditions not differentiating the outcome well enough. If, therefore, we follow too 



	 16	

superficially any rule of thumb, then we might actually take decisions about sufficiency while 

there is an ‘omitted variable’ problem in the air. 

Although evidence is just anecdotal (systematic studies on this phenomenon are still lacking, 

but see Wagemann et al. 2016), the suspicion is that this constellation of many mid-level 

consistency values mainly appears when large numbers of cases are analysed. (Remember 

that QCA is often presented as an ideal method for mid-sized projects, see Ragin 2000: 25; 

Schneider and Wagemann 2012: 12). This is not surprising. Large numbers of cases possess 

more potential for variation in the outcome. An explanation, based only on a small number of 

conditions might simply not provide the necessary explanatory leverage in order to deal with 

large numbers of cases, and the rather simplistic explanatory model would not be suitable 

when accounting for the outcome. 

 

The final XY plot and the parameters of fit 

After the discussion of raw consistency values (which are an intermediate step in the 

analysis), the second suggestion for diagnostics concerns the final result of a QCA. In the 

analysis of sufficiency, an XY plot is usually produced which locates all cases with regards to 

their fuzzy values in the explanation (usually a combination of factors) and the outcome 

(such as growth, in our example). Superficially speaking,6 the upper right part of the plot 

contains those cases for which an explanation has been found, and the lower left part shows 

the irrelevant cases (Schneider and Rohlfing 2013: 579; Schneider and Wagemann 2012: 

308). These two types of cases do not represent a problem of or an indication for an omitted 
																																																								
6 The superficiality consists in the fact that our description simplifies actual XY plots a bit. There can also be 

inconsistent cases in the upper right and lower left corner, namely those below the diagonal. However, for the 

argument made here, this is not important. 
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variables phenomenon, and if the XY plot is predominantly filled with these types of cases, 

the analysis does not suffer from omitted variables. 

However, this is different for the other two areas of the XY plot. The lower right part 

contains the true contradictions. These are those cases for which the result would postulate 

the presence of the outcome (since the cases exhibit the presumably sufficient condition), but 

the outcome is absent. Above, we have referred to contradictions within single truth table 

rows. Cases in the lower right part of the final XY plot are instances of the same 

phenomenon, but this time not with regard to truth table rows, but at the macro level of the 

final explanation. If such a contradictory case appears, then there must be an explanatory 

factor that distinguishes it from other cases which instead confirms the statement of 

sufficiency and is located in the upper right part of the plot (see also Schneider and 

Wagemann 2012: 309).  

One possibility is then to add this new condition to the explanatory model and to run another 

QCA, including the condition in question. While the advantage of this is to find a coherent 

explanation for more (if not all) cases, this can harm the analysis in other respects (e.g., 

decreasing the coverage value, or leading to more limited diversity). Another possibility is a 

case-wise comparison of just these two cases, namely the ‘typical case’ and the true logical 

contradiction (as also Schneider and Rohlfing 2013: 583 suggest). While the second 

procedure leaves the other cases (and thus the other part of the explanation) untouched, an 

expansion of the analysis to the other cases often does not even seem advisable, if the 

condition is not suspected to play any causal role for them. 

Finally, there is the upper left part of the plot. Cases which are located here share the 

characteristic that they have high outcome values, meaning that, in our example, they are all 

be good examples of ‘growth’, while they have only low values in the explanation. In other 
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words: they are not explained. This is also expressed through rather low solution coverage 

values. However, different from the true contradictions, the problem for these ‘deviant cases 

coverage’ (Schneider and Rohlfing 2013) is not that the conditions do not work as postulated 

by the research result, but rather that the wrong conditions have been chosen. We need to 

alter our model in order to cover larger numbers of cases, including more or different 

conditions which were previously omitted. 

 

Characteristics of the results 

A third indication that conditions have been omitted is rather aesthetic. This point is also 

linked to the final result and is less formal than the other two. 

Due to equifinality, QCA usually produces more than one explanatory path of sufficient 

conditions. Imagine a situation where a considerably low number of cases is analysed, but a 

high number of paths results which comes very close to or even equals the number of cases.7 

This is similar to the explanation of every positive outcome case through its very existence, 

i.e., (nearly) every case of substantial growth is explained by a different combination of 

conditions. While this might be a correct conclusion given the data, such a result makes the 

analysis useless, since it does not go beyond a mere case description. This phenomenon is 

indirectly also linked to the issue of omitted conditions aka variables.8 While the problem 

previously was that the conditions we had chosen did not differentiate enough, in this 

scenario they do not provide any possibility to identify commonalities among the cases. This 

is certainly also a problem of case selection. But it also indicates that there might be a 

																																																								
7 Since the extreme situation is already that every case has ist ‘own’ explanation, there cannot be more 

explanatory paths than cases, unless we allow for values of ‘unique coverage’ being zero. 

8 Another source for this phenomenon might be the generally low number of cases. 
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condition which we have not included in our model, but which would have enabled us to 

minimise previous results in a way that results in a more parsimonious and more useful 

explanation. It is even plausible to imagine that such a new condition would substitute more 

than one of the conditions which we had used before.  

The problem just described also becomes visible if the single explanatory paths contain 

many, if not all conditions, i.e., if the paths describe very long terms. Also in this situation, 

there have not been enough communalities for the researcher to arrive at more parsimonious 

solutions, and there might be yet another condition which has been overlooked and which 

might substitute some of the other conditions. 

 

Will we ever know? Discussion and conclusions 

Building bridges 

On the one hand, reflecting on shop-floor problems (that is, the concrete problems of 

researchers at work) assists us in building bridges. On the other, our contribution also raises 

the attention towards subtle yet fundamental differences. Let us first look at the bridges. 

A first bridge consists of the role of theory. True, there are technical proposals on how to 

discover omitted variable problems, and there are ways to remedy this. And yet…apart from 

instrumental variables which are defined because of their formal characteristics, all other 

technical solutions reach a limit when it comes to the question which variables and conditions 

are proxies, the correct control variables, or additional QCA conditions. Even in the case of 

the instrumental variables, the fact that they are defined through their formal characteristics 

raises some uneasiness. Thus, both approaches teach us the importance of theoretical 

reasoning when identifying explanatory models. 
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This brings us to a second point: when can we consider a result satisfactory? Imagine that a 

QCA analysis results in a nice XY plot which does not show any true contradictions or 

unexplained cases, and which is characterised by high solution consistency and coverage 

values. In such a scenario, it is a common understanding that the outcome is considered 

‘explained’. However, this does not liberate us from the doubt that there could yet be any 

better explanatory factors that – either additionally, or substituting some of them – would 

improve the explanation (what more, do we look at them if they improve ‘slightly’ and what 

does ‘slightly’ mean?).  

If such factors are then substantively very similar to those we have already used, then this is 

hardly a problem of having omitted something; there is simply a better version of what we 

have already done. The puzzle however starts, if we see that the inclusion of a new variable 

(or condition) A, for which we remove another variable B from the model, improves the 

research result, but A and B do not show any substantial overlaps.  

There is a lesson about humility here: we can never be sure to have found and included all 

relevant variables. Even if we arrive at an (illusionary) perfect explanation, we do not know if 

other variables or conditions that we have not included would have also worked out and 

would have provided us with yet another explanation for the same phenomenon. Above all 

for y-centered research, this means that our results can always only be preliminary, until 

somebody else arrives with stronger results.  

This second ‘bridge’ is about different expectations. Bluntly stated, QCA wants to explain 

more than regression. While an explained variance of, say, 25% is not per se so bad for 

regression analysis, a QCA with a solution coverage of 0.25 would be quickly rejected by 

most reviewers.  
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These different expectations are rooted in the linear versus configurative logic; the symmetric 

versus asymmetric patterns; the probabilistic versus the close-to-deterministic logic; and the 

effects-of-causes versus the causes-of-effects perspective. With regard to the latter point, we 

have argued that omitting explanatory factors is important for both scenarios, but a bit more 

in the former than in the latter. What is more, QCA is (still) mainly used for small and mid-

sized N situations, and regression for large N research. Scenarios with less cases (i.e., less 

empirical material) can be expected to be more coherent, to show more regularities and 

commonalities, to be influenced by less coincidental ‘noise’, and to require more 

determinism, since cases are more likely to be known and to be narrated in detail.9 In general, 

omissions seem a more relevant issue for methods such as QCA than for others. In 

consequence, if we consider theory fundamental for dealing with omissions, theory plays a 

notably strong role in a method such as QCA. 

One more difference shines through. Conventionally, set-theoretic scholars argue that their 

explanations are not about the net effect of individual variables of an outcome. It is rather the 

configuration of conditions which is considered (Rihoux and Ragin 2009; Schneider and 

Wagemann 2012: 78), different from statistical approaches where the individual variable 

(omitted or not) matters a lot. We do not know much about which conditions are more 

important than others in QCA – for an exception, see Goertz (2006). 

 

And to conclude… 

This article has compared two research traditions through the lens of a common problem 

encountered in identifying the ‘cathedral’ of causality. Our contribution is novel because 

																																																								
9 One may ask at this point if it is then justified to lower expectations for large N QCAs and whether a low-

expectation large N QCA is really desirable. 
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there has been almost nothing on omitted conditions in the QCA view of the cathedral. And it 

is the first time that regression models and QCA have been compared on this dimension of 

empirical research. 

Our lens allows us to shed light also on the nature of explanation. A conversation across the 

two views is possible, provided that both acknowledge the existence of different ontologies. 

Then the conversation can usefully proceed in distinguishing issues of omitted variables and 

conditions that pertain to theory and design, and those that belong to measurement or other 

technical issues. This distinction is fundamental. And there is hierarchy: no measurement fix 

can substitute for poor thinking at the level of design. Our comparison has also shown that 

regression analysis has its shared techniques and ways to fix the problem – there is debate, 

but there are also common beliefs on what can be done practically. If anything, the problems 

belong to the abuse of certain ‘fixes’ as evidenced by our examination of instrumental 

variables.  

By contrast, the discussion of omitted variables in QCA has just begun, partly because the 

ontological presuppositions are unique to this method. But partly this is the state of play we 

would expect in a relatively new field. This is where future research is mostly needed. 

The reality of researchers at work is rather shaped by a continuous move between research 

ideas and evidence (Ragin 1994: 76). Usually, a researcher starts from an observation or a 

doubt, reformulates this in one or several hypotheses, and in doing so s/he draws on guiding 

assumptions, hunches, suspicions, and puzzles. Already the very choice of the research 

object, i.e. the phenomenon to be explained, suggests some possibilities of how the 

phenomenon has come about or why the phenomenon is the way it is. In other words: apart 

from very rare instances of purely hypothesis-generating research (which might occur when 

the field is really new), a first step in every causally oriented research process is to think 
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about which variables or conditions to choose. In conclusion, the best check for whether 

researchers have included the correct variables is still the use of theory, previous knowledge, 

the relevant literature, a mindful attitude, and plausible imagination.  
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