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Abstract

Bivariate copula regression allows for the flexible combination of two arbitrary, continuous
marginal distributions with regression effects being placed on potentially all parameters of the
resulting bivariate joint response distribution. Motivated by a study examining the risk factors
of adverse birth outcomes, we consider mixed binary-continuous responses that extend this
framework to the situation where one response variable is discrete (more precisely binary) while
the other response remains continuous. Utilizing the latent continuous representation of binary
regression models, we implement a penalized likelihood based approach for the resulting class
of copula regression models and employ it in the context of modelling jointly gestational age
and the presence/absence of low birth weight. The analysis strongly benefits from the flexible
specification of regression effects including nonlinear effects of continuous covariates and spatial
effects.

Key words: Adverse birth outcomes; Copula; Latent variable; Mixed discrete-

continuous distributions; Penalised maximum likelihood; Penalised splines.

1 Introduction

Birth weight and gestational age are important determinants of infant and child
health. Recent evidence has also shown that these factors affect long-term health
throughout adulthood (Oreopoulos et al., 2008; Hack et al., 2002). About 75% of
perinatal deaths occur in infants born prematurely (less than 37 weeks gestation),
and over two thirds of premature deaths come from the 30–40% of preterm infants
who are delivered before 32 weeks’ gestation (Slattery and Morrison, 2002). Among
surviving premature and low birth weight (LBW) infants, rates of long-term physical
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and mental disability and chronic health problems are high (Slattery and Morrison,
2002). Moreover, LBW is associated with poor educational and labor force outcomes
in adolescence and adulthood including lower scores on academic achievement tests,
lower rates of high school completion, lower income, and higher social assistance take-
up (Almond and Currie, 2011; Behrman and Rosenzweig, 2004; Black et al., 2007;
Hack et al., 2002; McGovern, 2013; Oreopoulos et al., 2008).

Although both LBW and gestational age are predictors of future health, modelling
these outcomes jointly is essential for a number of reasons. First, birth weight and ges-
tational age are highly correlated, confounded by factors such as intrauterine growth
restriction (Slattery and Morrison, 2002). In addition, risk factors for LBW such as
socio-economic status, smoking, and maternal age are also the same risk factors for
preterm birth. Finally, evidence suggests that the impact of LBW on health may be
elevated by low gestational age, and vice-versa (Hediger et al., 2002). Thus, mod-
elling these outcomes independently would present a confounded picture of who is
most vulnerable to poor infant health and how best to intervene. A more accurate
picture is revealed by modelling these outcomes jointly.

We use data from the North Carolina State Center for Health Statistics to show the
probability of mortality by birth weight and prematurity. The data include all births
in the state from 2007 to 2013 and provide information on maternal characteristics,
delivery characteristics, and infant birth and death outcomes, at the county level for
a total number of n = 109, 380 observations. Figure 1 (top) shows the probability of
infant mortality for premature infants (but not LBW), LBW infants (but not prema-
ture), premature and LBW infants, and infants without these conditions (“normal”).
The probability of death is more than two times higher for infants that are both
LBW and premature, compared to those that are only LBW. In addition, the risk
associated with LBW and prematurity varies depending on maternal characteristics.
For instance, Figure 1 (bottom left) shows that probability of death for premature
and LBW infants is significantly higher for infants born to black mothers than those
born to white or other race mothers, whereas the rate of infant mortality is similar
across mother’s race for infants that are LBW (but not premature).

To model adequately these data, we consider bivariate copula regression models in
the same vein as Marra and Radice (2017a), Radice et al. (2016) and Klein and Kneib
(2016). Generally, these works utilize copulas to construct flexible bivariate response
distributions where both margins are either binary or continuous. Following an ap-
proach similar to Marra and Radice (2017a), we implement a simultaneous penalized
likelihood method which employes copulae to combine a binary response variable (low
birth weight in our case) and a continuous outcome (gestational age) while account-
ing for several types of non-Gaussian dependencies. To facilitate the methodological
developments, for the binary part of the model, we use the latent response represen-
tation of binary regression models. To go beyond simplistic mean regression settings,
the marginal and copula parameters are related to regression predictors of structured
additive form.

To the best of our knowledge, other existing bivariate copula regression ap-
proaches and software implementations (see, e.g., Acar et al., 2013; Gijbels et al.,
2011; Kramer et al., 2012; Kraemer and Silvestrini, 2015; Sabeti et al., 2014; Yan,
2007) cover only parts of the flexibility of our approach, except for the work by
Vatter and Chavez-Demoulin (2015) which is based on a two-stage technique where
the parameters of the marginal distributions and of the copula function are estimated
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Figure 1: Probability of infant mortality by infant birth category (top), by infant birth category
and mother’s race (bottom left) and by weeks of gestation, stratified by low birth weight status
(bottom right). Error bars show the 95% confidence interval. Source: North Carolina Vital Statistics
(combined birth and death records), 2007-2013.

separately. As shown in simulation by Marra and Radice (2017a), estimating all the
model’s parameters simultaneously offers computational and efficiency gains, hence
the simultaneous estimation approach adopted here. Generally, the authors show the
overall convincing performance of the estimation method and hence we refrain from
including a further simulation study in this article. Note that the methodology de-
veloped here is most useful when the main interest is in relating the parameters of
a bivariate copula distribution to covariate effects. Otherwise, semi/non-parametric
extensions where, for instance, the margins and/or copula function are estimated
using kernels, wavelets or orthogonal polynomials may be considered instead (e.g.,
Kauermann et al., 2013; Lambert, 2007; Segers et al., 2014; Shen et al., 2008). While
such techniques are in principle more flexible in determining the shape of the under-
lying bivariate distribution, in practice they are limited with regard to the inclusion
of flexible covariate effects, and may require large sample sizes to produce reliable
results.

Our proposed copula modelling approach goes further than previous work on adverse
birth outcomes. Gestational age is modelled continuously, rather than using a binary
cut-off (Neelon et al., 2014). The standard cut-off of 37 weeks may not necessarily be
appropriate in all contexts. By modelling gestational age continuously, we are able
to investigate a range of possible gestational age cut-off values that may be more
useful to understand the impact of gestational age on health. Figure 1 (bottom right)
shows the predicted probability of death by low birth weight status, as gestational
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weeks increase. There is no obvious change at 37 weeks in probability of death. A
more useful cut-off may be at 31 weeks in this case, as it is apparent that mortality
is concentrated among infants in this category. Furthermore, we allow for (i) non-
Gaussian dependence structures between LBW and gestational age, (ii) the copula
dependence and marginal distribution parameters to be estimated simultaneously,
and (iii) each parameter to be modelled using an additive predictor incorporating
several types of covariate effects (e.g., linear, non-linear, random and spatial effects).

Birth weight is modelled as binary outcome. While the argument we have just made
for gestational age could potentially be applied to birth weight, the use of the low
birth weight cut-off is much more widely used in the literature, and is commonly used
as a predictor of later outcomes in epidemiology, whereas continuous birth weight is
more rare. For example, the World Health Organisation produces global estimates
of prevalence based on the 2,500g low birth weight threshold (Wardlaw et al., 2005).
Moreover, we prefer to focus on the binary-continuous case because there are many
contexts in the health domain where the focus is on clinical diagnosis thresholds which
are dichotomous, and there are few existing methods which allow for flexible modelling
of the dependence of these outcomes alongside other continuous measures of interest.
Nevertheless, we have also conducted robustness checks using the threshold for very
low birth weight (<1,500g), and found similar results.

In summary, our paper contributes to the literature on copula regression by

• analysing a complex, high-dimensional, and challenging data set on adverse birth
outcomes where we combine a binary regression model for the presence/absence of
low birth weight with a flexible, continuous specification for gestational age,

• providing a generic framework for bivariate response models with mixed binary-
continuous structure and copula dependence structure where all parameters are
estimated simultaneously and can potentially be related to flexible functions of
explanatory variables, and

• incorporating the proposed developments into the freely distributed and easy to use
R package GJRM (Marra and Radice, 2017b).

The rest of the paper is organized as follows. In Section 2, we introduce bivariate
copula models with mixed binary-continuous marginals and flexible covariate effects.
Section 3 gives some details on the penalized maximum likelihood inferential frame-
work employed here whereas in Section 4 we discuss the findings of the empirical
analysis of adverse birth outcomes. Section 5 summarizes the main findings.

2 Bivariate Copula Models with Mixed Binary-

Continuous Marginals

2.1 Building Bivariate Distributions with Copulas

Bivariate copula regression models aim at modelling the joint distribution of a pair
of response variables (Y1, Y2) given covariates based on a copula specification for
the dependence structure between the two responses. We therefore make use of the
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copula-based representation of the bivariate cumulative distribution function (CDF)
F1,2(y1, y2) = P (Y1 ≤ y1, Y2 ≤ y2) as

F1,2(y1, y2) = C(F1(y1), F2(y2)) (1)

where C : [0, 1]2 → [0, 1] denotes the copula (i.e. a bivariate CDF defined on the unit
square with standard uniform marginals) and Fj(yj) = P (Yj ≤ yj), j = 1, 2 are the
marginal CDFs of the two response components Y1 and Y2. If both Y1 and Y2 are
continuous, the copula C(·, ·) in (1) is uniquely determined. In copula regression, we
use the representation (1) as a construction principle for defining bivariate regression
models where the distribution for the response vector is determined by choosing a
specific parametric copula and two (continuous) marginals. In this way, copulas
provide a flexible and versatile way of constructing bivariate distributions with various
forms of dependencies induced by the copula.

2.2 Mixed Binary-Continuous Copulas

In this paper, we consider the case where one of the two responses is not continuous
but binary such that the immediate application of the copula regression specification
is not possible (more specifically, the copula is then no longer uniquely defined). To
circumvent this difficulty, we make use of the latent variable representation of binary
regression models. Without loss of generality, we assume that the first response
variable Y1 is binary (i.e. Y1 ∈ {0, 1}) but can be related to the (unobserved) latent
variable Y ∗

1 via the threshold mechanism Y1 = 1(Y ∗
1 > 0) where 1(·) denotes the

indicator function. Note that this implies

P (Y1 = 0) = P (Y1 ≤ 0) = F1(0) = F ∗
1 (0) = P (Y ∗

1 ≤ 0)

i.e. the CDF of the observed response Y1 (F1(y1)) and the CDF of the latent variable
Y ∗
1 (F ∗

1 (y
∗
1)) coincide at y1 = y∗1 = 0.

Plugging the latent variable into the copula regression specification, we obtain

P (Y1 = 0, Y2 ≤ y2) = P (Y ∗
1 ≤ 0, Y2 ≤ y2) = C(F ∗

1 (0), F2(y2))

and

P (Y1 = 1, Y2 ≤ y2) = P (Y ∗
1 > 0, Y2 ≤ y2) = F2(y2)− C(F ∗

1 (0), F2(y2)).

From these expressions, we can also derive the mixed binary-continuous density

f1,2(y1, y2) =

(

∂C(F ∗
1 (0), F2(y2))

∂F2(y2)

)1−y1

·

(

1−
∂C(F ∗

1 (0), F2(y2))

∂F2(y2)

)y1

· f2(y2), (2)

where f2(y2) = ∂F2(y2)
∂y2

is the marginal density of Y2. Equation (2) will provide the
basis for calculating the likelihood of our copula regression specification.

2.3 Specifications for the Marginal Distributions

Various options for the specification of the marginal distribution of the latent response
Y ∗
1 have been considered; the logistic distribution leading to a marginal logit model
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for the binary response Y1, the standard normal distribution leading to a probit
model, and the Gumbel distribution leading to a complementary log-log model. We
eventually chose a probit specification (see Table 1 in Section 4) although using logit
and cloglog links did not lead to different conclusions. In this case, F ∗

1 (y
∗
1) = Φ(y∗1−η1)

with the standard normal CDF Φ(·) and a regression predictor η1 specified for the
success probability.

For the continuous marginal, any strictly continuous CDF F2(y2) can be employed.
In this work we have considered the normal, log-normal, Gumbel, reverse Gumbel,
logistic, Weibull, inverse Gaussian, gamma, Dagum, Singh-Maddala, beta, and Fisk
distributions parametrised according to Rigby and Stasinopoulos (2005). Using in-
formation criteria such as the Akaike information criterion (AIC) and Bayesian in-
formation criterion (BIC), we found the Gumbel and Dagum to be the best fitting
distributions (see Table 1). For the sake of simplicity, we adopted a Gumbel specifi-
cation for Y2 with CDF

F2(y2) = exp

(

− exp

(

−
y2 − µ

σ

))

and density

f2(y2) =
1

σ
exp

(

−
y2 − µ

σ
− exp

(

−
y2 − µ

σ

))

,

where µ ∈ (−∞,∞) and σ > 0 denote the location and the scale parameter of the
Gumbel distribution. While µ corresponds to the mode of the Gumbel distribution,
its expectation and variance are given by µ + γσ and σ2π2/6, respectively, where
γ ≈ 0.5772 is the Euler-Mascheroni constant.

2.4 Copula Specifications

Our framework allows for several copulae (see the documentation of Marra and Radice
(2017b) for the choices available). The most supported copula by AIC and BIC was
the Clayton rotated by 90 degrees (see Table 2 in Section 4). The Clayton copula is
defined as

C(u1, u2) = (u−θ
1 + u−θ

2 − 1)−1/θ

with dependence parameter θ > 0, whereas its rotated versions can be generated as

C90(u1, u2) = u2 − C(1− u1, u2),

C180(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2),

C270(u1, u2) = u1 − C(u1, 1− u2),

where C(·, ·) is the standard Clayton copula. The rotation allows to shift the tail
dependence to either of the four corners of the unit square. This results in either
upper tail (rotation by 180 ) or negative tail dependence (rotation by 90 to relate
large values of Y2 with small values of Y1 and vice versa for rotation by 270 ).

Note that while the classical Gaussian copula allows for positive as well as negative
dependence between the marginals, it also makes the strong assumption of symmetric
dependence, i.e. the strength of dependence is the same for the lower and the upper
tail. In contrast, the Clayton copula and its rotated versions allow for positive and
negative tail dependence. For a comprehensive introduction to the theory of copulas
and their properties see, for instance, the monographs of Nelsen (2006) and Joe (1997).
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2.5 Distributional Regression Framework

For statistical inference in the mixed binary-continuous copula regression model, we
embed our model structure in the distributional regression framework. We therefore
assume a fully parametric specification for the distribution of the bivariate response
vector, where potentially all parameters of the joint distribution can be related to
regression predictors formed from covariates collected in the vector νi (containing,
e.g., binary, categorical, continuous, and spatial variables). More precisely, we assume
that for observed response vectors yi = (yi1, yi2)

′, i = 1, . . . , n (or equivalently yi =
(y∗i1, yi2)

′), the conditional density f(yi|νi) given covariates νi depends on in total
K = K1 +K2 +Kc parameters ϑi = (ϑi1, . . . , ϑiK)

′ comprising

• K1 = 1 parameters for the binary regression model for yi1 (the success probability),

• K2 parameters for the marginal of yi2 (i.e. K2 = 2 in case of the Gumbel distribu-
tion), and

• Kc parameters for the copula C(·, ·) (in our case, we will always have Kc = 1).

For each of the parameters, we assume a regression specification

ϑik = hk(ηik), ηik = gk(ϑik)

with regression predictor ηik, response functions hk mapping the real line to the pa-
rameter space and link functions gk = h−1

k mapping the parameter space to the real
line. The choice of the response / link function is determined by the restrictions ap-
plying to the parameter space of the corresponding parameter such that, for example,
we use the probit response function for the success probability of the binary response
yi1 and the exponential response function for non-negative parameters.

For each of the predictors ηik we assume a semiparametric, additive structure (as
proposed in Fahrmeir et al., 2004)

ηik = βϑk

0 +

Jk
∑

j=1

sϑk

j (νi) (3)

consisting of an intercept βϑk

0 and an additive combination of Jk functional effects
sϑk

j (νi) depending on (different subsets of) the covariate vector νi (see the next sub-
section for details).

2.6 Predictor Components

Dropping the parameter index ϑk for notational simplicity, we assume that any of the
functions in (3) can be written in terms of a linear combination of Dj basis functions
Bj,dj(νi), i.e.

sj(νi) =

Dj
∑

dj=1

βj,djBj,dj(νi). (4)

Equation (4) implies that the vector of function evaluations (sj(ν1), . . . , sj(νn))
′ can

be written as Zjβj with regression coefficient vector βj = (βj1, . . . , βj,Dj
)′ and design
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matrix Zj where Zj[i, dj ] = Bj,dj(νi). This allows us to represent the predictor vector
η = (η1, . . . , ηn)

′ for all n observations of any distributional parameter as

η = β01n +Z1β1 + . . .+ZJβJ

where 1n is a vector of ones of length n. To ensure identifiability of the model, specific
constraints have to be applied to the parameter vectors βj and we adopt the approach
described in Wood (2006).

Since the parameter vectors βj are often of considerably high dimension, quadratic
penalty terms λjβ

′
jKjβj with positive semidefinite penalty matrix Kj are typically

supplemented to the likelihood of semiparametric regression models to enforce specific
properties of the jth function, such as smoothness. The smoothing parameter λj ∈
[0,∞) then controls the trade-off between fit and smoothness, and plays a crucial role
in determining the shape of ŝj(ν). For instance, let us assume that the jth function
models the effect of a continuous variable and sj is represented using penalized splines.
A value of λj = 0 (i.e., no penalization is applied to βj during fitting) will result in
an unpenalized regression spline estimate with the likely consequence of over-fitting,
while λj → ∞ (i.e., the penalty has a large influence on βj during fitting) will
lead to a simple polynomial fit (with the degree of the polynomial depending on the
construction of the penalty matrix Kj).

Different model components can be obtained by making specific choices on the basis
functions in (4) and the penalty matrix Kj. In the following paragraphs, we discuss
the examples that are relevant to our case study.

Linear and random effects For parametric, linear effects, equation (4) becomes
z′
ijβj, and the design matrix is obtained by stacking all covariate vectors zij into Zj.

No penalty is typically assigned to linear effects (Kj = 0). This would be the case
for binary and categorical variables. However, sometimes it is desirable to penalize
parametric linear effects. For instance, the coefficients of some factor variables in the
model may be weakly or not identified by the data. In this case, a ridge penalty
could be employed to make the model parameters estimable (here Kj = IDj

where
IDj

is an identity matrix). This is equivalent to the assumption that the coefficients
are independent and identically distributed normal random effects with unknown
variance (e.g., Ruppert et al., 2003; Wood, 2006).

Non-linear effects For continuous variables, the smooth functions are represented
using the regression spline approach popularized by Eilers and Marx (1996) where
the Bjdj(zij) are known spline basis functions. The design matrix Zj then com-
prises the basis function evaluations for each individual observation i. Note that for
one-dimensional smooth functions, the choice of spline definition does not play an
important role in determining the shape of ŝj(zj) (e.g., Ruppert et al., 2003). To en-
force smoothness, a conventional integrated squared second derivative spline penalty
is typically employed, i.e. Kj =

∫

dj(zj)dj(zj)
′dzj, where the j

th
d element of dj(zj) is

given by ∂2Bjdj(zj)/∂z
2
j and integration is over the range of zj. The formulae used

to compute the basis functions and penalties for many spline definitions are provided
in Ruppert et al. (2003) and Wood (2006). For their theoretical properties see, for
instance, Wojtys and Marra (2015) and Yoshida and Naito (2014). As a simple, ap-
proximate version, Eilers and Marx (1996) suggested to use Kj = D′

jDj where Dj

is a first or second order difference matrix.
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Spatial effects When the geographic area (or country) of interest is split up into
discrete contiguous geographic units (or regions) and such information is available, a
Markov random field approach can be employed to exploit the information contained
in neighbouring observations which are located in the same country. In this case,
equation (4) becomes z′

ijβj where βj = (βj1, . . . , βjDj
)′ represents the vector of spatial

effects, Dj denotes the total number of regions and zij is made up of a set of area
labels. The design matrix linking an observation i to the corresponding spatial effect
is therefore defined as

Zj[i, dj ] =

{

1 if the observation belongs to region dj

0 otherwise
,

where dj = 1, . . . , Dj. The smoothing penalty is based on the neighborhood structure
of the geographic units, so that spatially adjacent regions share similar effects. That
is,

Kj[dj, d
′
j] =











−1 if dj 6= d′j ∧ dj ∼ d′j

0 if dj 6= d′j ∧ dj ≁ d′j

Ndj if dj = d′j

,

where dj ∼ d′j indicates whether two regions dj and d′j are adjacent neighbors, dj ≁ d′j
indicates that dj and d′j are not neighbours, and Ndj is the total number of neigh-
bours for region dj. In a stochastic interpretation, this penalty is equivalent to the
assumption that βj follows a Gaussian Markov random field (e.g., Rue and Held,
2005).

Other effect types Several other specifications can be employed. These include
varying coefficient smooths obtained by multiplying one or more smooth components
by some covariate(s), and smooth functions of two or more continuous covariates (e.g.,
Wood, 2006; Fahrmeir et al., 2013).

When specifying the structure of the predictors in our application, we mainly fol-
low the analysis in Neelon et al. (2014) and previous findings on relevant covariates
for modelling birth weight and gestational age from the epidemiological literature
(Kramer, 1987). This allows us to avoid the common hurdles with performing model
selection in a complex regression setting such as confounding of effects, collinearity
and upward biases in estimated coefficients after selecting the most relevant effects.
Although shrinkage or penalized regression approaches may help with these problems,
we prefer to rely on theoretical arguments for covariate inclusion. Nevertheless, we
expand on previous analysis by allowing for flexible modelling of continuous covari-
ates through spline functions, and allow the dependence between birth weight and
gestational age to be modified by model covariates.

For the additive predictors η of all distributional parameters (in our case π, µ, σ, θ) we
use the same specification (for the reasons outlined above) and consider as regressors:
male (yes, no), mother’s race (white, Hispanic, black, other), mother’s education
(primary, secondary, tertiary), marital status (married, not married), whether the
individual smokes (yes, no), first birth (yes, no), mother’s age (in years), month of
birth (from 1 to 12) and region (representing the 100 North Carolina counties). All
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variables except for mother’s age and region enter the predictor equations paramet-
rically. The effect of mother’s age is modelled flexibly using thin plate splines with
10 bases and second order penalty, whereas the effect of region is modelled using the
Gaussian Markov field approach described above. Using different spline definitions
for the smooth functions of mother’s age and/or increasing the basis size did not lead
to tangibly different results.

3 Penalized Maximum Likelihood Inference

In the following, we provide some details on the penalized likelihood inferential frame-
work employed for the proposed mixed binary-continuous copula regression models.
Both variants rely on Equation (2) for constructing the likelihood of the model.

Using (2), for a random sample of n observations the log-likelihood function of the
copula model can be written as

ℓ(β) =
n

∑

i=1

(1− yi1) log
{

F1|2(0|yi2)
}

+ yi1 log
{

1− F1|2(0|yi2)
}

+ log {f2(yi2)} , (5)

where

F1|2(0|yi2) =
∂C (F1 (0) , F2(yi2))

∂F2(yi2)

is the conditional CDF of the y1 given y2 and the complete vector of regression
coefficients given by β = (β′ϑ1 , . . . ,β′ϑk , . . . ,β′ϑK )′ where in turn βϑk collects all
regression coefficients of one particular parameter ϑk. Adding the penalty terms
yields the penalized log-likelihood

ℓp(β) = ℓ(β)−
1

2
β′Kβ, (6)

where K = diag(λϑ1
1 Kϑ1

1 , . . . , λϑ1
J1
Kϑ1

J1
), . . . , λϑK

JK
KϑK

JK
) is a block-diagonal matrix con-

taining all penalty matrices and λ is the vector of all smoothing parameters λϑk

j ,
k = 1, . . . , K, j = 1, . . . , Jk. To maximize (6) we have extended the efficient and
stable trust region algorithm with integrated automatic multiple smoothing parame-
ter selection introduced by Marra and Radice (2017a) to incorporate any parametric
continuous marginal response distribution, link function for the binary equation and
one-parameter copula function, and to link all parameters of the model to additive
predictors. Estimation of β and λ is carried out in a two-step fashion:

step 1 Holding the smoothing parameter vector fixed at λ[a] and for a given pa-
rameter vector value β[a], we seek to maximize equation (5) using a trust region
algorithm. That is,

ℓ̆p(β
[a])

def
= −

{

ℓp(β
[a]) + p′g[a]

p +
1

2
p′H [a]

p p

}

,

β[a+1] = arg min
p

ℓ̆p(β
[a]) + β[a], so that ‖p‖ ≤ r[a]

where a is an iteration index, g
[a]
p = g[a] − Kβ[a], H [a]

p = H [a] − K, vector g[a]

consists of

gϑ1[a] = ∂ℓ(β)/∂βϑ1 |βϑ1=βϑ1[a] , . . . , ∂ℓ(β)/∂β
ϑk |βϑk=βϑk[a] , . . . ∂ℓ(β)/∂βϑK |βϑK=βϑK [a]
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and the Hessian matrix has elements

H l,h[a] = ∂2ℓ(β)/∂βl∂β′h|βl=βl[a],βh=βh[a] ,

where l, h = ϑ1, . . . , ϑK , ‖ · ‖ denotes the Euclidean norm and r[a] is the radius of
the trust region which is adjusted through the iterations.

step 2 For a given smoothing parameter vector value λ[a] and holding the main
parameter vector value fixed at β[a+1], solve the problem

λ[a+1] = arg min
λ

V(λ)
def
= ‖Z [a+1] −A

[a+1]

λ[a] Z [a+1]‖2 − ň+ 2tr(A
[a+1]

λ[a] ), (7)

where, after defining F [a+1] as −H [a+1], Z [a+1] =
√

F [a+1]β[a+1] +
√

F [a+1]
−1

g[a+1],

A
[a+1]

λ[a] =
√

F [a+1]
(

F [a+1] +K
)−1 √

F [a+1], tr(A
[a+1]

λ[a] ) represents the number of

effective degrees of freedom (edf) of the penalized model and ň = Kn. Problem (7)
is solved using the automatic efficient and stable approach by Wood (2004).

The two steps are iterated until the algorithm satisfies the criterion
|ℓ(β[a+1])−ℓ(β[a])|
0.1+|ℓ(β[a+1])|

<

1e−07. The use of a trust region algorithm in step 1 and of (7) in step 2 are justified
in Marra et al. (2017). It is worth remarking that a trust region approach is generally
more stable and faster than its line-search counterparts (such as Newton-Raphson),
particularly for functions that are, for example, non-concave and/or exhibit regions
that are close to flat (Nocedal and Wright, 2006, Chapter 4). Also, since H and
g are obtained as a by-product of the estimation step for β, little computational
effort is required to set up the quantities required for the smoothing step. Starting
values for the parameters of the marginals are obtained by fitting separate binary and
continuous models with additive predictors. An initial value for the copula parameter
is obtained by using a transformation of the empirical Kendall’s association between
the responses.

The proposed algorithm uses the analytical score and Hessian of ℓ(β) which have
been derived in a modular fashion. For instance, for the copula Bernoulli-Gumbel
distribution, the score vector for ϑ = (ϑ1, ϑ2, ϑ3, ϑ4), represented by π, µ, σ2, and θ
respectively, is made up of

∂ℓ(β)

∂βπ =
n

∑

i=1

(

1− yi1
F1|2(0|yi2)

−
yi1

1− F1|2(0|yi2)

)

∂F1|2(0|yi2)

∂F1 (0)

∂F1 (0)

∂ηπi
Zπ[i, ],

∂ℓ(β)

∂βµ =
n

∑

i=1

{(

1− yi1
F1|2(0|yi2)

−
yi1

1− F1|2(0|yi2)

)

∂F1|2(0|yi2)

∂F2(yi2)

∂F2(yi2)

∂µi

+

1

f2(yi2)

∂f2(yi2)

∂µi

}

∂µi

∂ηµi
Zµ[i, ],

(8)

∂ℓ(β)/∂βσ2

whose expression is similar to (8), and

∂ℓ(β)

∂βθ
=

n
∑

i=1

(

1− yi1
F1|2(0|yi2)

−
yi1

1− F1|2(0|yi2)

)

∂F1|2(0|yi2)

∂θi

∂θi
∂ηθi

Zθ[i, ],

11



where Zπ, Zµ and Zθ are the overall design matrices corresponding to the equations
for π, µ and θ. Looking, for example, at equation (8), we see that there are two
components which depend only on the chosen copula, three terms which are marginal
distribution dependent and one derivative whose form will depend on the adopted
link function between µi and ηµi . However, the main structure of the equation will be
unaffected by the specific choices made. It will therefore be easy to extend the algo-
rithm to other copulas and marginal distributions not discussed in this work as long
as their CDFs and probability density functions are known and their derivatives with
respect to their parameters exist. If a derivative is difficult and/or computationally
expensive to compute then appropriate numerical approximations can be used.

Further considerations At convergence, reliable point-wise confidence intervals
for linear and non-linear functions of the model coefficients (e.g., smooth compo-
nents, copula parameter, joint and conditional predicted probabilities) are obtained

using the Bayesian large sample approximation β
a
∼ N (β̂,−Ĥ

−1

p ). The rationale for
using this result is provided in Marra and Wood (2012) for GAM, whereas some ex-
amples of interval construction are given in Radice et al. (2016). For general smooth
models, such as the ones considered in this paper, this result can be justified us-
ing the distribution of Z discussed in Marra et al. (2017), making the large sample
assumption that F can be treated as fixed, and making the usual Bayesian assump-
tion on the prior of β for smooth models (e.g., Silverman, 1985; Wood, 2006). Note
that this result neglects smoothing parameter uncertainty. However, as argued by
Marra and Wood (2012) this is not problematic provided that heavy over-smoothing
is avoided (so that the bias is not too large a proportion of the sampling variabil-
ity) and in our experience we found that this result works well in practice. To test
smooth components for equality to zero, the results discussed in Wood (2013a) and
Wood (2013b) can be adapted to the current context. However, for our case study we
do not deem this necessary as argued in the previous section. Proving consistency of
the proposed estimator is beyond the scope of this paper but the results presented for
instance in Wojtys and Marra (2015) can be easily adapted to the current context.

4 Empirical analysis

Before commenting on the results of the case study, we describe succinctly the process
used for building the bivariate copula model and the R code employed to fit the final
model.

To simplify the process, we exploited the fact that in a copula context the specification
of margins and copula can be viewed as separate but related issues. We first chose
the marginal distributions based on the AIC and BIC values (see Table 1). Then we
moved on to the choice of copula. Specifically, we started off with the Gaussian and
then, based on the (negative or positive) sign of the dependence, we tried out the
alternative specifications that were consistent with this initial finding. In this case,
the values for the correlation coefficients were found to be negative. Therefore, we
only considered copula which were consistent with this sign of dependence (see Table
2).

The chosen model, written below in terms of R syntax based on the GJRM package, is
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Y1: low birth weight Y2: gestational age
Distribution AIC BIC AIC BIC
Normal 52816.28 53249.79 466124.1 468094.7
Gumbel 52833.92 53273.13 440225.2 441942.9
Reverse Gumbel - - 518570.4 520754.7
Logistic 52828.86 53267.76 452021.4 453842.5
Log-normal - - 473938.8 475957.8
Weibull - - 441611.7 443345.4
Inverse Gaussian - - 473678.4 475678.2
Gamma - - 500382.1 501186.1
Dagum - - 439730.9 441992.1
Singh-Maddala - - 3526100 3526607
Fisk - - 457351.8 457907.3

Table 1: Comparison of AIC and BIC values for the candidate marginal distribu-
tions for low birth weight and gestational age. For the binary response, only the
classical link functions resulting from assuming the Gaussian, Gumbel and logistic
distributions were considered, hence the dash symbols for the other distributions.

Copula AIC BIC
Normal 477846.8 480871.1
Frank 479754.1 482632.9
Farlie-Gumbel-Morgenstern 486614.1 488980.5
Plackett 477198.4 479899.4
Ali-Mikhail-Haq 486950.1 489309.0
Clayton 90◦ 475933.5 478427.8
Clayton 270◦ 482370.4 482598.1
Joe 90◦ 483057.9 486311.6
Joe 270◦ 475940.2 478437.9
Gumbel 90◦ 478033.6 481054.5
Gumbel 270◦ 476016.7 478506.8

Table 2: Comparison of AIC and BIC values under different copula assumptions.
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eq1 <- lbw ~ male + race + educ + marital + smokes + firstbirth +

dobmonth + s(age) + s(county, bs = "mrf", xt = xt)

eq2 <- wksgest ~ male + race + educ + marital + smokes + firstbirth +

dobmonth + s(age) + s(county, bs = "mrf", xt = xt)

eq3 <- ~ male + race + educ + marital + smokes + firstbirth +

dobmonth + s(age) + s(county, bs = "mrf", xt = xt)

eq4 <- ~ male + race + educ + marital + smokes + firstbirth +

dobmonth + s(age) + s(county, bs = "mrf", xt = xt)

f.l <- list(eq1, eq2, eq3, eq4)

outC90 <- gjrm(f.l, margins = c("probit", "GU"), BivD = "C90",

Model = "B", data = dat)

where the s(age) are the smooth effects of age represented using thin plate regres-
sion splines with 10 basis functions and penalties based on second order derivatives,
the s(county, bs = "mrf", xt = xt) represent spatial effects with neighborhood
structure information stored in xt, arguments margins and BivD have the obvious in-
terpretations and Model = "B" stands for bivariate model (other options are available
in the package).

Using a 2.20-GHz Intel(R) Core(TM) computer running Windows 7, computing time
was about 25 minutes for a sample size of n = 109, 380 observations and number of
parameters equal to 524, hence highlighting the efficiency of the numerical implemen-
tation.

The R summary output in the Appendix presents the regression coefficients from the
bivariate model for low birth weight (a binary indicator for being born with a weight
less than 2,500 grams), and gestational age (measured in continuous weeks). As
outlined above, flexible splines are used to model the association between maternal
age and each outcome, and a Markov random field smoother is applied to the county
indicators of mother’s residence.

4.1 Results

Effects of Covariates As in Neelon et al. (2014), we find the expected associations
between the covariates and outcomes of interest. As noted previously (Kramer, 1987),
some factors have adverse associations with both intrauterine growth and gestational
duration, while others contribute positively to one and negatively to the other. For
example, male babies are less likely to be low birth weight, but more likely to be
born early (by around 2 weeks on average after adjusting for other covariates). First
births are born later, but more likely to be underweight. In contrast, the impact
of maternal smoking is unambiguously negative. It increases the risk of low birth
weight, and reduces gestational age (also by around 2 weeks). The most substantial
coefficient for gestational duration in terms of magnitude relates to race. Babies born
to black mothers are more likely to be low birth weight, and more likely to be born
early (by around 6 weeks). In contrast, babies born to Hispanic mothers are less likely
to be low birth weight and more likely to be born later. Education does not appear
to have a consistent impact on either outcome.

Results for the flexibly modelled impact of maternal age on these outcomes are shown
in Figure 2. There is clear evidence of non-linearity, supporting our implementation
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of spline functions, with the risk of low birth weight increasing after the mid-30s, and
gestational age reaching its maximum in the mid-20s.

These results point to both modifiable and non-modifiable risk factors for poor early
life health. The main modifiable risk factor is smoking, which emphasises the impor-
tance of public health campaigns to reduce smoking prevalence for promoting infant
health. Non-modifiable risk factors, such as maternal age, race, and place of residence
(county) are also important from a policy perspective because they provide a basis
for identifying cohorts and individuals at risk. Because of the adverse consequences
associated with low birth weight and early gestational age in both the short and
long run (Black et al., 2007; McGovern, 2013), an understanding of who is likely to
experience these outcomes can help direct where resources are targeted. Moreover,
as we argue above, because of the multiplicative risk of adverse outcomes associated
with jointly being preterm and low birth weight, it is important to identify babies
in this category. By simultaneously modelling the outcomes under study, and allow-
ing for flexible dependence between birth weight and gestational age, the statistical
model described in this paper permits estimation of the relevant joint and marginal
quantities of interest.

Predicting joint relatives risks Figure 3 shows a bar plot with relative risk ratios
for being low birth and being born before 37 weeks and 32 weeks, stratified by race,
maternal smoking status and education. It is apparent from this figure that babies
born to black mothers are at greatest risk, with the predicted probability of joint
occurrence of LBW and being before 37 weeks of around 8%, roughly twice that of
babies of other races. A similar risk penalty is apparent when stratifying by maternal
smoking status. Here again the relative risk of joint occurrence of LBW and being
born before 37 weeks is almost twice as great for babies born to mothers who smoke
compared to mothers who do not. Mothers with higher levels of education appear to
have babies who are at greater risk, however the confidence intervals are also wide.

In Figure 4 (top), the relative risk of joint occurrence of LBW and being born before
37 weeks are shown by county of residence (of which there are 100) in North Carolina.
Risk of an infant being born both LBW and preterm varies widely across counties,
with the relative risk of joint occurrence of up to 2 for the highest compared to
lowest risk counties of residence, and the absolute prevalence ranging from 3% to 8%.
The least favourable places to be born are clustered in the northeast of the state,
specifically Hertford, Northampton, Halifax, Warren, Vance, Edgecombe, Bertie, and
Washington counties. These results clearly indicate substantial inequality at birth
dependent on a number of background characteristics including place of residence,
smoking status, and race.

As we outlined in the introduction, adverse outcomes may be associated with a par-
ticular cut-off in the gestational age distribution. Previous research has focused on
the standard definition of preterm (before 37 weeks) (Neelon et al., 2014), however,
certain types of risk, for example mortality, are much more concentrated lower down
the gestational age distribution, in this case prior to 32 weeks of gestational age
(Slattery and Morrison, 2002). Alternatively, it may be that risk increases linearly
with gestational age. Therefore, it is important to be able to incorporate different
cut-offs in the modelling of joint probabilities so as to be able to focus on the most at
risk part of the population. Identifying those most likely to be born low birth weight
and with a gestational age less than a given cut-off (that we vary depending on the
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Figure 2: Estimated smooth function of mother’s age and regional effects and respective 95% con-
fidence intervals for the probit equation, location and scale parameters of the Gumbel distribution,
and association copula coefficient.
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Figure 3: Joint probabilities for being low birth and being born before 37 weeks and 32 weeks
by race, smoking behavior and education. The results are presented in terms of relative risk ratios
where the baseline categories are white, non-smoker and primary, respectively. Variable age was set
to its average, whereas the other factor variables were set to the respective categories with highest
frequencies.

particular application of interest) will assist with policy orientation. Therefore, moti-
vated by the data presented in the introduction, we also compute relative risk ratios
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Figure 4: Joint probabilities for being low birth and being born before 37 weeks and 32 weeks
by county of residence. The results are displayed in terms of relative risk ratios where the baseline
counties are those exhibiting the lowest probabilities.

from our statistical model for being born low birth weight and gestational age less
than 32 weeks. This allows us to predict the characteristics of babies among whom
risk of mortality is most concentrated. The second set of bars in Figure 3 show these
results for maternal race, smoking, and education. It is apparent that being born to
a black mother is again an increased risk factor, however in this case the relative risk
is even greater than for being born before 37 weeks. Compared to white mothers,
babies born to black mothers are 2.75 times more likely to be low birth weight and fall
below the 32 week cut-off, as opposed to 2 times more likely to be low birth weight
and be born before 37 weeks. This suggests that racial inequality is even greater
than would be expected from examining the standard 37 week cut-off. This same
pattern for being born before 32 weeks in relation to county of residence is apparent
from Figure 4 (bottom), with higher relative risk ratios than for 37 weeks. The same
counties exhibit the highest risk, but in this case babies in these locations are up to
3 times more likely to fall below the relevant cut-offs.

Conditional dependence of outcomes Figure 5 shows the estimates for
Kendall’s τ (Nelsen, 2006) by county obtained using the 90 degrees Clayton model.
After accounting for covariates, the association between the two responses is present

18



−
0.

31
−

0.
30

−
0.

29
−

0.
28

−
0.

27
−

0.
26

Kendall’s τ̂

Figure 5: Estimates for Kendall’s τ obtained using the 90 degrees Clayton model. These have
been averaged by the covariate values, within each county in North Carolina.

and heterogeneous across counties. This clearly supports the presence of dependence
between the binary and continuous outcomes, after accounting for covariates, and
hence that prediction of the relative risks has to be based on the joint model rather
than the marginal ones.

Our overall estimate for the association between low birth weight and gestational age
is negative (the copula parameter is estimated to be −0.296 (95% CI −0.323,−0.271)
indicating that those who are low birth weight are more likely to be born earlier.
However, our model allows us to examine whether this expected negative dependence
is modified by the covariates we include. For example, male babies exhibit less strong
dependence (the relevant parameter in the equation for the dependence parameter is
negative), as do babies born to black mothers and mothers with tertiary education.
This finding is relevant because it indicates that those in these categories are more
able to break the link between the two outcomes, and are less likely to suffer the
double disadvantage of being both low birth weight and early for gestational age. In
contrast, babies born to mothers of Hispanic origin, or mothers who smoke, exhibit
even more negative dependence, indicating that if the baby is low birth weight they
are also more likely to be born early.

5 Discussion

We have developed an inferential framework for fitting flexible bivariate regression
copula models with binary and continuous margins with the aim of examining the
risk factors of adverse birth outcomes. Parameter estimation is carried out within
a penalized maximum likelihood estimation framework with integrated automatic
multiple smoothing parameter selection, and the proposed model can be easily used
via the R package GJRM.

The empirical results highlight the flexibility of the statistical approach, and its po-
tential to be applied to policy-relevant questions in population health. We are able to
predict the joint occurrence of low birth weight and gestational age, and identify the
covariates predicting babies most at risk of adverse outcomes. The joint prediction
is important because of the multiplicative risk associated with both outcomes, for
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example, as we discussed in relation to infant mortality. Our results have a number
of policy implications. First, we identify substantial racial inequalities in that babies
born to black mothers are more than twice as likely to be low birth weight and be
born earlier than babies born to mothers of other races. In addition, these disparities
are also evident across county of residence, whereby the relative risk of joint occur-
rence for the worst counties is around twice that of the best counties. Second, we
find that these disparities get worse across the gestational age distribution, and not
just for the preterm cut-off of before 37 weeks. Given the concentration in mortal-
ity before 32 weeks of gestation, this is likely to be the group most appropriate for
policy intervention. Confirmation of these racial and spatial inequalities in early life
health may provide a basis for action to target these disparities. Given the evidence
supporting the short and long run impact of initial conditions, this is likely to be
a policy priority (Deaton, 2013). In addition to the covariates examined here, the
model is more widely applicable because it can be used to flexibly model both the
impact of other covariates of interest (including non-linearity in continuous predictors
and spatial dependence), and other outcomes of interest, one of which is binary and
one of which is continuous, which are expected to be correlated.
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Appendix

Summary of parametric and non-parametric effects from the 90 degrees rotated Clayton
copula model with Bernoulli (with probit link) and Gumbel margins. Sample size is 109380,
whereas the overal estimate for θ with CI is −0.847(−0.96,−0.749). The corresponding
Kendall’s tau is −0.296(−0.323,−0.271). Total number of effective degrees of freedom is
260.

COPULA: 90 Clayton

MARGIN 1: Bernoulli

MARGIN 2: Gumbel

EQUATION 1

Link function for mu.1: probit

Formula: lbw ~ male + race + educ + marital + smokes + firstbirth + dobmonth +

s(mage, k = 12, bs = "ps", m = c(2, 2)) + s(county, bs = "mrf",

xt = xt)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.569347 0.045614 -34.405 < 2e-16 ***

male1 -0.089513 0.011734 -7.629 2.38e-14 ***

raceHispanic -0.059786 0.021324 -2.804 0.00505 **

raceBlack 0.339162 0.015379 22.053 < 2e-16 ***

raceOther 0.169090 0.028753 5.881 4.08e-09 ***

educSecondary 0.070154 0.038956 1.801 0.07172 .

educTertiary -0.033780 0.040390 -0.836 0.40296

marital1 -0.101551 0.014805 -6.859 6.93e-12 ***

smokes1 0.352365 0.018065 19.506 < 2e-16 ***

firstbirth1 0.106756 0.013304 8.025 1.02e-15 ***

dobmonth2 -0.039269 0.029054 -1.352 0.17650

dobmonth3 -0.004533 0.028483 -0.159 0.87354

dobmonth4 -0.015908 0.029016 -0.548 0.58352

dobmonth5 -0.009279 0.028750 -0.323 0.74690

dobmonth6 0.010851 0.028527 0.380 0.70366

dobmonth7 -0.016584 0.028284 -0.586 0.55765

dobmonth8 -0.018836 0.028315 -0.665 0.50590

dobmonth9 -0.037382 0.028612 -1.307 0.19138

dobmonth10 -0.007949 0.028268 -0.281 0.77856

dobmonth11 -0.034410 0.029093 -1.183 0.23690

dobmonth12 0.013941 0.028166 0.495 0.62063

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(mage) 2.964 3.664 54.91 6.05e-11 ***

s(county) 27.079 99.000 61.36 2.61e-07 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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EQUATION 2

Link function for mu.2: identity

Formula: wksgest ~ male + race + educ + marital + smokes + firstbirth +

dobmonth + s(mage, k = 12, bs = "ps", m = c(2, 2)) + s(county,

bs = "mrf", xt = xt)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 39.613609 0.035462 1117.058 < 2e-16 ***

male1 -0.073412 0.009735 -7.541 4.67e-14 ***

raceHispanic 0.034584 0.016479 2.099 0.035839 *

raceBlack -0.317929 0.014651 -21.700 < 2e-16 ***

raceOther -0.082286 0.024253 -3.393 0.000692 ***

educSecondary -0.035389 0.029332 -1.207 0.227620

educTertiary 0.031329 0.030589 1.024 0.305742

marital1 -0.003031 0.012776 -0.237 0.812469

smokes1 -0.110066 0.018665 -5.897 3.70e-09 ***

firstbirth1 0.221671 0.011081 20.004 < 2e-16 ***

dobmonth2 -0.017297 0.024262 -0.713 0.475882

dobmonth3 -0.008670 0.024012 -0.361 0.718048

dobmonth4 0.023724 0.024190 0.981 0.326722

dobmonth5 -0.027441 0.023975 -1.145 0.252391

dobmonth6 -0.037190 0.023954 -1.553 0.120527

dobmonth7 0.017129 0.023580 0.726 0.467591

dobmonth8 0.008875 0.023343 0.380 0.703799

dobmonth9 0.072997 0.023279 3.136 0.001714 **

dobmonth10 0.022596 0.023598 0.958 0.338300

dobmonth11 0.030304 0.024061 1.259 0.207865

dobmonth12 0.015868 0.023954 0.662 0.507696

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(mage) 4.108 4.983 307.7 <2e-16 ***

s(county) 72.382 99.000 586.4 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

EQUATION 3

Link function for sigma2: log

Formula: ~male + race + educ + marital + smokes + firstbirth + dobmonth +

s(mage, k = 12, bs = "ps", m = c(2, 2)) + s(county, bs = "mrf",

xt = xt)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.878581 0.033827 25.973 < 2e-16 ***

male1 0.045561 0.009311 4.893 9.91e-07 ***

raceHispanic 0.018671 0.015810 1.181 0.237622

raceBlack 0.260953 0.013208 19.757 < 2e-16 ***
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raceOther 0.068929 0.023282 2.961 0.003070 **

educSecondary 0.010272 0.027917 0.368 0.712896

educTertiary -0.103331 0.029156 -3.544 0.000394 ***

marital1 -0.105515 0.011945 -8.833 < 2e-16 ***

smokes1 0.147066 0.016612 8.853 < 2e-16 ***

firstbirth1 -0.013728 0.010693 -1.284 0.199198

dobmonth2 0.021599 0.022993 0.939 0.347551

dobmonth3 0.027197 0.022744 1.196 0.231768

dobmonth4 0.020124 0.022993 0.875 0.381470

dobmonth5 0.011315 0.022893 0.494 0.621148

dobmonth6 0.009636 0.022781 0.423 0.672307

dobmonth7 0.010346 0.022458 0.461 0.645017

dobmonth8 -0.027985 0.022339 -1.253 0.210293

dobmonth9 -0.061163 0.022553 -2.712 0.006689 **

dobmonth10 -0.008476 0.022602 -0.375 0.707643

dobmonth11 -0.023756 0.023012 -1.032 0.301910

dobmonth12 0.027743 0.022658 1.224 0.220802

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(mage) 4.37 5.278 57.32 9.25e-11 ***

s(county) 57.22 99.000 351.06 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

EQUATION 4

Link function for theta: log(- )

Formula: ~male + race + educ + marital + smokes + firstbirth + dobmonth +

s(mage, k = 12, bs = "ps", m = c(2, 2)) + s(county, bs = "mrf",

xt = xt)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.443353 0.106572 -4.160 3.18e-05 ***

male1 0.055999 0.026091 2.146 0.031851 *

raceHispanic -0.182236 0.047815 -3.811 0.000138 ***

raceBlack 0.090711 0.032552 2.787 0.005325 **

raceOther -0.164939 0.065248 -2.528 0.011476 *

educSecondary 0.142429 0.093100 1.530 0.126054

educTertiary 0.212788 0.095637 2.225 0.026085 *

marital1 0.044000 0.032003 1.375 0.169172

smokes1 -0.079724 0.041510 -1.921 0.054782 .

firstbirth1 0.031688 0.029183 1.086 0.277550

dobmonth2 0.112302 0.065288 1.720 0.085413 .

dobmonth3 0.092269 0.063786 1.447 0.148026

dobmonth4 -0.043052 0.066085 -0.651 0.514745

dobmonth5 0.038112 0.064422 0.592 0.554121

dobmonth6 0.147006 0.064017 2.296 0.021655 *

dobmonth7 -0.012702 0.064170 -0.198 0.843093
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dobmonth8 0.153894 0.064453 2.388 0.016955 *

dobmonth9 0.009381 0.064231 0.146 0.883881

dobmonth10 -0.004853 0.063891 -0.076 0.939453

dobmonth11 -0.003268 0.065797 -0.050 0.960393

dobmonth12 0.093968 0.063081 1.490 0.136319

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(mage) 5.878 6.912 19.983 0.0071 **

s(county) 1.752 99.000 2.219 0.1817

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

n = 109380 sigma2 = 2.43(2.26,2.61)

theta = -0.847(-0.96,-0.749) tau = -0.296(-0.323,-0.271)

total edf = 260
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