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Abstract. Thanks to their high resolution and contrast enhanced by dif-
ferent stains, histological images are becoming increasingly widespread
in atlas construction. Building atlases with histology requires manual de-
lineation of a set of regions of interest on a large amount of sections. This
process is tedious, time-consuming, and rather inefficient due to the high
similarity of adjacent sections. Here we propose a probabilistic model for
semi-automated segmentation of stacks of histological sections, in which
the user manually labels a sparse set of sections (e.g., one every n), and
lets the algorithm complete the segmentation for other sections automat-
ically. The proposed model integrates in a principled manner two families
of segmentation techniques that have been very successful in brain imag-
ing: multi-atlas segmentation (MAS) and convolutional neural networks
(CNNs). Within this model, we derive a Generalised Expectation Max-
imisation algorithm to compute the most likely segmentation. Experi-
ments on the Allen dataset show that the model successfully combines
the strengths of both techniques (effective label propagation of MAS,
and robustness to misregistration of CNNs), and produces significantly
more accurate results than using either of them independently.

1 Introduction

Histological sections, which can be digitised at sub-micron resolution, allow to
differentiate and characterise brain substructures that are not visible with mm-
scale imaging (e.g., MRI), and are becoming increasingly popular for building
high resolution brain atlases, e.g., BigBrain [1] or Allen [2]. An important compo-
nent of many of these atlases is a set of associated manual delineations of regions
of interest. Manual segmentation is however tedious and time-consuming – and
thus expensive. In histological datasets, where stacks of 2D sections are labelled
to create a 3D segmentation, manually delineating adjacent sections is very in-
efficient due to their similarity. A possible solution is the use of semi-automated
algorithms, which allow labelling one slice every n, letting the method complete
the segmentation task automatically, with the possibility of final user refinement.
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Many semi-automated algorithms rely on the introduction of user defined
scribbles or boundary points, which are treated as prior information by the
algorithm to produce a dense segmentation of the whole image. If the computa-
tional complexity of the method is low enough, the user can interactively review
the output and add or remove scribbles/points to correct mistakes, refining the
segmentation until it is satisfactory. Popular semi-automated segmentation tech-
niques include Random walker [3] or GeoS [4]. For 3D modalities like MR or CT,
one can label a subset of slices and use them as input for these algorithms to
complete the segmentation for the whole volume. However, for stacks of histolog-
ical images, these techniques cannot be used due to the absence of 3D continuity
between sections.

An alternative approach is to treat the labelled sections as training data,
and use supervised segmentation techniques to segment the unlabelled sections
in between. A very successful family of techniques in brain image segmentation
are multi-atlas based [5, 6]. Multi-atlas segmentation (MAS) relies on non-rigid
registration between a set of atlases and a test image. The deformations resulting
from the registration are used to propagate the atlas labels to the novel image
coordinates, where the segmentation of each pixel is decided through a label
fusion approach. These techniques are well suited for inter-slice labelling as long
as the registered sections are not too far apart, such that the registration can be
expected to be good.

Meanwhile, deep learning techniques, best represented by convolutional neu-
ral networks (CCNs), have become increasingly popular in medical image seg-
mentation. Deep learning can be directly applied to semi-automated segmenta-
tion of medical images. For example, a 3D U-net was trained on few manually
annotated orthogonal slices in [7], in order to produce a segmentation for the
whole volume. The negative effects of the limited training data were ameliorated
with aggressive data augmentation.

The present paper integrates deep learning and label fusion into a joint prob-
abilistic model in a principled way. Along with the model, we present an inference
method – based on the Generalised Expectation Maximisation (GEM) algorithm
– to compute the most likely segmentation for an input histological image, given
the labelled neighbouring sections. The proposed algorithm successfully com-
bines the advantages of the two techniques, inheriting: 1. from CNNs, the ro-
bustness to registration errors, which might happen due to artefacts or large
separation between the sections to register; and 2. from MAS, the ability to
preserve anatomical shape, including faint or invisible boundaries that rely on
prior knowledge, e.g., between brain substructures or cortical regions.

2 Methods

2.1 Probabilistic model

The graphical model of the proposed probabilistic framework is shown in Fig. 1.
Let {In(x)}n=1,...,N be N histological sections defined on discrete coordinates x
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Fig. 1. Graphical model representing the relationship between the model variables.
Replications are illustrated with plates. Shaded variables are observed.

over an image domain Ω ⊂ R2, for which a manual segmentation is available. In
a similar manner, let {Ln(x)}n=1,...,N be the corresponding (manual) segmenta-
tions. {In(x)} and {Ln(x)} define thus a training dataset of atlases. We assume
that these atlases have been pre-registered to a test image I(x), whose labels
L(x) are unknown. A label fusion approach aims to estimate the label map L
associated with I, given the registered atlases. Here we assume the availability
of a probabilistic fusion algorithm that produces a posterior probability of the
segmentation pf that factorises over voxels:

pf (L|{In}, {Ln}, I) =
∏
x∈Ω

pfx(L(x)| {In}, {Ln}, I).

Let θ be the parameters of a semantic segmentation neural network trained
on all images and corresponding segmentations within our framework – both
the atlases and the test image. We can then derive a discriminative probability
density function on θ, conditioned on the training data:

p(θ| I, {In},L, {Ln})

∝ p(θ) exp

[
λ

(∑
x

H
[
L(x)| pdx(L(x)| I;θ)

]
+

N∑
n=1

H
[
Ln(x)| pdx(Ln(x)| In;θ)

])]
,

where p(θ) is the prior on θ (e.g., penalty on parameters), H is the cross-entropy
function, λ is a constant that weighs the importance of the cross entropy, and
pdx(l| I;θ) is the soft prediction of the network for label l and image I at location
x, when the network parameters are equal to θ.

2.2 Inference: proposed method

The goal of the proposed method is to compute the most likely segmentation L
of the test image, given the observed variables I, {Ln}, {In}. In a fully Bayesian
approach, we would marginalise over the neural network weights θ when com-
puting the posterior distribution of L that we aim to maximise. However, this
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leads to an intractable integral over θ. Instead, we make the standard assump-
tion that the posterior distribution of the parameters θ is heavily peaked, and
therefore we can approximate:

L̂ = argmax
L

p(L| I, {In}, {Ln}, θ̂), with θ̂ = argmax
θ

p(θ| I, {In}, {Ln}),

which we can rewrite as:

θ̂ = argmax
θ

∑
L

p(θ| L, {Ln}, I, {In})p(L| I, {In}, {Ln}) =

= argmax
θ

∏
x∈Ω

N∏
n′=1

[
pdx

(
Ln′(x)| In′ ;θ

)]λ∑
l

[
pdx

(
l|I;θ

)]λ
pfx

(
l| I, {Ln}, {In}

)
p(θ).

Taking logarithm, we obtain the following objective function:

L(θ) = log p(θ) + λ
∑
x∈Ω

N∑
n′=1

log pdx

(
Ln′(x)|In′ ;θ

)
+

+
∑
x∈Ω

log
{∑

l

[
pdx

(
l| I;θ

)]λ
pfx

(
l| I,Ln, In

)}
. (1)

The objective function in Eq. 1 can be optimised with GEM [8]:
E-step. We build a lower bound to the objective function L(θ) that touches
it at the current estimate of the parameters. This involves computing a soft
segmentation wl(x) at each pixel of the test image I:

wl(x) =
[
pdx(l| I,θ)

]λ
pfx(l| I,Ln, In)

/∑
l′

[
pdx(l′| I,θ)

]λ
pfx(l′| I,Ln, In). (2)

M-step. We update the estimates of the network parameters by optimising the
bound with respect to θ. Leaving aside terms independent of θ, we seek to
maximise:

argmax
θ

∑
x∈Ω

N∑
n′=1

log pdx

(
Ln′(x)| In′ ;θ

)
+
∑
x∈Ω

∑
l

wl(x) log pfx(l| I,θ) +
log p(θ)

λ
. (3)

Maximising Eq. 3 amounts to training a neural network with regulariser λ−1 log p(θ),
using the standard cross entropy loss – and including not only the atlases in the
training dataset, but also the target image with its soft segmentation wl(x). This
can be achieved with standard numerical techniques, e.g., based on stochastic
gradient descent. We note that a standard EM algorithm would require exact
maximisation of Eq. 3, whereas numerical methods will only improve the bound.
However, improving the bound also leads to an improvement in the original
objective function; hence “generalised EM”.

The GEM algorithm alternates between the E and M steps until convergence.
At that point, it is straightforward to show that:

p(L| I, {In}, {Ln}, θ̂) =
∏
x∈Ω

wL(x)(x),

and the final segmentation is given by: L̂(x) = argmaxl wl(x).
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2.3 Model instantiation

In our semi-automated histology segmentation problem, labelled sections play
the role of atlases, whereas I is an unlabelled section. To model pfx, we choose
the local label fusion model from [9], which relies on a latent discrete field M(x)
that indexes what atlas generates the test image and its segmentation at each
location. The model further assumes that the image intensities I and labels L
are conditionally independent given the field M . As in [9], we use a Gaussian
likelihood term for the image intensities and a LogOdds model based on the
signed distance transform for the labels. In addition, we use a prior for the
field M that reflects lower reliability of the registration for sections at larger
distances from one another, independently from the 2D location x: p(M(x) =
n) ∝ exp(−α|z − zn|), where z and zn be section indices for the test image and
atlas n, respectively, and α is a parameter controlling the sharpness of the prior.
Following [9], the posterior probability for the labels is then:

pfx(L(x)| {In}, {Ln}, I) =

∑N
n=1N [I(x); In(x), σ2]eρDx[L(x);Ln]e−α|z−zn|∑N
n=1 e

−α|z−zn|N [I(x); In(x), σ2]
∑
l e
ρDx[l;Ln]

(4)

where N is the Gaussian distribution; Dx is the signed distance transform eval-
uated at location x; and σ2 and ρ are the likelihood parameters.

For the deep learning framework we use a fully convolutional network (FCN)
[10]. We built a FCN on top of a VGG-16 architecture [11], with publicly avail-
able weights pre-trained on ImageNet [12]. This architecture was modified by
removing the classification layer, and converting fully connected layers to convo-
lutions. A 1× 1 convolution layer, with as many channels as output classes, was
added at each of the coarse output locations, followed by deconvolution layers to
upsample the coarse outputs to fine-grain outputs. Skip connections were added
between lower and higher layers, enabling prediction at input resolution. Finally,
we used an L2 norm penalty on the network weights, i.e., as − log p(θ).

3 Experiments and results

3.1 Data

We used the publicly available Allen atlas [2], which includes 106 (unevenly
spaced) Nissl-stained histological sections of a human hemisphere with asso-
ciated manual segmentations for 862 brain structures. The sections are 50 µm
thick and digitised at 1 µm resolution, but we downsampled them to 250 µm –
as a compromise between detail and computational requirements. Using the la-
bel ontology from the Allen Institute, we created two simplified sets of labels:
one at the tissue type level (white matter, grey matter, cerebrospinal fluid), and
another at the whole structure level, including: cerebral WM, cerebral cortex,
lateral ventricle, cerebellar WM, cerebellar cortex, thalamus, caudate, putamen,
pallidum, brainstem, hippocampus and amygdala. The tissue level labels are
useful for coarse fine-tuning, and the structure level labels will be used in evalu-
ation: using the full Allen ontology introduces excessive noise in the results, due
to large differences in the sets of structures appearing in consecutive sections.
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Table 1. Minimum and median pixel classification accuracy. The p values are for a
non-parametric, paired, two-sided Wilcoxon statistical test comparing medians.

Method Min. acc. (%) Med. acc. (%) p-val vs. CNN p-val vs. LF p-val vs. ad hoc

CNN 75.35 90.55 N/A N/A N/A
Lab. Fus. 73.61 91.81 0.03 N/A N/A
Ad hoc 85.30 92.62 5× 10−15 9× 10−6 N/A

Proposed 85.83 92.91 3× 10−15 5× 10−8 4× 10−8
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Fig. 2. Pixel classification accuracy vs. average distance between atlas and test sections.

3.2 Experimental setup

We perform a cross-validation on the 106 labelled sections using two folds: one
in which even sections are used to predict the segmentation of the odds sec-
tions, and vice versa. We compared our proposed method with three competing
approaches: the local label fusion method, the CNN alone (with global and lo-
cal fine-tuning), and an ad hoc combination of the two using the product rule,
i.e., p(L) ∝ pd(L)pf (L). As metric of performance, we used the percentage of
correctly classified pixels based on the labelling at the structure level.

Each fold was processed as follows. First we globally fine-tuned the network
using all available labelled sections of the training fold and the tissue type labels.
This enabled a fast transition from the ImageNet weights, effectively adapting
the features to the histological images. The learning rates of the final four con-
volutional layers were increased by a factor of 20 for fine-tuning. We used rota-
tion, translation, scaling and contrast/brighness changes for data augmentation.
Then, we visit one unlabelled section at the time, and go over the following three
steps: label fusion, local fine-tuning and GEM. For the label fusion, we used the
preceding and succeeding labelled sections as atlases. We used NiftyReg with
stationary velocity field parameterisation [13] for the registration (default pa-
rameters with local correlation metric), and computed soft predictions for the
structure level labels with Eq. 4. The local fine-tuning used the same two sec-
tions as training data. We replaced the final layers from the globally fine-tuned
network, and further fine-tuned to the structure level labels, with the same aug-
mentation scheme. Finally, we iterated between the E and M steps of the GEM
algorithm (Eqns. 2 and 3) to produce the final output. The parameters were
kept constant for all experiments: σ2 = 400, ρ = 21 mm−1, α = 1 mm−1, λ = 2.
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Fig. 3. Sample section from the Allen dataset with segmentation results overlaid.
(a) Histological section. (b) Manual segmentation. (c) Label fusion. (d) CNN. (e) Ad
hoc combination with product rule. (f) Proposed method.

3.3 Results

Table 1 shows the median pixel classification accuracy for the competing meth-
ods, computed inside a mask obtained by dilating 2mm the union of the ground
truth segmentations. The table also shows p-values for paired, non-parametric
tests comparing the medians achieved by the different methods, as well as the
minimal accuracy across the dataset – which is a measure of robustness.

Fig. 2 plots accuracy against the mean separation between the atlas and test
sections (1/2)(|z − z1| + |z − z2|). The CNN provides consistent performance
across distances, remaining robust even at large separations. Label fusion alone,
in contrast, yields higher scores at low separations (when registration is generally
more accurate) but falters at larger distances. Combining the algorithms enables
us to take advantage of the strengths of both: the ad hoc method outperforms
CNN and label fusion, and a further improvement is obtained when integrating
the two approaches into a unified model in a principled way. Albeit small (0.3%
accuracy), this improvement is consistent (p < 10−7) and visually noticeable.

The differences between the methods are illustrated in Fig. 3. Label fusion
fails to segment the retrosplenial cortex (Fig. 3c, yellow arrow) and to recover
the reticular nucleus of the thalamus (black arrow). The CNN (Fig. 3d) amelio-
rates these issues, but introduces new errors, e.g., voxels labeled as ventricle due
to tears (yellow arrow), or completely missing the caudate due to insufficient
contrast (black arrow). The ad hoc method (Fig. 3e) solves some of these prob-
lems, but still fails to recover the caudate (black arrow). Our approach not only
manages to segment the caudate, but also cleans up some other segmentation
errors, e.g., the false positives in cortical areas (black arrow in Fig. 3f).
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4 Discussion and conclusion

We have presented a probabilistic model for semi-automated segmentation of
stacks of 2D histological sections, which allows to incorporate label fusion tech-
niques with deep learning. The model is flexible both in terms of CNN architec-
ture and label fusion methods – as long as the posterior distribution of the seg-
mentation factorises over voxels, which is the case for most available algorithms.
Since each iteration requires fine-tuning the network in the M-step (which takes
ca. 4 minutes on a Titan Xp GPU), the method is computationally expensive.
However, this is seldom a problem in practice because the algorithm can be run
offline. Future work will focus on integrating the registration with the segmenta-
tion in the framework, such that the registration of atlas sections further away
from the test image can benefit from the more robust CNN classification.

Acknowledgement: supported by the EPSRC (CDT in Medical Imaging, EP/
L016478/1), ERC (Starting Grant 677697) and NVIDIA (donation of GPU).
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