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Abstract 

Background: The Manning Cost–Benefit Tool (MCBT) was developed to assist criminal justice policymakers, policing 
organisations and crime prevention practitioners to assess the benefits of different interventions for reducing crime 
and to select those strategies that represent the greatest economic return on investment.

Discussion: A challenge with the MCBT and other cost–benefit tools is that users need to input, manually, a con-
siderable amount of point-in-time data, a process that is time consuming, relies on subjective expert opinion, and 
introduces the potential for data-input error. In this paper, we present and discuss a conceptual model for a ‘smart’ 
MCBT that utilises machine learning techniques.

Summary: We argue that the Smart MCBT outlined in this paper will overcome the shortcomings of existing cost–
benefit tools. It does this by reintegrating individual cost–benefit analysis (CBA) projects using a database system that 
securely stores and de-identifies project data, and redeploys it using a range of machine learning and data science 
techniques. In addition, the question of what works is respecified by the Smart MCBT tool as a data science pipeline, 
which serves to enhance CBA and reconfigure the policy making process in the paradigm of open data and data 
analytics.
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Background
In recent years, cost–benefit analysis tools, such as the 
Manning Cost–Benefit Tool (MCBT)1 (Manning et  al. 
2016) and the Washington State Institute of Public Pol-
icy’s (WSIPP) Benefit–Cost Tool (Aos and Drake 2010), 
have been developed to assist criminal justice policy-
makers, policing organisations and crime prevention 
practitioners to assess the benefits of different interven-
tions for reducing crime and to select those strategies 
that represent the greatest economic return on invest-
ment. A framework for evaluating the effectiveness of 
crime prevention policies or alternatives, including eco-
nomic benefits, has been proposed recently by Johnson 

et  al. (2015). The authors describe “…the need for, and 
the development of, a coding system to distil the quality 
and coverage of systematic reviews of the evidence relat-
ing to crime prevention interventions” (p. 459). EMMIE, 
the coding scheme developed by the authors, assesses 
the probity, coverage and utility of available empirical 
evidence. Five dimensions are identified including: (1) 
effect of intervention; (2) the identification of the causal 
mechanism(s) through which interventions are intended 
to work; (3) the factors that moderate their impact; (4) 
the articulation of practical implementation issues; and 
(5) the economic costs of intervention.
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The What Works Centre for Crime Reduction (College 
of Policing UK 2017), which adopts the EMMIE rating 
scale, shows that the available economic evidence from 
prevention studies is either non existent or inadequate 
across a wide range of crime intervention types. One pos-
sible reason for the lack of economic evidence is the dif-
ficulty in using current economic tools where users need 
to input, manually, a considerable amount of point-in-
time data in order to provide a range of economic esti-
mates to inform decisions about the allocation of finite 
government resources. This process is time-consuming 
and also introduces potential input errors as human users 
become fatigued and/or complacent. Further, users are 
faced with the complication of estimating projected costs 
in different jurisdictions and environments and of rely-
ing on information which may be out of date. These fac-
tors are important when estimating the costs associated 
with interventions across different locations involving 
potential contextual variation. Currently, only the MCBT 
is capable of estimating such costs across environments, 
but the tool is limited to operating on expert opinion 
based on experience and subjective judgement.

In this paper, we examine how machine learning and 
data science techniques can be applied to the MCBT—
to produce a ‘Smart MCBT’—in order to help overcome 
the above mentioned obstacles, as well as to produce 
new insights and analyses of economic data. The Smart 
MCBT is not limited to criminal justice applications 
and can be easily adapted for evaluation in any field (e.g. 
health, environment, engineering, etc.) and at any level 
(e.g. small to large business, government, etc.).

The paper begins by outlining the concept of eco-
nomic analysis as it applies to resource allocation and 
discusses existing tools for undertaking this task. A 
detailed description of the MCBT follows, discussing its 
benefits and limitations. Next, we provide a description 
of the proposed architecture of the Smart MCBT and an 
application of key machine learning techniques. Finally, 
we discuss the implications of the Smart MCBT and its 
future development.

Economic analysis and the allocation of resources
Crime prevention requires decisions regarding the use of 
inputs and how these inputs translate into the most effec-
tive and sustainable outcomes. The choice of intervention 
will be influenced by factors including, but not limited to, 
budget, the crime problem being addressed, the environ-
ment in which the crime is taking place, social and ethical 
considerations, and judgements about the relative effec-
tiveness of alternative interventions.

The decision about what is the most efficient alloca-
tion of resources for crime prevention is not an easy 
one because: (1) budgets are limited and attempting to 

anticipate the costs associated with an intervention is diffi-
cult, typically based on previous implementations in other 
jurisdictions and locations; and (2) there is an opportunity 
cost where resources used for one application are at the 
expense of other possible applications. To make this deci-
sion effectively, empirical evidence regarding the costs and 
benefits of alternative actions needs to be undertaken.

Policy-makers are presented with three critical questions 
the answers to which inform decisions about the alloca-
tion of resources to a given course of action: what does the 
intervention cost? how effective is the intervention? and, 
what are the externalities (i.e. positive and negative side-
effects)? Economic analysis (EA) provides answers to these 
empirical questions. EA is designed to provide a rational 
basis for the allocation of scarce public resources that 
leads to a set of socially desirable outcomes while minimis-
ing undesirable economic and social impacts (Boardman 
et al. 2006; Manning et al. 2016a, b). Thus, EA promotes 
economic efficiency and good fiscal management. Specifi-
cally, results generated from EA are used to assess availa-
ble options with the aim of identifying those interventions 
(or combinations of) that provide the greatest economic 
return on investment. In addition, results from EA can be 
used by policymakers to gauge the economic implications 
of existing interventions and provide insight into the cost 
of inputs required to undertake an intervention in another 
location (Manning 2004, 2008). The five main methods of 
EA are: cost-feasibility analysis (CFA), cost-savings analysis 
(CSA), cost-effectiveness analysis (CEA), cost-utility analy-
sis (CUA) and cost–benefit analysis (CBA). Table  1 pro-
vides a summary of the main methods and their respective 
advantages and disadvantages. A detailed comparison of 
these methods can be found in Manning et al. (2016a, b).

A number of guidelines and tools have been developed 
to assist in deriving reliable and comparable EA esti-
mates. Examples of guidelines include: the Regulatory 
Impact Analysis Inventory (Organisation for Economic 
Co-Operation and Development 2004); the Green Book 
United Kingdom (HM Treasury 2003); the Cost–Ben-
efit Analysis Guide, Australia (Department of the Prime 
Minister and Cabinet 2016); and in the United States, the 
Regulatory Impact Analysis (Circular A-4) (The Office 
of Management and Budget 2003). Examples of tools 
include: WSIPP’s Benefit–Cost Tool (Aos and Drake 
2010), which allows the state to predict the impact of pol-
icy options and to calculate the net present values, cost–
benefit ratios and projected returns-on-investment from 
prevention and intervention programmes and policies; 
and the MCBT (Manning et al. 2016), which operates in 
Microsoft Excel. A full summary of the above guidelines 
and tools is provided in Manning et al. (2016a, b). In the 
following section a detailed description of the MCBT is 
presented.
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The Manning Cost–Benefit Tool (MCBT)
The MCBT, as well as producing similar outputs to those 
produced by WSIPP’s tool, employs traditional costing 
techniques (see for example HM Treasury Green Book 
2003). The MCBT allows for the calculation of cost-sav-
ings, cost-effectiveness, cost-feasibility and cost–benefit 
ratios as well as net returns on investment. Importantly, 
the tool disaggregates results by stakeholder. In addi-
tion, the MCBT allows for the comparison of average 
annual expenditure before and after the introduction of 
the intervention. Uniquely, MCBT adopts a combina-
tion of methods (e.g. multi-criteria analysis) for calculat-
ing the costs of an intervention in the absence of reliable 
accounting data (Manning et al. 2016a, b).

While existing EA tools and guidelines are helpful for 
estimating costs of an existing intervention, only the 
MCBT provides potential costs of an intervention when 
implemented in a different location/jurisdiction, par-
ticularly where obvious contextual variation exists. The 
importance of this cannot be overstated because most 
responses to crime require interventions that have been 
employed elsewhere. Decision makers need to assess how 
much of an input to use in a different location or jurisdic-
tion when many of the salient variables that affect out-
comes are different.

The developers of the MCBT highlight three context-
specific factors that are typically associated with the 
implementation of an intervention and which are likely to 
affect costs: (1) the size of the population/targeted area; 
(2) the perceived risk of the problem; and (3) the perceived 
difficulty of implementation. According to Manning et al. 
(2016a, b), the cost of implementing a similar interven-
tion in different locations may depend on variations in 

one or more of these three variables. Figure 1 illustrates 
the decision hierarchical structure of the MCBT when 
an existing intervention is to be implemented in a differ-
ent location. The decision goal (i.e. determine the cost/
numbers of units of a cost item required for the inter-
vention) is represented on level 1. Level 2 highlights the 
possible contextual variables that need to be considered 
and assessed with regards to their relative influence on 
the overall cost. Level 3 compares the variation between 
two locations with respect to the criteria represented on 
level 2. The above assessment undertaken on levels 2 and 
3 using analogous estimation2 and expert judgement pro-
vides weights with regards to how much each cost item 
should be adjusted to reflect the contextual differences 
across locations. For a full explanation of the method refer 
to Manning et al. (2016a, b).

While the use of analogous estimation and expert judge-
ment in the MCBT allows evaluators to estimate costs 
(i.e. direct, indirect and intangible) based on variations 
in given contextual factors, challenges faced by evalua-
tors include: (1) the constraint in incorporating additional 
variables into the estimation because of the limitations of 
Microsoft Excel (the underlying modelling tool); (2) the 
use of expert judgement which may lead to biased results 
(likely to be more conservative results as the tool advises 
the application of an optimism bias adjustment when 
using expert judgement); (3) the restriction on the use of 
multiple data sources; and (4) the lack of insights which 
could be gained from the data over time.

Figure 2 provides an overview of the ‘data flow’ of the 
MCBT. As shown in the figure, the MCBT comprises 

Level 3: Location of intervention

Level 2: Decision Criterion

Level 1: Decision Goal
Determine the cost/numbers of units of a cost item required for the intervention

Size of the target 
population/ 

targeted area

Risk of the 
problem

Difficulty of 
implementation

Location of current 
intervention

Location of 
previous 

intervention

Fig. 1 Decision mode hierarchy in the existing MCBT

2 Analogous estimation uses a similar past project to estimate the duration 
or cost of a current project.
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three sequential modules that combine to measure the 
costs and benefits of a crime intervention project. Each of 
these modules is described in the following sections.

Module 1: Input cost–benefit data
The MCBT currently requires that the evaluator provides 
all necessary data for the estimation of annual and total 
costs/benefits through direct data input or indirect cal-
culation with the use of quantity and per item values. 
For example, consider the use of ‘gated communities’ as 
a crime prevention strategy. Blakely and Snyder (1998) 
define gated communities as:

…residential areas with restricted access that makes 
normally public spaces private. Access is controlled 
by physical barriers, walled or fenced perimeters, 
and gated or guarded entrances… They represent 
a phenomenon different from apartment or con-
dominium buildings with security systems or door-
men. There, a doorman precludes public access only 
to a lobby or hallways - the private space within a 
building. Gated communities preclude public access 
to roads, sidewalks, parks, open space, and play-
grounds - all resources that in earlier eras would 
have been open and accessible to all citizens of a 
locality (p. 53).

Gated communities are designed primarily to deter 
crime, but they also act as barriers, which may enhance 
the freedom and wellbeing of residents by eliminating 
daily annoyances (e.g. canvassers) and malicious behav-
iours (e.g. mischievous teenagers) (Blakely and Snyder 
1998).

In order to model the costs and benefits associated with 
gating a community, data could be drawn from several 
sources (e.g. independently audited cost data, formal ser-
vice delivery contract costs, security management costs, 
costs developed from ready reckoners and uncorrobo-
rated expert judgement) and in different forms (market 
values such as salary and equipment costs or non-mar-
ket values such as sense of security) to define the scope 
(i.e. degree of inclusion of costs and benefits of relevant 
stakeholders) and depth (i.e. estimation of tangible and 
intangible costs/benefits) of the analysis (see Manning 
et al. 2016a, b).

Module 2: Cost–benefit calculations
In the MCBT, costs and benefits are calculated taking 
into account the economic assumptions (i.e. inflation 
and discount rates), confidence intervals (i.e. worst and 
best-case scenario), optimism bias correction, percentage 
of total cost borne and spent each year and attributable 
fraction (i.e. percentage or proportion of costs attributed 
to the intervention of concern).

Typically, when the cost of an item is entered, this cost 
will be upwardly corrected, based on the identified opti-
mism bias,3 to reduce the likelihood of cost underestima-
tion due to less reliable inputs because of the source and 
age of data (HM Treasury 2014). Likewise, benefits are 
downwardly adjusted to avoid overestimation of benefits. 
The adjusted costs/benefits based on optimism bias cor-
rection are used for the analysis. Evaluators specify how 
much of the total cost/benefit of an item were spent/
gained each year. This adjustment allows the MCBT to 
calculate the annual cost/benefit, taking into account 
the worst-case (i.e. the intervention costs more money; 
1+ margin of error), the best-case (i.e. costs less money; 
1− margin of error) and the expected case (i.e. the aver-
age), thus providing a confidence interval (the default is 
95%). After deriving the overall costs for each year (over 
the lifespan of the intervention), an attributable fraction4 
may be applied to yield program-specific costs. With the 
estimation of program-specific costs for each year, the 
costs are then adjusted for inflation and discount rate.

This procedure is also applied to the benefits (avoided 
costs) of the intervention, where the evaluator provides 
cost data for each selected crime type and information 
for the calculation of net savings and benefits. The cost 
per crime avoided is calculated by dividing the interven-
tion costs by the unit of effect (e.g. number of crimes 
avoided). The cost-effectiveness ratio is calculated by 
dividing the annual costs by avoided criminal incidents. 

Fig. 2 The existing MCBA tool data flow

3 This method adopts the optimism correction bias scale providing a cor-
rection percentage for the estimation of cost according to the confidence 
grade of cost data.
4 The proportion of costs of an item that would be deemed as intervention-
specific. The fraction can be estimated based on the proportion of time 
spent (e.g. a police officer spending 3 out of 7 working hours a day on the 
intervention) or space of a capital arranged for the intervention (e.g. an 
office building shared among different teams and units).
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The cost–benefit ratio is calculated by dividing the eco-
nomic benefits with the intervention costs. Separate cal-
culations are also performed for each bearer/stakeholder. 
It should be noted that there are also potential benefits 
beyond the avoided costs of crime, such as where an 
offender becomes employed and no longer receives gov-
ernment benefits. The benefit here is not the reduction 
in welfare payments, as this will be considered a trans-
fer payment,5 but rather it is the additional income tax 
received as a result of the employment and the contribu-
tion this work makes to the overall economy. Such ben-
efits are captured as ‘additional benefits’ in the MCBT.

Module 3: Output of cost–benefit analysis
All of the outputs in the existing MCBT are presented in 
tables (i.e. net costs, net benefits, cost–benefit ratio and 
net benefits by bearers) and plots. Outputs are listed in 
Table  2 below. In summary, MCBT allows for CFA (i.e. 
comparing the overall costs of the project against the 
budget), CSA (i.e. comparing the costs of the project 
against the savings generated from avoided crimes), CEA 
(i.e. comparing the costs of the project against the num-
ber of units of output such as the number of crimes pre-
vented) and CBA (i.e. comparing the costs of the project 
against the overall benefits-avoided crimes and other 
benefits such as enhanced safety), as discussed in Table 1.

The development of a smart MCBT
As identified in the introduction, there are a number 
of limitations with the MCBT. These include: (1) users 
manually inputting a sizeable quantity of point-in-time 

data; (2) the potential of input errors to arise as users 
become fatigued and/or complacent; and (3) the diffi-
culty in estimating projected costs in different jurisdic-
tions and environments (i.e. contextual variation) and 
relying on information which may be out of date. In 
view of these limitations we propose the development 
of a Smart MCBT, which incorporates data science and 
machine learning techniques. Here, we argue that much 
can be learned through interdisciplinary collaboration. 
In this paper, our focus is on the amalgamation of crimi-
nology, economics and computer science with respect 
to the advancement of the MCBT. An enhanced capac-
ity to assess programme costs and benefits is particularly 
important in the area of crime and justice since few inter-
ventions—as highlighted by the Crime Reduction Toolkit 
(College of Policing UK, 2017)—are accompanied by EA, 
and when they are the EA tends to be of limited qual-
ity. However, it should be noted that the Smart MCBT is 
not limited to criminal justice applications alone and can 
be easily adapted for evaluation in any field (e.g. health, 
environment, engineering etc.) and at any level (e.g. small 
to large business, government etc.).

The proposed Smart MCBT is illustrated in Fig.  3, 
where the boxes indicate a system process or database, 
and the arrows indicate the direction in which data 
‘flows’ from one component to the next. As previously 
discussed, the existing MCBT has three main compo-
nents (shown in Fig. 2 and highlighted in blue in Fig. 3). 
We will discuss the four newly proposed components 
(Modules 4–7) in the sub-sections that follow.

Module 4: User input database
For the existing MCBT, input data entered by the user 
are only stored locally on a per-project basis. This pro-
vides the first obstacle to building a tool that draws 
upon and exploits machine learning (ML) techniques 

Table 2 Outputs of the MCBT

Excel tab Description

Cost section Calculation of overall expenditure of one or more intervention programs

 Total costs A display of the total costs after the implementation of a program, including both best and worst case scenarios, and 
compares costs of the intervention with the status quo

 Costs with economics A display of the costs with and without inflation and discount rate for each year

 Costs to bearers A display of the costs for each bearer, including the costs of each year of intervention, total costs of the intervention 
and the average annual costs

Benefit section Calculation of financial benefit of a program

 Cost-effectiveness A display of the cost-effectiveness outcomes including the cost-effectiveness ratio

 Cost–benefit A display of the cost–benefit outcomes including the cost–benefit ratio and net benefit

 Benefits with economics A display of the benefits with and without inflation and discount rate for each year

 Savings and benefits to bearers A display of the benefits for each bearer/recipient, including the benefits by year of intervention, total benefits of the 
intervention and the average annual benefits

5 “Transfer payments are benefits that are received by an individual through 
special entitlement programs and other (usually government) mechanisms 
which redistribute income from one group to another” (Frisman and Rosen-
heck 1996, p. 534).
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to improve the system. Therefore, in the ‘User Input 
Database’ component, all data entered by users into the 
MCBT is stored as one set of records per project. The 
Smart MCBT will overcome this limitation by storing 
input data on a shared server, providing a single data 
resource for the ML Module.

Returning to our earlier example of gated commu-
nities, we propose a list of some (but not all) relevant 
variables that would be required in determining the 
cost associated with such an intervention. In Table 3 we 
present four predictors (independent variables or IVs) 
that may affect the cost associated with gating a vulner-
able community (dependent variable or DV). Drawing 
on data from multiple inputs, evaluators, for example, 

may have data on the number of burglaries that have 
occurred in each community under review. The Smart 
MCBT will gather and store these data for subsequent 
future analyses and current estimations.

Module 5: Calculated CBA database
Where Module 4 provides a database to store the user 
input data, the ‘Calculated Cost–Benefit Analysis Data-
base’ (herein CCBA-DB) provides a database to store 
the calculated results after analysis. Storing the calcu-
lated results is crucial because it provides the ability to 
model the relationships between all input-relevant cost 
and benefit data (Module 1) and the output of CBA. 
With the existing MCBT, the knowledge generated 

Fig. 3 System data flow for Smart MCBT

Table 3 Examples of variables—cost of gating a community to prevent crime, annoyances and malicious behaviour

Variable Description Type

Costs associated with restricting access to only local residents and their 
visitors to reduce opportunities for crime, eliminate daily annoyances and 
malicious behaviours

Cost of gates the community DV

Size of area The geogrpahical properties of the area to be gated IV

Access points The number of access points required IV

Guard box The proportion of access points where a guard box is required IV

Number of burglaries Burglaries that occurred in properties with clearly identifiable 
facilitating opportunities

IV
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from a CBA of a particular intervention is not able to 
leverage the results of previous analyses, even when 
the cost and benefit data (the existing tool input and 
output) are similar or the same, subject to contextual 
variation. Therefore, the database in the CCBA-DB 
component of the workflow diagram stores the benefits 
(that could also be weighted using a harm index6) and 
analysis data, enabling the system to map the relations 
between input and output, and exploit this to learn and 
improve CBA over time. Returning again to the hypo-
thetical example, Module 5, similar to Module 4, will 
store these outcome data (e.g. cost of installation of 
gates).

Module 6: Machine learning module
The sixth module comprises a range of data science 
techniques and ML algorithms that contribute the main 
improvements of Smart MCBT. Broadly speaking, ML is 
the field of computer science that studies how to enable 
computers to act and learn without being explicitly pro-
grammed. Formally, “… a computer program [through 
ML] is said to learn from experience E with respect to 
some class of tasks T and performance measure P if its 
performance at tasks in T, as measured by P, improves 
with experience E” (Mitchell 1997, p. 2). ML is divided 
into two main areas, ‘supervised’ and ‘unsupervised’ ML 
(Hastie et al. 2009).

The Smart MCBT uses supervised and unsupervised 
techniques. Supervised ML involves learning from 
labelled data, such that the task involves estimating a 
model that optimally maps input variable(s) to output 
variable(s). It is therefore able to correctly predict the 
label (classification) and/or predict values (regression) for 
new observations where the actual ‘ground truth’ labels 
or values are known but not provided to the algorithm 
during the training process. For example, a machine can 
learn to identify whether a photo includes a cat (or not) 
if it is provided a set of photos (represented in a suit-
able digital format) and labels for each photo (denot-
ing whether the photo is of a cat or not). If we ‘train’ the 
model on 80% of the labelled photo data, we can then 
use the remaining 20% to ‘test’ how well the model does 
at correctly predicting whether a cat is featured in each 
photo. The model is said to have learned from the data in 
a supervised fashion because it needs to be instructed or 
‘trained’ on photos that have a known ground-truth label. 
On the other hand, unsupervised ML describes a broad 
range of techniques that aim to model or infer hidden 

structure from unlabelled data. For example, suppose we 
have a collection of photos that are portrait shots of dif-
ferent kinds of animals; however, we do not have labels to 
describe which animals are in each photo. An unsuper-
vised clustering approach could be used in this scenario 
to discover implicit groupings within the photo data, 
such that photos are grouped into clusters based on their 
similarities and differences. The resulting clusters would 
ideally contain photos of the same kinds of animals (e.g. 
cats in cluster 1; elephants in cluster 2, and so on).

The integration of ML techniques in the Smart MCBT 
is designed to achieve two main goals, namely: (a) to pro-
vide input support to the user by predicting missing val-
ues, identifying potentially erroneous values, and making 
suggestions about relevant contextual factors; and (b) to 
improve the analytical capabilities of CBA by usefully 
reducing the number and types of variables to minimize 
user effort (e.g. time-consuming data entry) and develop 
better estimates (e.g. cost savings; crimes avoided), based 
on what the system learns from previous similar projects. 
We now turn our attention to each of these techniques 
to elaborate how they are deployed in the design of the 
Smart MCBT.

User input support
As shown in Fig.  3, Module 6, conceptualised as ‘User 
Input Support’, comprises three tasks—data imputation, 
anomaly detection, and correlation detection—which 
provide input support and recommendations for the user. 
The first task, data imputation, is to find the best values 
for uncertain or unknown input values based on other 
interventions of a similar nature. Earlier, we discussed 
the issue of undertaking CBA when contextual variation 
exists. We can illustrate the process by drawing again on 
the gated community example, keeping in mind the rela-
tionship between the DV and IVs as shown in Table 3. In 
this example, we include other environmental crime con-
trol processes to augment the use of gating a community 
to reduce property crimes (e.g. the use of guard posts 
in a gated community). If a manager of an environment 
(e.g. complex manager of a gated community) imposes 
new procedures regarding unsupervised entry into the 
complex, the Smart MCBT should be able to perform 
two tasks: (1) suggest to the user what kinds of contex-
tual variation factors are relevant (e.g. number of possible 
entry points into a complex based on geographical data); 
and (2) estimate or impute the best values for uncertain 
data input. For example, a user might have available data 
on most of the IVs listed in Table 3, but a paucity of data 
on number of guard boxes that may be required given 
the size and layout of the complex. In this situation, the 
tool would be able to estimate and suggest the best val-
ues to the user by calculating appropriate values based 

6 A measure of the relative harm from a crime or set of crimes that assist in 
the estimation of returns on investment from a given intervention. Refer to 
Curtis-Ham and Walton (2017) for an example of the application of a harm 
index.
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on similar previous interventions with similar input pat-
terns. To achieve user input support in this context, we 
propose to implement and evaluate a combination of 
multivariate imputation and ML techniques for missing 
data.

Multivariate imputation (MI) is a method for estimat-
ing incomplete data based on predictions derived from 
observations in the dataset (Rubin 1996; Allison 2000). 
This technique has been recently developed using an 
approach based on chained equations, or Multiple Impu-
tation by Chained Equations (MICE) (van Buuren and 
Groothuis-Oudshoorn 2011). However, as Allison (2000) 
argues, one of the key assumptions of MI is that the data 
are missing at random (MAR), such that the probabil-
ity of missing values in a variable Y depend only on the 
information contained in other variables and not Y itself. 
This issue is compounded when missing values exceed a 
certain percentage of observations, whereby MAR can 
no longer be reasonably assumed. Indeed, violations 
of the MAR can be expected in many real-world cases 
(Schafer and Graham 2002), although fortunately such 
violations have not been found to seriously bias param-
eter estimates for missing data (Collins et al. 2001). Nev-
ertheless, to further address issues that can arise due to 
the assumptions and statistical properties of standard 
techniques for imputation of missing data, we propose 
to supplement and potentially enhance these with newer 
machine learning (ML) approaches.

Studies suggest that ML approaches to missing data 
perform on par with, and increasingly outperform, MI 
methods such as MICE. Richman et  al. (2007) com-
pared supervised ML algorithms with standard imputa-
tion techniques and found that support vector machines 
(SVM) and neural networks had the lowest error rate, 
and are particularly suited to scenarios where a large 
percentage of missing data is present. Similarly, Schmitt 
et al. (2015) found that data imputation through bayesian 
principal component analysis and fuzzy K-means outper-
form more standard and popular methods, notably lower 
error rates than multiple imputation using the MICE 
approach. Recent developments in nonparametric miss-
ing value imputation using a random forest approach, or 
MissForest (Stekhoven and Bühlmann 2012), have also 
been found to outperform standard methods, including 
MICE (Waljee et  al. 2013), although the computational 
cost is considerably higher. As MI and ML have differ-
ent strengths and limitations we propose that the Smart 
MCBT integrate both these methods of dealing with 
missing data.

The second task that the ‘User Input Support’ sub-
component addresses—anomoly detection—involves 
identifying abnormal input values (see Christen et  al. 
2016) that could be erroneous, whether random errors 

(e.g. a mis-typed number) or systematic errors (e.g. 
incorrectly entering the data from variable X into the 
fields for variable Y). The system would calculate this 
by comparing the data from other similar interventions 
and using anomaly and outlier detection methods to 
identify values in the current intervention input data 
that do not conform to the expected values or pat-
terns in the input data of other similar interventions. 
Proposed algorithms to identify such (potential) errors 
include density-based techniques such as k-NN (Alt-
man 1992) and the local outlier factor (Breunig et  al. 
2000), as well as ensemble methods for outlier detec-
tion in multivariate data (Kannan and Manoj 2015). By 
identifying potential erroneous input values, the system 
is able to notify the user at an early stage, and moreover 
gains higher accuracy over time as more interventions 
(and therefore more data examples) become available.

In terms of providing ‘smart’ user support for CBA of 
a given intervention across multiple jurisdictions, out-
lier detection will be useful for identifying and predict-
ing contextual variation between similar intervention 
types. Certain input variables or sets of variables may 
conform to known distributions or estimable functions. 
If the system is able to map these patterns, then it can 
detect whether the input values for a similar interven-
tion are deviating in an unusual way, whether for indi-
vidual input values, individual variables, or multiple 
variables.

The third task of User Input Support, correlation 
detection, can be performed on the input data to iden-
tify variables that are collinear, or more generally to 
identify multicollinearity in the input data. This is use-
ful feedback to the user because it will reveal whether, 
and to what extent, they are entering variables that are 
basically highly inter-correlated and contain similar 
information, or are even the same variable and simply 
duplicated. Smart MCBT becomes even more useful 
as these kinds of patterns are identified across multi-
ple similar interventions, which might suggest a re-
evaluation of the input data or costs associated with the 
intervention.

Through this process, whereby contextual variation 
factors associated with common intervention strategies 
will be identified, and assisted with expert knowledge, 
the Smart MCBT can build up an ontology of contex-
tual variation factors that apply to common problems or 
intervention strategies. Such an ontology, presented in 
the standard Web Ontology Language (W3C 2012), will 
act as both a knowledge base and a taxonomic lingua 
franca for interventions and contextual variation factors. 
It can then be used to improve the relevance of the tool’s 
suggestions for contextual factors. The ontology, built 
partly through use of the tool and representing an expert 
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conceptual model of the problem domain, can then be 
re-used to enrich pattern analysis and feature discovery 
as elaborated below. Furthermore, it can also be used for 
leveraging external linked open data resources, also elab-
orated below.

Improved CB analysis
The second sub-component of the ML Module 6 involves 
using ML and data science techniques to improve the 
analytical capabilities of the existing MCBT. As shown 
in Fig.  3, this sub-component receives data from the 
input and output of the CBA, for example, the number 
of crimes avoided in a particular jurisdiction. Collecting 
both the input and output data provides a strong basis 
to deploy supervised ML. For example, using our gated 
community approach, body corporate resources could be 
spent on a range of alternatives to prevent burglary, but 
the question is—what alternative or combination of alter-
natives should they focus on or how can they maximise 
the use of resources to produce the greatest reduction in 
crime opportunities within budget? We argue that posing 
this as a ML problem has significant potential to enhance 
the analysis and outcomes, both in terms of costs saved 
and benefits increased and in terms of our understanding 
of the complex relationships between interventions and 
outcomes. In other words, ML can reveal how well can 
we predict a set of benefits from a set of costs.

CBA can be improved through ML and data sci-
ence techniques by specifying the variables using two 
techniques—‘feature selection’ (Hastie et  al. 2009) and 
‘feature engineering’ (Zheng 2016). Feature selection is 
concerned with selecting a subset of variables or features 
that are most relevant for constructing the ML model. 
As Guyon and Elisseeff (2003) argue, “The objective of 
variable selection is three-fold: improving the prediction 
performance of the predictors, providing faster and more 
cost-effective predictors, and providing a better under-
standing of the underlying process that generated the 
data” (p. 1157). In this way, feature selection can result 
in ‘knowledge discovery’ whereby previously unknown 
information about the data can be extracted and put to 
use.

An approach to feature selection is to understand a 
structured ontology of crimes, interventions and con-
textual factors, representing both expert knowledge and 
structural relationships amongst features. This ‘struc-
tured ontology’ provides a common language to describe 
the types, properties, and relationships of all the variables 
for CBA projects. Research has developed highly effec-
tive semantic ML techniques that can leverage such an 
ontology to discover patterns in data (Ratcliffe and Tay-
lor 2014, 2017). Using a search process over the seman-
tic relations expressed in the ontology, it is possible to 

propose compact and highly readable pattern descrip-
tions that exploit combinations of features that are not 
directly present in the data. For example, let us assume 
that the assembled MCBT historical data sometimes 
include detailed descriptions of gated community designs 
and co-located lighting designs that have been tried in 
a number of independent interventions. Given suitable 
ontology modelling of gating designs, lighting designs, 
and localised daylight hours, a semantic ML technique 
could be expected to distinguish effective and ineffective 
interventions with descriptions like “gates are made of 
any metallic material excluding aluminium, illuminated 
after dark and during dusk”, or perhaps “gates are above 
3  m high, coloured brightly, and all access points are 
guarded/or monitored electronically (e.g. CCTV)”. This 
significantly enhances CBA because it ‘joins up’ simi-
lar, but otherwise siloed, projects (subject to contextual 
variation) by exploiting a reservoir of expert and domain 
knowledge embedded in the system.

Feature engineering, on the other hand, is a process 
that involves using domain knowledge of a particular 
region to generate a set of variables, or ‘features’, which 
ML can be applied to. Currently, feature engineering for 
the MCBT involves expert opinion based on experience 
and subjective judgement. For example, official statis-
tics (e.g. police recorded crime statistics) may show an 
increase in burglaries in areas that appear vulnerable 
due to crime facilitating conditions (e.g. lack of capable 
guardians, or a lack of target hardening measures). There-
fore, crime facilitating conditions and the corresponding 
crime opportunities would be included as a feature of the 
CBA data set for a given project about potential use of 
gating as a means of reducing crime.

Module 7: Linked open data
The existing MCBT facilitates an analysis of user-defined 
cost variables (input features) and benefit variables 
(output features). These normally result from feature 
engineering processes conducted by domain experts 
(e.g. regulators and lawmakers), drawing on subjective 
experience and domain-specific training. In practice, 
the features are determined by the person responsible 
for setting up the intervention and entering data into 
a CBA tool. Whilst the current MCBT affords a robust 
and state-of-the-art analysis, it is also limited because it 
does not automatically take advantage of external sources 
of data that might be useful or relevant for the decision-
making process.

Governments are increasingly making data publicly 
available through “Open Data” initiatives, such as Data.
gov.uk (UK), Data.gov (US), and Data.gov.au (Aus-
tralia). For example, Data.gov.au provides nearly 30,000 
discoverable datasets, along with 6000 application 
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programming interfaces enabled resources across mul-
tiple areas, including environment, community services, 
health care and more. Importantly, as open data and 
national statistics agencies evolve and improve, the data 
they provide is increasingly available in standardised for-
mats accompanied by metadata that informs us about the 
nature and structure of the data objects. Of particular 
importance is data published as linked open data (Bizer 
et  al. 2009) that relies on open Web principles for pub-
lishing, discovery and retrieval, supported by machine-
processable ontologies for data description (Haller et al. 
2017). We argue that it is precisely these kinds of open 
data and emerging standards for handling such data that 
could be identified and deployed within a Smart MCBT 
approach.

Discussion
In this paper we have outlined and examined a proposed 
architecture for a Smart CBA tool that incorporates a 
range of ML and data science techniques. From a user 
and agency perspective, the Smart MCBT has the poten-
tial to speed up data entry via imputation, minimise input 
errors via anomaly detection and facilitate knowledge 
discovery through simplified predictive models reports 
and graphs generated from automated data analysis. 
From a policy and governance perspective, a smart CBA 
tool finds relevance in—and makes a novel contribution 
to—the emerging paradigm of data science and Big Data 
analytics in policy decision making.

Data analytics and Big Data have only recently begun 
to find applications in a policy decision making context, 
although this picture is rapidly changing (González-
Bailón 2013) and such developments have also attracted 
critical inquiry (Gillingham and Graham 2017). Not-
withstanding, the nascent field of ‘policy informatics’ 
(Johnston 2015), suggests that policy decisions can, and 
perhaps should, adopt an evidence-based and data-driven 
approach that draws on analytics techniques and the 
wealth of administrative records, open government data 
and user-generated data that are increasingly available. 
Rather than simply using such techniques and datasets 
to modify and/or enhance existing service delivery, data 
analytics and related methods reconfigure the nature of 
policy making itself (Henman 2010). Viewed in terms 
of the traditional policy cycle, a data science approach 
enables continuous evaluation. As Höchtl et  al. (2016) 
propose, embedding data analytics into the policy cycle 
means that policy evaluation does not occur only at the 
end of the process, but continuously and in a manner that 
is transparent to stakeholders (see Höchtl et al. 2016, pp. 
162–163).

To date, CBA tools are deployed in the context of sin-
gle interventions and are therefore largely siloed from 

the broader context and from similar interventions. To 
make informed decisions about a given issue or interven-
tion, agencies set up new interventions and estimates are 
provided by the tool. However, current CBA tools are not 
capable of learning from previous interventions, making 
use of intervention-relevant open datasets, making sug-
gestions to the user based on similar data, or validating 
the subjective opinions of the user against other similar 
interventions or related datasets. Moreover, the catego-
ries and variables that are used in individual interven-
tions are largely defined on a case-by-case basis by users, 
rather than drawn from a database of established cat-
egories and standards. Indeed, it is not possible to evalu-
ate and exploit similarities between jurisdictions unless 
intervention data are shared or integrated between agen-
cies - which is costly, difficult to manage and often ethi-
cally and legally infeasible.

A lack of data integration between interventions poten-
tially has a negative impact on transparency and account-
ability, as different departments and agencies might make 
different decisions for the same policy problem. In turn, 
this hampers efforts to develop ‘joined up’ government 
in the era of digital governance that seeks to reintegrate 
otherwise disconnected governmental departments 
and public agencies (Margetts and Dunleavy 2013). The 
Smart MCBT proposed in this paper specifically aims to 
reddress the shortcomings of existing tools, by reinte-
grating individual CBA projects using a database system 
that securely stores and de-identifies project data, and 
redeploys it using a range of ML and data science tech-
niques. The question of what works and what doesn’t is 
respecified by the Smart tool as a data science approach, 
which not only serves to enhance CBA but also reconfig-
ure the policy making process in the paradigm of open 
data and data analytics.

This paper has focussed almost exclusively on the role 
of economic considerations in the selection of crime 
reduction interventions, using a gated community pre-
vention approach as illustration. However, as the EMMIE 
acronym indicates, decisions about programme imple-
mentation invlove many more considerations than simply 
CBA (College of Policing UK 2017; Johnson et al. 2015). 
EMMIE highlights the difficult choices that often need to 
be made about programme implementation, choices that 
depend on much more than financial considerations. In 
particular, mechanisms, moderators and implementa-
tion factors highlight just how context-specific interven-
tions may be—what works in one circumstance may not 
work in another seemingly similar situation. Moreover, as 
Johnson et al. (2015) point out, the available research on 
crime reduction activities varies enormously in quality. 
Information about costs is especially difficult to find. It is 
very noticeable that in the systematic reviews presented 
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in the College of Policing UK (2017) Crime Reduction 
Toolkit, the economic costs cell is frequently empty. Like-
wise, we acknowledge that the current paper presents lit-
tle in the way of empirical economic data. Our ambition 
with this paper has been limited to suggesting a way for-
ward that might help redress the current dearth of high 
quality economic data around crime reduction activities.

Conclusion
There are considerable opportunities and challenges 
for CBA using advanced data analytics, and the Smart 
MCBT proposed in this paper represents a step forward. 
Although the Smart MCBT is currently under develop-
ment, future work will test and evaluate the concepts and 
methodology set out in this paper. Moreover, while we 
have focussed on the use of the Smart MCBT in crime 
prevention, it can be used in any policy context, whether 
it be concerned with crime, health, education, business 
management and so on. The question about whether, 
and how, ML and data science can improve and modify 
policy decision making remains an empirical question. 
Future evaluation of Smart MCBT is not restricted to the 
accuracy of cost estimates, but also a range of factors that 
includes user satisfaction metrics, time spent for data 
entry, frequency of input errors and the utility of knowl-
edge discovery features for end users. At a broader scale, 
the role and meaning of such tools in a policy and govern-
ance context requires further critical attention. Although 
such tools offer numerous benefits and enhancements to 
policy decision making under austerity, attention must 
also be given to how data science and ML techniques 
and methodologies reconfigure the policy making setting 
itself—including the impact on stakeholders.
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