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Abstract—Nonlinearity mitigation using digital signal process-
ing has been shown to increase the achievable data rates of
optical fiber transmission links. One especially effective technique
is digital back propagation (DBP), an algorithm capable of
simultaneously compensating for linear and nonlinear channel
distortions. The most significant barrier to implementing this
technique, however, is its high computational complexity. In
order to fully characterize the performance of DBP, there is a
need to model the algorithm under the constraint of a fixed hard-
ware complexity which, crucially, would include the bit-depth of
the multiplication operation. In this work, DBP and a single
nonlinear step DBP implementation, the Enhanced Split Step
Fourier method (ESSFM), are compared with linear equalization
using a generic software model of fixed point hardware. The
requirements of bit depth and fast Fourier transform (FFT) size
are discussed to examine the optimal operating regimes for these
two schemes of digital nonlinearity compensation. For a 1000 km
transmission system, it was found that (assuming an optimized
FFT size), in terms of SNR, the ESSFM algorithm outperformed
the conventional DBP for all hardware resolutions up to 13 bits.

Index Terms—Optical Fiber Communication, Digital Signal
Processing, Nonlinearity Compensation

I. INTRODUCTION

S IGNAL processing techniques to overcome optical fiber
nonlinearity have evolved considerably in recent years.

With the aim of increasing the capacity and reach of coherent
detection systems, the use of digital signal processing (DSP)
algorithms has been shown to significantly improve system
performance [1] and reduce complexity [2] when compared to
earlier systems. The digital back propagation (DBP) algorithm
[3] is conventionally applied at the receiver, however it can
also be applied at the transmitter (i.e., digital pre-compensation
[4], [5]), or as some combination of both link endpoints,

as investigated in [6]. In all cases, DBP seeks to simulate
a reverse link (see Fig. 1) and, consequently, reverse the
deterministic nonlinear and linear fiber propagation effects [3].
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Fig. 1. Transmission model used to investigate the performance of various
DBP schemes. This is implemented as a series of linear and nonlinear
operators applied to the buffered signal vector. Ideal DBP describes the most
intensive implementation of DBP with k steps equal to the number of steps
applied over Ns spans in simulated forward propagation.

However, the promising performance gains achieved with
ideal DBP typically incur a computational expense beyond
the capabilities of present digital signal processing hardware
[7], due to the use of the split step Fourier method to solve
the reverse Nonlinear Schrödinger equation (NLSE) as a
Manakov system [8]. In order to achieve real-time processing,
several implementations of DBP have been proposed with
differing perspectives on the trade-off between performance
and complexity. These included increasing the nonlinear step
size of the split step Fourier method in the DBP virtual link to
minimize the number of calculations required for signal recov-
ery. 1 step-per-span DBP (1sps-DBP) [3] has been proposed
as a natural trade-off between performance and complexity
for single channel DBP. More advanced proposals include the
low pass filter DBP (LPF-DBP) - an implementation of DBP
that introduces a phase noise filter in the nonlinear step of
the algorithm [9]. High frequency phase noise components
are present in the phase spectrum when measured across
multiple spans, and the use of LPF-DBP acts to suppress such
components to achieve reasonable performance with < 1 step
per span. LPF-DBP has been shown to perform comparably
to 1sps-DBP with 1 step every 4 spans [9], corresponding to
an approximately 75% reduction in the number of calculations
required for NLC. Note that the overall numerical complexity
of the aforementioned NLC schemes is dependent on the link
length.

DBP is typically implemented as a Wiener-Hammerstein
system [7] on a ‘virtual’ link expressing a reverse journey to
the physical forward propagation. The conventional Manakov
system for modeling propagation concatenates operators of
fixed distance to describe the full link, and so the complexity
of standard DBP, which uses this approach, is proportional to
the link length. A recent development in the field has been the
design of low complexity NLC methods with a nonlinear step
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size equal to the physical link length [10].
For realizable NLC in a coherent receiver, any solution

would ideally demonstrate performance improvement over
chromatic dispersion compensation (CDC) while avoiding a
significant increase in computational complexity. This has
spurred interest in single step-per-link implementations of
DBP. The Enhanced Split Step Fourier Method (ESSFM) is
a general implementation of filtered DBP, which applies the
reversed channel with the step size equal to the link length
[10]. Similarly to LPF-DBP, the ESSFM uses an additional op-
eration stage in the nonlinear algorithm sub-step. The ESSFM
algorithm has demonstrated a performance increase of 0.7 dB
[11] versus linear equalization with a comparable demand
of complex multiplications [11]. Both methods of augmented
DBP use nonlinear optimization routines for the determination
of a nonlinear filter [11], [12]. This routine solves a numerical
problem and not the underlying problem of solving an indeter-
minate equation describing a physical system, and therefore it
is uncertain if either method demonstrates optimality in their
solutions.

These implementations of DBP have demonstrated the po-
tential performance benefits of using NLC over CDC in offline
implementations. However, to make a case for the practical
deployment of such systems there remains a question of DBP
performance when constrained to the fixed point arithmetic
required in a high throughput coherent receiver.

This has previously been investigated in [13], where time
domain dispersion filters, with a manually optimized disper-
sion compensation ratio between the linear filters was used
to minimise hardware requirments. To extend the general
understanding of quantization effects in NLC methods, here
we investigate frequency domain dispersion compensation,
similarly making no assumptions on the target hardware. An
advantage of the hardware- and system-agnostic approach
is that it facilitates a clearer comparison between different
NLC methods, where a change in dispersive block length can
have a significant impact on performance, while removing the
consideration of distortions introduced by finite-length time
domain filters [14]1.

Therefore, in this paper, we develop a model of finite
precision arithmetic and simulate the operation of several
implementations of DBP. We assess and compare the perfor-
mance of constrained DBP using the linear CDC algorithm
as a benchmark. Finally we determine operating regimes for
which a specific implementation of NLC outperforms CDC in
terms of SNR.

This paper is organized as follows. In Section II-A, different
NLC algorithms are introduced. In Section II-B, the model of
fixed-point arithmetic and hardware simulation is described in
detail. The results of the transmission simulations are given
in Section III-A for the DBP fixed point algorithm and Sec-
tion III-B for the ESSFM fixed point algorithm. Conclusions
are drawn in Section IV.

1It should be noted that, although the time domain DBP has now seen im-
plementation in ASIC [15], several approaches have been recently developed
to specifically tackle this issue and enable practical hardware implementations
of time-domain DBP. These include random step size DBP [16], and machine
learned CDC filter coefficients [17].

TABLE I
SUMMARY OF SYSTEM PARAMETERS

Parameter Value Units
Fiber attenuation 0.2 dB/km
Dispersion parameter 17 ps/(nm · km)
Fiber nonlinear coefficient 1.2 1/(W · km)
Span length 40 km
Number of spans 25 -
1spl-DBP/ESSFM step size Varies m
Symbol rate 32 GBd
EDFA noise figure 5 dB
Pulse shape RRC, 1% rolloff
DBP Wiener-Hammerstein split 0.85 -
ESSFM Wiener-Hammerstein split 0.4 -

II. METHODOLOGY

A. Numerical Simulations and Algorithm Design

In modeling the behavior of digital NLC we used a simu-
lation model of an optical link (Fig. 1), assuming ideal noise-
free transceivers, with the link parameters given in Table I. The
signals under test were single channel 32 GBd dual polariza-
tion (DP) quadrature phase shift keying (QPSK) and 16-ary
quadrature amplitude modulation (DP-16QAM) signals. The
signal was sampled at 4 samples/symbol and shaped using a
root-raise cosine (RRC) filter. In this approach, we numerically
solved the Manakov system for forward pulse propagation
to simulate 1000 km (25×40 km span) of standard single-
mode fiber (SSMF), as a representative long-haul transmission
system, and following the methodology in [11]. An EDFA was
included after each span to fully compensate for the power loss
due to signal attenuation over the span.

Fig. 2 shows the receiver model used in this work. The
received data is detected, resampled to 2 samples/symbol
and normalized to unit average power. The signal is then
processed using either EDC (implemented as a single step
frequency domain filter), or the NLC algorithm under test. The
approaches to NLC in this work are the ESSFM [10] at 1 step-
per-span, and DBP at between 1 and 5 steps-per-link (i.e.,
up to 1 step-per-span). In the implementation of each NLC
algorithm, fixed-point arithmetic is used to model the finite
precision available in practical hardware. Details of the fixed
point modules are discussed in Section II-B. For both DBP and
EDC, the Fast Fourier Transform (FFT) is based on the radix-2
Cooley-Tukey algorithm [18] using an ‘overlap and save’ pro-
cedure to model a buffered application of dispersion compen-
sation. Exponentials were approximated using the coordinate
rotation digital computer (CORDIC) algorithm to reduce the
computational demand of approximation using a long Taylor
series (although note that truncated Taylor series have also
been successfully used in, e.g., [13]). The filter coefficients for
the ESSFM algorithm were optimised offline using a double
precision floating-point non-linear optimization algorithm, and
the coefficients were quantized at runtime. Following NLC
or EDC, matched filtering was applied to the signal, before
normalization and downsampling to 1 sample/symbol. SNR
estimation was performed on the central 214 symbols, as per
the approach and assumptions in [19] and is reported for the
optimum launch power unless otherwise specified.
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Fig. 2. The signal processing chain used in this work. The complex valued
pulse train is captured using a model of balanced detection, downsampled to
2 samples/symbol, NLC applied and match filtered before unitary scaling and
an SNR for the symbols estimated. This routine is also the function, f(x),
for the optimisation of the ESSFM filter coefficients.

DBP was applied using the split-step Fourier method
(SSFM) to solve the Manakov equation [20] with the inverse
loss, dispersion and nonlinearity fiber coefficients. The single
channel transmission at 32 GBd with 40 km spans was
chosen for equitable comparison of algorithm performance
between DBP and ESSFM, again, following the methodology
of [11]. The Manakov inverse channel model [20], over some
incremental step, h, approximates the deterministic effects of
the channel as

E(z + h, T ) ' exp(hD̂)exp(hN̂)E(z, T )

' exp
(
h

2
D̂1

)
exp(LeffN̂)exp

(
h

2
D̂2

)
E(z, T ),

(1)

where D̂ is the linear operator, given by

D̂ =
iβ2
2

∂2

∂t2
, (2)

and N̂ is the nonlinear operator, defined as

N̂ = −iγ 8

9
EHE− α

2
. (3)

Here, E = [EX , EY ] is the optical field in the X and Y
polarization states, α is the fiber loss parameter, β2 is the group
velocity dispersion, γ is the fiber nonlinearity coefficient, and
Leff is the effective length of h.

Following the approach described in [7], a 3- block Wiener-
Hammerstein model for each step was used for the DBP. Lin-
ear compensation sub-steps were performed in the frequency
domain with a circular convolution using 4 FFTs per step.
For DBP, adjacent linear blocks were combined over the total
link for Ns + 1 total FFT blocks. Nonlinear substeps were
applied in the time domain as a phase shift proportional to
the instantaneous power of the back propagating signal. The
responsibility of application of the linear components between
each D̂i block in (1) is dictated by the Wiener-Hammerstein
(WH) split. This parameter has the effect of controlling the
position of the nonlinear N̂ term across step distance, h.

To implement the ESSFM algorithm proposed in [10], we
use a modified nonlinear operator

N̂k = −iγLeff

(
Nc∑
i=0

ci
(
|Ek−i|2 + |Ek+i|2

))
(4)

for each sample, k, with the application of the ESSFM filter
coefficients, ci, for filter size Nc+1. The filter coefficients are

determined through a nonlinear multivariate equation solver.
The DSP chain for signal processing, including the ESSFM, is
formulated as some function, f(x), which returns a final SNR.
In this work, a Quasi-Newton cubic line search procedure was
used to minimize a negated SNR output of f(x). This blind
optimization approach uses gradient descent with a relative
tolerance of 10−3 to converge on a set of filter coefficients.
Similarly to [11], we applied nonlinear optimization to maxi-
mize the SNR of a sample sequence using the coefficients,
ci as the degrees of freedom. The number of coefficients
in the filter was restricted to a power of two, again for
direct comparison with [11]. The number of multiplications
per transmitted symbol for the ESSFM N̂ operator can be
approximated by Ns(2Nc + 1) when the multiplications for
instantaneous power are disregarded2. This linear relationship
suggests the possibility for an optimality trade-off between
ESSFM filter size and performance in SNR. Diminishing
returns for the system in [11] were observed for filters of 32
tap weights and above. Here, this investigation was repeated
for our system parameters, as it can be seen that additional
multiplications in the N̂ operator have implications for the
performance limitations from the quantization overhead in
the fixed point model; there is a trade off between nonlinear
performance gain and quantization noise introduced from the
additional filter taps. The theoretical basis for the operation of
the ESSFM and the filter coefficients is further discussed in
[11], [21].

In this paper, we follow the approach taken in [10] and
operate the ESSFM at the 1 step-per-link level. In this case the
Wiener-Hammerstein (WH) split now determines the position
of the only nonlinearity compensation operator across all
spans. We confirmed the optimal WH split value of 0.85 for
DBP, as expected [7]. However for the ESSFM, the WH split
was fully re-optimized. The intuition for this is that since the
distribution of power over distance for a step size of 1 span
length is only a subset of the distribution over the full link,
the location of the single N̂ would likely change. In [11] the
ESSFM is proposed using the Wiener Model of the N̂ term
preceding a singular D̂ term. We found this arrangement to be
sub-optimal in terms of nonlinear compensation performance,
despite the additional quantization from two FFT pairs per
link, and we subsequently used an optimized WH split value
of 0.4.

B. Hardware Model

When implementing NLC algorithms in hardware, the finite
precision, fixed-point (FXP), arithmetic will have an impact
on the achievable SNR. For the different NLC schemes, it is
possible to compare the performance and complexity merits
of such algorithms in a practical scenario. To do this, it
is necessary to model the bit-level arithmetic occurring in
realtime receiver hardware.

A set of software functions to model FXP arithmetic for
an arbitrary quantization level were developed. This model

2Note that the ESSFM filter is a symmetric FIR filter and this symmetry
could be exploited to efficiently implement the FIR filter in hardware.
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remains agnostic to the hardware platform, with no intended
target system (as in, e.g., [13]). The basis for this model
are functional blocks for FXP addition and multiplication,
which receive some quantization level as an input parameter
and return the arithmetic result. The constraints investigated
here are limited to bit depth (the number of logical bits
permitted in FXP arithmetic) as a primary factor in the degree
of accumulated quantization and the size of the FFT window.
Intuitively, a decrease in bit depth leads to greater quantization
noise as the bit stream is increasingly compressed. This limits
the ability of the FXP model to approximate the best case
(64-bit floating point, hereafter ‘double precision’) simulation
model, resulting in some level of performance degradation.

These atomic, arithmetic functions were used to emulate the
operation of more complex operations, including an FFT. A
fixed bit depth was assumed throughout the system and bit
depth expansion was not permitted across multiple functions,
as is typical in real-time signal processing hardware. However
bit depth expansion is permitted for intermediate operations
only3. Each number is represented in simulation using the
fractional two’s complement fixed point format, with each
representable value in the range −1 ≤ x < 1. This format
was chosen as there is a guarantee that the product of every
multiplication will have some magnitude equal or less than
that of either input. The sampling of a continuous signal
to some discrete amplitude introduces quantization noise,
resulting in error propagation as a result of the finite precision
of the system. As a sample propagates through a cascade of
multiplication stages (e.g., in the FFT) then each multiplication
introduces some quantization noise. The signal-to-quantization
noise ratio of a signal quantized to B bits [22] can be described
as

SQNR =
1

σ2
, (5)

where the quantization noise variance is given by

σ2 =
2−2B

12
(6)

The logarithm of Eq. (5) reveals a gain of 6 dB in SQNR
for the provision of an extra bit. The crux of Eq. (5) in the
context of digital NLC is the trade-off between maximizing the
number of DBP steps in order to ensure solution accuracy and
minimizing the number of steps to prevent the accumulation
of quantization noise.

When an input signal is first quantized to a set bit depth,
each amplitude is rounded towards the nearest available dis-
crete amplitude. In the event of an arithmetic overflow in
this system, the erroneous value is clipped at maximum or
minimum quantized amplitude. (Arithmetic overflow refers
to some discrete number outside of the [−1, 1) bounds.)
This method also ensures the quantization noise distribution
remains zero-centered.

3We refer to an intermediate operation as one inside a single function block
but between the atomic function units. The primary usage of this intermediate
bit expansion is during the FFT block, wherein conditional scaling of bit depth
is employed to minimize the addition of quantization noise from successive
FXP operations. This problem could also have been approached by choosing
a different quantization interval, however in this work the bounds x ∈ [−1, 1)
are strictly enforced.

Within the NLC algorithms, transformations between the
time and frequency domain are performed by a radix-2 Cooley-
Tukey FFT [18]. This format of FFT is chosen for the ability
to implement a wide range of FFT sizes and because the com-
plexity of this FFT is well studied [11]. We did not consider
split radix FFTs in this work, which may have changed the
overall NLC performance. However, because the same FFT
implementation is common to all algorithms considered, any
performance change would affect all NLC implementations.
The quantization noise introduced from one butterfly operation
in an FFT is 4σ2 with a quantization noise variance introduced
from an FFT as 4(N − 1)σ2 [22]. This corresponds to the
optimal SNR achievable for a signal processed using an FFT
and, as such, places a ceiling on total system performance.

The Overlap and Save algorithm was used to be able to
model the continuous filtering required in hardware. The size
of the buffer to process must correspond to a radix-2 FFT
size, or 2n, where n ∈ {5, . . . 15}. An overlap size of N/4
was chosen, where N is the length of a signal buffer, in
correspondence with the work carried out in [11]. The Overlap
and Save algorithm used here also applies the dispersion map
as the linear substeps of DBP and the full CDC operation.
Nonlinearity compensation is applied in the time domain by
multiplying the signal with a vector of complex exponentials
via CORDIC [23].

III. RESULTS

A. Digital Back Propagation

The initial simulations of the transmission of 218 DP-
QPSK modulated samples at 32 GBd over a 1000 km fiber
link. DBP was implemented with the parameters described in
Section II-A with the finite precision logic described in Section
II-B. For comparison, we also implemented CDC using the
same FXP modeling constraints. The FFT size was optimized
in each case and is therefore not included as a parameter.
In the following, we examine the behavior of DBP in the
FXP environment, and discuss the additional complexity of
this form of NLC compared to CDC.

Fig. 3 shows the SNR improvement relative to CDC at the
same FXP bit depth, across a range of numbers of nonlinear
steps-per-link. For an increased number of steps in DBP, the
virtual link model improves in efficacy, as expected, however
this is at the cost of an increased FXP bit depth, which is
required to reduce the impact of quantization noise when
multiple steps are used. Additionally, Fig. 3 identifies that
there exists some quantization limit in performance, at a
given number of steps-per-link, which can be reached with
a sufficient bit depth in the digital logic. In the single step per
link case, with the fewest multiplications, there is a negligible
SNR gain of 0.1 dB over CDC for bit depths greater than
13 bits. We observe no gain in SNR over CDC for bit depths
below this, for any number of steps-per-link. The greatest
performance difference over CDC is a ≈3 dB gain, observed
using 1 step-per-span, was at a bit depth of 16 bits. However,
when compared to a fixed point implementation of CDC, it
can be seen that any gain requires a minimum of 13 bits.
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Fig. 3. SNR improvement for DBP compared to CDC at 1000 km for DP-
QPSK transmission. Both DBP and CDC are simulated with FXP arithmetic
and optimized FFT size. DBP is simulated with a range of steps-per-link
(SPL) to investigate the influence of the number of steps on the quantization
error on the signal.

We expand on this analysis in Fig. 4 by examining the
absolute SNR performance of DBP against the variation in
steps-per-link between 7 and 16 bits. From this result it can be
inferred that for ≤ 12 bits, there is insufficient arithmetic pre-
cision to tolerate the increased accumulation of quantization
noise arising from increasing the number of DBP steps-per-
link. While increasing the steps-per-link increases the accuracy
of theoretical DBP our results show that increasing the number
of FFTs and multiplications is monotonically detrimental
for low bit depths due to quantization error. However for
≥ 13 bits, there is a noted transition to an operating regime for
which an increase in the steps-per-link results in some SNR
gain. This confirms that at 1000 km, a minimum of 13 bits are
required to overcome the quantization overhead present in our
implementation of DBP. Notably, for a resolution of 10 bits,
the SNR intially increases, and then decreases beyond 2 steps-
per-link; i.e., there exists an optimum number of steps-per-
link for a given FXP hardware bit depth. Previously reported
results in this area show that DBP performance increases
monotonically with number of steps-per-link and, thus, this
result highlights the importance of considering fixed point
arithmetic in performance analyses.

To conclude this section, we now consider the optimised
FFT transform window used for each data point in Fig. 4.
Shown in Fig. 5 is the average FFT transform window used
for each bit depth. We note that the trend is approximately
linear when considering the number of butterfly stages (i.e.,
the binary logarithm of the number of samples). Between
bit depths of 8 and 15, the transform size doubles for each
increment in bit depth; as expected from theory. For the highest
bit depths, we did not see any benefit for increasing the
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Fig. 4. SNR against the number of steps-per-link for DBP at 1000 km for
32 GBd DP-QPSK transmission. DBP is simulated with FXP arithmetic with
the number of steps in the virtual fiber model and bit depth varied. Note
that 15- and 16-bit FXP performance at 25 steps-per-link is within 0.1 dB of
double precision floating point.
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Fig. 5. The FFT transform size which maximises the SNR, averaged across
all the data presented in Fig. 4. Note that the maximum transform size was
set to 215, as this was sufficient to match the double precision performance
at high bit depths.

transform window beyond 215, hence the saturation at this
point.

B. Enhanced Split Step Fourier Method

The ESSFM algorithm described in Section II-A was sim-
ulated in the system detailed by Fig. 2. For the DP-QPSK
scenario, Fig. 6 identifies the variation in SNR against launch
power. Each power and coefficient filter size was separately
optimized up to a filter of size Nc = 256.

Improvements in SNR compared to CDC were observed
for all input powers near the optimum. The maximum SNR
improvement was 0.7 dB for DP-QPSK and 0.8 dB for DP-
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16QAM with a 256-tap filter (cf. the original results for
this algorithm as presented in [11]). Fig. 7 shows the trade-
off between filter size and NLC performance, indicating that
Nc = 128 represents a good trade-off between performance
and complexity. This filter length is therefore used for the
remainder of this work.

Previous research into modifying the nonlinear operator in
DBP [11], [12], [24] used a black box approach generating an
optimal filter. We follow this methodology, however we chose
to inspect further the behavior of the filter returned through
the optimization routine detailed in Section II-A. In Fig. 8, the
128-tap filter for processing a DP-QPSK signal at the optimum
launch power is analyzed in the frequency domain. The profile
of this filter is effectively a weighting of a neighboring
samples’ power to each sample. Fig. 8 demonstrates that this
filter exhibits a low pass filtering behavior that was not a

constraint intended as part of the design. We note that this
highlights more similarity between the methods of the LPF-
DBP and the ESSFM, as the coefficients in the ESSFM were
not originally proposed as a filter of any specific kind. With the
understanding that the Ň operator in the ESSFM is performing
a linear phase4 low pass filtering with one NLC term per
link. We suggest that, for future work, it may be sufficient
to combine the approaches of [24] and [11] (i.e., through the
direct optimization of the filter bandwidth within the ESSFM),
which was essentially the approach taken in [9].
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Fig. 8. Frequency response of the 128-tap ESSFM Ň operator for 32 GBd
DP-QPSK transmission.

Finally, the behavior of the ESSFM as NLC in a finite
precision arithmetic simulation is explored. Fig. 9 shows the
maximum SNR improvement over FXP CDC with a varying
number of bits and FFT size optimized for each bit depth. It
can be seen that, as anticipated, there exists some quantization
penalty limiting the finite precision algorithm performance
when compared to double precision. The difference between
the overheads of 0.024 dB for DP-QPSK and 0.18 dB for DP-
16QAM highlights a potential level of increased sensitivity to
quantization for multi-level modulation formats. As the level
of quantization noise is constant for any distance with the
ESSFM, there exists some link length at which channel noise
dominates over quantization noise and this overhead becomes
negligible. The exact location of this crossover point was not
explored, as it is an inherently system-dependent parameter,
however it is estimated from preliminary results to be near a
link length of 2000 km for the system considered herein.

The results in Fig. 9 also highlight the limitations of even
low complexity DBP when compared to CDC, as a minimum
of 10 bits are required to improve over linear equalization.
Indeed, the relatively high bit depth requirements shown are as
a result of the use of frequency domain CDC, and the hardware
requirements have been shown to be correspondingly lower for
time domain algorithms [13]. For the present work, though, it
is the relative performance (rather than absolute performance)
of the algorithms which is of primary interest. Comparing

4The linear phase response of the ESSFM 128-tap filter is not shown in
this work for brevity. Also not shown is similar low pass behavior for the
128-tap filter designed for DP-16QAM.
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Fig. 9. ∆SNR over CDC for the ESSFM against bit depth at 1000 km
for 32 GBd DP-QPSK and DP-16QAM transmission. The double precision
performance is shown for reference.

Fig. 3 and Fig. 9, we observe that, at a 1 step-per-link level,
the low complexity ESSFM demonstrates improvements in
SNR performance when compared to both DBP and EDC.
However, this gain in SNR remains less than 1 dB and is sub-
optimal when compared to a DBP using a greater number of
steps-per-link. Provided there is a sufficient number of bits to
saturate the system performance, Fig. 3 demonstrates that more
steps-per-link will yield greater SNR improvement compared
to the addition of the nonlinear phase filter in the ESSFM.
Nevertheless, it should be noted that the ESSFM outperforms
DBP for all bit depths ≤13 bits, irrespective of the number
of steps used for DBP. It is anticipated, based on recently
reported results [13], that when using time domain CDC as
part of the NLC algorithms, that this difference in bit depth
requirements would persist, albeit at a low required number
of bits for both DBP and ESSFM.

IV. CONCLUSION

The behavior of algorithms for optical fiber nonlinearity
compensation were investigated in detail under the constraint
of fixed-point arithmetic. Using a simulation including an ideal
transmitter and coherent receiver, limitations on performance
for signal recovery in DSP, have been shown, and are primarily
a result of quantization noise. It was found that, for this fre-
quency domanin NLC implementation, a minimum of 13 bits
is required to observe any additional SNR gain from ≥ 1 step-
per-link DBP. A similar bit depth is required to reach the
maximum achievable performance benefit over CDC for the
ESSFM algorithm, however we note that some improvement
over CDC can be seen with the reduced constraint of 10 bits.
Although other algorithms for simplified DBP exist [25],
[26], the work presented herein has shown that it is crucial
to include an analysis of bit depth in order to accurately
compare the performance of different NLC algorithms, and

that the number of mathematical operations, alone, cannot
serve as a proxy for complexity. Even with reductions in
complexity achieved using time-domain DBP [13] (which
showed requirements of approximately 8-10 bits for two steps-
per-span DBP) the differences in requirements between DBP
and ESSFM would persist.

We also highlight, for the first time, the similarities in
behavior of the ESSFM and LPF-DBP through the observation
that the frequency response of the ESSFM phase filter exhibits
low pass filtering behavior. Future work on this topic could
include the investigation into the behavior of the aforemen-
tioned NLC in a multi-channel or super-channel system, as
well as expanding on the impact of modulation format on the
quantization penalty of the finite-precision ESSFM.

More generally, we note that the fixed point models devel-
oped herein could be used as a basis for estimating the true
performance of any NLC algorithm, and should, therefore,
be included as inherent consideration in the NLC algorithm
design process.
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[17] C. Häger and H. D. Pfister, “Deep Learning of the Nonlinear Schrdinger
Equation in Fiber-Optic Communications,” in Proc. IEEE International
Symposium on Information Theory (ISIT), 2018.

[18] J. W. Cooley and J. W. Tukey, “An algorithm for the machine
calculation of complex fourier series,” Mathematics of Computation,
vol. 19, no. 90, 1965.

[19] A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel,
“Replacing the soft-decision FEC limit paradigm in the design of
optical communication systems,” Journal of Lightwave Technology,
vol. 33, no. 20, pp. 4338–4352, Oct 2015.

[20] D. Marcuse, C. R. Menyuk, and P. K. A. Wai, “Application of the
Manakov-PMD equation to studies of signal propagation in optical
fibers with randomly varying birefringence,” Journal of Lightwave
Technology, vol. 15, no. 9, pp. 1735–1745, 1997.

[21] M. Secondini and E. Forestieri, “On XPM mitigation in WDM
fiber-optic systems,” IEEE Photonics Technology Letters, vol. 26,
no. 22, pp. 2252–2255, 2014.

[22] J. G. Proakis and D. G. Manolakis, Digital Signal Processing, 4th ed.
Pearson Education International, 2007.

[23] S. A. Khan, Digital Design of Signal Processing Systems: A Practical
Approach. John Wiley & Sons, Ltd, 2011.

[24] Y. Gao, J. H. Ke, J. C. Cartledge, and S. S. H. Yam, “Method for
determining the low-pass filter bandwidth for the low-pass filter assisted
digital back propagation algorithm,” in 39th European Conference and
Exhibition on Optical Communication (ECOC 2013), Sept 2013, pp.
1–3.

[25] R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Logarithmic
step-size based digital backward propagation in N-channel 112Gbit/s/ch
DP-QPSK transmission,” in 2011 13th International Conference on
Transparent Optical Networks, June 2011, pp. 1–4.
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