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Abstract—Enormous amounts of dynamic observation and
measurement data are collected from sensors in Wireless
Sensor Networks (WSNs) for the Internet of Things (IoT)
applications such as environmental monitoring. However, con-
tinuous transmission of the sensed data requires high energy
consumption. Data transmission between sensor nodes and
cluster heads (sink nodes) consumes much higher energy than
data sensing in WSNs. One way of reducing such energy
consumption is to minimise the number of data transmissions.
In this paper, we propose an Adaptive Method for Data Reduc-
tion (AM-DR). Our method is based on a convex combination
of two decoupled Least-Mean-Square (LMS) windowed filters
with differing sizes for estimating the next measured values
both at the source and the sink node such that sensor nodes
have to transmit only their immediate sensed values that
deviate significantly (with a pre-defined threshold) from the
predicted values. The conducted experiments on a real-world
data show that our approach has been able to achieve up to
95% communication reduction while retaining a high accuracy
(i.e. predicted values have a deviation of ±0.5 from real data
values).

Keywords-Internet of Things (IoT);Wireless Sensor Networks
(WSN);data reduction;Least-Mean-Square (LMS)

I. INTRODUCTION

Recent advances in sensing and actuator technologies
offer possibilities for continuously monitoring real-world
phenomena in distributed networks. Sensors are often de-
ployed in distributed and dynamic environments over a
large (dense or sparse) geographical area (i.e. sensing field).
WSNs enables the development of a broad range of potential
IoT applications including environmental monitoring (e.g.
temperature, humidity, light, and voltage). In IoT networks,
sensor nodes require a continuous reporting of their imme-
diate readings to base stations (i.e. sink nodes). However,
data transmission is a dominant factor of communication
overhead and energy consumption in WSNs [1].

To address this problem, several data-driven approaches
for minimising energy consumption in WSNs have been
proposed in the literature such as [2], [1] and [3]. Moreover,
data reduction strategies have gained significant attention
for effectively lowering the number of transmissions and
extending the network lifetime [4]. The main goal of data
reduction schemes is that sink nodes are capable of repro-
ducing the complete data stream sensor readings (with a
reasonable high accuracy) from a particular set of elements

of data streams that are transmitted from sensor nodes. Data
reduction includes different approaches such as in-network
processing, data compression, and data prediction [4]. On
the other hand, in prediction-based approaches, a model is
built for describing a particular phenomenon such that user
queries can be answered through constructed models instead
of accessing the sensors for getting their actual sensed data.

There are several existing work on prediction-based meth-
ods and solutions [5, 6]. Some of these approaches such
as [7] and [8] assume that sensor observations are highly
correlated. For example, spatial and temporal correlations
have been proposed in [7] to selectively transmit a subset of
the data sensors from which the whole sensor readings can
be reproduced based on a predictive model and consequently
reduce the number of data transmissions. Although such
approaches are able to lower significantly the number of
transmissions, they suffer from performance loss in terms of
accuracy such that the predictive models have to be updated
regularly to include fined-grained changes [1]. To address
this problem, dual prediction schemes have been proposed.
Dual prediction minimises the number of data transmissions
between sensor and sink nodes at the finest level such that
sensor nodes transmit only a set of their sensed values
without affecting the quality of the actual measurement
values [6]. For example, Jain et al. [8] propose a dual
prediction scheme using Kalman filters for reducing the
number of transmissions. However, Kalman filters require
a priori knowledge (e.g. statistical data properties).

In this paper, we propose an Adaptive Method for Data
Reduction (AM-DR). Our method is a prediction-based
data reduction that exploits LMS adaptive filters. More
specifically, our method is based on a convex combination
of two decoupled LMS windowed filters with differing sizes
for estimating the next measured values both at the source
and the sink node such that sensor nodes have to transmit
only their immediate sensed values that deviate significantly
(> emax, a pre-defined threshold ) from the predicted values.

The paper is structured as follows. The problem formu-
lation is explained in Section II. Section III provides the
required background and the related work. Our proposed
algorithm is demonstrated and discussed in Section IV. The
performance evaluation, parameter settings, and reproducib-
ility descriptions are included in Section V. Moreover, the
proposed algorithm is evaluated and analysed on a real-world
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dataset against the state-of-the-art in the same section. We
conclude the paper and explain the future directions of our
research in Section VI.

II. PROBLEM FORMULATION

Consider a network of N sensor nodes and M sink
nodes (e.g. gateways) that are placed in a monitoring re-
gion/space. At each time instance t > 0, each sensor node
si (i = 1, 2, ...N ) publishes dynamic data streams x(t) for
monitoring applications. Data streams are a sequence of
numerical data-points in a consecutive order.

We are interested in reducing data transmissions for sensor
platforms such that minor perturbations from actual sensor
readings are acceptable. In other words, sensor nodes do
not require to send their actual readings unless there is a
deviation (> a predefined threshold) between the predicted
sensor readings and their actual readings. This approach
can be used in both of critical and not critical applications
by customising the deviation value. For instance, in critical
healthcare monitoring applications, accurate sensor readings
are required. In such case, a small deviation value is ne-
cessary, however, it has an impact on energy consumption.
On the other hand, some other environmental monitoring
applications (i.e. temperature monitoring) can consume less
energy (i.e. reduce the number of transmitted sensor read-
ings) by allowing a reasonable deviation of predicted values
compared to actual sensor values. For instance, in fire
detection and warning systems, temperature sensors’ values
are used as an indicator of a fire, in such case, however, the
temperature values will have a higher value than a predefined
threshold, which, in turn, requires sensor nodes to send their
immediate readings to a sink node and consequently, a fire
will be detected.

Overall, we are interested in reducing the communication
between the sensor and sink nodes such that:

• Sensor nodes need to transmit only their immediate
observation and measurement values if the predicted
values at sink nodes deviate significantly (with a pre-
defined threshold emax) from real observed values.

• Predicting the future sensor readings at both source
and sink nodes with a high accuracy (i.e. predicted
values have a small deviation emax value from real data
values) and minimal communication between nodes.

Addressing these two concerns allows us to reduce the
number of data transmissions between sensor and sink nodes
by avoiding unnecessary transmissions without affecting the
quality of sensor measurements. Figure 1 gives an illustrative
example of our problem formulation for prediction-based
data reduction based on dual prediction and LMS adaptive
filters. There are three main components: query processing,
a set of N sensor nodes and M sink nodes (M is not
necessarily equal to N ).

We assume that a set of user queries are submitted to
query processing component which contain users’ requested

absolute error ±emax. Each of M sink nodes should have
predictive models for its connected sensors S. The model
can then predict the next reading value within a certain
absolute error ±emax. The prediction is based on using two
LMS adaptive filters with differing sizes ws and wf such
that the filters are able to estimate the next sensor reading
based on its previous observation values (i.e. window size).
If the estimated values are not a good approximation to
actual values, sensor nodes have to explicitly transmit their
actual values to sink nodes. Overall, this approach reduces
the number of data transmissions and consequently the
communication overhead.

Query
processing

Sink/nodes/M Sensor/nodes/N

Prediction/model/for/S1

Prediction/model/for/SN

…/…/….../…/……….

…/…/….../…/……….

Prediction/model/for/
connected/sensors/S

Prediction/model/for/
connected/sensors/S

…/…/….../…/……….

…/…/….../…/……….

Figure 1. An illustrative example for problem formulation

It is worth mentioning that we refer to accuracy in the
paper as a high degree of data quality such that predicted
values have a minimal deviation of emax value (e.g. 0.5)
from actual data values.

III. BACKGROUND AND RELATED WORK

This section briefly discusses some of the existing work
in this area and describes the background information.

A. LMS algorithm and adaptive filters

Least-Mean-Square (LMS) is a de facto adaptive filtering
algorithm that has a set of filtering weights that are estimated
continuously to minimise the least mean square error (i.e.
the difference between the desired and the estimated data
streams). LMS has a low computational overhead [1]. It
relies on a stochastic gradient descent approach in which
coefficients are updated iteratively to minimise the least
mean square error e(t) of the filter at the current time t.

e(t) = x(t)− y(t) (1)

where x(t) is a data stream at time t and y(t) is the output
of applying an adaptive filter to the inputx(t) such that

y(t) = w(t)x(t) (2)

w(t) is the filter weight that is adapted to minimise the error
e(t) with a step size α (i.e. learning rate) using standard
LMS rule.

w(t) = w(t− 1) + αe(t)x(t) (3)



Combination scheme of two filters instead of using one
filter has been investigated to improve the steady-state
characteristics and performance of LMS [9]. Following the
work in [10, 9, 11, 12], a convex combination employs
two filters that are decoupled and simultaneously applied
to the same input. Their weights are adjusted to minimise
the overall errors of the filters. To this end, a convex
combination scheme is used to combine the weights of the
two filters using a parameter λ(t). λ(t) is a mixing scalar
parameter (0 6 λ(t) 6 1) to preserve the convexity of this
combination [12]. In this case, the overall weight w(t) which
is the mixture filter weight is represented as follows:

w(t) = λ(t)w1(t) + (1− λ(t))w2(t) (4)

where w1(t) and w2(t) are the weights of the first filter
and the second filter at a time instant t, respectively. λ(t)
is updated as a convex combination parameter with a step
size of α using the standard LMS adaptation rule [13, 14]
similar to equ. 3 as follows:

λ(t+ 1) = λ(t) + αe(t)x(t) (5)

In this paper, we consider the case where LMS algorithm
has a constant step size α. It must be noted, however, that
there are LMS-type algorithms with a variable step size such
that individual step sizes for each of the filter weights are
used. Interested readers can refer to the review of Bismor
et al. [15] for a detailed discussion about different LMS
approaches with a variable step size.

B. Dual prediction

There are several data-driven approaches for minim-
ising energy consumption in WSNs in the literature such
as [2], [1] and [3]. Interested readers can refer to the
survey of Anastasi et al. [4] for a detailed discussion about
other approaches for energy saving in sensor networks.
Moreover, dual prediction scheme is a potential candid-
ate to optimise the data transmission between sensor and
sink nodes [16]. Jain et al. [8] propose a dual prediction
scheme using Kalman filters for predicting sensor readings.
However, Kalman filters require feeding with a pre-defined
data streams model (e.g. statistical data properties should
be known). To address this issue, Santini and Romer [1]
propose a dual prediction approach based on LMS filters
that requires no prior knowledge. The experiments have
been conducted on temperature dataset and achieved up to
92% communication reduction such that the predicted sensor
readings have a deviation of ±0.5 from actual readings.

IV. THE PROPOSED APPROACH

In this paper, we propose an Adaptive Method for Data
Reduction (AM-DR) based on dual prediction scheme using
a convex combination of two LMS adaptive filters (Al-
gorithm 1). Our dual prediction scheme is similar to [1].
Identical predictive filters are employed at both sink and

sensor nodes such that sensor nodes require transmitting an
observed value x(t) at time t if its estimated value y(t) has
a significant deviation (> emax) from the real observation
x(t), where emax is the maximum absolute deviation from
actual observation values.

Using two adaptive filters (with a short/long observation
memory) explained in the previous section and moving av-
erage estimator for LMS filters are the main key differences
here compared to the existing approaches including [1]. Our
approach does not only require any prior knowledge but also
achieves a better communication reduction while retaining a
high accuracy (i.e. small emax value) for estimation next ob-
servations using LMS windowed filters with differing sizes.
As mentioned before, using a combination scheme of two
filters instead of using one provides an enhancement of both
convergence and steady-state accuracy of the convex weight
parameter for a better prediction of next data observation [9].

In equ. 4, we consider one of the adaptive filters is fast
while the other is slow. The fast filter w1 has a short-term
observation memory based on using a relatively small fixed
window size wf while the slow filter w2 has a long-term
observation memory based on an increasingly large window
size ws [17]. It is worth noting when λ is near 1, LMS
weight is updated based on w1 and when it is near 0, the
weight is updated based on w2.

Running moving average with a fixed window ŷf and
an increasing window ŷs for fast and slow adaptive filters,
respectively, is to have a good combination for estimating the
next observation value based on the previous set of values
(i.e. window size). To this end, the outputs of the fast ŷf
and slow ŷs filters are as follows:

ŷf =
1

wf

t∑
i=t−wf

x(t) (6)

ŷs =
1

ws

t∑
i=t−ws

x(t) (7)

where wf is a fixed window size for fast filter and ws is an
increasing window size for slow filter such that wf < ws.
Similar to [10], the overall output for filters ŷ(t) is a convex
combination of the outputs of both filters mentioned above.

ŷ(t) = λ(t) ŷf + [1− λ(t)] ŷs (8)

Where the mixing parameter λ of their combination is
adaptively updated in an on-line manner with the aim of
minimising the error of overall filters e(t) between the
desired signal d(t) and overall output of both filters ŷ(t)

e(t) = [d(t)− ŷ(t)] (9)

The motivation of our proposed approach is to extract the
best properties of the independent and decoupled fast ŷf



and slow ŷs filters by assigning and updating λ that is a
combination of both filters at each time t (Please refer to
Appendix A for more details) with the aim to minimise the
mean squared error.

λ(t+ 1) = λ(t) + α e(t) [ŷf − ŷs] (10)

where α is the learning rate (i.e. step size) parameter. The
learning rate influences the stability and the convergence of
the model. It was noted that LMS filters do not converge if
α > 1.0 [18].

Algorithm 1: Adaptive Method for Data Reduction
(AM-DR)

Input : Input data streams x
Initialisation of start = 1, ws, wf , α, λ, emax

Initialisation mode
1 while t < T do
2 ŷf ← 1

wf

∑t−1
i=t−wf+1 xe(i)

3 ŷs ← 1
ws

∑t−1
i=start xe(i)

4 ŷ(t)← λ(t) ŷf + [1− λ(t)] ŷs
5 e(t)← d(t)− ŷ(t)
6 w ← ŷf − ŷs
7 if |e(t)| < emax, (for ws consecutive steps) then
8 stand-alone mode
9 xe(t) = y(t)

10 λ(t+ 1)← λ(t)
11 else
12 normal mode
13 xe(t) = x(t)
14 λ(t+ 1)← λ(t) + α e(t) w
15 start← t
16 end
17 t← t+ 1
18 end

We have summarised our proposed algorithm (AM-DR)
in Algorithm 1 and the parameters that are used for the
equations in the paper in Table I. Similar to [1], nodes have
three main modes:

• initialisation mode: the nodes have this mode only once
at the beginning of constructing prediction models at
both sensor and sink nodes. During the initialisation
mode, sink nodes receive user queries for the first
time. Sensor nodes then start transmitting the first ws

observations. During this mode, the learning rate α and
emax have to be initialised at both of sensor and sink
nodes with same values (Fig. 1).

• normal mode: the node work in a normal mode when
the predicted values do not have a good approximation
of the actual measurements. In other words, when the
predicted model is not accurate enough to predict the

Table I
SUMMARY OF PARAMETERS

Parameter Definition
N Total number of sensor Nodes
M Total number of sink Nodes
i Sensor index, n = 1, 2, .., N
T Total time duration
t Time index, t = 1, 2, ...T
x(t) data streams that are published by one of N sensors

at a time t
wf A relatively small fixed window size for a short-term

observation memory based filter (i.e. fast filter)
ws An increasingly large window size for a long-term

observation memory based on filter (i.e. slow filter)
xe The available data streams either the predicted values

or actual values (i.e. based on normal/stand-alone
mode)

α Learning rate (i.e. step size)
λ(t) Mixing weight parameter of the combination of both

filters at time t
start The initialise of slow filter window
w The difference between output filters ŷf − ŷs
ŷs Output of slow filter (i.e. moving average with an

increasing window size ws) at time t
ŷf Output of fast filter (i.e. moving average with a fixed

window size wf ) at time t
e(t) Error between the desired signal d(t) and overall

output of both filters ŷ(t)
ŷ(t) A convex combination of the outputs of both filters
emax Maximum absolute deviation from actual observation

values

upcoming measurement, sensor nodes have to send
their immediate sensor values (x(t)). In such a case,
the convex combination filter weight (λ) has to be
updated. If there is a number of ws consecutive steps
such that the prediction error e(t) < emax. The node
should switch to stand-alone mode because it has now
enough sensor observations to predict the upcoming
measurement.

• stand-alone mode: the node works in a stand-alone
mode when the prediction model is good enough to
predict upcoming measurement with a deviation of
< |emax|. To this end, the convex combination filter
weight (λ) is to be left unchanged.

It is worth noting that since the ws is a filter with an
increasing window, it has to be reinitialised (i.e. to get a fresh
start) with the current t value (start = t) only during the
normal mode. This is because the combination filter weight
(λ) has to be updated during the normal mode.

V. EVALUATION

As discussed in the previous section, the proposed solu-
tion is composed of dual prediction scheme with a convex
combination of two adaptive filters. We have compared our
algorithm with the state-of-the-art algorithm in [1]. Our
motivation of comparison between our proposed method and
the selected state-of-the-art approach (baseline) is that both
of them use a dual prediction scheme with LMS adaptive



filters. However, using a combination scheme of two filters
instead of using one provides an enhancement of both
convergence and steady-state accuracy of the convex weight
parameter for a better prediction of next data observation
which is the key difference here compared with the state-
of-the-art.

A. Dataset

We have conducted our experiments on
a real-world dataset that is available at
(http://db.lcs.mit.edu/labdata/labdata.html). The dataset
is for 54 Mica2Dot sensors 1 with weather boards. Each
sensor has the following parameters: temperature, humidity,
light, voltage values, data and time at which a sensor
reading is obtained and a sensor identifier (i.e. moteid). A
clustered view for Mica2Dot sensors with weather boards
at Intel Berkeley Research lab is shown in Figure. 2.
During our experiments, we have used data reported by
the temperature sensors of the same motes (1, 11, 13, 49)
between March 6 and 9 to have a fair comparison and
consistency with the baseline approach in [1].

Figure 2. A clustered view for Mica2Dot sensors with weather boards at
Intel Berkeley Research lab

B. Parameter settings and reproducibility

We evaluate the performance of our method (AM-DR)
against the approach in [1]. The following are the specific
default values that we have used for each of the parameters
(emax = 0.5, wf = 5, ws = 10, α = 1.0e − 007). On the
other hand, we have used (N = 5, emax = 0.5, µ = 10−5)
for the baseline approach (as reported in [1]). It is worth
noting that we have selected a deviation value of 0.5 to
have consistency with the baseline approach [1] such that if
the predicted temperature sensor value is, for instance, 20
and the actual value for the same sensor is > 20.5 or less
than 19.5, the sensor node has to send the sensed value to
the sink node.

During empirical experimentation, we have noticed that
ws should be doubled the value of wf . Since N parameter

1http://www.willow.co.uk/html/mpr5x0- mica2dot series.php

value of the baseline approach in [1] is 5, we have also
used wf = 5 and ws = 10. Another observation during
the empirical experimentation is that α should be a value of
e− 007 (verified experimentally).

To ensure the reproducibility of our results, we have
made the code and dataset of our implementation
and baseline available and have also provided
details of a configurable experimental set-up at
(http://github.com/YasminFathy/AMDRIoT)

C. Results and discussion

We evaluate the performance of our approach (AM-DR)
against the baseline mentioned above. We have implemented
the baseline and we have been able to reproduce similar
results as in [1]. Figures 3 and 4 demonstrate the results of
AM-DR and baseline approaches. The red cross indicates
the sensor readings that have to be transmitted to sink nodes.
The baseline and AM-DR approaches achieve 92% and 95%
communication reduction with an accuracy emax = ±0.5,
respectively. Moreover, Figures 5 and 6 show the error of
both approaches of Figures 3 and 4, respectively. The figures
indicate that when the prediction error exceeds |emax|, the
sensor nodes have to transmit immediate readings to the
sink, as soon as the prediction error decreases at least ws

times, the node switches to a stand-alone mode.
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Figure 3. AM-DR: real and predicted sensor readings of mote 11
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Figure 4. Baseline: real and predicted sensor readings of mote 11

We have conducted another set of experiments and we
have reported the simulation results in Figure 7. The figure
shows the percentage of transmitted data by mote 11 with
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Figure 5. AM-DR: prediction error of mote 11
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Figure 6. Baseline: prediction error of mote 11

different ws, wf and α values (using the same values repor-
ted in (Figure 4) in [1]). Figure 7 shows having different
window sizes (i.e. filter lengths) for both of adaptive filters
can guarantee up to 95% communication reduction (i.e
transmitting only about 5% of the data) with an accuracy
of 0.5. On the other hand, the baseline approach has been
able to transmit about 10% of the collected sensor data. To
this end, we have been able to transmit a lower number of
data transmissions (i.e. half the number of data transmis-
sions compared with the baseline) while retaining the same
accuracy.
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Figure 7. AM-DR: percentage of transmitted data by mote 11

It is worth noting that AM-DR has a higher number of
data transmissions than the baseline (i.e. the number of ws

readings is doubled the number of wf readings such that
wf = N where N = 5 readings in the baseline approach
during the first set of simulation results). However, AM-DR
has been able to achieve a better performance in terms of

communication overhead and accuracy.
The performance of all selected motes for our experiments

(1, 11, 13, 49) is shown in Figure. 8. The results show a
significant data reduction for all motes. For instance, mote
11 is able to transmit only 7% of the sensor readings while
reattaining 0.5 accuracy (i.e. emax is ±0.5).

In order to study the comparison between our method
(AM-DR) and the baseline in more detail, we have con-
ducted an experiment with additional sensor measurements
obtained from mote 30 (mote 30 has more spiky data than
other tested motes). The results are reported in Figure. 9. The
figure shows how our method is able to perform well with
more spiky data than the baseline approach. The baseline
requires transmitting 18% of sensor data to obtain 0.5 ac-
curacy, while our method requires only about 13% to retain
the same accuracy. To this end, it is clear that our method
adapts well to the changes in sensor measurements compared
with the baseline method and has a high predictability for
upcoming sensor reading.
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Figure 8. AM-DR: percentage of transmitted data by mote 1, 11, 13, 49
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VI. CONCLUSIONS AND FUTURE WORK

We have introduced a novel Adaptive Method for Data
Reduction (AM-DR). The proposed approach employs dual



prediction scheme based on a convex combination of two
adaptive filters with differing window sizes for predicting
upcoming measurements. The main goal is to lower the
number of data transmissions between sensor and sink nodes
and consequently reducing the communication overhead.

We have then provided a comparison between our pro-
posed algorithm a selected baseline approach on a real-world
temperature dataset. Through our experiments, our algorithm
has provided a high communication reduction (up to 95%)
while retaining a high accuracy (i.e. with a deviation of ±0.5
from actual observation values).

Although our approach has shown a better performance
for having a good approximation for estimating the next
observation values compared with the baseline, the future
work will focus on investigating the sensitivity of the differ-
ent choices for (AM-DR) parameters. It will include using
a modified variable step size of the current algorithm. It
will also consider implementing the proposed approach with
different network models (e.g. clustered, star, tree). Although
we believe that different network models can be easily
extended in our approach, message and communication loss
have not been considered in the current work.
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APPENDIX A.
UPDATE EQUATION FOR λ

LMS uses a stochastic gradient descent to find the optimal weights
obtained from adaptive filter in order to minimise a cost function. The
weights/coefficients are updated iteratively at every time step t with an aim
to minimise the signal error (i.e. the difference between the desired and the
actual/estimated signal). The formula for gradient descent is as follows:

λt+1 = λt − α
∂f(λt)

∂λt
(11)

Where λt is the coefficient (i.e. weight), t is the index of the time step
{t = 0, 1, 2, 3, ..T}, f is the cost function of et that needs to be minimised
(i.e. error of the model) and α is the learning rate (i.e. step size).

et = [dt − yt] (12)

where yt is the output of applying the filter on an input xt (yt = λt xt).
By taking the first derivative of the function with respect to the weight λ

∂et

∂λt
=

[
dt − yt

]
∂λt

(13)

∂et

λt
=

[
dt − λtxt

]
(14)

∂et

∂λt
= et xt (15)

We can show the updated coefficient formula of LMS as:

λt+1 = λt + α et xt (16)


